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ABSTRACT

We introduce Temporal Variational Implicit Neural Representations (TV-INRs), a
probabilistic framework for modeling irregular multivariate time series that enables
efficient and accurate individualized imputation and forecasting. By integrating
implicit neural representations with latent variable models, TV-INRs learn distri-
butions over time-continuous generator functions conditioned on signal-specific
covariates. Unlike existing approaches that require extensive training, fine-tuning
or meta-learning, our method achieves accurate individualized predictions through
a single forward pass. Our experiments demonstrate that with a single TV-INRs
instance, we can accurately solve diverse imputation and forecasting tasks, offer-
ing a computationally efficient and scalable solution for real-world applications.
TV-INRs excel especially in low-data regimes, where it outperforms existing impu-
tation methods by an order of magnitude in mean squared error.

1 INTRODUCTION

Time series are a key way to represent data in many domains, from energy consumption to finance,
and they frequently contain missing values and irregularities due to sensor malfunctions, collection
errors, or resource constraints (Che et al.,[2018;|Du et al.|, [2023]; [Proietti & Pedregall, [2023)). These
challenges are particularly pronounced in clinical datasets, which often exhibit extreme sparsity
(80-90% missingness) and noisy, irregular sampling due to human involvement in non-automated
measurements (Silva et al.,[2012). In order to impute missing values and forecast future time points,
effective solutions must handle these challenges while utilizing available covariates to capture unique
temporal dynamics.

Current methods relying on Recurrent Neural Networks (RNNs) (Chung et al., 2015} (Che et al.,[2018)
and Transformers (Bansal et al.,[2023} |Liu et al.| |2023) are generally tailored for regular, dense time
series data and require placeholders for missing observations. They also operate in discrete time, and
careful design is necessary for continuous time settings (Chen et al.,[2024). Alternatively, there exist
continuous time series models which use Implicit Neural Representations (INRs) (Sitzmann et al.,
2020) to handle irregular time series data (Naour et al., 20245 |Cho et al.| 2024). By learning a unique
continuous function to represent each time series, INRs have great potential for individualization by
capturing the unique activity patterns of each subject. However, existing approaches are inflexible,
and often require training multiple models, fine-tuning, or meta-learning to handle variations in data
availability, prediction length, and individualization. For example, the method presented in|Naour et al.
(2024)) requires the training of separate models for different missingness ratios or horizon lengths,
and performs gradient-based meta-learning during inference, resulting in a data-hungry model. Such
approaches are impractical in real-world applications where scalability and generalization are crucial,
as computational resources may be limited during deployment.

To address these shortcomings, we introduce Temporal Variational Implicit Neural Representations
(TV-INRs), a novel probabilistic model for multivariate time series with INRs. We use INRs as
generator functions for continuous time series modeling, effectively handling the challenge of irregular
sampling. By also integrating latent variable models and amortized variational inference, TV-INRs
learns distributions over INRs conditioned on individual signals and their covariates through a learned
latent space. This approach is therefore scenario and sample agnostic, accommodating varying levels
of missingness or time series length and eliminating the need for task-specific retraining or per-sample
optimization. In short, we preserve the benefits of INRs for time series while making them scalable
and efficient.
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Our model pushes forward multivariate time series analysis with several key contributions:

* We introduce the first fully probabilistic model for multivariate time series using INRs.

* TV-INRs achieves competitive accuracy to gradient-based meta-learning approaches and improves
imputation performance in low-data scenarios, without requiring per-sample optimization during
inference.

* We demonstrate successful generalization across multiple data settings, including missingness and
forecasting horizon length, with a single training. This significantly reduces training requirements
relative to comparable models.

* Our results show that the inclusion of covariates enables effective individualization and further in-
creases our model’s accuracy with sparse data, demonstrating suitability for real-world applications
with extreme missingness, such as healthcare.

2 BACKGROUND & RELATED WORK

2.1 LEARNING IMPLICIT NEURAL REPRESENTATIONS

Hypernetworks denoted as gy, are neural networks that generate parameters 6 = g (-) for another
neural network fy(-) (Ha et al.,2016). Hypernetworks can generate task-specific model parameters,
making them suitable for meta-learning scenarios that require quick adaptation to new tasks. |[Zhao et al.
(2020) showed that meta-learning a hypernetwork effectively modulates inner-loop optimization and
adapts features task-dependently using model-agnostic meta-learning. Nguyen et al.| (2022)) proposed
to generate parameters of the approximate posterior and likelihood of a Variational Autoencoder
(VAE) model to perform multiple tasks. Recent works have shown hypernetworks to be useful for
generating parameters for implicit neural representations (Dupont et al., 2021} Koyuncu et al., 2023).

Implicit neural representations (INRs) offer a novel approach to data representation and modeling
complex continuous signals using the weight space (Sitzmann et al.| [2020). This formulation is
supported by strong theoretical guarantees and makes the model inherently resolution-agnostic and
robust to irregular sampling (Sitzmann et al.| 2020). By leveraging neural networks, particularly
multi-layer perceptrons (MLPs), represented as fy(-), INRs effectively map coordinates to features
like color, occupancy, or amplitude. Therefore INRs enable continuous representation of high-
dimensional data, offering significant advantages in various domains, including images, 3D shape
modeling, spatio-temporal data (Dupont et al.| 2021} 2022aj; Koyuncu et al.,|2023}; |Park et al., [2024)
and geometric structures (Vetsch et al., 2022} Niemeyer et al., [2022), because predictions are not
constrained by input range or resolution. Recent works are actively exploring parameterization
strategies for INRs. For example, approaches by Dupont et al.| (2022b); [Striimpler et al.|(2022) have
used compressed representations of the data as inputs to hypernetworks g4, which then generate
weights 0 of the INRs fy(+). [Peis et al.[(2025) uses latent diffusion models to generate a latent variable
model to model the weights of INRs via a transformer network. And[Park et al.| (2024) proposed to
learn sample-specific dynamic positional embeddings, rather than modeling INRs weights.

Meta-learning is a learning approach where algorithms are designed to improve their learning
efficiency and adaptability across different tasks and domain shifts. In model-agnostic meta-learning
(MAML), the aim is to fine-tune the trained model using test instances with gradient updates (Finn &
Levine|, 2017; Wang et al.,2020). This is particularly relevant in scenarios when adaptation of the
model is needed for unseen data during inference. MAML is widely used to update INR weights
(Dupont et al.| [2022a; Jeong & Shin, [2022; Niemeyer et al., 2022} [Bamford et al.|, [2023), however, its
reliance on a test-time optimization step for each sample introduces computational overhead scaling
with the number of test instances.

2.2 TIME SERIES IMPUTATION AND FORECASTING

RNNs are frequently used for time series forecasting, due of their ability to capture sequential
dependencies (Chung et al., |2015; Hewamalage et al., [2021; (Che et al.| 2018} |Guo et al., 2016).
However, they assume fixed frequencies and struggle with long-term dependencies. To address these
limitations, LSTM networks incorporate memory cells that retain relevant historical information
while discarding irrelevant data (Hochreiter, |1997} Hua et al.l 2019} |Chen et al., 2022). Recent
advancements have also embraced transformer-based architectures for time series modeling. Models
such as SAITS (Du et al.| [2023)), PatchTST (Nie et al., 2023)) and iTransformer (Liu et al.| [2023)
leverage attention and embedding strategies to capture both short- and long-term time dependencies
within time series. Despite their strengths, transformers are inherently discrete and may fail to
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Figure 1: Visualization of temporal stamps T, features Y, mask 2, and static covariates C. T
and Y represent the input signal, €2 indicates missing values with binary entries, and C' contains
time-invariant covariates.

interpolate between time steps unless they are carefully redesigned for this task (Chen et al., [2024).
Moreover, they may have trouble identifying and preserving key information when attending to large
inputs (Wen et al.,2022). Likewise, conditional diffusion models like CSDI operate on fixed temporal
grids and rely on architectural workarounds to manage irregular observations (Tashiro et al., [2021).

Recently, INRs have been used in continuous modeling of time series data for imputation and
forecasting tasks (Naour et al., 2024; [Fons et al., 20225 |Cho et al.,|2024)), and for anomaly detection
(Jeong & Shinl |2022)). [Fons et al.|(2022) use a set-encoder approach to generate latent representations
to parameterize INRs through hypernetworks for time series generation. Similarly, Bamford et al.
(2023) adopt this approach for time series imputation, utilizing an auto-decoding strategy that requires
back-propagation to learn these latent representations. Naour et al.| (2024); (Cho et al.| (2024); |Woo
et al.| (2023)) use gradient-based meta-learning approaches to learn per instance modulations on INRs
to perform imputation and forecasting on test data. Therefore, these methods encounter scalability
challenges with an increasing number of test instances, since each requires per-instance optimization,
and they may underperform in scenarios characterized by limited data availability.

3 TEMPORAL VARIATIONAL IMPLICIT NEURAL REPRESENTATIONS

In this section, we introduce Temporal Variational Implicit Neural Representations (TV-INRs). Our
approach is motivated by representing time series as continuous functions using Implicit Neural
Representations (INRs). Leveraging the amortized inference framework of Variational Autoencoders
(Kingmal 2013} |[Rezende et al.,2014), TV-INRs learns distributions over INR parameters through
encoder networks, eliminating per-sample optimization during inference while enabling efficient
scaling to large datasets (Cremer et al., 2018} [Hoffman et al., [2013; Mnih & Gregor, [2014). This
approach maintains competitive performance for time series modeling tasks such as imputation and
forecasting while facilitating personalized modeling through latent variables.

Notation. Let [L] = {1, ..., L} denote the set of positive integers from 1 to L and d denote the total

number of feature dimensions. We consider a dataset of N samples {(T("), Y C®)}N | where
each sample i € [N] as shown in Fig. [I]includes:

« Temporal stamps: A point cloud of L; temporal stamps (i.e. femporal coordinates), T*) =
(Y5 with t € R.

« Feature vectors: Corresponding feature vectors Y(*) = {yli)}lL:"l, where yli) e R4 with

dl(i) < d representing the number of observed channels at index . The set .A(*) identifies indexes
(1) where channels () are absent in the original dataset.

» Static covariates: Static covariates C") = {c("}, where ¢ € R¥, which are constant for all stamps
in the sample.

We denote the multichannel i-th time series as a tuple X () = (T'), Y'(9)), consisting of L; (irregular)
temporal stamps and their corresponding features. To effectively handle missing data, we distinguish
between three sets of indices. The observed indices O(*) represent available data points in our dataset,
which we input to the model. The masked indices M (?) correspond to entries we artificially mask
during training to facilitate self-supervised learning and improve generalization to missing data
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Figure 2: Graphical models for generative and inference tasks.

scenarios (Moreno-Mufioz et al.,|[2023)). Finally, the absent indices A are inherent to the data and
represent entries of missing channels due to partial observations or limitations in data collection
which we exclude from the training process as they represent inherent data incompleteness rather
than synthetic masks. We define a binary mask Q%) to formalize this as:

‘ 1 if (1,k) € 0O
O =10 if(1,k) e MO (1
0 if(I,k) e A®

where O, M) A® C [L;] x [d] with O 0 M) = (). Finally, we denote by T the percentage
0]

of observed indices in the available data, i.e., 7 = TOOUMD] -

3.1 MODEL DESCRIPTION

Generative model. To ease readability, we consider the model for a single sample and omit the use
of the superscript (). TV-INRs is generative model for the feature set Y given timestamps T'. For
now, we assume that (7", Y") is a timeseries with L elements and d channels without any absence,
e.g. A = (). The observed data Yqp, indexed by O and corresponding timestamps Ty are given as
context to the model, while Y, indexed by M () represents the masked values to predict at given
timestamps T3,. Together, they form the complete datasets: Y = Y, U Yous and T = T3, U Tipg with
the assumption of .4 = (). The joint distribution can be written in a general form

L
p(menb&Z'nmea C) :sz |X)bsa obs Hpe(z c) yl|tl (2)

where z represents a latent variable and ¢ denotes covariates. To generate such a signal, the
process begins by sampling a continuous latent variable z from a conditional prior distribution,
Pas, (2| Yobs, Tons) = N (2] fup, (Yobs, Tobs)), Which is parameterized by v, using a Transformer
encoder. The resulting vector z, concatenated with random variable c , acts as input to the hyper-
generator. Here, the hypergenerator is an MLP-based hypernetwork g, (z, ¢), with input [z, c] that
outputs a set of parameters 8y, = g4, (2, c); and, a data generator, fg, parametrized by the output of
the hypernetwork. Thus, both z and 8 encode the information shared among the stamps in the data
(e.g., features) generation process as shown in Fig. Moreover, we refer to TV-INRs as C-TV-INRs
when covariates are available and used.

Inference model. We approximate posterior distribution as ¢, (z|Y,T) = N(z|f,.(Y,T)),
parameterized by .. It’s important to note that this distribution is shared among the complete
instance (e.g., time series signal), thus z contains global information as shown in Fig. [2b]

Training. We employ masked training by maximizing the evidence lower bound (ELBO) of the
proposed model, which is given by

L(T,Y.C) =Eqy, [logpes,e)Y | T]] — Dk (¢+. (2 | Y, T) [Py, (2] Yobs, Tovs)) 3)

where py,, and ¢, are Gaussian distributions, and we model pg (5 ) with a Laplace distribution as it
demonstrates better performance in capturing high-frequency components.
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3.2 IMPLEMENTATION DETAILS

We model the conditional prior and approximate posterior with Transformer encoders. To handle het-
erogeneity in the input data, we augment the input features by concatenating them with a binary mask,
(0@ € 0,1%*4) which indicates observed entries across both temporal and feature dimensions.

Input processing. For each sample i € [N], we process the input tuple (T, Y (), C()) to handle
missing values. We construct the input representation using the binary mask (%)) as follows:

1. Fill masked values in Y () with zeros:

- @ ()

i Y, if (I,k) € O

)/l’(k) ) I,k ) ( ) @ (4)
0 if(l,k)eU

where Y () € REi%4 in case for the input of the posterior encoder we give full available data.

2. Concatenate the mask along the feature dimension and transform the processed features with a
linear layer for spatial encoding, which captures relationships among different channels, yielding

EY Fiinear (Y ) € REiXdmoae swhere Y (1) = [V (1); Q)] ¢ REix2d,

spatial =
3. Expand temporal coordinates with channel indices v4 = [0, ...,d — 1] and encode them with
Fourier Features (FoF) (Dupont et al., [2021): El(ellzlporal = FoF(T'")) € REi*duaa where T() =
T ® vy € RLixd,

The final embedding E(*) = Es(;iﬁal + Egglpoml is element-wise summed and then fed into the encoder.

Encoding. The embedded input E(* is processed through a transformer encoder to model the
conditional distributions py, (2| Yobs, Tons) and ¢+ (z|Y', T'). The encoder takes E(¥), transforms the
input through self-attention, applies pooling (POOL) over temporal dimension, and a feed-forward
network (FFN) generates parameters to model the latent features z:

z ~ N(p, ) where p1, 0 = FEN(POOL(H)), and H = Transformer(E®) 6)

where X = diag(o?). Here, we make sure masked values are not used during attention computation.

Decoding. The latent representation (z) is combined with conditional variables to construct the
decoder input through the following steps:

1. The conditional variables C'(*) are transformed by a feed-forward network into € = FEN(C'?) ¢
R4, which is then concatenated with the latent representation to form the decoder input hgee =
[z; c].

2. The resulting hqe is passed through a hypernetwork g, to generate the parameters 6 = g4 (Pdec)
for the implicit neural representation (INR), fy, which is continuous over ¢ (Sitzmann et al., 2020).

3. The INR, fy, models the output feature values as g; ~ Laplace(gu;, b;), where the distribution’s
parameters (1, b;) = fo(e;) are the output of mapping the encoded time point e;.

4 EXPERIMENTS

Baselines. We thoroughly tested TV-INRs framework across imputation and forecasting tasks in
full and limited data regimes with uni- and multi-variate datasets. We compare our model with
TimeFlow (Naour et al.,[2024)), an INR-based time series model. It requires training separate models
for different missingness ratios or horizon lengths, and performs gradient-based meta-learning during
inference (details in App. [A.8). We include two baselines specifically designed for time series
imputation: SAITS (Du et al., |2023), which is based on self-attention, and CSDI (Tashiro et al.,
2021)), a conditional diffusion model that operates on a fixed temporal grid. For the forecasting task,
we compare with DeepTime (Woo et al.,|2023), which learns deep time-index models specifically
designed for time series forecasting. Potential baselines HyperTime (Fons et al.,[2022) and MADS
(Bamford et al.,|2023)) were not available as open-source models, and were therefore not tested.

Univariate datasets. We conducted experiments on four univariate datasets (App. Table [)),
and compared our approach to Timeflow (Naour et al., [2024)), DeepTime (Woo et al., 2023), SAITS
(Du et al.| [2023)), and CSDI [Tashiro et al|(2021). Each dataset comprises one-dimensional signals
originating from various locations or sources, and is available at the Monash Time Series Forecasting
repository (Godahewa et al., [2021]).
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Multivariate datasets. While some datasets contain regular sampling (e.g., electricity), others are
irregular, and have multiple sensors with unique temporal patterns. TV-INRs is the first temporal INR
model to handle such multivariate signals, leading us to exclude Timeflow from these comparisons.
We conducted experiments on two multivariate datasets, namely, HAR and The PhysioNet Challenge
2012 (P12), and compared our method with SAITS (Du et al.| 2023)) and CSDI (Tashiro et al.} [2021).
Additional details on the datasets, including missingness patterns, are provided in App. [A.2]

Next, we describe the imputation and forecasting tasks. Let the i-th sample, TV = {t;i)}f;'l,
contain L; stamps. For both tasks, we compare predicted values against the ground truth for test data
using Mean Squared Error (MSE) and Mean Absolute Error (MAE).

Imputation task. We partition the data based on an observed ratio 7. Given the observed stamps
T

Cbs > where

the goal is to predict features at the unobserved stamps Tu(;())bs,

76 — 70y 7)

unobs?

Y(l) = Y(-)gfs) U Y(l) YA:mobs ~ pO(z,c)(Klnobs | Tunobs)' (6)

unobs?

The task’s difficulty increases as 7 decreases. For prediction, we use the conditional prior distribution
Dap,, (2] Yos, Tons) and covariates c (if available).

Forecasting task. We partition data at a horizon #pgi,0n into history and forecast sets. Given

the observed historical data YLS:E’ our task is to predict Yﬁ(;gml We use our conditional prior
Dap, (2| Yhist, Thist) and covariates c (if available) to generate predictions:

T =t € TV |17 < thorion'h: Tigeon = 185 € TP [0 > thorson} )

onrecasl ~ p@(z,c) (Y}orecasl ‘ T‘forecasl)~ (8)

4.1 RESULTS

In Sections and we explore TV-INRs performance in imputation and forecasting on
univariate datasets in comparison with the baseline models Timeflow (Naour et al.| [2024), SAITS
(Du et al.| [2023)), CSDI (Tashiro et al.,[2021) and DeepTime (Woo et al., [2023)). We comment on the
training efficiency in Sections|4.1.3|and App. In Section4.1.4] we report TV-INRs performance
on multivariate datasets including the conditional version of our model, C-TV-INRs, compared with
SAITS (Du et al., 2023) and CSDI (Tashiro et al., [2021)). Statistical significance (p < 0.05) was
assessed using independent t-tests performed on results from non-overlapping test windows and
three different seeds of model training. Ablation studies on the number of Fourier Features and our
INR-based decoder are in App. [A.12] and [A.T3] respectively. The code will be accessible

4.1.1 IMPUTATION ON UNIVARIATE DATASETS

For imputation, we compared TV-INRs against the selected baselines across varying signal lengths
L. We used L = 2000 (2K) time points to match published baseline experiments, and L = 200
time points to evaluate performance in lower-data regimes. We define the rate of observed data
points during testing as 7r.s¢. The low-data regime is characterized by conditions of data scarcity,
which includes all scenarios with a limited training set (L = 200) and sparse test-time observations
Trest € {0.5,0.3,0.05}) as well as the experiments with a larger training set but very sparse test-time
observations (L = 2000, 7r.s; = 0.05). In contrast, the high-data regime represents scenarios
with a relative abundance of data, specifically when a larger training set is available (L = 2000)
and the observation rates at test time are higher (7.5 € {0.5,0.3}) or when L = 10000 and
Trest € {0.5,0.3,0.05}. To improve robustness under low observation rates, we sample the observed
fraction at random during training, e.g. Tt ~ S = {0.05,0.30,0.50,0.75,0.90, 1.0}. TimeFlow
requires separate training for each 7r. value, while SAITS fixes Trn,i;n = 0.80 and CSDI uses a
uniform distribution 7y, ~ U(0, 1).

The results in Table[T]demonstrate the advantages of our approach over gradient-based meta-learning,
particularly in low-data regimes. With shorter signals (L = 200) and lower observation percentages
TTest» T V-INRs consistently performs on par or better than all baselines, achieving up to 88% improve-
ment in MSE scores. In Solar-10 at (L = 200) specifically, TV-INRs achieves substantially lower
error rates, with a MSE of 0.0383 compared to TimeFlow’s 0.3304, SAITS’ 0.0660 and CSDI’s
1.010 at 7rese = 0.50. At the highest missingness setting, Tr.ss = 0.05, TV-INRs also performs best
on average, though it is only comparable to TimeFlow on the Solar-10 dataset. As Solar-10 has
significantly longer time series (L = 10K) and thus a larger number of training observations, results
indicate that TV-INRs excels primarily in low-data regimes.


https://archive.ics.uci.edu/dataset/240/human+activity+recognition+using+smartphones
https://physionet.org/content/challenge-2012/1.0.0/
https://physionet.org/content/challenge-2012/1.0.0/
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Table 1: Univariate imputation results with signal lengths L, training/testing observation rates
Tiraintest> ald MSE/MAE evaluated on unobserved indices from non-overlapping test signals. Bold
values indicate significantly better results, while underlined values denote results that are comparable.

Electricity Traffic Solar-10
Model L Trrain Trest MSE MAE MSE MAE L MSE MAE

0.50 0.569 +0.048 0.542 +0.022 0.251 £0.028 0.246 +£0.015 1.086 + 0.005 0.648 +0.022
SAITS 2K 0.80 0.30 0.793 £0.055 0.654 +0.023 0.337 £0.033 0.306 +£0.015 10K 1.087 £0.009 0.651 + 0.024
0.05 1.318 £0.051 0.902 +£0.025 0.824 £0.040 0.619 +£0.014 1.126 +0.061 0.676 +0.062

0.50 2.070 £0.194 1.033 £0.023 1.150+0.029 0.773 £0.144 1.275+0.382 0.699 +0.781
CSDI 2K ~U 030 2.287£0.157 1.045+0.012 1.146 £0.103 0.773 £0.165 10K 1.285 +0.191 0.703 + 0.749
0.05 1.742+£0.265 1.050+£0.013 1.139+0.111 0.773 £0.171 1.279 +0.020 0.700 +0.737

0.50 0.50 0.131 +0.011 0.252 +0.010 0.346 + 0.036 0.369 = 0.017 0.710 £ 0.040 0.617 +0.056
TimeFlow 2K 0.30 0.30 0.166 + 0.012 0.288 + 0.011 0.390 + 0.042 0.388 +0.018 10K 0.812 + 0.128 0.658 +0.121
0.05 0.05 0.378 +£0.034 0.458 +0.025 0.590 +0.048 0.496 +0.020 0.833 +0.010 0.663 +0.096

0.50 0.249 +0.019 0.331 +£0.012 0.546 £0.022 0.401 £0.015 0.955+0.059 0.645 +0.038
TV-INRs 2K ~ & 0.30 0.250+0.017 0.332+0.012 0.551 £0.029 0.403 +0.017 10K 0.954 +0.074 0.646 + 0.050
0.05 0.289 +0.019 0.360 +0.015 0.570+0.019 0.415 + 0.013 1.104 +0.265 0.688 +0.132

0.50 0.124 +0.014 0.223 £0.010 0.230+0.015 0.245 +0.008 0.066 +0.035 0.140 +0.021
SAITS 200 0.80 0.30 0.231 +£0.025 0.317+0.017 0.345+0.019 0.320 £ 0.009 200 0.099 £ 0.060 0.168 +0.030
0.05 0.937 £0.040 0.743 £0.018 0.904 +£0.020 0.641 +£0.016 0.564 £0.107 0.502 +0.037

0.50 1.380+0.216 0.944 £0.035 1.169 +£0.204 0.787 £0.187 1.010+0.261 0.602 +0.122
CSDI 200 ~ U 0.30 1.399 £0.144 0.945+0.021 1.167 £0.183 0.789 £ 0.194 200 1.052 £ 0.209 0.625 +0.109
0.05 1.226 £0.065 0.911 £0.011 1.158 £0.200 0.795 +£0.194 1.196 +0.716 0.700 + 0.124

0.50 0.50 0.163 +0.009 0.240 +0.007 0.233 +0.009 0.230 + 0.006 0.330+0.046 0.223 +0.032
TimeFlow 200 0.30 0.30 0.331+0.014 0.396 +0.010 0.419 £0.015 0.370 +0.009 200 0.518 + 0.057 0.331 £0.038
0.05 0.05 0.963 +0.019 0.811+0.011 1.303 +0.103 0.830 +0.028 0.877+£0.077 0.707 + 0.098

0.50 0.113+0.018 0.212 +0.015 0.188 +£0.041 0.212 +0.027 0.038 +0.031 0.089 + 0.035
TV-INRs 200 ~ & 0.30 0.135£0.027 0.232 + 0.021 0.214 £ 0.042 0.228 + 0.028 200 0.051 = 0.051 0.098 + 0.042
0.05 0.318 £ 0.063 0.368 + 0.041 0.453 +0.074 0.368 + 0.042 0.244 £ 0.226 0.234 +0.099

For longer signal lengths (L = 2K, 10K), TimeFlow shows stronger performance on the Electricity
and Traffic datasets at higher 7.y values. Overall, TV-INRs maintains competitive performance
across all scenarios while offering two crucial advantages: it provides a unified model that handles
all cases without requiring per-case training, and enables efficient inference through gradient-
free meta-learning that requires only a forward pass. These results highlight how our variational
framework effectively balances performance with practical efficiency, and excels in scenarios where
data availability is limited. In App. [B.T] Figures @3] show sample outputs generated by TV-INRs.

4.1.2 FORECASTING ON UNIVARIATE DATASETS

For forecasting, we compare TV-INRs with TimeFlow and DeepTime using the same experimental
settings as in their original publications. The historical length H is set to the first 512 elements, and
forecasting performance is evaluated over forecasting lengths F' of 96, 192, 336, and 720. TV-INRs
is trained by sampling forecasting lengths Frin € F = {96, 192,336, 720}. Since H is fixed, the
binary mask has the same number of observed indices; however, the total length of the mask is adapted
to different lengths of F'. As shown in Table |2} both TimeFlow and DeepTime require separate
training for each forecasting length, while our approach uses a single model for all horizons. For
TV-INRs and TimeFlow, there is a dramatic increase in MSE for long-range forecasting (F' = 720) in
the Electricity dataset, reaching ~ 9.5 and ~ 9.4 respectively, while maintaining relatively moderate
MAE (~ 0.53), which strongly indicates the presence of significant outlier errors in the predictions.
DeepTime shows even higher errors in this scenario (MSE = 10.18). For shorter forecasting horizons
(F = {96,192}), our method demonstrates competitive or superior performance, notably achieving
a MSE of 0.3359 versus TimeFlow’s 0.4250 and DeepTime’s 0.4359 for F' = 96 in the Electricity
dataset. Our approach significantly outperforms DeepTime on the Solar-H dataset, with MSE of
0.3456 versus 0.6410 at F' = 96. TimeFlow achieves lower errors in specific scenarios (Traffic at
F =96, Solar-H at F' = {336, 720}), but requires separate training per horizon and gradient-based
meta-learning for each test sample. Similarly, DeepTime needs individual models for each forecast
length. Our approach’s key advantage is handling multiple forecasting horizons with a single trained
model while maintaining competitive performance. Sample outputs are shown in App. (Figlo).
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Table 2: Univariate forecasting results with history length H, training/testing forecasting lengths
Flraintest, and MSE/MAE evaluated for forecasting. Bold values indicate significantly better results,
while underlined values denote results that are comparable.

Electricity Traffic Solar-H
Model H Fiin Fiest MSE MAE MSE MAE MSE MAE

96 96 0.436+0.020 0.503+0.016 0.419+0.103 0.411 +0.047 0.641 +0.183 0.651 +0.089
192 192 0.551£0.157 0.525£0.055 0.382+0.056 0.372+0.027 0.432+0.121 0.514£0.081
336 336 0.793+0.046 0.689 +0.037 0.446 +0.107 0.397 £0.058 0.821 +0.013 0.804 +0.002
720 72010.178 £0.218 0.970 £0.178 0.485 +0.059 0.406 +£0.014 0.793 +0.041 0.741 £ 0.001

96 96 0.425+0.057 0.318 +0.050 0.289 +0.113 0.281 +0.064 0.503 +0.424 0.336 +0.142
192 192 0.498 +0.078 0.362 +0.060 0.324 +0.076 0.298 +0.050 0.476 +0.191 0.352 +0.077
336 336 1.347+0.210 0.389 +0.065 0.407 +0.122 0.329 +0.057 0.364 + 0.106 0.301 + 0.055
720 720 9.422+0.217 0.525 +0.150 0.413 +0.050 0.327 +0.020 0.353 +0.092 0.325 + 0.032

96 0.336 +0.068 0.296 +0.040 0.383 +0.143 0.305 +0.082 0.346 +0.303 0.325 +0.123
192 0.446 £0.107 0.415+0.036 0.377 £0.094 0.294 + 0.056 0.469 +0.125 0.389 +0.031
336 0.544 +0.216 0.442+0.040 0.373 +0.073 0.292 +0.049 0.451 +0.140 0.383 +0.039
720 9.515+0.218 0.535+0.162 0.448 £ 0.088 0.313 +0.043 0.509 £0.194 0.404 +0.061

DeepTime 512

TimeFlow 512

TV-INRs 512 ~ F

4.1.3 EXPLANATION OVER GENERALIZATION CLAIMS

We assess model generalization by its robust performance across a range of distinct tasks, each
applied to N unique time series. For imputation, these tasks are defined by varying the observation
rate 7, challenging the model under different levels of data scarcity. For forecasting, we measure
generalization by the model’s ability to maintain accuracy over increasingly long forecasting windows,
F € {96,192,336,720}. TV-INRs uses a unified model capable of imputation with different
observed ratios and forecasting across all horizon lengths, which significantly reduces or eliminates
the need for additional fine-tuning or multiple-model optimizations, enhancing its overall efficiency.
To illustrate this, we show that TimeFlow has to be trained per scenario, e.g. different observed
ratios and horizon lengths, in Table[T9]in App[A.6] We report the training times for TV-INRs and
TimeFlow across all experiments in App. [A.10] Our findings indicate that TV-INRs achieves notable
improvements in cumulative training efficiency: it requires between 2.41x to 3.70x less training time
than TimeFlow for forecasting tasks, and between 1.30x to 2.81x less training time for imputation
tasks. These results are shown in App. [A.T10|- Table 20} and demonstrate that TV-INRs offers
substantial advantages in computational efficiency and generalization by handling multiple tasks with
a single training. We also provide the memory and time complexity analysis of TV-INR in App. [A.9]

4.1.4 IMPUTATION ON MULTIVARIATE DATASETS

In the HAR dataset, motion data from a single smartphone presents simultaneous missing values
across all channels at specific timestamps due to device failures. Formally, given X ) = X (Eéz U
X% where X'V = Xl(z) 1 € UD, any missing timestamp [ € (1)) affects all d channels.

unobs’ unobs
For the P12 dataset, we evaluate TV-INRs on patient-specific time series imputation from eight
measurements (urine output, SysABP, DiasABP, MAP, HR, NISysABP, NIDiasABP, NIMAP) and
four covariates (gender, age, height, weight). The dataset has irregular missingness across timestamps
and channels, which makes the imputation task more challenging (details in App. [A.2).

« Conditional vs. unconditional. We test C-TV-INRs conditional formulation (Equation [2) on HAR
by incorporating activity labels alongside latent codes, and on P12 by including patient covariates.
On HAR, Table [3] shows C-TV-INRs significantly outperforms TV-INRs at higher missingness
rates (7resx = 0.05). For P12, both variants perform comparably at higher observation rates
(Trest = 0.50,0.30). But at extreme sparsity (71 = 0.10), C-TV-INRs significantly outperforms
with MSE=0.9627 versus SAITS’s 0.9704, CSDI’s 1.024, and TV-INRs’s 0.9795, with the lowest
MAE (0.7326). This confirms conditional models’ advantage with sparse time series data. Overall,
both the conditional and non-conditional versions of TV-INRs outperform baselines for multivariate
imputation.

* Downstream classification. To assess the impact of imputation on classification, we trained an
XGBoost classifier (Chen & Guestrin, [2016) on HAR data, testing across varying observation ratios
by removing random timepoints and imputing using our methods, baselines, and mean imputation.
Fig. [3] shows both TV-INRs variants substantially outperforming baselines, with the conditional
model showing increasing advantage as missingness grows, demonstrating the value of covariates
for individualized predictions. Complete AUC-ROC values are in Table[TT]
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Table 3: Multivariate imputation results with signal lengths L, training/testing observation rates
Tiraintest> ald MSE/MAE evaluated on unobserved indices from non-overlapping test signals. Bold
values indicate significantly better results, while underlined values denote results that are comparable.

HAR (L=128) P12 (L=48)
Model TTrain  TTest MSE MAE TTrain  TTest MSE MAE

0.50 0.998 +0.003 0.793 £ 0.006 0.50 0.985+0.128 0.746 £0.070
SAITS 0.80 0.30 1.001 £0.004 0.793 £0.007 0.80 0.30 0.998 £0.092 0.760 + 0.067
0.05 1.004 £0.001 0.793 +0.007 0.10 0.970 £0.048 0.746 £ 0.052
0.50 1.083 +0.062 0.821 £0.067 0.50 0.861 £0.174 0.691 £0.070
CSDI ~U 0.30 1.084 £0.060 0.823 £0.063 ~ U 0.30 0.930 £0.146 0.724 £ 0.067
0.05 1.090 +0.015 0.826 +0.054 0.10 1.024 +£0.093 0.765 £ 0.057
0.50 0.382 +0.067 0.414 £0.041 0.50 0.822+0.171 0.660 +0.074
TV-INRs ~ S 0.30 0.533+0.050 0.505+0.031 ~S 0.30 0.892+0.146 0.692 +0.071
0.05 0.995 +0.070 0.722 £0.034 0.10 0.980+0.118 0.739 £0.058
0.50 0.379 £0.065 0.412 +0.041 0.50 0.824+0.175 0.662 £ 0.076
C-TV-INRs ~ S 0.30 0.523 +0.047 0.502+0.029 ~ S 0.30 0.883 +0.141 0.690 +0.073
0.05 0.976 = 0.058 0.708 + 0.022 0.10 0.963 +0.099 0.733 £ 0.052

=@®= TV-INR C-TV-INR == SAITS =A= CSDI =@= Mean Imputation

1.00

0.95

0.90

0.85

0.80

AUC-ROC

0.75

0.70

0.65 T T T
50 70

Missingness % (1 — 1)

Figure 3: Classification performance (AUC-ROC) at various missingness levels; a higher value
indicates better performance.

5 CONCLUSION

We have introduced TV-INRs, demonstrating its effectiveness in imputation and forecasting across
various time series domains and data conditions. Our results highlight superior performance in
low-data regimes and robust handling of varying observation patterns. Furthermore, the amortization
of INR weights in our probabilistic setting enables adaptation to unseen data without fine-tuning
or per-sample optimization, a key advantage over traditional hypernetwork-based methods that rely
on meta-learning. We have also illustrated the potential of TV-INRs for downstream tasks with
improved classification on HAR data. While baseline methods TimeFlow and DeepTime showed
stronger performance in specific scenarios, TV-INRs frequently produced comparable or superior
results while offering substantial practical benefits: unified model training across multiple tasks,
individualization without meta-learning, and significantly improved cumulative training and inference
efficiency. The ability to handle multiple forecasting horizons with a single model represents a
considerable advantage in real-world applications where computational resources may be limited.

To further enhance our model, future directions may include reducing hypernetwork complexity
with transformer-based architectures (Chen & Wang|, [2022)), or modeling per-sample positional
embeddings rather than weights directly (Park et al.,[2024])). The variational framework could also
be extended to incorporate additional forms of domain knowledge. These improvements could
strengthen its potential, particularly in healthcare domains such as personalized medicine and patient
monitoring, where efficiency and the ability to model highly sparse data are especially critical.
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6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have included our complete source code as sup-
plementary material. Our code submission contains the model implementation, training scripts
for experiments, and instructions for setting up the required environment. Furthermore, a detailed
description of all experimental settings, including dataset preprocessing steps (App. and the
final hyperparameter configurations (App. [A.6) are provided.
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A APPENDIX A

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

The authors used a large language model (LLM) as a general-purpose writing assistant during the
preparation of this paper. Its application was exclusively for grammar checking. The LLM played no
role in the research ideation, methodology, or the generation of the core manuscript content, which
remains the sole contribution of the authors.

A.2 DATASETS

Table 4: Dataset Descriptions. #Series denotes the number of distinct timeseries signals with
corresponding lenghts and covariates if available.

Dataset Domain Freq. #Dims #Series Length Cov.

Electricity Ro™ Hourly 1 321 26304 X
Traffic [0,1] Hourly 1 862 17544 X
Solar-10  Ro™ 10 Mins 1 137 52560 X
SolarH Ro"™  Hourly 1 137 8760 X
HAR R 50Hz 3 30 43940 Vv
P12 Rot Hourly 8 3938 48 v

In this section, we provide more details about the datasets we have used. We start with the list of
uni-variate datasets:

Electricity Dataset records hourly electricity consumption from 321 customers in Portugal for the
period 2012 to 2014, displaying both daily and weekly seasonality.

Traffic Dataset includes hourly road occupancy rates from 862 locations in San Francisco during
2015 and 2016, and exhibits similar daily and weekly seasonal patterns.

Solar Dataset The Solar-10 dataset comprises measurements of solar power production from 137
photovoltaic plants in Alabama, captured every 10 minutes in 2006. Additionally, there is an hourly
version of this dataset, known as Solar-Hourly.

For some datasets, the feature vectors Y () = {yl(i)}lL'i1 expand from univariate (d = 1) to mul-
tivariate (d > 1), with each dimension representing a unique sensor used to collect observations

{yl(i)} € R%. For these purposes, we experiment with two multi-variate datasets, namely:

HAR Dataset. Here, we experiment with the Human Activity Recognition (HAR) dataset from
the UC Irvine ML Repository, which is dense with regular time points at 2.56 second intervals,
enabling quantitative imputation assessment through random removal. It contains 10,299 samples of
accelerometer measurements across X, y, and z axes.

P12 Dataset. The PhysioNet Challenge 2012 (P12)|dataset contains ICU stay measurements including
sensor readings and lab results. After outlier removal, it comprises 11,817 visits across 37 channels
with maximum 215 time points over 48 hours. We use eight measurements urine output, systolic
arterial blood pressure (SysABP), diastolic arterial blood pressure (DiasABP), mean arterial pressure
(MAP), heart rate (HR), and their non-invasive counterparts (NISysABP, NIDiasABP, NIMAP). We
also incorporate patient-specific covariates including gender, age, height, and weight. Conditional

TV-INRs use covariates Unlike HAR, P12 is highly sparse (X ) i5 15.68% of X on average) with

obs
irregularity across times and sensors, where T'(*) may be unique for each time series .

Missingness Patterns of the Datasets. To ensure a comprehensive evaluation, our experiments
address diverse data missingness patterns, including both random and non-random scenarios. For
Missing Completely at Random (MCAR) patterns, we adhere to standard literature practices by
introducing artificial missingness (Little & Rubinl|2019) during training across the Electricity, Traffic,
and Solar datasets. This methodology aligns with the protocols used by the baseline models we
compare against. Furthermore, we assess performance on Missing Not at Random (MNAR) patterns,
which are prevalent in real-world applications. Our analysis includes the P12 dataset, which exhibits
MNAR characteristics where clinical data is informatively missing; here, we evaluate imputation
quality indirectly via a downstream classification task. To create a controlled non-random evaluation,
we also synthetically modified the fully-observed HAR dataset by dropping entire channels at random
timestamps to mimic sensor failures, a scenario where the missingness mechanism depends on
unobserved factors.
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A.3 DATA-PREPROCESSING

We apply channel-wise standardization to each time series. For each channel d in a time series with
length L, we compute the channel-wise mean 14, standard deviation o, and normalize signal i:l(lc)l as
follows:

N ) ©)

where zl(z()i represents the value of channel d at time [ for sample :.

A.4 ANALYSIS FOR STATISTICAL DIFFERENCES

To compare the performance of TV-INRs and baseline models, we conducted a systematic statistical
analysis using Welch’s t-test which accounts for potentially unequal variances between the two
models. For each configuration defined by sequence length L and sampling ratio 7, we evaluated
both mean squared error (MSE) and mean absolute error (MAE). The statistical significance was
assessed at o = 0.05.

In classification experiments, the HAR dataset was normalized independently per channel but not
per individual, ensuring consistency across subjects and allowing XGBoost to learn global patterns.
This differs from the normalization procedure used for TV-INRs, which normalized data at both
the channel and individual level in order to model data on a per-user basis. When mentioned, we
computed the relative performance difference as A = ({TimeFlow — #TV-INRs)/ A TimeFlow X 100%.

A.5 TRAINING, VALIDATION, AND TEST SPLITS FOR ALL EXPERIMENTS

Here, we give information about all datasplits for all experiments in Tables[5] [6l [7] For univariate
datasets, test windows are extracted sequentially from the end of each time series. Moreover, training
data precedes validation data.

Table 5: Dataset splitting details for univariate imputation experiments. Training and validation sets
has 5:1 ratio.

Dataset Series Count Window Length  Test Windows  Training/Val.

L) (NO & FE )] Stride
Electricity 321 2200000 550 55000
Traffic 862 2200000 220 55000
Solar-10 137 1(2)880 120 25500

Table 6: Dataset splitting details for univariate forecasting experiments. Training and validation sets
has 5:1 ratio. Training and validation series are constructed with using offsetting from the available
data points.

Dataset  Series Count  History Forecast Window Length  Test Windows  Training/Val.
(H) F) L) (NO&FE)P|  Offset
Electricity 321 512 [96,192,336,720] 1232 7 4
Traffic 862 512 [96,192,336,720] 1232 7 v
Solar-H 137 512 [96,192,336,720] 1232 3 4

'NO: Non-overlapping, FE: From end of the series
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Table 7: Dataset splitting details for HAR imputation experiments. The dataset is split by users, with
24 users for training and 6 users for testing. From the training users, we further split into training and
validation sets using a 4:1 ratio of users.

Dataset  Series Count Window Length (L) #Classes #Train Users #Test Users

HAR 30 128 6 24 6
P12 11817 48 NA 9454 2363

A.6 HYPERPARAMETERS FOR ALL EXPERIMENTS

Hyperparameters for all TV-INR experiments on an NVIDIA V100 GPU can be seen in Tables [8}[9]
In case of HAR dataset, C-TV-INRs extra parameters of feed forward encoder of covariates with
layers [8, 8] and dim_c = 4. The details of the hyperparameter grid search space are provided in
Table

Table 8: Hyperparameter details of TV-INRs for imputation task.

ELECTRICITY TRAFFIC SOLAR-10 HAR
L 200 2000 200 2000 200 10000 128
dim_z 32 64 32 64 32 64 32
epochs 2000 4000 2000 4000 2000 4000 3000
bs 256 64 256 64 256 32 128
Ir le-4 le-4 le-4 le-4 le-4 le-4 le-4
dimodel 128 128 128 128 128 128 128
Transformer Enc. #heads 2 4 2 4 2 4 4
#layers 2 2 2 2 2 2 4
Hypernetwork  layers [128,256]
Generator layers [64,64,64] [64,64,64,64] [64,64,64] [64,64,64,64] [64,64,64] [64,64,64,64] [64,64,64,64]
RFF m = 256,0 = 2

Table 9: Hyperparameter details of TV-INRs for forecasting task.

ELECTRICITY TRAFFIC SOLAR-H

dim_z 32 64 32
max epochs 2000 4000 2000
bs 256 64 256
Ir le-4 le-4 le-4
dmodel 128 128 128
Transformer Enc. #heads 2 4 2
#layers 2 2 2
Hypernetwork layers [128,256]
Generator layers  [64,64,64] [64,64,64,64] [64,64,64]
Random Fourier Features m = 256,0 = 2

For classification with XGBoost, all hyperparameters used were the default in (Chen & Guestrin
(2016)’s XGBoost library, with the following exceptions; early stopping was set to 10 rounds, and
categorical features were enabled to preserve channel identity as nonordinal.

A.7 CLASSIFER RESULTS

We present the AUC-ROC scores for different models across varying levels of missingness in Table
[IT] where higher scores indicate better classification performance.

A.8 TIMEFLOW RESULTS FOR DIFFERENT MISSINGNESS RATES

To thoroughly demonstrate TV-INRs’s capability to handle different missing data scenarios, we
conducted extensive experiments by training and testing with various observed ratios (7), further
supporting our claims regarding its efficiency and its ability to serve as a single model for all cases. It
is important to note that in the TimeFlow GitHub repositoryﬂ the missing data rate (“draw_ratio”)

3htt]os ://github.com/Etiennelnr/TimeFlow/blob/main/experiments/training/
inr_imputation.sh
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Table 10: Hyperparameter Grid Search Configuration

Hyperparameter Search Range

General Parameters

[1e-5, le-4, 5e-4]
[16, 32, 64]
[0.0, 0.1, 0.2]

Learning rate (Ir)
Latent dimension (dim_z)
Dropout rate

Transformer Encoder

d_model [64, 128, 256]

Attention layers 2,4, 6]

Number of heads 2,4, 8]

Causal attention [True, False]
Hypernetwork

Layers [[32,64], [64,128], [128,256], [256,512]]
Activation [’relu’, *Irelu_01’, ’gelu’]
Generator (INR)

dim_inner [32,64,128]

num_layers [2,3,4]

Activation [’relu’, ’Irelu_01’, gelu’]

Random Fourier Features

m [128, 256, 512]
o [1,2,4]

Table 11: AUC-ROC scores for different models across varying levels of missingness. Higher scores
indicate better performance. All values are rounded to three decimal places.

Model 50% Missingness 70% Missingness 95% Missingness
C-TV-INR 0.969 +0.012 0.968 +0.012 0.882 + 0.028
TV-INR 0.967 +0.013 0.963 £0.016 0.868 +0.025
SAITS 0.906 + 0.040 0.831 +0.036 0.719 +0.039
CSDI 0.928 +0.023 0.900 = 0.035 0.847 +£0.037
Mean Imputation ~ 0.894 £ 0.039 0.818 +0.036 0.784 +0.030

can be set as a training argument, with options including {0.05,0.10,0.20,0.30,0.50}. Although
this may appear to be a hyperparameter choice, it affects the task itself, as the model is optimized for
a specific level of missingness.

As shown in Table [I2} TimeFlow’s performance varies significantly across different training/testing 7
combinations, requiring training different model instances for each scenario. In contrast, TV-INRs
has comparable or better performance when compared with Timeflow with a single trained model.
These results align with the observation stated in Table 10 of the original TimeFlow paper Naour et al.
(2024) that while higher sampling rates simplify the imputation task, they complicate optimization,
making it challenging for the model to generalize effectively across different sparsity levels.

A.9 COMPLEXITY ANALYSIS FOR TV-INR

This section provides the time and memory complexity analysis for the TV-INR model, broken down
by its core components: the Transformer-based encoder and the MLP-based decoder (hypernetwork).

Notation. To facilitate the analysis, we define the following notation: L is the input sequence length;
C'is the number of input channels; £ is the embedding dimension; D, is the hidden dimension of
the projection layer; Z is the latent dimension; N and M are the number of layers and attention
heads in the encoder, respectively; N’ and Dy, are the number of layers and hidden dimensions of the
hypernetwork; and R is the total flattened dimension of the INR parameters being modeled. Typically,
the sequence length is the dominant factor, such that L > F > Z.

Time complexity. The overall time complexity is determined by the sum of the model’s parts. The
Transformer-based encoder has a complexity of O(N - L? - E), which is quadratic with respect to
the sequence length L due to the self-attention mechanism. The subsequent projection layer has a
complexity of O(E - D,,). The MLP-based hypernetwork’s complexity is O(Z - Dy, + (N’ — 1) -
D? + Dy, - R), which depends on its depth and width. Given that L is the largest dimension, the
encoder is the computational bottleneck, making the model’s overall time complexity O(N - L? - E).
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Table 12: TimeFlow model performance at different training and testing missing ratios (7).
MSE and MAE metrics are reported for electricity dataset.

Test 7
MSE MAE
Model L TrainT 0.05 0.3 0.5 0.05 0.3 0.5

1.00 605909.85 7.77814 0.44302 358.39774 1.87872 0.49501
0.95 2611667.2 145.28325 0.33257 587.75934 2.32136 0.42111
TimeFlow 200 0.50 350.9098 0.34692 0.16299 11.31193 0.43012 0.23984
0.30 18.90844 0.32993 0.20594 2.99975 0.39625 0.30289
0.05 0.96294 0.74811 0.6934 0.81073 0.71435 0.69580

TV-INRs 200 ~ S  0.3175 0.1352  0.1132 03681  0.2320 0.2123

1.00 108812.06 0.18195 0.13066 26.16919 0.28272 0.25084
0.95 22579.357 0.15164 0.1275 15.57548 0.27184 0.24665
TimeFlow 2K 0.50 56.5905 0.14723 0.13238 1.88119 0.26775 0.25275
030 2.58694 0.16536 0.15019 0.85563 0.28756 0.27291
0.05 037793 0.22935 0.21811 0.45838 0.34629 0.33603

TV-INRs 2K ~ S  0.2889 0.2502  0.2491 03595 0.3317 0.3311

Memory complexity. The memory complexity during a forward pass is also dominated by the
encoder. The Transformer requires O(M - L?) memory to store the attention score matrix. The
memory requirements for the projection layer and the MLP-based hypernetwork are O(max(E, Z))
and O(max(Z, Dy, R)), respectively, as they are determined by the largest linear layer within each
componeélt. Consequently, the overall memory complexity is dictated by the encoder, resulting in
O(M - L?).

A.10 TRAINING TIMES COMPARISON

In this part, we are reporting the cumulative training times in hours (h) of TV-INRs and Timeflow per
task. All training times are rounded to 5-minute intervals and were acquired using an NVIDIA V100
GPU and reported in Tables [T3T4|[T5] and [T7T8|[I9] for imputation and forecasting tasks, respectively.
As training times of C-TV-INRs are in the same order with TV-INRs, we omit them to include
them in the tables. SAITS demonstrates moderate training times ranging from 1h45m to 13h35m
across various datasets, offering a reasonable compromise between efficiency and performance. A
drawback of CSDI [Tashiro et al.|(2021) is its extended training duration, primarily due to the iterative
optimization process inherent in diffusion model training. DeepTime [Woo et al.[(2023)) is very fast to
train due to number of epochs selected in the original work; however it also has the worst performance
among the baselines as shown in Table[2] Our primary baseline, TimeFlow, demands significantly
greater computational resources, with cumulative training durations consistently exceeding those of
TV-INR across most experimental scenarios. Efficiency analyses reveal TimeFlow requires up to
3.70x longer training periods, particularly pronounced in forecasting applications as shown in Table
20

Table 13: Training times for imputation task, TV-INRs.

Model Name Dataset L Max Epochs  Training Time
TV-INR Electricity 200 2000 8h45m
TV-INR Electricity 2000 4000 12h55m
TV-INR Traffic 200 2000 10h35m
TV-INR Traffic 2000 4000 15h50m
TV-INR Solar-10 200 2000 10h25m
TV-INR Solar-10 10000 4000 19h15m
TV-INR HAR 128 3000 6h45m
TV-INR P12 128 1000 4h05m
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Table 14: Training times for imputation task, TimeFlow.

Model Name Dataset L T Max Epochs  Training Time
TimeFlow Electricity 200 0.05 40000 6h35m
TimeFlow Electricity 200 0.30 40000 6h40m
TimeFlow Electricity 200 0.50 40000 6h35m
TimeFlow Electricity 2000  0.05 40000 5h35m
TimeFlow Electricity 2000  0.30 40000 5h30m
TimeFlow Electricity 2000 0.50 40000 5h40m
TimeFlow Traffic 200 0.05 40000 9h45m
TimeFlow Traffic 200 0.30 40000 9h50m
TimeFlow Traffic 200 0.50 40000 10h10m
TimeFlow Traffic 2000 0.05 40000 8h30m
TimeFlow Traffic 2000 0.30 40000 8h30m
TimeFlow Traffic 2000 0.50 40000 8h45m
TimeFlow Solar-10 200 0.05 40000 6h45m
TimeFlow Solar-10 200 0.30 40000 6h30m
TimeFlow Solar-10 200 0.50 40000 6h35m
TimeFlow Solar-10 10000 0.05 40000 12h5m
TimeFlow Solar-10 10000 0.30 40000 11h50m
TimeFlow Solar-10 10000 0.50 40000 12h15m

Table 15: Training times for imputation task, SAITS.

Model Name Dataset L Max Epochs  Training Time
SAITS Electricity 200 10000 3h45m

SAITS Electricity 2000 10000 3h35m

SAITS Traffic 200 10000 3h25m

SAITS Traffic 2000 10000 7h45m

SAITS Solar-10 200 10000 1h45m

SAITS Solar-10 10000 10000 6h05m

SAITS HAR 128 10000 13h35m
SAITS P12 48 10000 10h40m

Table 16: Training times for imputation task, CSDI.

Model Name Dataset

L

Max Epochs  Training Time

CSDI
CSDI
CSDI
CSDI
CSDI
CSDI
CSDI
CSDI

Electricity 200
Electricity 200

Traffic
Traffic
Solar-10
Solar-10
HAR
P12

200
200
200
100
128
48

200 2h55m
0 200 6h

200 3h20m
0 200 7h20m

200 1h30m
00 200 12h

200 8h5Sm

200 16h10m

Table 17: Training times for forecasting task, TV-INRs.

Model Name Dataset

H

TV-INR
TV-INR
TV-INR

Electricity 51

Traffic
Solar-H

51
51

Max Epochs  Training Time
2 2000 S5h25m
2 4000 11h05m
22000 5h15m
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Table 18: Training times for forecasting task, TimeFlow.

Model Name Dataset H F Max Epochs  Training Time

TimeFlow Electricity 512 96 40000 4h25m
TimeFlow Electricity 512 192 40000 4h30m
TimeFlow Electricity 512 336 40000 4h40m
TimeFlow Electricity 512 720 40000 4h30m
TimeFlow Traffic 512 96 40000 10h10m
TimeFlow Traffic 512 192 40000 10h15m
TimeFlow Traffic 512 336 40000 10h20m
TimeFlow Traffic 512 720 40000 10h15m
TimeFlow Solar-H 512 96 40000 3h25m
TimeFlow Solar-H 512 192 40000 2h55m
TimeFlow Solar-H 512 336 40000 3h05m
TimeFlow Solar-H 512 720 40000 3h15m

Table 19: Training times for forecasting task, DeepTime.

Model Name Dataset H F Max Epochs  Training Time

DeepTime Electricity 512 96 50 Sm
DeepTime Electricity 512 192 50 Sm
DeepTime Electricity 512 336 50 Sm
DeepTime Electricity 512 720 50 10m
DeepTime Traffic 512 96 50 10m
DeepTime Traffic 512 192 50 10m
DeepTime Traffic 512 336 50 15m
DeepTime Traffic 512 720 50 I5m
DeepTime Solar-H 512 96 50 Sm
DeepTime Solar-H 512 192 50 Sm
DeepTime Solar-H 512 336 50 Sm
DeepTime Solar-H 512 720 50 Sm

Table 20: Training Time Efficiency Ratio: TV-INR vs TimeFlow in hours (h).

Forecasting Task TV-INR TimeFlow Ratio (TimeFlow/TV-INR)
Dataset H  Training Time (h) Cumulative Time (h) Absolute Multiplier
Electricity 512 542 18.08 12.66 3.34x
Traffic 512 11.08 41.00 29.92 3.70x
Solar 512 5.25 12.67 7.42 2.41x
Imputation Task TV-INR TimeFlow Ratio (TimeFlow/TV-INR)
Dataset L Training Time (h) Cumulative Time (h) Absolute Multiplier
Electricity 200 8.75 19.83 11.08 2.27x
Electricity 2000 12.92 16.75 3.83 1.30%
Traffic 200 10.58 29.75 19.17 2.81x
Traffic 2000 15.83 25.75 9.92 1.63x
Solar 200 10.42 19.83 9.41 1.90x
Solar 10000 19.25 36.17 16.92 1.88x

A.11 INFERENCE TIMES COMPARISON

We evaluated the computational efficiency of TV-INRs against TimeFlow by measuring inference
times on an NVIDIA V100 GPU. Under identical conditions with a batch size of 1, we recorded
forward pass execution times in seconds for both models. TimeFlow was configured to use 3 gradient
steps during meta-learning, as specified in the original paper Naour et al.[(2024)). A key advantage of
TV-INRs is that its inference time remains constant, unlike TimeFlow, which exhibits linear scaling
with the number of gradient steps performed during meta-learning. This makes TV-INRs particularly
attractive for applications requiring consistent and predictable inference latency.
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Table 21: Comparison of inference time of TV-INRs and SAITS in seconds for imputation task.

Electricity Traffic Solar-10

Model L Train  Trest Time (s) Time (s) L Time (s)
0.50 0.50 0.017£0.001 0.016 +0.001 0.038 +0.001
TimeFlow 2K 0.30 0.30 0.016+0.001 0.016+£0.001 10K 0.037 +0.001
0.05 0.05 0.016+£0.001 0.016 +0.001 0.037 +£0.001
0.50 0.50 0.013+0.001 0.015=+0.001 0.015 +0.001
TimeFlow 200 0.30 0.30 0.012+0.001 0.015+0.001 200 0.015+0.001
0.05 0.05 0.012+0.001 0.015+0.001 0.015 +0.001
0.50 0.016+0.001 0.017 £0.001 0.060 = 0.001
TV-INRs 2K ~ & 0.30 0.017+0.001 0.017+0.001 10K 0.059 +0.001
0.05 0.017+0.001 0.017 £0.001 0.059 +0.001
0.50 0.014£0.001 0.013 £0.001 0.014 £ 0.001
TV-INRs 200 ~ S 0.30 0.014+0.002 0.013+0.001 200 0.014+0.001
0.05 0.014+£0.001 0.013 £0.001 0.014 £ 0.001

Table 22: Comparison of inference time of TV-INRs and Timeflow in seconds for forecasting task.

Traffic

Model

H Erain

Eest

Electricity

Solar-H

Time (s)

Time (s)

Time (s)

96
192

TimeFlow 512

336
720

96
192
336
720

0.016 +£0.001
0.016 £0.001
0.016 +£0.001
0.016 £0.001

0.017 £0.001
0.019 £0.001
0.020 £ 0.001
0.020 £ 0.001

0.016 £0.001
0.015 +£0.001
0.015 +£0.001
0.015 +0.001

TV-INRs

512 ~F

720

0.016 £ 0.001

0.018 £0.001

0.017 £0.002

A.12 ABLATION STUDY ON THE NUMBER OF FOURIER FREQUENCIES

To empirically quantify the contribution of Fourier Features to the performance of TV-INR, we
conduct an ablation study analyzing the model’s performance with different numbers of Fourier
frequencies (/Vgr). The experiment is conducted on Electricity dataset for imputation task, and the
results are reported, with performance statistics—mean and standard deviation—computed over
multiple non-overlapping test windows. The table below presents the Mean Squared Error (MSE) on
the imputed values for configurations with Ngr € {256, 128,32, 0}. The results clearly demonstrate
that incorporating Fourier Features provides a significant performance benefit, which aligns with
findings in the broader literature Tancik et al.| (2020); [Dupont et al.| (2021). Across all sequence
lengths and observation rates, performance degrades substantially as the number of frequencies is
reduced, with the best results consistently achieved for Ngg = 256.

Table 23: Ablation study on the effect of Fourier Features. We report MSE on the Electricity dataset
for different numbers of Fourier Feature frequencies (NVgp). The best performing configuration for
each row is in bold.

Number of Fourier Feature Frequencies (V)

Model L T 256

128

32

0 (None)

0.50
0.30
0.05

0.1213 4 0.0131
0.1359 + 0.0265
0.3312 £ 0.0968

TV-INRs 200

0.1391 £ 0.0140
0.1756 £ 0.0211
0.4655 £ 0.1198

0.1523 £ 0.0186
0.2711 £ 0.0386
0.8643 + 0.1206

0.8099 £+ 0.0522
0.8587 £ 0.0502
1.2215 £ 0.1335

0.50
0.30
0.05

0.2555 4 0.0280
0.2423 + 0.0276
0.3142 £ 0.0742

TV-INRs 2000

0.3563 £ 0.0236
0.3444 £ 0.0095
0.4984 £ 0.0390

1.0414 £ 0.0233
1.0341 £ 0.0503
1.0687 £ 0.0400

1.0542 £ 0.0239
1.0531 £ 0.0221
1.1004 £ 0.0278

A.13 COMPARISON WITH STANDARD VAE BASELINE

To empirically validate the contribution of our Implicit Neural Representation (INR) based decoder,
we conduct an ablation study comparing TV-INR against a baseline with a standard decoder, which
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we term TV-VAE. This baseline is designed to isolate the impact of the INR by replacing the
hypernetwork decoder with a conventional MLP. Specifically, the TV-VAE decoder processes a
direct concatenation of the learned latent representation z and the time encoding ¢. To ensure a fair
comparison, the MLP architecture for the TV-VAE decoder is constructed from the same building
blocks as the hypernetwork in TV-INR.

We performed a thorough hyperparameter search for the TV-VAE model, evaluating various MLP
depths and multiple configurations of Fourier Features for the time encoding. All other experimental
settings, including the AdamW optimizer, followed the protocol used for the main TV-INR experi-
ments as detailed in App. [A.6 The results, presented in App. [Reference to the new tables], show that
TV-INR consistently and significantly outperforms all tested variants of TV-VAE on the electricity
dataset for sequence lengths L = 200, 2000 and across all observation rates (7). This consistent
superiority demonstrates that the INR-based architecture is more effective at modeling the continuous
temporal structure of time series signals than a standard decoder that treats time as a concatenated
input feature, thereby justifying our architectural choice.

Table 24: Ablation study on the Electricity dataset (L=200). We compare TV-INR with TV-VAE
variants using different MLP decoder depths (D) and numbers of Fourier Feature frequencies (Ngg).
Best results are in bold.

7=0.05 7=0.3 7=0.5

Model D Ngr MSE MAE MSE MAE MSE MAE

TV-VAE 5 256 098+0.22 0.78+0.10 0.44+0.10 0.48+0.06 0.34+0.07 0.41+0.05
TV-VAE 5 128 1.00+x0.21 0.80+0.01 0.48+0.12 0.51+0.08 0.35+0.08 0.42+0.05
TV-VAE 5 32 1.11+£0.39 0.83+0.16 0.52+0.16 0.52+0.09 0.36+0.10 0.42+0.06
TV-VAE 5 0 124+0.14 0.83+0.06 0.52+0.05 0.50+0.02 0.43+0.05 0.45+0.02
TV-VAE 4 256 090+0.14 0.74+0.07 0.32+0.05 0.39+0.04 0.23+0.04 0.33+0.03
TV-VAE 4 128 1.07+0.14 0.84+0.06 0.57+0.08 0.59+0.05 0.43+0.07 0.51%0.04
TV-VAE 4 32 0.65+0.12 0.61+£0.07 0.25+0.04 0.34+0.03 0.20+£0.04 0.30+0.02
TV-VAE 4 0 141x0.11 091£0.04 0.59+£0.10 0.54+0.05 0.45%+0.07 0.47+0.03
TV-VAE 3 256 0.62+£0.16 0.59+0.08 0.21+£0.04 0.31+£0.03 0.18+0.03 0.28+£0.02
TV-VAE 3 128 0.50+0.12 043+0.07 0.19+£0.04 0.28+0.03 0.17+0.03 0.27+0.02
TV-VAE 3 32 0.66+0.13 0.62+0.08 0.25+0.05 0.34+0.03 0.20+£0.03 0.30+0.02
TV-VAE 3 0 1.58+0.27 097+0.08 0.63+0.09 0.59+0.04 0.51£0.06 0.53+0.03
TV-VAE 2 256 0.88+0.13 0.78+0.07 0.45+0.06 0.53+£0.05 0.34+0.06 0.44+0.04
TV-VAE 2 128 0.87+0.12 0.78+0.06 0.41+0.05 0.51+0.04 0.30+0.05 0.42+0.04
TV-VAE 2 32 0.79+£0.20 0.70x0.10 0.30+£0.05 0.40+0.04 0.23+0.04 0.34+0.03
TV-VAE 2 0 1.59+0.51 097+0.11 0.84+0.08 0.71+0.03 0.76+0.08 0.67+0.03
TV-VAE 1 256 0.39+0.10 043+0.07 021+£0.05 0.30+0.03 0.20%£0.04 0.29+0.03
TV-VAE 1 128 041+0.06 043+0.08 0.21+£0.05 0.30%£0.03 0.20£0.04 0.30%0.03
TV-VAE 1 32 039+£0.06 044+0.05 023+£0.05 0.32+0.03 022+0.04 0.31+0.03
TV-VAE 1 0 137+0.12 093+£0.04 1.13+£0.05 0.84+0.02 1.09+£0.07 0.82+0.02
TV-INRs 3 256 0.32+0.06 0.37+0.04 0.14+0.03 0.23+0.02 0.11+0.02 0.21+0.02
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Table 25: Ablation study on the Electricity dataset (L.=2000). We compare TV-INR with TV-VAE
variants using different MLP decoder depths (D) and numbers of Fourier Feature frequencies (NVgg).
Best results are in bold.

7=0.05 7=0.3 T7=0.5

Model D Ngr MSE MAE MSE MAE MSE MAE

TV-VAE 6 256 092+0.11 0.78+0.05 0.51+£0.04 0.51+0.03 043%£0.03 0.46+0.02
TV-VAE 6 128 043+0.06 046+0.03 0.37+0.04 0.42+0.03 0.36+0.04 0.42+0.03
TV-VAE 6 32 094+£0.02 0.74+0.01 0.89+0.03 0.71+0.01 0.89+0.02 0.71+0.01
TV-VAE 6 0 1.17+£0.03 0.84+0.01 1.06+£0.02 0.80+0.01 1.06%+0.02 0.80%0.01
TV-VAE 5 256 1.06+0.23 0.83+0.11 0.61+0.07 0.59+0.05 046%0.03 0.48+0.02
TV-VAE 5 128 044+0.05 046+0.04 0.38+0.04 0.43+0.03 0.37+0.04 0.42+0.02
TV-VAE 5 32 092+0.03 0.72+0.01 0.86+0.03 0.70+0.01 0.86+0.03 0.70+0.01
TV-VAE 5 0 1.16x0.03 0.84+0.01 1.05+£0.02 0.80+0.01 1.05+0.02 0.80%0.01
TV-VAE 4 256 0.33+£0.02 0.39+0.02 028+0.02 0.36+0.01 0.26+0.02 0.35+0.01
TV-VAE 4 128 0.35+0.03 041+0.02 0.32+0.02 0.39+0.01 0.32+0.02 0.39+0.01
TV-VAE 4 32 0.75+£0.02 0.67+0.02 0.72+£0.02 0.65+0.02 0.72+0.03 0.65+0.02
TV-VAE 4 0 1.10x0.01 0.83+0.01 1.04+0.02 0.80+0.01 1.05+0.02 0.80%0.01
TV-VAE 3 256 037+0.02 043+0.02 033+0.02 0.40+0.02 0.32+0.03 0.40+0.02
TV-VAE 3 128 043+0.05 048+0.04 040+0.04 0.46+0.03 0.40%£0.04 0.46%0.03
TV-VAE 3 32 098+0.01 0.80+0.01 091+0.01 0.77+0.01 091+0.01 0.76 +0.01
TV-VAE 3 0 1.09+£0.01 0.82+0.01 1.04+0.03 0.80+0.01 1.05%+0.02 0.80%0.01
TV-VAE 2 256 0.34+0.03 041%+0.02 031+0.02 0.38+0.01 0.30+0.02 0.38+0.01
TV-VAE 2 128 0.56+0.08 0.58+0.05 0.53+0.07 0.56+0.05 0.53+0.08 0.56+0.05
TV-VAE 2 32 1.05+£0.01 0.82+0.01 1.01+£0.03 0.79+0.01 1.01+0.02 0.79+0.01
TV-VAE 2 0 1.08+0.01 0.81+0.01 1.06+0.03 0.80+0.01 1.06+0.02 0.80%0.01
TV-INRs 4 256 0.29+0.02 0.36+0.02 0.25+0.02 0.33+0.01 0.25+0.02 0.33+0.01
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B APPENDIX B

B.1 VISUALS FROM EXPERIMENTS
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(a) Imputation task for Electricity dataset L = 200, 7 = 0.05.
2 —Gr
round Truth 1
15 ® Observed Indices 1
1 ~ Prediction 1
E 05
S 0
0.5
-1
-15
[ 50 100 150 200
25
2
15
1
3
;: 05
0
05
-1
-15

0 50 100 150 200
Time

(b) Imputation task for Electricity dataset L = 200, 7 = 0.5.

Figure 4: TV-INRs imputation predictions for Electricity dataset (L = 200).
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1333 Figure 5: TV-INRs imputation predictions for Electricity dataset (L = 2000).
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(a) Forecasting task for Traffic dataset, H = 512, F' = 196.
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(b) Forecasting task for Traffic dataset, H = 512, F' = 720.

Figure 6: TV-INRs forecasting predictions for Traffic dataset.
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(b) HAR Sample with 7 = 0.5

Figure 7: TV-INRs imputations for HAR dataset.
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