FRAMEORACLE: LEARNING WHAT TO SEE AND HOW MUCH TO SEE IN VIDEOS

Anonymous authors

Paper under double-blind review

ABSTRACT

Vision-language models (VLMs) have advanced video understanding, but their performance is limited by the number of input frames they can process. Existing frame sampling strategies, such as uniform or fixed-budget selection, often fail to adapt to variations in information density or task complexity, resulting in inefficiency and information loss. To address this, we present **FrameOracle**, a lightweight and plug-and-play module that predicts both (1) which frames are most relevant to a given query and (2) how many frames are needed. FrameOracle is trained using a four-stage curriculum, with the first three stages relying on weak proxy signals such as cross-modal similarity. In the final stage, it leverages stronger supervision from a new dataset we introduce, FrameOracle-41K, the first large-scale VideoQA collection to provide keyframe annotations specifying the minimal set of frames required to answer each question. Extensive experiments across five VLMs and six benchmarks demonstrate that FrameOracle reduces 16-frame inputs to an average of 10.4 frames without any loss in accuracy. When starting from 64-frame candidates, it reduces the input to an average of 13.9 frames while improving accuracy by 1.4%, achieving state-of-the-art efficiencyaccuracy trade-offs for scalable video understanding.

1 Introduction

Rapid advances in large language models (LLMs) (Stiennon et al., 2020; Gao et al., 2022; Yang et al., 2024) have enabled vision-language models (VLMs) to integrate visual understanding with strong linguistic reasoning (Zhang et al., 2024; Bai et al., 2025; Zhang et al., 2025a). This makes VLMs highly effective for complex video tasks such as question answering (Zhang et al., 2023; Lin et al., 2024a;b; Zhao et al., 2024; Xiao et al., 2025), summarization (Hua et al., 2025; Lee et al., 2025), and instruction following (Ren et al., 2024; Qian et al., 2024). A key challenge, however, is the large volume of data these models must process. Processing every video frame is computationally expensive, making efficient frame sampling essential (Hu et al., 2025). Most VLMs currently rely on simple approaches, such as uniform sampling at a fixed frame rate or selecting a fixed number of frames. While easy to implement, these methods have clear drawbacks: in long videos, they may miss crucial information, whereas in short videos, they often introduce redundant frames that waste resources, distract the model, and obscure key moments.

To mitigate this, a growing body of work has explored keyframe selection methods (Liu et al., 2025; Park et al., 2024; Tang et al., 2025; Zhang et al., 2025d). These approaches aim to identify a subset of frames that preserves semantic content while reducing redundancy. However, most existing methods assume a fixed, preset number of keyframes, ignoring the fact that the optimal number of frames varies across videos and queries. For example, short action-centric questions (e.g., whether a ball crosses a line in sports footage) may be resolved with just a handful of frames, while long-form narrative reasoning (e.g., inferring character intentions in a film) often requires a substantially larger set of frames. A few recent methods enable adaptive frame selection, but their adaptivity remains limited. In some cases, the selector is trained jointly with the backbone VLM (Buch et al., 2025), making it non-transferable to other models. In others, adaptivity is achieved via threshold-based filtering at inference, retaining only keyframes above a preset reward threshold. While this produces variable frame counts, it is not explicitly optimized during training, reducing effectiveness and generalizability. This raises a fundamental question: *How can we design a selector that identifies the*

most relevant frames for a given query and determines how many are needed, while generalizing across different VLMs?

To this end, we propose **FrameOracle**, a lightweight, plug-and-play frame selector that can be integrated with arbitrary VLMs. Unlike prior approaches that fix the number of frames in advance or require co-training with a specific backbone, FrameOracle jointly predicts (1) the importance of each frame relative to the query and (2) the number of frames to retain. The module is trained with a four-stage curriculum. The first three stages rely on weak proxy signals, such as cross-modal similarity and leave-one-out loss degradation. The final stage leverages stronger supervision from a new dataset we create, **FrameOracle-41K**, a large-scale VideoQA dataset with 40,992 examples and the first to provide keyframe annotations specifying the minimal frames required to answer each question. Unlike tasks such as object detection (Lin et al., 2014) or captioning (Xiong et al., 2024), no existing dataset provides ground-truth annotations identifying the keyframes. FrameOracle dynamically adapts its selections based on both video content and the prompt, operating seamlessly as a pre-processing module for any downstream VLM.

In summary, our contributions are as follows:

- We propose **FrameOracle**, a lightweight and plug-and-play frame selector that dynamically predicts both which frames are most relevant and how many are needed.
- To facilitate training, we introduce FrameOracle-41K, the first large-scale VideoQA dataset with keyframe annotations, specifying the minimal set of frames needed to answer each question.
- We conduct extensive experiments across five VLMs and six benchmarks, showing that FrameOracle reduces 16-frame inputs to an average of 10.4 frames without any loss in accuracy. When starting from 64-frame candidates, it reduces the input to an average of 13.9 frames while improving accuracy by 1.4%, achieving state-of-the-art efficiency-accuracy trade-offs for scalable video understanding.

2 RELATED WORK

Keyframe Selection for Video Understanding. Most existing keyframe selection methods assume a fixed frame budget: they rank candidate frames by visual–linguistic relevance or temporal salience and then retain the top-k subset (Liang et al., 2024; Tan et al., 2024; Yu et al., 2025; Liu et al., 2025; Fang et al., 2025; Tang et al., 2025). Beyond this fixed-budget paradigm, some work has explored adaptive frame selection. These approaches fall into two categories. The first are agent-based methods, where large multimodal models act as decision-makers that iteratively analyze videos. For instance, VCA (Yang et al., 2025) combines curiosity-driven exploration with tree search to identify informative segments, while AKeyS (Fan et al., 2025) leverages a language agent to heuristically expand video segments and decide both which frames to retain and when to stop. However, such methods are computationally expensive due to repeated agent calls. The second category comprises approaches that require co-training with a specific VLM backbone (Buch et al., 2025; Yu et al., 2023; Guo et al., 2025), which restricts their portability. In contrast, FrameOracle is adaptive, lightweight, and model-agnostic: it learns to jointly predict which frames are relevant and how many to retain, while remaining plug-and-play across diverse VLMs.

Datasets and Supervision for Video-Language Models. Progress in video-language reasoning has been driven by large-scale datasets such as LLaVA-Video-178K (Zhang et al., 2024), ShareGPT4Video (Chen et al., 2024b), VideoRefer (Yuan et al., 2025), and CinePile (Rawal et al., 2024), which cover diverse scenarios and support both short- and long-form understanding. However, most of these datasets provide supervision only at the answer level, leaving the underlying evidence unannotated. In the absence of frame-level labels, keyframe selection methods are typically forced to rely on proxy signals, such as leave-one-out degradation or heuristic scoring. A few benchmarks, such as TVQA+ (Lei et al., 2020), ReXTime (Chen et al., 2024a), and HourVideo (Chandrasegaran et al., 2024), move toward span-level annotations, but none supply labels for both the indices of keyframes and the minimal sufficient number of frames needed to answer a question. FrameOracle-41K is the first dataset to provide explicit keyframe annotations for video-question pairs, offering high-quality supervision for both training and evaluation of adaptive frame selectors.

Figure 1: **FrameOracle-41K data generation pipeline.** Stage I (agent-based keyframe mining) iteratively explores each video using a multimodal agent, ultimately returning a predicted answer with confidence and relevance scores for all visited frames. Stage II (filtering and verification) first discards frames with low relevance scores and then verifies sufficiency by requiring three independent VLMs to answer correctly using only the remaining keyframes.

3 FrameOracle-41K Dataset

We introduce FrameOracle-41K, the first VideoQA dataset that provides keyframe annotations, specifying the minimal set of frames needed to answer each question. The corpus contains 40,992 video–question pairs spanning diverse scenes and durations. In contrast to existing VideoQA datasets, which provide only ground-truth answers and, in some cases, coarse temporal spans in the video, FrameOracle-41K records, for each instance, the minimal number of frames needed to answer the question with high confidence, along with the keyframes that constitute the necessary evidence. Below, we describe our data collection and generation pipeline, the verification and filtering procedures used to retain high-quality data, and the key statistics of the resulting dataset.

3.1 Data Gathering and Processing

All video-question pairs in FrameOracle-41K are sourced from LLaVA-Video-178K (Zhang et al., 2024), a large-scale VideoQA dataset that covers a wide range of scenarios and activities. From this corpus, we first select nearly 100k videos, each 2–3 minutes long, balancing adequate temporal context with a manageable annotation effort. We then apply a two-stage process to create the final dataset. Stage I (agent-based keyframe mining) iteratively explores each video using a multimodal agent. At the end of exploration, the agent outputs a predicted answer with its confidence and assigns a relevance score to every visited frame. Stage II (filtering and verification) first removes frames with relevance scores below a threshold, then verifies sufficiency by requiring three independent VLMs to answer correctly using only the remaining keyframes. Only instances that pass this verification are retained, finalizing the minimal sufficient frame count. An overview of the pipeline is shown in Figure 1. Appendix B provides an example of a data instance in JSON format.

Stage I: Agent-based Keyframe Mining. Starting from a uniformly sampled set of 64 frames, we employ an agent built on Qwen2.5-VL-72B API (Bai et al., 2025) to iteratively explore the video with respect to the given question. In the first iteration, the agent inspects three anchor frames (indices 0, 31, and 63), assigns relevance scores, and attempts an answer with a confidence estimate. It then compares the pairwise summed relevance of adjacent anchors (0+31 vs. 31+63) to decide which segment to explore next. Within the selected segment, a denser set of four anchor frames is sampled, another answer with confidence is attempted, and the same pairwise relevance comparison guides subsequent iterations. This iterative score—refine cycle continues until either the agent becomes confident enough to provide a stable answer or all frames have been examined. By the end of Stage I, the agent returns (1) its predicted answer and confidence, and (2) the complete set of frames it has inspected, each annotated with a relevance score. Any video-question pair for which

163

164 165

166

167

168 169 170

171 172

173

174

175

176

177

178

179

180 181 182

183

185

187

188

189

190

191

192

193

194 195

196

197

199

200

201

202

203

204

205 206

207 208

209

210

211

212 213

214

215

- (a) Distribution of video durations in FrameOracle- (b) Distribution of the number of selected keyframes per video-question pair.

Figure 2: FrameOracle-41K dataset statistics. (a) Video durations range from 2 to 3 minutes, offering enough temporal context for analysis without including unnecessary frames. (b) Keyframe annotations are sparse: most videos require fewer than 10 frames, yet the dataset also includes harder edge cases to capture more challenging scenarios.

the agent's predicted answer does not match the ground-truth answer is then discarded. This mined trajectory captures both the localization of question-specific evidence and fine-grained frame-level importance signals, forming the raw candidates for the next stage.

Stage II: Filtering and Verification. After obtaining candidate keyframes from Stage I, we first remove all frames with relevance scores below a threshold λ , leaving only those with stronger relevance. For each video-question pair, we then test whether the selected keyframes alone are sufficient to answer the question. Specifically, the keyframe set and the question are fed into three independent VLMs (i.e., Qwen2.5-VL-72B (Bai et al., 2025), LLaVA-OneVision-72B (Li et al., 2025), and LLaVA-Video-72B (Zhang et al., 2024)), and their predictions are compared against the ground-truth answer. Only instances for which all three models succeed using only the keyframes are retained; otherwise, the instance is discarded. This cross-model verification ensures that the released dataset contains consistent, question-grounded keyframe annotations.

3.2 Dataset Statistics

Through the two-stage pipeline described above, we obtain 40,992 validated video-question pairs, each annotated with keyframes and minimal sufficient frame counts. This collection forms the FrameOracle-41K dataset. Figure 2a shows that most videos are 2 to 3 minutes long, long enough to provide meaningful temporal context without the inefficiency and redundancy of very long videos. Figure 2b shows the distribution of keyframes per video-question pair. The median is about five frames, the mean is around seven, and more than 80% of samples require no more than 10 frames. A small fraction of more challenging cases, however, require 30 or more frames. These statistics highlight the challenge and value of FrameOracle-41K: models must learn to identify minimal yet sufficient evidence across diverse temporal contexts, rather than relying on dense frame sampling.

4 METHOD

We introduce **FrameOracle**, a lightweight and adaptive frame selector that dynamically determines the appropriate number of keyframes from a video, conditioned on the user prompt. FrameOracle enables efficient video understanding by providing the downstream VLM with a compact yet highly relevant subset of frames.

Since directly processing all frames of a video, V, is computationally expensive, we first apply uniform temporal sampling to extract a candidate set of N frames, denoted as $V_C = \{f_1, \dots, f_N\}$. This pre-sampling step acts as a coarse filter, reducing the input to a manageable size for FrameOracle (e.g., N=64 or N=16). Our goal is to learn FrameOracle, a selection policy, Π_{θ} , parameterized

Figure 3: **Overview of the FrameOracle pipeline.** FrameOracle (dashed box) receives raw video frames and the textual prompt, and jointly predicts frame importance and the number of frames to keep. It outputs a compact keyframe subset, which is fed into the downstream VLM. V_C denotes the pre-sampled frame collection, and V_S denotes the subset selected by FrameOracle.

by θ , that operates on the candidate set. Given a candidate set V_C and a text prompt P, FrameOracle selects a compact subset of frames $V_S \subset V_C$. Unlike approaches that fix the number of selected frames in advance, FrameOracle dynamically determines the subset size, $K = |V_S|$, as part of the selection process. Formally, Π_θ maps the pair (V_C, P) to the selected subset V_S , which is then passed to a downstream VLM, \mathcal{M} , to perform a reasoning task, producing an output $A = \mathcal{M}(V_S, P)$. The objective is to train Π_θ to choose subsets that maximize the performance of \mathcal{M} while keeping K as small as possible.

4.1 FRAMEORACLE

FrameOracle, Π_{θ} , is a neural module that learns to jointly predict frame importance and the number of frames to select from the candidate set V_C . We begin by extracting features from both the video frames and the text prompt, which serve as inputs to FrameOracle. For the candidate frame set V_C , we use a visual encoder to generate a sequence of N frame embeddings. The text prompt P is encoded using the native tokenizer of the downstream VLM. The FrameOracle architecture, shown in Figure 3, is composed of two main components: (1) a cross-modal fusion encoder and (2) dual prediction heads.

- (1) Cross-Modal Fusion. To model the relationship between the text query and the video, we fuse the two modalities. Frame and text embeddings are first projected into a shared latent space using linear layers, and then processed by a stack of Transformer encoder layers. This architecture captures the complex interactions between the textual prompt and the visual content of the candidate frames.
- (2) **Dual Prediction Heads.** The output of the fusion encoder is passed to two specialized heads, which form the core of our selection policy:
 - Rank Head: This head evaluates the relevance of each candidate frame to the prompt. It
 processes the fused feature sequence to output a scalar importance score, s_i, for each frame
 f_i ∈ V_C, resulting in a score vector S = {s₁,...,s_N}.
 - **K Head:** This head predicts how many frames to select from the candidate set. It takes the globally aggregated features from the fusion encoder and outputs a probability distribution over a discrete set of possible values for *K*, where *K* ≤ *N*.

4.2 Training

We train FrameOracle using a curriculum-based, four-stage protocol. This strategy progressively refines the policy Π_{θ} , teaching it to reason effectively over the pre-sampled frames (e.g., 16 or 64). The staged training leverages four widely used public VideoQA datasets, covering clips ranging from roughly 10 seconds to 15 minutes in length. Details of the full dataset composition are provided in Appendix A.

Stage 1: Text-Visual Alignment. The initial stage focuses on learning a robust cross-modal representation by aligning the textual prompt with the visual content of the candidate frames. We use

the pre-trained text-visual model SigLIP (Zhai et al., 2023) as a teacher to provide supervision. For each prompt-frame pair, a SigLIP similarity score serves as the target relevance signal. The feature projectors and the cross-modal Transformer encoder are trained with a RankNet loss (Burges et al., 2005), encouraging the model's predicted scores to match the relative ordering of the SigLIP similarities. Concretely, for any two frames i and j, let s_i and s_j denote their SigLIP similarity scores, and y_i and y_j their predicted scores. We define the pairwise preference label as $t_{ij} = \mathrm{sign}(s_i - s_j)$. The RankNet loss is then given by

$$\mathcal{L}_{\text{RankNet}} = \sum_{i < j} \log \left(1 + \exp\left(-t_{ij} \left(y_i - y_j \right) \right) \right), \tag{1}$$

where $t_{ij} = 0$ corresponds to tied frames and does not contribute to the gradient. In this way, the alignment capability of SigLIP is distilled into FrameOracle. The K Head remains frozen during this stage.

Stage 2: Rank Head Optimization. In the second stage, we train the Rank Head to identify the most salient frames in the candidate set V_C . Unlike the first stage, where SigLIP-based supervision is computed independently for each frame and provides no temporal guidance, this stage uses the downstream VLM's loss as a supervisory signal, allowing the selector to capture temporal dependencies across frames. To generate training targets, we adopt a leave-one-out (LOO) approach: for each frame $f_i \in V_C$, we remove it from the input set and pass the remaining frames through the VLM, measuring the change in its loss. A larger increase indicates that f_i is more important. These importance scores serve as soft targets, and the Rank Head is trained with a RankNet loss to predict them. During this stage, the K Head remains frozen, while the Transformer encoder and feature projectors are fine-tuned with a smaller learning rate to stabilize training.

Stage 3: K Head Optimization. The third stage focuses on training the K Head to predict the number of frames. During this stage, the Rank Head is frozen, while the feature projectors and the Transformer encoder are fine-tuned with a very small learning rate for slight adaptation. For each sample, we evaluate the downstream VLM (the same backbone and task loss as in Stage 2) using the top-k frames from V_C , ranked by the frozen Rank Head, for a candidate value $k \in N$. We then select the target

$$k^* = \arg\min_{k \in N} \left(\operatorname{zscore}(\mathcal{L}_{\text{task}}(k)) + \lambda_k k \right),$$
 (2)

where the linear penalty balances accuracy and frame cost. The K Head predicts a categorical distribution $p_{\theta}(k)$ over $k \in \{1, ..., N\}$ and is trained with

$$\mathcal{L}_K = (1 - \alpha) \mathcal{L}_{\text{evo}} + \alpha \mathcal{L}_{\text{class}}, \tag{3}$$

where the Expected Value Objective

$$\mathcal{L}_{\text{evo}} = \text{SmoothL1}\left(\sum_{k=1}^{N} k \, p_{\theta}(k), \, k^*\right)$$

regresses the predicted expectation to k^* , and $\mathcal{L}_{\text{class}}$ is a KL divergence aligning p_{θ} with a Gaussian-shaped soft target centered at k^* .

Stage 4: Supervised Fine-tuning with Ground Truth. In the final stage, we perform supervised fine-tuning (SFT) on FrameOracle-41K, which provides supervision for both the keyframe indices and the number of frames. Unlike the earlier stages, which rely on weak or proxy signals, FrameOracle-41K offers high-quality annotations that have been verified for consistency. The Rank Head is trained to align its predictions with the annotated keyframes, while the K Head is jointly trained to match the annotated K values. This strong, direct supervision further refines the selection policy beyond what is achieved in Stages 1–3.

5 EXPERIMENTS

5.1 Experiment Settings

Implementation Details. We train two versions of FrameOracle, using uniformly sampled frames as selector inputs: one with 16 frames and another with 64 frames, respectively. Both of them use

Table 1: **FrameOracle vs. SOTA VLMs.** "Frames" shows $M \to \bar{K}$: FrameOracle starts from M uniformly sampled frames and reduces to an average of \bar{K} . Highlighted rows show the upper-bound performance of FrameOracle with larger frame inputs. LVB = LongVideoBench validation set.

Model	Frames	NExTQA			D	LVB	Video-MME	EgoSchema	MINT	Avia
Wiodei	Frames	OE_val	OE_test	MC	Perception	LVD	video-iviiviE	Egoschema	MLVU	Avg.
(1) State-of-the-Art Models										
ShareGPT4Video-8B (Chen et al., 2024b)	16	-	-	-	-	41.8	39.9	-	46.4	-
LLaMA-VID-7B (Li et al., 2024b)	16	-	-	-	44.6	-	25.9	38.5	33.2	-
VideoChat2-7B (Li et al., 2024a)	16	-	-	-	-	39.3	39.5	63.6	44.5	-
VideoLLaMA2-7B (Cheng et al., 2024)	16	-	-	45.4	54.9	53.1	47.9	53.1	-	-
InternVL2-40B (OpenGVLab, 2024)	16	-	-	-	-	59.3	61.2	-	59.5	-
		(2) Fram	eOracle on	Differe	nt Baselines					
Qwen2.5-VL-3B (Bai et al., 2025)	32	25.1	29.6	75.4	65.9	54.1	58.4	53.4	59.4	52.7
+ FrameOracle	$32 \rightarrow 20.9$	25.6	30.5	74.8	66.7	54.3	58.5	53.8	58.4	52.8
+ FrameOracle	$128 \rightarrow 27.8$	26.0	31.7	76.1	67.8	54.8	59.7	54.5	61.6	54.0
LLaVA-OneVision-7B (Li et al., 2025)	16	14.6	16.7	78.2	56.4	55.0	56.1	60.8	60.9	49.8
+ FrameOracle	$16 \rightarrow 10.4$	16.1	17.8	77.6	56.5	55.5	56.0	62.4	60.2	50.3
+ FrameOracle	$64 \rightarrow 13.9$	16.5	19.0	78.5	56.9	56.5	58.1	63.4	63.7	51.6
LLaVA-Video-7B (Zhang et al., 2024)	16	27.3	32.4	81.0	64.3	55.8	59.8	54.2	61.7	54.6
+ FrameOracle	$16 \rightarrow 10.4$	27.8	33.0	80.4	64.7	56.3	59.6	54.6	60.8	54.7
+ FrameOracle	$64 \rightarrow 13.9$	28.8	33.9	81.6	65.1	57.8	61.6	55.2	64.3	56.0
VideoLLaMA3-7B (Zhang et al., 2025a)	16	27.8	32.3	82.3	72.3	56.1	61.2	61.4	50.9	55.5
+ FrameOracle	$16 \rightarrow 10.4$	28.3	32.9	81.2	72.0	56.0	61.4	61.8	52.8	55.8
+ FrameOracle	$64 \rightarrow 13.9$	28.9	33.6	82.0	72.8	56.9	61.8	62.4	54.1	56.6
GPT-40 (Hurst et al., 2024)	16			63.1		51.6	58.5	66.0	38.7	55.6
+ FrameOracle	$16 \rightarrow 11.1$	-	-	62.9	-	52.1	59.2	68.8	38.1	56.2

DINOv2 (Oquab et al., 2024) as the visual encoder and Qwen2.5-VL as the tokenizer. Training follows the four-stage curriculum described in Section 4.2, progressively optimizing the Rank Head and K Head using proxy signals and FrameOracle-41K annotations. In Stages 2 and 3, we adopt Qwen2.5-VL-3B as the backbone VLM for supervision. For the 64-frame selector, we additionally cap the maximum predicted K at 16 during Stage 3 to ensure comparability with the experimental settings. All experiments are run on $8 \times H100$ GPUs. Detailed hyperparameter settings, including learning rates, batch sizes, and training durations for each stage, are provided in Appendix A.

Benchmarks. We evaluate FrameOracle on six widely adopted video benchmarks, which can be divided into long-video and short-video understanding tasks. For long-video understanding, we include EgoSchema (Mangalam et al., 2023), LongVideoBench (Wu et al., 2024), MLVU (Zhou et al., 2025), and Video-MME (Fu et al., 2025), all of which require reasoning over extended temporal contexts ranging from minutes to hours. These datasets emphasize challenges such as cross-event reasoning, global consistency, and temporal grounding across lengthy sequences. For short-video understanding, we evaluate on NExTQA (Xiao et al., 2021), and Perception (Pătrăucean et al., 2023), which involve clips typically within tens of seconds. These benchmarks focus on fine-grained event recognition, local temporal relations, and reasoning within concise videos. We follow the LMMs-Eval library (Zhang et al., 2025b) for evaluation, and report accuracy across all benchmarks.

5.2 RESULTS AND ANALYSIS

Comparisons with State-of-the-Art Models. Table 1 presents a comprehensive comparison of FrameOracle across two categories: (1) five state-of-the-art (SOTA) VLMs, and (2) its integration with five diverse VLMs, Qwen2.5-VL (Bai et al., 2025), LLaVA-OneVision (Li et al., 2025), LLaVA-Video (Zhang et al., 2024), VideoLLaMA3 (Zhang et al., 2025a), and the proprietary GPT-40 (Hurst et al., 2024). Qwen2.5-VL internally merges every two adjacent frames into a single representation. To ensure a fair comparison with models that process raw frames directly, we report the baseline using 32 frames. For each model integrated with FrameOracle, we report results for two configurations: using 16-frame FrameOracle and 64-frame FrameOracle.

Under the 16-frame condition, FrameOracle maintains accuracy comparable to the baseline models across all benchmarks while reducing the number of frames by approximately 35%. With 64-frame inputs, FrameOracle begins with a denser candidate set and adaptively selects relevant frames. In this setting, it consistently improves performance over the baseline models while still reducing frames by about 15%. This demonstrates that a larger candidate pool enables FrameOracle to better exploit temporal redundancy, resulting in improved accuracy—efficiency trade-offs. FrameOracle is trained independently and applied in a fully plug-and-play manner, requiring no co-training or backbone-specific adaptation. These results confirm its ability to generalize across model architectures.

Table 2: **FrameOracle vs. SOTA keyframe selection methods.** NExTQA reports MCQ. Methods using more frames or larger LLMs are shown in gray. LVB = LongVideoBench validation set.

Model	Frames	NExTQA	LVB	Video-MME	EgoSchema	MLVU	
(1) Jointly Trained Keyframe Selection Methods							
SeViLA (Yu et al., 2023)	8	63.6	-	-	25.7	-	
LVNet (Park et al., 2024)	12	72.9	-	-	-	-	
VideoAgent (Wang et al., 2024)	8.4	71.3	-	-	60.2	-	
FFS (Buch et al., 2025)	8.6	66.7	-	-	-	-	
MoReVQA (Min et al., 2025)	30	69.2	-	-	-	-	
VSLS (Guo et al., 2025)	32	-	63.4	63.0	-	-	
AKS (Tang et al., 2025)	64	-	62.7	65.3	-	-	
(2) Plug-and-Play Keyframe Selection Methods							
LLaVA-OneVision-7B (Li et al., 2025)	8	77.4	54.3	53.8	62.0	58.4	
+ Frame-Voyager (Yu et al., 2025)	$128\rightarrow 8$	73.9	-	57.5	-	65.6	
+ BOLT (Liu et al., 2025)	$1 \text{fps} \rightarrow 8$	77.4	55.6	56.1	62.2	63.4	
+ KFC (Fang et al., 2025)	$1 \text{fps} \rightarrow 8$	-	55.6	55.4	-	65.0	
+ FrameOracle	64→8	77.8	56.0	57.5	62.8	62.9	
LLaVA-Video-7B (Zhang et al., 2024)	8	75.6	54.2	55.9	51.8	60.5	
+ BOLT (Liu et al., 2025)	$1 \text{fps} \rightarrow 8$	-	-	58.6	-	-	
+ KFC (Fang et al., 2025)	$1 \text{fps} \rightarrow 8$	-	56.5	57.6	-	66.9	
+ FrameOracle	$64\rightarrow 8$	76.5	56.9	58.9	53.0	63.4	

RQ 1: Does giving a VLM more frames consistently improve its performance?

One might expect that providing more frames always improves performance, since additional frames offer more visual evidence. However, Table 1 shows the opposite: using more frames often fails to help and can even reduce accuracy. This aligns with recent findings that long-video reasoning is inherently sparse, with only a small subset of frames being truly relevant (Park et al., 2024). Extra frames primarily introduce redundancy and noise, diluting cross-modal attention and yielding diminishing returns (Li et al., 2023).

By contrast, when FrameOracle selects a smaller but more informative subset of frames, performance can improve, especially on open-ended benchmarks. For example, on LLaVA-OneVision-7B, reducing 16 frames to roughly 10.4 improves NExTQA metrics (OE_val: $14.6 \rightarrow 16.1$, OE_test: $16.7 \rightarrow 17.8$) and EgoSchema ($60.8 \rightarrow 62.4$). Similar trends are observed for GPT-4o, where accuracy rises from 55.6 to 56.2 despite using fewer frames. Qualitative examples in Appendix E (Figure 6) further illustrate this effect: FrameOracle identifies the key evidence with fewer frames, yielding correct answers where naive higher-frame sampling fails.

RQ 2: How does FrameOracle compare with existing SOTA methods for keyframe selection?

We compare FrameOracle with (1) keyframe selection methods that are jointly trained with their VLM backbone in their original configurations, and (2) plug-and-play keyframe selection methods applied to open-source models (Table 2). The first category cannot be applied directly to open-source models, and FFS (Buch et al., 2025) is the only method that adaptively determines the number of retained frames; all other methods assume a fixed number of keyframes. All plug-and-play selection methods only provided 8-frame results. To ensure a fair comparison, we disable FrameOracle's K Head and rely solely on the Rank Head: given 64 uniformly sampled frames, we select the top-8 ranked frames as input to the backbone VLMs.

FrameOracle achieves competitive performance compared to prior plug-and-play methods. Across NExTQA, LongVideoBench, Video-MME, and EgoSchema, it improves accuracy by roughly 2–4 percentage points, outperforming Frame-Voyager (Yu et al., 2025), BOLT (Liu et al., 2025), and KFC (Fang et al., 2025). On MLVU, FrameOracle outperforms the base VLMs but does not surpass heuristic methods such as KFC, a greedy selection strategy that maximizes relevance and diversity, which achieve higher scores. This gap reflects MLVU's focus on fine-grained temporal grounding and multi-event reasoning, where heuristics can sometimes capture domain-specific cues more effectively. Overall, the results demonstrate that even without the K Head, the Rank Head alone can reliably prioritize important frames and deliver consistent gains across multiple VLMs, achieving state-of-the-art performance on most benchmarks.

Table 3: Comparison of FLOPs, latency, visual tokens, and accuracy. The values of the computational cost are reported as per-GPU, per-sample averages.

Model	Frames		TFLOPs	\downarrow		Latency (s) ↓	Visual Tokens ↓	Av.a. A aa 🛧	
Model Frames		DINOv2	FrameOracle	VLM	Total	Latericy (s) \$	visuai Tokelis ↓	Avg. Acc.	
LLaVA-Video-7B	16	_	_	184.38	184.38	0.615	11,644.0	54.6	
+ FrameOracle	$16 \rightarrow 10.4$	1.87	2.6×10^{-4}	109.11	110.98	0.363	7,581.6	54.7	
+ FrameOracle	$64 \rightarrow 13.9$	7.58	1.0×10^{-3}	160.09	167.67	0.556	10,133.1	56.0	

Table 4: Four-stage training of FrameOracle, evaluated on Qwen2.5-VL-3B. Stages are added progressively to assess their impact. The baseline (first row) randomly selects 16 of 32 frames. **Bold** numbers indicate best performance. LVB = LongVideoBench validation set.

Model	Frames	NExTQA			Perception	LVB	Video-MME	EgoSchema	MLVU
Model	Frames	OE_val	OE_test	MC	rerception	LVD	video-iviivie	Egoschema	MILVU
Qwen2.5-VL-3B	32→16	23.4	29.1	71.9	65.0	52.9	54.8	50.2	56.7
+ Stage 1	$32 \rightarrow 16$	24.7	29.2	72.4	60.3	49.8	52.4	48.2	51.3
+ Stage 2	$32 \rightarrow 16$	24.8	29.5	73.0	64.7	51.9	55.7	52.2	54.8
+ Stage 3	$32 \rightarrow 21.8$	25.1	30.0	74.1	66.0	53.7	59.4	53.6	57.6
+ Stage 4	$32 \rightarrow 20.9$	25.6	30.5	74.8	66.7	54.3	58.5	53.8	58.4

RQ 3: How much can FrameOracle reduce computational cost while preserving accuracy?

We take LLaVA-Video-7B with 16 input frames as the baseline and report per-GPU, per-sample averages. FrameOracle reduces the input from 16 to 10.4 frames, cutting the VLM cost from 184.38 to 109.11 TFLOPs and the end-to-end total from 184.38 to 110.98 TFLOPs (-39.8%). It also lowers latency from 0.615 to 0.363 seconds (-41.0%) and reduces tokens from 11,644.0 to 7,581.6, while maintaining accuracy. With a larger candidate pool, FrameOracle reduces 64 frames to 13.9, improving accuracy by +1.4 while still lowering total compute to 167.67 TFLOPs (-9.1%), tokens to 10,133.1 (-13.0%), and latency to 0.556 seconds (-9.6%). These results reveal a clear trade-off: smaller pools yield larger efficiency gains with no loss in accuracy, while larger pools deliver accuracy gains with moderate compute savings. Although reported on LLaVA-Video-7B, computation is dominated by the backbone VLM, so similar efficiency–accuracy trade-offs are expected for other \sim 7B-scale models, with only minor variation due to architectural details.

RQ 4: Are all training-stage components essential for FrameOracle's performance?

We conduct ablations over the four training stages to evaluate the contribution of each stage, using Qwen2.5-VL-3B as the backbone VLM (Table 4). The baseline (first row) randomly selects 16 frames from 32 uniformly sampled candidates. Stage 1 (text–visual alignment) underperforms the baseline, though it provides a foundational starting point. Stages 2 (Rank Head) and 3 (K Head) yield clear performance improvements, and the full model with Stage 4 (fine-tuning on FrameOracle-41K) delivers further gains over Stages 2 and 3 on most benchmarks, with only a slight decline on Video-MME. Moreover, the average number of retained frames decreases from 21.8 to 20.9, showing that FrameOracle-41K supervision stabilizes performance while enabling higher accuracy with fewer frames. These results demonstrate that ground-truth supervision from FrameOracle-41K is essential for refining both frame importance scoring and the prediction of the number of frames, establishing it as a valuable resource for adaptive frame selection.

6 Conclusion

We propose FrameOracle, a lightweight, plug-and-play frame selector that adaptively determines which frames to retain and how many are needed. To facilitate training, we introduce FrameOracle-41K, a large-scale VideoQA dataset with 40,992 examples, and the first to provide keyframe annotations specifying the minimal frames required to answer each question. Extensive experiments show that FrameOracle improves the performance of diverse VLM backbones without co-training, reducing FLOPs, latency, and the number of tokens, while also outperforming state-of-the-art keyframe selection methods. Future work will explore relaxing the fixed-length input setting to support variable-sized frame sets.

REPRODUCIBILITY STATEMENT

To support reproducibility, we provide details on both the model and dataset. FrameOracle's design, including its learning objective, selection policy, and staged curriculum, is described in Section 4, with training procedures and hyperparameters in Appendix A (Figure 4; Table 5). FrameOracle-41K construction, including agent-based mining, verification, and dataset format, is covered in Section 3 and Appendix B. Evaluation settings, including benchmarks, backbones, and metrics, are in Section 5.1. These sections provide all the information needed to reproduce our results.

ETHICS STATEMENT

FrameOracle-41K is created from source videos collected from the internet, which may contain images of individuals and reflect societal biases present in online content. Our data processing pipeline does not involve identifying or profiling any individuals. The data is used solely for developing our video understanding model. We release the dataset strictly for non-commercial, academic research purposes and caution future users to be aware of potential inherent biases in the data.

REFERENCES

- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv*:2502.13923, 2025.
- Shyamal Buch, Arsha Nagrani, Anurag Arnab, and Cordelia Schmid. Flexible frame selection for efficient video reasoning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2025.
- Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg Hullender. Learning to rank using gradient descent. In *Proceedings of the 22nd International Conference on Machine Learning (ICML)*, 2005.
- Keshigeyan Chandrasegaran, Agrim Gupta, Lea M. Hadzic, Taran Kota, Jimming He, Cristóbal Eyzaguirre, Zane Durante, Manling Li, Jiajun Wu, and Li Fei-Fei. Hourvideo: 1-hour video-language understanding. In *The Thirty-eighth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (NeurIPS)*, 2024.
- Jr-Jen Chen, Yu-Chien Liao, Hsi-Che Lin, Yu-Chu Yu, Yen-Chun Chen, and Yu-Chiang Frank Wang. ReXTime: A benchmark suite for reasoning-across-time in videos. In *The Thirty-eighth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (NeurIPS)*, 2024a.
- Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Bin Lin, Zhenyu Tang, Li Yuan, Yu Qiao, Dahua Lin, Feng Zhao, and Jiaqi Wang. ShareGPT4video: Improving video understanding and generation with better captions. In *Proceedings of Thirty-eighth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (NeurIPS)*, 2024b.
- Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi Zhang, Ziyang Luo, Deli Zhao, and Lidong Bing. Videollama 2: Advancing spatial-temporal modeling and audio understanding in video-llms. *arXiv:2406.07476*, 2024.
- Sunqi Fan, Meng-Hao Guo, and Shuojin Yang. Agentic keyframe search for video question answering. *arXiv*:2503.16032, 2025.
- Bo Fang, Wenhao Wu, Qiangqiang Wu, Yuxin Song, and Antoni B. Chan. Threading keyframe with narratives: Mllms as strong long video comprehenders. *arXiv*:2505.24158, 2025.
- Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu Zhou, Yunhang Shen, Mengdan Zhang, Peixian Chen, Yanwei Li, Shaohui Lin, Sirui Zhao, Ke Li, Tong Xu, Xiawu Zheng, Enhong Chen, Caifeng Shan, Ran He, and Xing Sun. Video-mme:

The first-ever comprehensive evaluation benchmark of multi-modal llms in video analysis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2025.

- Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In *Proceedings of the 40th International Conference on Machine Learning (ICML)*, 2022.
- Weiyu Guo, Ziyang Chen, Shaoguang Wang, Jianxiang He, Yijie Xu, Jinhui Ye, Ying Sun, and Hui Xiong. Logic-in-frames: Dynamic keyframe search via visual semantic-logical verification for long video understanding. *arXiv*:2503.13139, 2025.
- Kai Hu, Feng Gao, Xiaohan Nie, Peng Zhou, Son Tran, Tal Neiman, Lingyun Wang, Mubarak Shah, Raffay Hamid, Bing Yin, and Trishul Chilimbi. M-llm based video frame selection for efficient video understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2025.
- Hang Hua, Yunlong Tang, Chenliang Xu, and Jiebo Luo. V2xum-llm: cross-modal video summarization with temporal prompt instruction tuning. In *Proceedings of the Thirty-ninth AAAI Conference on Artificial Intelligence (AAAI)*, 2025.
- Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, et al. Gpt-4o system card. *arXiv:2410.21276*, 2024.
- Min Jung Lee, Dayoung Gong, and Minsu Cho. Video summarization with large language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (CVPR), 2025.
- Jie Lei, Licheng Yu, Tamara Berg, and Mohit Bansal. TVQA+: Spatio-temporal grounding for video question answering. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL)*, 2020.
- Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. LLaVA-onevision: Easy visual task transfer. *Transactions on Machine Learning Research (TMLR)*, 2025.
- Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen, Ping Luo, Limin Wang, and Yu Qiao. Mvbench: A comprehensive multi-modal video understanding benchmark. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024a.
- Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large language models. In *Proceedings of the European Conference on Computer Vision (ECCV)*, 2024b.
- Yi Li, Kyle Min, Subarna Tripathi, and Nuno Vasconcelos. Svitt: Temporal learning of sparse videotext transformers. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023.
- Hao Liang, Jiapeng Li, Tianyi Bai, Xijie Huang, Linzhuang Sun, Zhengren Wang, Conghui He, Bin Cui, Chong Chen, and Wentao Zhang. Keyvideollm: Towards large-scale video keyframe selection. *arXiv:2407.03104*, 2024.
- Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-LLaVA: Learning united visual representation by alignment before projection. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)*, 2024a.
- Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On pretraining for visual language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2024b.
- Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects in context. In *Proceedings of the European Conference on Computer Vision (ECCV)*, 2014.

- Shuming Liu, Chen Zhao, Tianqi Xu, and Bernard Ghanem. Bolt: Boost large vision-language model without training for long-form video understanding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2025.
 - Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Khan. Video-ChatGPT: Towards detailed video understanding via large vision and language models. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL)*, 2024.
 - Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic benchmark for very long-form video language understanding. In *Proceedings of Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track (NeurIPS)*, 2023.
 - Juhong Min, Shyamal Buch, Arsha Nagrani, Minsu Cho, and Cordelia Schmid. Morevqa: Exploring modular reasoning models for video question answering. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2025.
 - OpenGVLab. Internvl2: Better than the best—expanding performance boundaries of open-source multimodal models with the progressive scaling strategy., 2024. URL https://internvl.github.io/blog/2024-07-02-InternVL-2.0.
 - Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features without supervision. *Transactions on Machine Learning Research (TMLR)*, 2024.
 - Jongwoo Park, Kanchana Ranasinghe, Kumara Kahatapitiya, Wonjeong Ryu, Donghyun Kim, and Michael S. Ryoo. Too many frames, not all useful: Efficient strategies for long-form video qa. arXiv:2406.09396, 2024.
 - Viorica Pătrăucean, Lucas Smaira, Ankush Gupta, Adrià Recasens Continente, Larisa Markeeva, Dylan Banarse, Skanda Koppula, Joseph Heyward, Mateusz Malinowski, Yi Yang, Carl Doersch, Tatiana Matejovicova, Yury Sulsky, Antoine Miech, Alex Frechette, Hanna Klimczak, Raphael Koster, Junlin Zhang, Stephanie Winkler, Yusuf Aytar, Simon Osindero, Dima Damen, Andrew Zisserman, and João Carreira. Perception test: A diagnostic benchmark for multimodal video models. In *Proceedings of the Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track (NeurIPS)*, 2023.
 - Rui Qian, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Shuangrui Ding, Dahua Lin, and Jiaqi Wang. Streaming long video understanding with large language models. In *Proceedings of the Thirty-eighth Conference on Neural Information Processing Systems (NeurIPS)*, 2024.
 - Ruchit Rawal, Khalid Saifullah, Miquel Farré, Ronen Basri, David Jacobs, Gowthami Somepalli, and Tom Goldstein. Cinepile: A long video question answering dataset and benchmark. *arXiv:2405.08813*, 2024.
- Shuhuai Ren, Linli Yao, Shicheng Li, Xu Sun, and Lu Hou. Timechat: A time-sensitive multimodal large language model for long video understanding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024.
- Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei, and Paul Christiano. Learning to summarize from human feedback. In *Proceedings of the Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS)*, 2020.
- Kailong Tan, Yuxiang Zhou, Qianchen Xia, Rui Liu, and Yong Chen. Large model based sequential keyframe extraction for video summarization. In *Proceedings of the International Conference on Computing, Machine Learning and Data Science (CMLDS)*, 2024.
- Xi Tang, Jihao Qiu, Lingxi Xie, Yunjie Tian, Jianbin Jiao, and Qixiang Ye. Adaptive keyframe sampling for long video understanding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2025.

- Xiaohan Wang, Yuhui Zhang, Orr Zohar, and Serena Yeung-Levy. Videoagent: Long-form video understanding with large language model as agent. *arXiv:2403.10517*, 2024.
- Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context interleaved video-language understanding. In *Proceedings of the Thirty-eighth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (NeurIPS)*, 2024.
- Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa:next phase of questionanswering to explaining temporal actions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
- Junbin Xiao, Nanxin Huang, Hangyu Qin, Dongyang Li, Yicong Li, Fengbin Zhu, Zhulin Tao, Jianxing Yu, Liang Lin, Tat-Seng Chua, and Angela Yao. Videoqa in the era of llms: An empirical study. *International Journal of Computer Vision (IJCV)*, 2025.
- Tianwei Xiong, Yuqing Wang, Daquan Zhou, Zhijie Lin, Jiashi Feng, and Xihui Liu. LVD-2m: A long-take video dataset with temporally dense captions. In *Proceedings of the Thirty-eighth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (NeurIPS)*, 2024.
- An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report. arXiv:2407.10671, 2024.
- Zeyuan Yang, Delin Chen, Xueyang Yu, Maohao Shen, and Chuang Gan. Vca: Video curious agent for long video understanding. *arXiv*:2412.10471, 2025.
- Shoubin Yu, Jaemin Cho, Prateek Yadav, and Mohit Bansal. Self-chained image-language model for video localization and question answering. In *Proceedings of the Thirty-seventh Conference on Neural Information Processing Systems (NeurIPS)*, 2023.
- Sicheng Yu, Chengkai Jin, Huanyu Wang, Zhenghao Chen, Sheng Jin, Zhongrong Zuo, Xiaolei Xu, Zhenbang Sun, Bingni Zhang, Jiawei Wu, Hao Zhang, and Qianru Sun. Frame-voyager: Learning to query frames for video large language models. In *Proceedings of the Thirteenth International Conference on Learning Representations (ICLR)*, 2025.
- Yuqian Yuan, Hang Zhang, Wentong Li, Zesen Cheng, Boqiang Zhang, Long Li, Xin Li, Deli Zhao, Wenqiao Zhang, Yueting Zhuang, Jianke Zhu, and Lidong Bing. Videorefer suite: Advancing spatial-temporal object understanding with video llm. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2025.
- Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image pre-training. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, 2023.
- Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong Leng, Yuming Jiang, Hang Zhang, Xin Li, Peng Jin, Wenqi Zhang, Fan Wang, Lidong Bing, and Deli Zhao. Videollama 3: Frontier multimodal foundation models for image and video understanding. *arXiv*:2501.13106, 2025a.
- Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language model for video understanding. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)*, 2023.
- Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai Liu, Yuanhan Zhang, Jingkang Yang, Chunyuan Li, and Ziwei Liu. LMMs-eval: Reality check on the evaluation of large multimodal models. In *Proceedings of the Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics (NAACL)*, 2025b.

- Ruohong Zhang, Liangke Gui, Zhiqing Sun, Yihao Feng, Keyang Xu, Yuanhan Zhang, Di Fu, Chunyuan Li, Alexander G Hauptmann, Yonatan Bisk, and Yiming Yang. Direct preference optimization of video large multimodal models from language model reward. In *Proceedings of the Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics* (NAACL), 2025c.
- Shaojie Zhang, Jiahui Yang, Jianqin Yin, Zhenbo Luo, and Jian Luan. Q-frame: Query-aware frame selection and multi-resolution adaptation for video-llms. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, 2025d.
- Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video instruction tuning with synthetic data. *arXiv:2410.02713*, 2024.
- Long Zhao, Nitesh B. Gundavarapu, Liangzhe Yuan, Hao Zhou, Shen Yan, Jennifer J. Sun, Luke Friedman, Rui Qian, Tobias Weyand, Yue Zhao, Rachel Hornung, Florian Schroff, Ming-Hsuan Yang, David A. Ross, Huisheng Wang, Hartwig Adam, Mikhail Sirotenko, Ting Liu, and Boqing Gong. Videoprism: A foundational visual encoder for video understanding. In *Proceedings of the 42nd International Conference on Machine Learning (ICML)*, 2024.
- Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Zhengyang Liang, Shitao Xiao, Minghao Qin, Xi Yang, Yongping Xiong, Bo Zhang, Tiejun Huang, and Zheng Liu. Mlvu: Benchmarking multi-task long video understanding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2025.

APPENDIX

A FULL IMPLEMENTATION DETAILS

Figure 4: **Four-stage training strategy of FrameOracle.** The model is progressively optimized from weak to strong supervision, culminating in supervised fine-tuning with FrameOracle-41K annotations. Fire icons indicate trainable modules, while snowflake icons denote frozen ones.

Table 5: Datasets used in FrameOracle training. Stage 4 leverages FrameOracle-41K.

Task	Dataset	Amount
Stage1	LLaVA-Video-178K (Zhang et al., 2024), ShareGPT4o-Video (Chen et al.,	300K
	2024b), Video-ChatGPT (Maaz et al., 2024)	
Stage2	LLaVA-Video-178K (Zhang et al., 2024), LLaVA-Hound (Zhang et al., 2025c), Video-ChatGPT (Maaz et al., 2024)	300K
	2025c), Video-ChatGPT (Maaz et al., 2024)	
Stage3	LLaVA-Video-178K (Zhang et al., 2024), LLaVA-Hound (Zhang et al.,	300K
	2025c), Video-ChatGPT (Maaz et al., 2024)	
Stage4	FrameOracle-41K (Our Dataset)	40K

Training strategy illustration. Figure 4 presents a schematic of our four-stage curriculum, highlighting trainable modules (fire) and frozen modules (snowflake) at each stage.

Hardware and input budgets. All training is conducted on 8×H100 GPUs. We train two Frame-Oracle variants: one with 16 uniformly sampled candidate frames and another with 64. A cosine learning rate scheduler with the AdamW optimizer is used across all stages.

Datasets used in staged training. FrameOracle is optimized using a four-stage curriculum with progressively stronger supervision. Stages 1-3 rely on large-scale video—language corpora, while Stage 4 leverages our FrameOracle-41K dataset. Table 5 summarizes the dataset composition for each stage.

Stage 1: Cross-modal alignment. K Head is frozen while the feature projectors and cross-modal Transformer encoder are trained jointly, both optimized with a learning rate of 1×10^{-4} . The 16-frame selector uses a batch size of 16 and trains for approximately 48 hours, whereas the 64-frame version uses a smaller batch size of 2 and completes in about 91 hours.

Stage 2: Rank Head optimization. Rank Head is trained while the K Head remains frozen. The Rank Head uses a learning rate of 1×10^{-4} , and the feature projectors and Transformer encoder are fine-tuned with a smaller learning rate of 1×10^{-5} . The 16-frame selector uses a batch size of 16 and trains for approximately 40 hours, whereas the 64-frame variant uses the same batch size and takes about 52 hours.

Stage 3: K Head optimization. K Head is the primary trainable module, optimized with a learning rate of 1×10^{-4} . The feature projectors and Transformer encoder are lightly updated with a learning rate of 1×10^{-7} , while the Rank Head remains frozen. We set $\lambda_k = 0.0105$ to balance accuracy

 and efficiency. The 16-frame selector uses a batch size of 16 and trains for approximately 35 hours, whereas the 64-frame variant uses the same batch size and takes about 60 hours.

Stage 4: Supervised fine-tuning on FrameOracle-41K. Rank Head and K Head are trained jointly with a learning rate of 5×10^{-5} , while the feature projectors and Transformer encoder are fine-tuned with 1×10^{-5} . The 16-frame selector is trained with a batch size of 8 for approximately 12 hours, and the 64-frame version uses the same batch size and trains for about 18 hours.

B FRAMEORACLE-41K DATA FORMAT

We release the FrameOracle-41K dataset in JSON format, with each entry corresponding to a single video-question pair. Each entry includes the instance identifier, question-answer pair, paths to the associated video and extracted keyframes, video duration, and number of selected frames. Below, we provide an example JSON entry to illustrate the dataset's structure.

```
"id": 30,
  "question": "What folding technique is demonstrated first in the video?
    ",
  "ground_truth_answer": "The 'SHIKAKU NO GI' (Square Fold) technique is demonstrated first.",
  "video": "/srv/nfs/video_data/video/ytb_8yhoV5C3bT8.mp4",
  "keyframes_dir": "/srv/nfs/video_data/extracted_frames/ytb_8yhoV5C3bT8"
    ,
  "duration": 126.893,
    "num_selected_frames": 8
}
```

C PROMPTS FOR DATA GENERATION

Prompt Template for Stage I: Initial Frame Analysis

You are analyzing a video that is {duration_seconds} seconds long. The video has been uniformly sampled into 64 frames, indexed from 0 (start) to 63 (end).

Analyze these {len(initial_indices)} initial frames (indices: {initial_indices}) to answer: "{question}". Provide a short caption for each frame, a relevance score (INTEGER 1-5), your confidence (high/medium/low), and your answer attempt.

Respond in JSON: {{"frame_analysis": [{{"index": int, "caption": "str", "relevance": int}}], "confidence": "str", "answer_attempt": "str", "reasoning": "str"}}

IMPORTANT GUIDELINES:

- Relevance combines BOTH
- (a) how well the frame's TEMPORAL POSITION matches the question mentioned, and
- (b) how much the visible CONTENT answers the question. A high score (4-5) requires strong evidence on both axes.
- You may use "high" confidence early ONLY IF: You have seen explicit, definitive evidence that unquestionably answers the question (e.g., clearly visible target object/person/action).
- Before setting "high" confidence, explicitly mention in your reasoning:
- (a) Why current evidence is sufficient.
- (b) Why additional unseen frames are unlikely to alter your conclusion.
- If there's any reasonable scenario where unseen frames could alter your answer, you must explicitly acknowledge that and keep your confidence at "medium".

Follow these instructions strictly.

Prompt Template for Stage II: Deep-dive Analysis and Refinement

You are analyzing a video that is {duration_seconds} seconds long. The video has been uniformly sampled into 64 frames, indexed from 0 (start) to 63 (end).

Current context on question "{question}":

Current context in buffer "{buffer}".

Now analyze these $\{len(indices)\}$ new frames (indices: $\{[int(idx) \text{ for idx in indices}]\}$) from the gap ($\{start_idx\}$, $\{end_idx\}$).

Tasks:

- Provide a caption, relevance score (INTEGER 1-5) for each NEW frame, your UPDATED confidence, answer, and reasoning.
- If the new evidence changes your view of any PREVIOUS frame listed above, list the updated scores under "revised_prev_scores" (index, new relevance 1-5).

Respond in JSON: {{"new_frame_analysis": [{{"index": int, "caption": "str", "relevance": int}}], "revised_prev_scores": [{{"index": int, "relevance": int}}], "confidence": "str", "answer_attempt": "str", "reasoning": "str"}}

IMPORTANT GUIDELINES:

- Relevance combines BOTH
- (a) how well the frame's TEMPORAL POSITION matches the question mentioned, and
- (b) how much the visible CONTENT answers the question. A high score (4-5) requires strong evidence on both axes.
- You may use "high" confidence early ONLY IF: You have seen explicit, definitive evidence that unquestionably answers the question (e.g., clearly visible target object/person/action).
- Before setting "high" confidence, explicitly mention in your reasoning:
- (a) Why current evidence is sufficient.
- (b) Why additional unseen frames are unlikely to alter your conclusion.
- If there's any reasonable scenario where unseen frames could alter your answer, you must explicitly acknowledge that and keep your confidence at "medium".

Follow these instructions strictly.

D ADDITIONAL BENCHMARKS DETAILS

Table 6 summarizes the evaluation prompts for each benchmark used in our experiments, most of which are adapted from LMMs-Eval.

Table 6: Prompts specifying the response format used for each evaluation benchmark.

Benchmark	Response formatting prompts
MLVU	-
Video-MME	Answer with the option's letter from the given choices directly.
EgoSchema	Answer with the option's letter from the given choices directly.
NExTQA	_
Perception	Answer with the option's letter from the given choices directly.
Long Video Bench	Answer with the option's letter from the given choices directly.

E QUALITATIVE EXAMPLES

As shown in Figure 5, FrameOracle can achieve the same correct answers as uniform sampling while using far fewer frames. In the illustrated examples, our selector retained only 4 frames or, in some cases, just 2 frames out of the original 16 inputs, yet still provided sufficient evidence to answer the questions correctly. This demonstrates that many uniformly sampled frames are redundant and that FrameOracle effectively filters them out without compromising accuracy.

Figure 6 shows cases aligned with RQ1 (see Section 5.2). Feeding all 16 uniformly sampled frames can mislead the VLM with irrelevant or distracting content, producing incorrect answers. In contrast, FrameOracle selects a smaller, query-aligned subset, enabling the model to focus on relevant evidence and provide accurate answers. These examples demonstrate that more frames do not guarantee better performance, and adaptive selection of fewer, informative frames improves understanding.

Question: What did the man in the front do when the man at the back after the man at the back picked up the spoon? A. take the bowl B. places pan back on stove C. dip food into sauce D. does hand gesture toward the tiger E. help to season other chickens Uniform Sampling (Qwen2.5-VL: C) FrameOracle (Qwen2.5-VL: C) Question: Why is the man wearing slippers sitting at the top of the rock at the start of the video? A. take photo from angle B. sunbathing C. preparing for a performance D. to pose for the camera E. waiting to jump in water Uniform Sampling (Qwen2.5-VL: E) FrameOracle (Qwen2.5-VL: E)

Figure 5: Qualitative examples. FrameOracle answers correctly while using only a few frames (2 to 4 out of 16), compared to uniform sampling, which relies on the full input.

Question: What seems to be the main purpose of the video? What actions did c perform to achieve this purpose? A: The main objective of this instructional video is to effectively demonstrate how to easily tie your hair back. B: The main purpose of the video is to show how to open a jar. C: The primary objective of the video presentation is to demonstrate the most effective methods for properly cleaning your windows. D: The main purpose of the video is to show how to use a resistance band to exercise your arms and upper body. E: The primary objective of this video presentation is to effectively demonstrate the proper way to engage in a fun tug-of-war match with your canine companion. Uniform Sampling (Qwen2.5-VL: A) FrameOracle (Qwen2.5-VL: D) Question: From the sequence of actions, identify a turning point or moment where c's focus shifts to a different task. explain why you believe this is the most significant part of the video. A: The turning point is when c unfastens the hub axle. B: The crucial turning point occurs when character c picks up the screwdriver from the table. C: The pivotal turning point occurs when character c decides to put on the gloves. D: The turning point is when c removes the tire E: The critical turning point occurs when character c successfully patches the hole, fixing it. Uniform Sampling (Qwen2.5-VL: B) FrameOracle (Qwen2.5-VL: A)

Figure 6: Qualitative examples for RQ1. Using all 16 uniformly sampled frames can produce incorrect answers, whereas FrameOracle answers correctly by selecting only the relevant subset.