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ABSTRACT

Vision-language models (VLMs) have advanced video understanding, but their
performance is limited by the number of input frames they can process. Exist-
ing frame sampling strategies, such as uniform or fixed-budget selection, often
fail to adapt to variations in information density or task complexity, resulting in
inefficiency and information loss. To address this, we present FrameOracle, a
lightweight and plug-and-play module that predicts both (1) which frames are
most relevant to a given query and (2) how many frames are needed. FrameO-
racle is trained using a four-stage curriculum, with the first three stages relying
on weak proxy signals such as cross-modal similarity. In the final stage, it lever-
ages stronger supervision from a new dataset we introduce, FrameOracle-41K,
the first large-scale VideoQA collection to provide keyframe annotations spec-
ifying the minimal set of frames required to answer each question. Extensive
experiments across five VLMs and six benchmarks demonstrate that FrameOracle
reduces 16-frame inputs to an average of 10.4 frames without any loss in accuracy.
When starting from 64-frame candidates, it reduces the input to an average of 13.9
frames while improving accuracy by 1.4%, achieving state-of-the-art efficiency-
accuracy trade-offs for scalable video understanding.

1 INTRODUCTION

Rapid advances in large language models (LLMs) (Stiennon et al., 2020; Gao et al., 2022; Yang et al.,
2024) have enabled vision-language models (VLMs) to integrate visual understanding with strong
linguistic reasoning (Zhang et al., 2024; Bai et al., 2025; Zhang et al., 2025a). This makes VLMs
highly effective for complex video tasks such as question answering (Zhang et al., 2023; Lin et al.,
2024a;b; Zhao et al., 2024; Xiao et al., 2025), summarization (Hua et al., 2025; Lee et al., 2025),
and instruction following (Ren et al., 2024; Qian et al., 2024). A key challenge, however, is the
large volume of data these models must process. Processing every video frame is computationally
expensive, making efficient frame sampling essential (Hu et al., 2025). Most VLMs currently rely
on simple approaches, such as uniform sampling at a fixed frame rate or selecting a fixed number
of frames. While easy to implement, these methods have clear drawbacks: in long videos, they may
miss crucial information, whereas in short videos, they often introduce redundant frames that waste
resources, distract the model, and obscure key moments.

To mitigate this, a growing body of work has explored keyframe selection methods (Liu et al., 2025;
Park et al., 2024; Tang et al., 2025; Zhang et al., 2025d). These approaches aim to identify a sub-
set of frames that preserves semantic content while reducing redundancy. However, most existing
methods assume a fixed, preset number of keyframes, ignoring the fact that the optimal number of
frames varies across videos and queries. For example, short action-centric questions (e.g., whether a
ball crosses a line in sports footage) may be resolved with just a handful of frames, while long-form
narrative reasoning (e.g., inferring character intentions in a film) often requires a substantially larger
set of frames. A few recent methods enable adaptive frame selection, but their adaptivity remains
limited. In some cases, the selector is trained jointly with the backbone VLM (Buch et al., 2025),
making it non-transferable to other models. In others, adaptivity is achieved via threshold-based
filtering at inference, retaining only keyframes above a preset reward threshold. While this produces
variable frame counts, it is not explicitly optimized during training, reducing effectiveness and gen-
eralizability. This raises a fundamental question: How can we design a selector that identifies the
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most relevant frames for a given query and determines how many are needed, while generalizing
across different VLMs?

To this end, we propose FrameOracle, a lightweight, plug-and-play frame selector that can be in-
tegrated with arbitrary VLMs. Unlike prior approaches that fix the number of frames in advance
or require co-training with a specific backbone, FrameOracle jointly predicts (1) the importance of
each frame relative to the query and (2) the number of frames to retain. The module is trained with
a four-stage curriculum. The first three stages rely on weak proxy signals, such as cross-modal
similarity and leave-one-out loss degradation. The final stage leverages stronger supervision from
a new dataset we create, FrameOracle-41K, a large-scale VideoQA dataset with 40,992 examples
and the first to provide keyframe annotations specifying the minimal frames required to answer each
question. Unlike tasks such as object detection (Lin et al., 2014) or captioning (Xiong et al., 2024),
no existing dataset provides ground-truth annotations identifying the keyframes. FrameOracle dy-
namically adapts its selections based on both video content and the prompt, operating seamlessly as
a pre-processing module for any downstream VLM.

In summary, our contributions are as follows:

• We propose FrameOracle, a lightweight and plug-and-play frame selector that dynami-
cally predicts both which frames are most relevant and how many are needed.

• To facilitate training, we introduce FrameOracle-41K, the first large-scale VideoQA
dataset with keyframe annotations, specifying the minimal set of frames needed to answer
each question.

• We conduct extensive experiments across five VLMs and six benchmarks, showing that
FrameOracle reduces 16-frame inputs to an average of 10.4 frames without any loss in ac-
curacy. When starting from 64-frame candidates, it reduces the input to an average of 13.9
frames while improving accuracy by 1.4%, achieving state-of-the-art efficiency-accuracy
trade-offs for scalable video understanding.

2 RELATED WORK

Keyframe Selection for Video Understanding. Most existing keyframe selection methods assume
a fixed frame budget: they rank candidate frames by visual–linguistic relevance or temporal salience
and then retain the top-k subset (Liang et al., 2024; Tan et al., 2024; Yu et al., 2025; Liu et al.,
2025; Fang et al., 2025; Tang et al., 2025). Beyond this fixed-budget paradigm, some work has ex-
plored adaptive frame selection. These approaches fall into two categories. The first are agent-based
methods, where large multimodal models act as decision-makers that iteratively analyze videos. For
instance, VCA (Yang et al., 2025) combines curiosity-driven exploration with tree search to identify
informative segments, while AKeyS (Fan et al., 2025) leverages a language agent to heuristically
expand video segments and decide both which frames to retain and when to stop. However, such
methods are computationally expensive due to repeated agent calls. The second category comprises
approaches that require co-training with a specific VLM backbone (Buch et al., 2025; Yu et al., 2023;
Guo et al., 2025), which restricts their portability. In contrast, FrameOracle is adaptive, lightweight,
and model-agnostic: it learns to jointly predict which frames are relevant and how many to retain,
while remaining plug-and-play across diverse VLMs.

Datasets and Supervision for Video-Language Models. Progress in video-language reason-
ing has been driven by large-scale datasets such as LLaVA-Video-178K (Zhang et al., 2024),
ShareGPT4Video (Chen et al., 2024b), VideoRefer (Yuan et al., 2025), and CinePile (Rawal et al.,
2024), which cover diverse scenarios and support both short- and long-form understanding. How-
ever, most of these datasets provide supervision only at the answer level, leaving the underlying
evidence unannotated. In the absence of frame-level labels, keyframe selection methods are typ-
ically forced to rely on proxy signals, such as leave-one-out degradation or heuristic scoring. A
few benchmarks, such as TVQA+ (Lei et al., 2020), ReXTime (Chen et al., 2024a), and HourVideo
(Chandrasegaran et al., 2024), move toward span-level annotations, but none supply labels for both
the indices of keyframes and the minimal sufficient number of frames needed to answer a question.
FrameOracle-41K is the first dataset to provide explicit keyframe annotations for video–question
pairs, offering high-quality supervision for both training and evaluation of adaptive frame selectors.
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Figure 1: FrameOracle-41K data generation pipeline. Stage I (agent-based keyframe mining)
iteratively explores each video using a multimodal agent, ultimately returning a predicted answer
with confidence and relevance scores for all visited frames. Stage II (filtering and verification) first
discards frames with low relevance scores and then verifies sufficiency by requiring three indepen-
dent VLMs to answer correctly using only the remaining keyframes.

3 FRAMEORACLE-41K DATASET

We introduce FrameOracle-41K, the first VideoQA dataset that provides keyframe annotations, spec-
ifying the minimal set of frames needed to answer each question. The corpus contains 40,992
video–question pairs spanning diverse scenes and durations. In contrast to existing VideoQA
datasets, which provide only ground-truth answers and, in some cases, coarse temporal spans in
the video, FrameOracle-41K records, for each instance, the minimal number of frames needed to
answer the question with high confidence, along with the keyframes that constitute the necessary
evidence. Below, we describe our data collection and generation pipeline, the verification and filter-
ing procedures used to retain high-quality data, and the key statistics of the resulting dataset.

3.1 DATA GATHERING AND PROCESSING

All video–question pairs in FrameOracle-41K are sourced from LLaVA-Video-178K (Zhang et al.,
2024), a large-scale VideoQA dataset that covers a wide range of scenarios and activities. From
this corpus, we first select nearly 100k videos, each 2–3 minutes long, balancing adequate temporal
context with a manageable annotation effort. We then apply a two-stage process to create the final
dataset. Stage I (agent-based keyframe mining) iteratively explores each video using a multimodal
agent. At the end of exploration, the agent outputs a predicted answer with its confidence and assigns
a relevance score to every visited frame. Stage II (filtering and verification) first removes frames with
relevance scores below a threshold, then verifies sufficiency by requiring three independent VLMs
to answer correctly using only the remaining keyframes. Only instances that pass this verification
are retained, finalizing the minimal sufficient frame count. An overview of the pipeline is shown in
Figure 1. Appendix B provides an example of a data instance in JSON format.

Stage I: Agent-based Keyframe Mining. Starting from a uniformly sampled set of 64 frames, we
employ an agent built on Qwen2.5-VL-72B API (Bai et al., 2025) to iteratively explore the video
with respect to the given question. In the first iteration, the agent inspects three anchor frames (in-
dices 0, 31, and 63), assigns relevance scores, and attempts an answer with a confidence estimate.
It then compares the pairwise summed relevance of adjacent anchors (0+31 vs. 31+63) to decide
which segment to explore next. Within the selected segment, a denser set of four anchor frames is
sampled, another answer with confidence is attempted, and the same pairwise relevance comparison
guides subsequent iterations. This iterative score–refine cycle continues until either the agent be-
comes confident enough to provide a stable answer or all frames have been examined. By the end
of Stage I, the agent returns (1) its predicted answer and confidence, and (2) the complete set of
frames it has inspected, each annotated with a relevance score. Any video-question pair for which
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(b) Distribution of the number of selected keyframes
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Figure 2: FrameOracle-41K dataset statistics. (a) Video durations range from 2 to 3 minutes,
offering enough temporal context for analysis without including unnecessary frames. (b) Keyframe
annotations are sparse: most videos require fewer than 10 frames, yet the dataset also includes harder
edge cases to capture more challenging scenarios.

the agent’s predicted answer does not match the ground-truth answer is then discarded. This mined
trajectory captures both the localization of question-specific evidence and fine-grained frame-level
importance signals, forming the raw candidates for the next stage.

Stage II: Filtering and Verification. After obtaining candidate keyframes from Stage I, we first
remove all frames with relevance scores below a threshold λ, leaving only those with stronger rele-
vance. For each video–question pair, we then test whether the selected keyframes alone are sufficient
to answer the question. Specifically, the keyframe set and the question are fed into three indepen-
dent VLMs (i.e., Qwen2.5-VL-72B (Bai et al., 2025), LLaVA-OneVision-72B (Li et al., 2025), and
LLaVA-Video-72B (Zhang et al., 2024)), and their predictions are compared against the ground-truth
answer. Only instances for which all three models succeed using only the keyframes are retained;
otherwise, the instance is discarded. This cross-model verification ensures that the released dataset
contains consistent, question-grounded keyframe annotations.

3.2 DATASET STATISTICS

Through the two-stage pipeline described above, we obtain 40,992 validated video–question pairs,
each annotated with keyframes and minimal sufficient frame counts. This collection forms the
FrameOracle-41K dataset. Figure 2a shows that most videos are 2 to 3 minutes long, long enough to
provide meaningful temporal context without the inefficiency and redundancy of very long videos.
Figure 2b shows the distribution of keyframes per video–question pair. The median is about five
frames, the mean is around seven, and more than 80% of samples require no more than 10 frames.
A small fraction of more challenging cases, however, require 30 or more frames. These statistics
highlight the challenge and value of FrameOracle-41K: models must learn to identify minimal yet
sufficient evidence across diverse temporal contexts, rather than relying on dense frame sampling.

4 METHOD

We introduce FrameOracle, a lightweight and adaptive frame selector that dynamically determines
the appropriate number of keyframes from a video, conditioned on the user prompt. FrameOracle
enables efficient video understanding by providing the downstream VLM with a compact yet highly
relevant subset of frames.

Since directly processing all frames of a video, V , is computationally expensive, we first apply uni-
form temporal sampling to extract a candidate set of N frames, denoted as VC = {f1, . . . , fN}. This
pre-sampling step acts as a coarse filter, reducing the input to a manageable size for FrameOracle
(e.g., N = 64 or N = 16). Our goal is to learn FrameOracle, a selection policy, Πθ, parameterized
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Figure 3: Overview of the FrameOracle pipeline. FrameOracle (dashed box) receives raw video
frames and the textual prompt, and jointly predicts frame importance and the number of frames to
keep. It outputs a compact keyframe subset, which is fed into the downstream VLM. VC denotes the
pre-sampled frame collection, and VS denotes the subset selected by FrameOracle.

by θ, that operates on the candidate set. Given a candidate set VC and a text prompt P , FrameOra-
cle selects a compact subset of frames VS ⊂ VC . Unlike approaches that fix the number of selected
frames in advance, FrameOracle dynamically determines the subset size, K = |VS |, as part of the se-
lection process. Formally, Πθ maps the pair (VC , P ) to the selected subset VS , which is then passed
to a downstream VLM, M, to perform a reasoning task, producing an output A = M(VS , P ). The
objective is to train Πθ to choose subsets that maximize the performance of M while keeping K as
small as possible.

4.1 FRAMEORACLE

FrameOracle, Πθ, is a neural module that learns to jointly predict frame importance and the number
of frames to select from the candidate set VC . We begin by extracting features from both the video
frames and the text prompt, which serve as inputs to FrameOracle. For the candidate frame set VC ,
we use a visual encoder to generate a sequence of N frame embeddings. The text prompt P is
encoded using the native tokenizer of the downstream VLM. The FrameOracle architecture, shown
in Figure 3, is composed of two main components: (1) a cross-modal fusion encoder and (2) dual
prediction heads.

(1) Cross-Modal Fusion. To model the relationship between the text query and the video, we
fuse the two modalities. Frame and text embeddings are first projected into a shared latent space
using linear layers, and then processed by a stack of Transformer encoder layers. This architecture
captures the complex interactions between the textual prompt and the visual content of the candidate
frames.

(2) Dual Prediction Heads. The output of the fusion encoder is passed to two specialized heads,
which form the core of our selection policy:

• Rank Head: This head evaluates the relevance of each candidate frame to the prompt. It
processes the fused feature sequence to output a scalar importance score, si, for each frame
fi ∈ VC , resulting in a score vector S = {s1, . . . , sN}.

• K Head: This head predicts how many frames to select from the candidate set. It takes the
globally aggregated features from the fusion encoder and outputs a probability distribution
over a discrete set of possible values for K, where K ≤ N .

4.2 TRAINING

We train FrameOracle using a curriculum-based, four-stage protocol. This strategy progressively
refines the policy Πθ, teaching it to reason effectively over the pre-sampled frames (e.g., 16 or 64).
The staged training leverages four widely used public VideoQA datasets, covering clips ranging
from roughly 10 seconds to 15 minutes in length. Details of the full dataset composition are provided
in Appendix A.

Stage 1: Text-Visual Alignment. The initial stage focuses on learning a robust cross-modal rep-
resentation by aligning the textual prompt with the visual content of the candidate frames. We use
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the pre-trained text-visual model SigLIP (Zhai et al., 2023) as a teacher to provide supervision. For
each prompt-frame pair, a SigLIP similarity score serves as the target relevance signal. The feature
projectors and the cross-modal Transformer encoder are trained with a RankNet loss (Burges et al.,
2005), encouraging the model’s predicted scores to match the relative ordering of the SigLIP simi-
larities. Concretely, for any two frames i and j, let si and sj denote their SigLIP similarity scores,
and yi and yj their predicted scores. We define the pairwise preference label as tij = sign(si − sj).
The RankNet loss is then given by

LRankNet =
∑
i<j

log
(
1 + exp

(
− tij (yi − yj)

))
, (1)

where tij = 0 corresponds to tied frames and does not contribute to the gradient. In this way, the
alignment capability of SigLIP is distilled into FrameOracle. The K Head remains frozen during
this stage.

Stage 2: Rank Head Optimization. In the second stage, we train the Rank Head to identify the
most salient frames in the candidate set VC . Unlike the first stage, where SigLIP-based supervision
is computed independently for each frame and provides no temporal guidance, this stage uses the
downstream VLM’s loss as a supervisory signal, allowing the selector to capture temporal depen-
dencies across frames. To generate training targets, we adopt a leave-one-out (LOO) approach: for
each frame fi ∈ VC , we remove it from the input set and pass the remaining frames through the
VLM, measuring the change in its loss. A larger increase indicates that fi is more important. These
importance scores serve as soft targets, and the Rank Head is trained with a RankNet loss to predict
them. During this stage, the K Head remains frozen, while the Transformer encoder and feature
projectors are fine-tuned with a smaller learning rate to stabilize training.

Stage 3: K Head Optimization. The third stage focuses on training the K Head to predict the
number of frames. During this stage, the Rank Head is frozen, while the feature projectors and the
Transformer encoder are fine-tuned with a very small learning rate for slight adaptation. For each
sample, we evaluate the downstream VLM (the same backbone and task loss as in Stage 2) using
the top-k frames from VC , ranked by the frozen Rank Head, for a candidate value k ∈ N . We then
select the target

k∗ = argmin
k∈N

(
zscore(Ltask(k)) + λk k

)
, (2)

where the linear penalty balances accuracy and frame cost. The K Head predicts a categorical
distribution pθ(k) over k ∈ {1, . . . , N} and is trained with

LK = (1− α)Levo + αLclass, (3)

where the Expected Value Objective

Levo = SmoothL1

(
N∑

k=1

k pθ(k), k
∗

)
regresses the predicted expectation to k∗, and Lclass is a KL divergence aligning pθ with a Gaussian-
shaped soft target centered at k∗.

Stage 4: Supervised Fine-tuning with Ground Truth. In the final stage, we perform super-
vised fine-tuning (SFT) on FrameOracle-41K, which provides supervision for both the keyframe
indices and the number of frames. Unlike the earlier stages, which rely on weak or proxy signals,
FrameOracle-41K offers high-quality annotations that have been verified for consistency. The Rank
Head is trained to align its predictions with the annotated keyframes, while the K Head is jointly
trained to match the annotated K values. This strong, direct supervision further refines the selection
policy beyond what is achieved in Stages 1–3.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Implementation Details. We train two versions of FrameOracle, using uniformly sampled frames
as selector inputs: one with 16 frames and another with 64 frames, respectively. Both of them use
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Table 1: FrameOracle vs. SOTA VLMs. “Frames” shows M → K̄: FrameOracle starts from M
uniformly sampled frames and reduces to an average of K̄. Highlighted rows show the upper-bound
performance of FrameOracle with larger frame inputs. LVB = LongVideoBench validation set.

Model Frames
NExTQA

Perception LVB Video-MME EgoSchema MLVU Avg.
OE val OE test MC

(1) State-of-the-Art Models
ShareGPT4Video-8B (Chen et al., 2024b) 16 - - - - 41.8 39.9 - 46.4 -
LLaMA-VID-7B (Li et al., 2024b) 16 - - - 44.6 - 25.9 38.5 33.2 -
VideoChat2-7B (Li et al., 2024a) 16 - - - - 39.3 39.5 63.6 44.5 -
VideoLLaMA2-7B (Cheng et al., 2024) 16 - - 45.4 54.9 53.1 47.9 53.1 - -
InternVL2-40B (OpenGVLab, 2024) 16 - - - - 59.3 61.2 - 59.5 -

(2) FrameOracle on Different Baselines
Qwen2.5-VL-3B (Bai et al., 2025) 32 25.1 29.6 75.4 65.9 54.1 58.4 53.4 59.4 52.7
+ FrameOracle 32→20.9 25.6 30.5 74.8 66.7 54.3 58.5 53.8 58.4 52.8
+ FrameOracle 128→27.8 26.0 31.7 76.1 67.8 54.8 59.7 54.5 61.6 54.0
LLaVA-OneVision-7B (Li et al., 2025) 16 14.6 16.7 78.2 56.4 55.0 56.1 60.8 60.9 49.8
+ FrameOracle 16→10.4 16.1 17.8 77.6 56.5 55.5 56.0 62.4 60.2 50.3
+ FrameOracle 64→13.9 16.5 19.0 78.5 56.9 56.5 58.1 63.4 63.7 51.6
LLaVA-Video-7B (Zhang et al., 2024) 16 27.3 32.4 81.0 64.3 55.8 59.8 54.2 61.7 54.6
+ FrameOracle 16→10.4 27.8 33.0 80.4 64.7 56.3 59.6 54.6 60.8 54.7
+ FrameOracle 64→13.9 28.8 33.9 81.6 65.1 57.8 61.6 55.2 64.3 56.0
VideoLLaMA3-7B (Zhang et al., 2025a) 16 27.8 32.3 82.3 72.3 56.1 61.2 61.4 50.9 55.5
+ FrameOracle 16→10.4 28.3 32.9 81.2 72.0 56.0 61.4 61.8 52.8 55.8
+ FrameOracle 64→13.9 28.9 33.6 82.0 72.8 56.9 61.8 62.4 54.1 56.6
GPT-4o (Hurst et al., 2024) 16 - - 63.1 - 51.6 58.5 66.0 38.7 55.6
+ FrameOracle 16→11.1 - - 62.9 - 52.1 59.2 68.8 38.1 56.2

DINOv2 (Oquab et al., 2024) as the visual encoder and Qwen2.5-VL as the tokenizer. Training
follows the four-stage curriculum described in Section 4.2, progressively optimizing the Rank Head
and K Head using proxy signals and FrameOracle-41K annotations. In Stages 2 and 3, we adopt
Qwen2.5-VL-3B as the backbone VLM for supervision. For the 64-frame selector, we additionally
cap the maximum predicted K at 16 during Stage 3 to ensure comparability with the experimental
settings. All experiments are run on 8×H100 GPUs. Detailed hyperparameter settings, including
learning rates, batch sizes, and training durations for each stage, are provided in Appendix A.

Benchmarks. We evaluate FrameOracle on six widely adopted video benchmarks, which can be
divided into long-video and short-video understanding tasks. For long-video understanding, we in-
clude EgoSchema (Mangalam et al., 2023), LongVideoBench (Wu et al., 2024), MLVU (Zhou et al.,
2025), and Video-MME (Fu et al., 2025), all of which require reasoning over extended temporal
contexts ranging from minutes to hours. These datasets emphasize challenges such as cross-event
reasoning, global consistency, and temporal grounding across lengthy sequences. For short-video
understanding, we evaluate on NExTQA (Xiao et al., 2021), and Perception (Pătrăucean et al., 2023),
which involve clips typically within tens of seconds. These benchmarks focus on fine-grained event
recognition, local temporal relations, and reasoning within concise videos. We follow the LMMs-
Eval library (Zhang et al., 2025b) for evaluation, and report accuracy across all benchmarks.

5.2 RESULTS AND ANALYSIS

Comparisons with State-of-the-Art Models. Table 1 presents a comprehensive comparison of
FrameOracle across two categories: (1) five state-of-the-art (SOTA) VLMs, and (2) its integra-
tion with five diverse VLMs, Qwen2.5-VL (Bai et al., 2025), LLaVA-OneVision (Li et al., 2025),
LLaVA-Video (Zhang et al., 2024), VideoLLaMA3 (Zhang et al., 2025a), and the proprietary GPT-
4o (Hurst et al., 2024). Qwen2.5-VL internally merges every two adjacent frames into a single
representation. To ensure a fair comparison with models that process raw frames directly, we report
the baseline using 32 frames. For each model integrated with FrameOracle, we report results for
two configurations: using 16-frame FrameOracle and 64-frame FrameOracle.

Under the 16-frame condition, FrameOracle maintains accuracy comparable to the baseline models
across all benchmarks while reducing the number of frames by approximately 35%. With 64-frame
inputs, FrameOracle begins with a denser candidate set and adaptively selects relevant frames. In this
setting, it consistently improves performance over the baseline models while still reducing frames
by about 15%. This demonstrates that a larger candidate pool enables FrameOracle to better exploit
temporal redundancy, resulting in improved accuracy–efficiency trade-offs. FrameOracle is trained
independently and applied in a fully plug-and-play manner, requiring no co-training or backbone-
specific adaptation. These results confirm its ability to generalize across model architectures.
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Table 2: FrameOracle vs. SOTA keyframe selection methods. NExTQA reports MCQ. Methods
using more frames or larger LLMs are shown in gray. LVB = LongVideoBench validation set.

Model Frames NExTQA LVB Video-MME EgoSchema MLVU
(1) Jointly Trained Keyframe Selection Methods

SeViLA (Yu et al., 2023) 8 63.6 - - 25.7 -
LVNet (Park et al., 2024) 12 72.9 - - - -
VideoAgent (Wang et al., 2024) 8.4 71.3 - - 60.2 -
FFS (Buch et al., 2025) 8.6 66.7 - - - -
MoReVQA (Min et al., 2025) 30 69.2 - - - -
VSLS (Guo et al., 2025) 32 - 63.4 63.0 - -
AKS (Tang et al., 2025) 64 - 62.7 65.3 - -

(2) Plug-and-Play Keyframe Selection Methods
LLaVA-OneVision-7B (Li et al., 2025) 8 77.4 54.3 53.8 62.0 58.4
+ Frame-Voyager (Yu et al., 2025) 128→8 73.9 - 57.5 - 65.6
+ BOLT (Liu et al., 2025) 1fps→8 77.4 55.6 56.1 62.2 63.4
+ KFC (Fang et al., 2025) 1fps→8 - 55.6 55.4 - 65.0
+ FrameOracle 64→8 77.8 56.0 57.5 62.8 62.9
LLaVA-Video-7B (Zhang et al., 2024) 8 75.6 54.2 55.9 51.8 60.5
+ BOLT (Liu et al., 2025) 1fps→8 - - 58.6 - -
+ KFC (Fang et al., 2025) 1fps→8 - 56.5 57.6 - 66.9
+ FrameOracle 64→8 76.5 56.9 58.9 53.0 63.4

RQ 1: Does giving a VLM more frames consistently improve its performance?

One might expect that providing more frames always improves performance, since additional frames
offer more visual evidence. However, Table 1 shows the opposite: using more frames often fails
to help and can even reduce accuracy. This aligns with recent findings that long-video reasoning
is inherently sparse, with only a small subset of frames being truly relevant (Park et al., 2024).
Extra frames primarily introduce redundancy and noise, diluting cross-modal attention and yielding
diminishing returns (Li et al., 2023).

By contrast, when FrameOracle selects a smaller but more informative subset of frames, perfor-
mance can improve, especially on open-ended benchmarks. For example, on LLaVA-OneVision-
7B, reducing 16 frames to roughly 10.4 improves NExTQA metrics (OE val: 14.6 → 16.1, OE test:
16.7 → 17.8) and EgoSchema (60.8 → 62.4). Similar trends are observed for GPT-4o, where
accuracy rises from 55.6 to 56.2 despite using fewer frames. Qualitative examples in Appendix E
(Figure 6) further illustrate this effect: FrameOracle identifies the key evidence with fewer frames,
yielding correct answers where naive higher-frame sampling fails.

RQ 2: How does FrameOracle compare with existing SOTA methods for keyframe selection?

We compare FrameOracle with (1) keyframe selection methods that are jointly trained with their
VLM backbone in their original configurations, and (2) plug-and-play keyframe selection methods
applied to open-source models (Table 2). The first category cannot be applied directly to open-source
models, and FFS (Buch et al., 2025) is the only method that adaptively determines the number of
retained frames; all other methods assume a fixed number of keyframes. All plug-and-play selection
methods only provided 8-frame results. To ensure a fair comparison, we disable FrameOracle’s K
Head and rely solely on the Rank Head: given 64 uniformly sampled frames, we select the top-8
ranked frames as input to the backbone VLMs.

FrameOracle achieves competitive performance compared to prior plug-and-play methods. Across
NExTQA, LongVideoBench, Video-MME, and EgoSchema, it improves accuracy by roughly 2–4
percentage points, outperforming Frame-Voyager (Yu et al., 2025), BOLT (Liu et al., 2025), and
KFC (Fang et al., 2025). On MLVU, FrameOracle outperforms the base VLMs but does not surpass
heuristic methods such as KFC, a greedy selection strategy that maximizes relevance and diversity,
which achieve higher scores. This gap reflects MLVU’s focus on fine-grained temporal grounding
and multi-event reasoning, where heuristics can sometimes capture domain-specific cues more ef-
fectively. Overall, the results demonstrate that even without the K Head, the Rank Head alone can
reliably prioritize important frames and deliver consistent gains across multiple VLMs, achieving
state-of-the-art performance on most benchmarks.
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Table 3: Comparison of FLOPs, latency, visual tokens, and accuracy. The values of the compu-
tational cost are reported as per-GPU, per-sample averages.

Model Frames
TFLOPs ↓

Latency (s) ↓ Visual Tokens ↓ Avg. Acc. ↑
DINOv2 FrameOracle VLM Total

LLaVA-Video-7B 16 – – 184.38 184.38 0.615 11,644.0 54.6
+ FrameOracle 16→10.4 1.87 2.6× 10−4 109.11 110.98 0.363 7,581.6 54.7
+ FrameOracle 64→13.9 7.58 1.0× 10−3 160.09 167.67 0.556 10,133.1 56.0

Table 4: Four-stage training of FrameOracle, evaluated on Qwen2.5-VL-3B. Stages are added
progressively to assess their impact. The baseline (first row) randomly selects 16 of 32 frames. Bold
numbers indicate best performance. LVB = LongVideoBench validation set.

Model Frames
NExTQA

Perception LVB Video-MME EgoSchema MLVU
OE val OE test MC

Qwen2.5-VL-3B 32→16 23.4 29.1 71.9 65.0 52.9 54.8 50.2 56.7
+ Stage 1 32→16 24.7 29.2 72.4 60.3 49.8 52.4 48.2 51.3
+ Stage 2 32→16 24.8 29.5 73.0 64.7 51.9 55.7 52.2 54.8
+ Stage 3 32→21.8 25.1 30.0 74.1 66.0 53.7 59.4 53.6 57.6
+ Stage 4 32→20.9 25.6 30.5 74.8 66.7 54.3 58.5 53.8 58.4

RQ 3: How much can FrameOracle reduce computational cost while preserving accuracy?

We take LLaVA-Video-7B with 16 input frames as the baseline and report per-GPU, per-sample
averages. FrameOracle reduces the input from 16 to 10.4 frames, cutting the VLM cost from 184.38
to 109.11 TFLOPs and the end-to-end total from 184.38 to 110.98 TFLOPs (−39.8%). It also low-
ers latency from 0.615 to 0.363 seconds (−41.0%) and reduces tokens from 11,644.0 to 7,581.6,
while maintaining accuracy. With a larger candidate pool, FrameOracle reduces 64 frames to 13.9,
improving accuracy by +1.4 while still lowering total compute to 167.67 TFLOPs (−9.1%), tokens
to 10,133.1 (−13.0%), and latency to 0.556 seconds (−9.6%). These results reveal a clear trade-off:
smaller pools yield larger efficiency gains with no loss in accuracy, while larger pools deliver accu-
racy gains with moderate compute savings. Although reported on LLaVA-Video-7B, computation is
dominated by the backbone VLM, so similar efficiency–accuracy trade-offs are expected for other
∼7B-scale models, with only minor variation due to architectural details.

RQ 4: Are all training-stage components essential for FrameOracle’s performance?

We conduct ablations over the four training stages to evaluate the contribution of each stage, using
Qwen2.5-VL-3B as the backbone VLM (Table 4). The baseline (first row) randomly selects 16
frames from 32 uniformly sampled candidates. Stage 1 (text–visual alignment) underperforms the
baseline, though it provides a foundational starting point. Stages 2 (Rank Head) and 3 (K Head) yield
clear performance improvements, and the full model with Stage 4 (fine-tuning on FrameOracle-41K)
delivers further gains over Stages 2 and 3 on most benchmarks, with only a slight decline on Video-
MME. Moreover, the average number of retained frames decreases from 21.8 to 20.9, showing that
FrameOracle-41K supervision stabilizes performance while enabling higher accuracy with fewer
frames. These results demonstrate that ground-truth supervision from FrameOracle-41K is essential
for refining both frame importance scoring and the prediction of the number of frames, establishing
it as a valuable resource for adaptive frame selection.

6 CONCLUSION

We propose FrameOracle, a lightweight, plug-and-play frame selector that adaptively determines
which frames to retain and how many are needed. To facilitate training, we introduce FrameOracle-
41K, a large-scale VideoQA dataset with 40,992 examples, and the first to provide keyframe annota-
tions specifying the minimal frames required to answer each question. Extensive experiments show
that FrameOracle improves the performance of diverse VLM backbones without co-training, reduc-
ing FLOPs, latency, and the number of tokens, while also outperforming state-of-the-art keyframe
selection methods. Future work will explore relaxing the fixed-length input setting to support
variable-sized frame sets.
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REPRODUCIBILITY STATEMENT

To support reproducibility, we provide details on both the model and dataset. FrameOracle’s design,
including its learning objective, selection policy, and staged curriculum, is described in Section 4,
with training procedures and hyperparameters in Appendix A (Figure 4; Table 5). FrameOracle-41K
construction, including agent-based mining, verification, and dataset format, is covered in Section 3
and Appendix B. Evaluation settings, including benchmarks, backbones, and metrics, are in Sec-
tion 5.1. These sections provide all the information needed to reproduce our results.

ETHICS STATEMENT

FrameOracle-41K is created from source videos collected from the internet, which may contain im-
ages of individuals and reflect societal biases present in online content. Our data processing pipeline
does not involve identifying or profiling any individuals. The data is used solely for developing our
video understanding model. We release the dataset strictly for non-commercial, academic research
purposes and caution future users to be aware of potential inherent biases in the data.
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Eyzaguirre, Zane Durante, Manling Li, Jiajun Wu, and Li Fei-Fei. Hourvideo: 1-hour video-
language understanding. In The Thirty-eighth Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track (NeurIPS), 2024.

Jr-Jen Chen, Yu-Chien Liao, Hsi-Che Lin, Yu-Chu Yu, Yen-Chun Chen, and Yu-Chiang Frank Wang.
ReXTime: A benchmark suite for reasoning-across-time in videos. In The Thirty-eighth Con-
ference on Neural Information Processing Systems Datasets and Benchmarks Track (NeurIPS),
2024a.

Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong
Duan, Bin Lin, Zhenyu Tang, Li Yuan, Yu Qiao, Dahua Lin, Feng Zhao, and Jiaqi Wang.
ShareGPT4video: Improving video understanding and generation with better captions. In Pro-
ceedings of Thirty-eighth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (NeurIPS), 2024b.

Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi
Zhang, Ziyang Luo, Deli Zhao, and Lidong Bing. Videollama 2: Advancing spatial-temporal
modeling and audio understanding in video-llms. arXiv:2406.07476, 2024.

Sunqi Fan, Meng-Hao Guo, and Shuojin Yang. Agentic keyframe search for video question answer-
ing. arXiv:2503.16032, 2025.

Bo Fang, Wenhao Wu, Qiangqiang Wu, Yuxin Song, and Antoni B. Chan. Threading keyframe with
narratives: Mllms as strong long video comprehenders. arXiv:2505.24158, 2025.

Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
Zhou, Yunhang Shen, Mengdan Zhang, Peixian Chen, Yanwei Li, Shaohui Lin, Sirui Zhao, Ke Li,
Tong Xu, Xiawu Zheng, Enhong Chen, Caifeng Shan, Ran He, and Xing Sun. Video-mme:

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

The first-ever comprehensive evaluation benchmark of multi-modal llms in video analysis. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2025.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
Proceedings of the 40th International Conference on Machine Learning (ICML), 2022.

Weiyu Guo, Ziyang Chen, Shaoguang Wang, Jianxiang He, Yijie Xu, Jinhui Ye, Ying Sun, and Hui
Xiong. Logic-in-frames: Dynamic keyframe search via visual semantic-logical verification for
long video understanding. arXiv:2503.13139, 2025.

Kai Hu, Feng Gao, Xiaohan Nie, Peng Zhou, Son Tran, Tal Neiman, Lingyun Wang, Mubarak
Shah, Raffay Hamid, Bing Yin, and Trishul Chilimbi. M-llm based video frame selection for
efficient video understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2025.

Hang Hua, Yunlong Tang, Chenliang Xu, and Jiebo Luo. V2xum-llm: cross-modal video sum-
marization with temporal prompt instruction tuning. In Proceedings of the Thirty-ninth AAAI
Conference on Artificial Intelligence (AAAI), 2025.

Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, et al. Gpt-4o system card. arXiv:2410.21276, 2024.

Min Jung Lee, Dayoung Gong, and Minsu Cho. Video summarization with large language mod-
els. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2025.

Jie Lei, Licheng Yu, Tamara Berg, and Mohit Bansal. TVQA+: Spatio-temporal grounding for
video question answering. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics (ACL), 2020.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. LLaVA-onevision: Easy visual task transfer.
Transactions on Machine Learning Research (TMLR), 2025.

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
Ping Luo, Limin Wang, and Yu Qiao. Mvbench: A comprehensive multi-modal video understand-
ing benchmark. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024a.

Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large language
models. In Proceedings of the European Conference on Computer Vision (ECCV), 2024b.

Yi Li, Kyle Min, Subarna Tripathi, and Nuno Vasconcelos. Svitt: Temporal learning of sparse video-
text transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023.

Hao Liang, Jiapeng Li, Tianyi Bai, Xijie Huang, Linzhuang Sun, Zhengren Wang, Conghui He,
Bin Cui, Chong Chen, and Wentao Zhang. Keyvideollm: Towards large-scale video keyframe
selection. arXiv:2407.03104, 2024.

Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-LLaVA: Learning
united visual representation by alignment before projection. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2024a.

Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On pre-
training for visual language models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2024b.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
in context. In Proceedings of the European Conference on Computer Vision (ECCV), 2014.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shuming Liu, Chen Zhao, Tianqi Xu, and Bernard Ghanem. Bolt: Boost large vision-language
model without training for long-form video understanding. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2025.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Khan. Video-ChatGPT: Towards
detailed video understanding via large vision and language models. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (ACL), 2024.

Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic bench-
mark for very long-form video language understanding. In Proceedings of Thirty-seventh Con-
ference on Neural Information Processing Systems Datasets and Benchmarks Track (NeurIPS),
2023.

Juhong Min, Shyamal Buch, Arsha Nagrani, Minsu Cho, and Cordelia Schmid. Morevqa: Explor-
ing modular reasoning models for video question answering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2025.

OpenGVLab. Internvl2: Better than the best—expanding performance boundaries of open-source
multimodal models with the progressive scaling strategy., 2024. URL https://internvl.
github.io/blog/2024-07-02-InternVL-2.0.
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APPENDIX

A FULL IMPLEMENTATION DETAILS
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Figure 4: Four-stage training strategy of FrameOracle. The model is progressively optimized
from weak to strong supervision, culminating in supervised fine-tuning with FrameOracle-41K an-
notations. Fire icons indicate trainable modules, while snowflake icons denote frozen ones.

Table 5: Datasets used in FrameOracle training. Stage 4 leverages FrameOracle-41K.

Task Dataset Amount
Stage1 LLaVA-Video-178K (Zhang et al., 2024), ShareGPT4o-Video (Chen et al.,

2024b), Video-ChatGPT (Maaz et al., 2024)
300K

Stage2 LLaVA-Video-178K (Zhang et al., 2024), LLaVA-Hound (Zhang et al.,
2025c), Video-ChatGPT (Maaz et al., 2024)

300K

Stage3 LLaVA-Video-178K (Zhang et al., 2024), LLaVA-Hound (Zhang et al.,
2025c), Video-ChatGPT (Maaz et al., 2024)

300K

Stage4 FrameOracle-41K (Our Dataset) 40K

Training strategy illustration. Figure 4 presents a schematic of our four-stage curriculum, high-
lighting trainable modules (fire) and frozen modules (snowflake) at each stage.

Hardware and input budgets. All training is conducted on 8×H100 GPUs. We train two Frame-
Oracle variants: one with 16 uniformly sampled candidate frames and another with 64. A cosine
learning rate scheduler with the AdamW optimizer is used across all stages.

Datasets used in staged training. FrameOracle is optimized using a four-stage curriculum with
progressively stronger supervision. Stages 1-3 rely on large-scale video–language corpora, while
Stage 4 leverages our FrameOracle-41K dataset. Table 5 summarizes the dataset composition for
each stage.

Stage 1: Cross-modal alignment. K Head is frozen while the feature projectors and cross-modal
Transformer encoder are trained jointly, both optimized with a learning rate of 1 × 10−4. The 16-
frame selector uses a batch size of 16 and trains for approximately 48 hours, whereas the 64-frame
version uses a smaller batch size of 2 and completes in about 91 hours.

Stage 2: Rank Head optimization. Rank Head is trained while the K Head remains frozen. The
Rank Head uses a learning rate of 1× 10−4, and the feature projectors and Transformer encoder are
fine-tuned with a smaller learning rate of 1 × 10−5. The 16-frame selector uses a batch size of 16
and trains for approximately 40 hours, whereas the 64-frame variant uses the same batch size and
takes about 52 hours.

Stage 3: K Head optimization. K Head is the primary trainable module, optimized with a learning
rate of 1×10−4. The feature projectors and Transformer encoder are lightly updated with a learning
rate of 1 × 10−7, while the Rank Head remains frozen. We set λk = 0.0105 to balance accuracy
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and efficiency. The 16-frame selector uses a batch size of 16 and trains for approximately 35 hours,
whereas the 64-frame variant uses the same batch size and takes about 60 hours.

Stage 4: Supervised fine-tuning on FrameOracle-41K. Rank Head and K Head are trained jointly
with a learning rate of 5×10−5, while the feature projectors and Transformer encoder are fine-tuned
with 1 × 10−5. The 16-frame selector is trained with a batch size of 8 for approximately 12 hours,
and the 64-frame version uses the same batch size and trains for about 18 hours.

B FRAMEORACLE-41K DATA FORMAT

We release the FrameOracle-41K dataset in JSON format, with each entry corresponding to a single
video–question pair. Each entry includes the instance identifier, question–answer pair, paths to the
associated video and extracted keyframes, video duration, and number of selected frames. Below,
we provide an example JSON entry to illustrate the dataset’s structure.

{
"id": 30,
"question": "What folding technique is demonstrated first in the video?

",
"ground_truth_answer": "The ’SHIKAKU NO GI’ (Square Fold) technique is

demonstrated first.",
"video": "/srv/nfs/video_data/video/ytb_8yhoV5C3bT8.mp4",
"keyframes_dir": "/srv/nfs/video_data/extracted_frames/ytb_8yhoV5C3bT8"

,
"duration": 126.893,
"num_selected_frames": 8

}

C PROMPTS FOR DATA GENERATION

Prompt Template for Stage I: Initial Frame Analysis

You are analyzing a video that is {duration seconds} seconds long. The video has been
uniformly sampled into 64 frames, indexed from 0 (start) to 63 (end).

Analyze these {len(initial indices)} initial frames (indices: {initial indices}) to answer:
“{question}”. Provide a short caption for each frame, a relevance score (INTEGER 1-5),
your confidence (high/medium/low), and your answer attempt.

Respond in JSON: {{“frame analysis”: [{{“index”: int, “caption”: “str”, “relevance”:
int}}], “confidence”: “str”, “answer attempt”: “str”, “reasoning”: “str”}}

IMPORTANT GUIDELINES:

- Relevance combines BOTH
(a) how well the frame’s TEMPORAL POSITION matches the question mentioned, and
(b) how much the visible CONTENT answers the question. A high score (4-5) requires
strong evidence on both axes.
- You may use “high” confidence early ONLY IF: You have seen explicit, definitive evidence
that unquestionably answers the question (e.g., clearly visible target object/person/action).
- Before setting “high” confidence, explicitly mention in your reasoning:
(a) Why current evidence is sufficient.
(b) Why additional unseen frames are unlikely to alter your conclusion.
- If there’s any reasonable scenario where unseen frames could alter your answer, you must
explicitly acknowledge that and keep your confidence at “medium”.

Follow these instructions strictly.
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Prompt Template for Stage II: Deep-dive Analysis and Refinement

You are analyzing a video that is {duration seconds} seconds long. The video has been
uniformly sampled into 64 frames, indexed from 0 (start) to 63 (end).

Current context on question “{question}”:

Current context in buffer “{buffer}”.

Now analyze these {len(indices)} new frames (indices: {[int(idx) for idx in indices]}) from
the gap ({start idx}, {end idx}).

Tasks:
- Provide a caption, relevance score (INTEGER 1-5) for each NEW frame, your UPDATED
confidence, answer, and reasoning.
- If the new evidence changes your view of any PREVIOUS frame listed above, list the
updated scores under “revised prev scores” (index, new relevance 1-5).

Respond in JSON: {{“new frame analysis”: [{{“index”: int, “caption”: “str”, “relevance”:
int}}], “revised prev scores”: [{{“index”: int, “relevance”: int}}], “confidence”: “str”,
“answer attempt”: “str”, “reasoning”: “str”}}

IMPORTANT GUIDELINES:

- Relevance combines BOTH
(a) how well the frame’s TEMPORAL POSITION matches the question mentioned, and
(b) how much the visible CONTENT answers the question. A high score (4-5) requires
strong evidence on both axes.
- You may use “high” confidence early ONLY IF: You have seen explicit, definitive evidence
that unquestionably answers the question (e.g., clearly visible target object/person/action).
- Before setting “high” confidence, explicitly mention in your reasoning:
(a) Why current evidence is sufficient.
(b) Why additional unseen frames are unlikely to alter your conclusion.
- If there’s any reasonable scenario where unseen frames could alter your answer, you must
explicitly acknowledge that and keep your confidence at “medium”.

Follow these instructions strictly.

D ADDITIONAL BENCHMARKS DETAILS

Table 6 summarizes the evaluation prompts for each benchmark used in our experiments, most of
which are adapted from LMMs-Eval.

Table 6: Prompts specifying the response format used for each evaluation benchmark.

Benchmark Response formatting prompts

MLVU –
Video-MME Answer with the option’s letter from the given choices directly.
EgoSchema Answer with the option’s letter from the given choices directly.
NExTQA –
Perception Answer with the option’s letter from the given choices directly.
LongVideoBench Answer with the option’s letter from the given choices directly.
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E QUALITATIVE EXAMPLES

As shown in Figure 5, FrameOracle can achieve the same correct answers as uniform sampling while
using far fewer frames. In the illustrated examples, our selector retained only 4 frames or, in some
cases, just 2 frames out of the original 16 inputs, yet still provided sufficient evidence to answer the
questions correctly. This demonstrates that many uniformly sampled frames are redundant and that
FrameOracle effectively filters them out without compromising accuracy.

Figure 6 shows cases aligned with RQ1 (see Section 5.2). Feeding all 16 uniformly sampled frames
can mislead the VLM with irrelevant or distracting content, producing incorrect answers. In contrast,
FrameOracle selects a smaller, query-aligned subset, enabling the model to focus on relevant evi-
dence and provide accurate answers. These examples demonstrate that more frames do not guarantee
better performance, and adaptive selection of fewer, informative frames improves understanding.
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FrameOracle (Qwen2.5-VL: C)

Question: What did the man in the front do when the man at the back after the man at the back picked up the spoon?

A. take the bowl                                                              B. places pan back on stove
C. dip food into sauce                                                  D. does hand gesture toward the tiger
E. help to season other chickens

Question: Why is the man wearing slippers sitting at the top of the rock at the start of the video?

A. take photo from angle                                               B. sunbathing
C. preparing for a performance                                   D. to pose for the camera
E. waiting to jump in water

Uniform Sampling (Qwen2.5-VL: C)

Uniform Sampling (Qwen2.5-VL: E)

FrameOracle (Qwen2.5-VL: E)

Figure 5: Qualitative examples. FrameOracle answers correctly while using only a few frames (2
to 4 out of 16), compared to uniform sampling, which relies on the full input.
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Uniform Sampling (Qwen2.5-VL: A)

Question: What seems to be the main purpose of the video? What actions did c perform to achieve this purpose?

A: The main objective of this instructional video is to effectively demonstrate how to easily tie your hair back. 
B: The main purpose of the video is to show how to open a jar.
C: The primary objective of the video presentation is to demonstrate the most effective methods for properly
cleaning your windows.
D: The main purpose of the video is to show how to use a resistance band to exercise your arms and upper body. 
E: The primary objective of this video presentation is to effectively demonstrate the proper way to engage in a fun
tug-of-war match with your canine companion.

Question: From the sequence of actions, identify a turning point or moment where c's focus shifts to a different task.
explain why you believe this is the most significant part of the video.

A: The turning point is when c unfastens the hub axle. 
B: The crucial turning point occurs when character c picks up the screwdriver from the table.
C: The pivotal turning point occurs when character c decides to put on the gloves.
D: The turning point is when c removes the tire.
E: The critical turning point occurs when character c successfully patches the hole, fixing it.

FrameOracle (Qwen2.5-VL: D)

Uniform Sampling (Qwen2.5-VL: B)

FrameOracle (Qwen2.5-VL: A)

Figure 6: Qualitative examples for RQ1. Using all 16 uniformly sampled frames can produce
incorrect answers, whereas FrameOracle answers correctly by selecting only the relevant subset.
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