
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055

Under review as a conference paper at ICLR 2026

TEMPORAL VARIATIONAL IMPLICIT NEURAL
REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Temporal Variational Implicit Neural Representations (TV-INRs), a
probabilistic framework for modeling irregular multivariate time series that enables
efficient and accurate individualized imputation and forecasting. By integrating
implicit neural representations with latent variable models, TV-INRs learn distri-
butions over time-continuous generator functions conditioned on signal-specific
covariates. Unlike existing approaches that require extensive training, fine-tuning
or meta-learning, our method achieves accurate individualized predictions through
a single forward pass. Our experiments demonstrate that with a single TV-INRs
instance, we can accurately solve diverse imputation and forecasting tasks, offer-
ing a computationally efficient and scalable solution for real-world applications.
TV-INRs excel especially in low-data regimes, where it outperforms existing impu-
tation methods by an order of magnitude in mean squared error.

1 INTRODUCTION

Time series are a key way to represent data in many domains, from energy consumption to finance,
and they frequently contain missing values and irregularities due to sensor malfunctions, collection
errors, or resource constraints (Che et al., 2018; Du et al., 2023; Proietti & Pedregal, 2023). These
challenges are particularly pronounced in clinical datasets, which often exhibit extreme sparsity
(80-90% missingness) and noisy, irregular sampling due to human involvement in non-automated
measurements (Silva et al., 2012). In order to impute missing values and forecast future time points,
effective solutions must handle these challenges while utilizing available covariates to capture unique
temporal dynamics.
Current methods relying on Recurrent Neural Networks (RNNs) (Chung et al., 2015; Che et al., 2018)
and Transformers (Bansal et al., 2023; Liu et al., 2023) are generally tailored for regular, dense time
series data and require placeholders for missing observations. They also operate in discrete time, and
careful design is necessary for continuous time settings (Chen et al., 2024). Alternatively, there exist
continuous time series models which use Implicit Neural Representations (INRs) (Sitzmann et al.,
2020) to handle irregular time series data (Naour et al., 2024; Cho et al., 2024). By learning a unique
continuous function to represent each time series, INRs have great potential for individualization by
capturing the unique activity patterns of each subject. However, existing approaches are inflexible,
and often require training multiple models, fine-tuning, or meta-learning to handle variations in data
availability, prediction length, and individualization. For example, the method presented in Naour et al.
(2024) requires the training of separate models for different missingness ratios or horizon lengths,
and performs gradient-based meta-learning during inference, resulting in a data-hungry model. Such
approaches are impractical in real-world applications where scalability and generalization are crucial,
as computational resources may be limited during deployment.
To address these shortcomings, we introduce Temporal Variational Implicit Neural Representations
(TV-INRs), a novel probabilistic model for multivariate time series with INRs. We use INRs as
generator functions for continuous time series modeling, effectively handling the challenge of irregular
sampling. By also integrating latent variable models and amortized variational inference, TV-INRs
learns distributions over INRs conditioned on individual signals and their covariates through a learned
latent space. This approach is therefore scenario and sample agnostic, accommodating varying levels
of missingness or time series length and eliminating the need for task-specific retraining or per-sample
optimization. In short, we preserve the benefits of INRs for time series while making them scalable
and efficient.

1

056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111

Under review as a conference paper at ICLR 2026

Our model pushes forward multivariate time series analysis with several key contributions:

• We introduce the first fully probabilistic model for multivariate time series using INRs.
• TV-INRs achieves competitive accuracy to gradient-based meta-learning approaches and improves

imputation performance in low-data scenarios, without requiring per-sample optimization during
inference.

• We demonstrate successful generalization across multiple data settings, including missingness and
forecasting horizon length, with a single training. This significantly reduces training requirements
relative to comparable models.

• Our results show that the inclusion of covariates enables effective individualization and further in-
creases our model’s accuracy with sparse data, demonstrating suitability for real-world applications
with extreme missingness, such as healthcare.

2 BACKGROUND & RELATED WORK

2.1 LEARNING IMPLICIT NEURAL REPRESENTATIONS

Hypernetworks denoted as gϕ, are neural networks that generate parameters θ = gϕ(·) for another
neural network fθ(·) (Ha et al., 2016). Hypernetworks can generate task-specific model parameters,
making them suitable for meta-learning scenarios that require quick adaptation to new tasks. Zhao et al.
(2020) showed that meta-learning a hypernetwork effectively modulates inner-loop optimization and
adapts features task-dependently using model-agnostic meta-learning. Nguyen et al. (2022) proposed
to generate parameters of the approximate posterior and likelihood of a Variational Autoencoder
(VAE) model to perform multiple tasks. Recent works have shown hypernetworks to be useful for
generating parameters for implicit neural representations (Dupont et al., 2021; Koyuncu et al., 2023).

Implicit neural representations (INRs) offer a novel approach to data representation and modeling
complex continuous signals using the weight space (Sitzmann et al., 2020). This formulation is
supported by strong theoretical guarantees and makes the model inherently resolution-agnostic and
robust to irregular sampling (Sitzmann et al., 2020). By leveraging neural networks, particularly
multi-layer perceptrons (MLPs), represented as fθ(·), INRs effectively map coordinates to features
like color, occupancy, or amplitude. Therefore INRs enable continuous representation of high-
dimensional data, offering significant advantages in various domains, including images, 3D shape
modeling, spatio-temporal data (Dupont et al., 2021; 2022a; Koyuncu et al., 2023; Park et al., 2024)
and geometric structures (Vetsch et al., 2022; Niemeyer et al., 2022), because predictions are not
constrained by input range or resolution. Recent works are actively exploring parameterization
strategies for INRs. For example, approaches by Dupont et al. (2022b); Strümpler et al. (2022) have
used compressed representations of the data as inputs to hypernetworks gϕ, which then generate
weights θ of the INRs fθ(·). Peis et al. (2025) uses latent diffusion models to generate a latent variable
model to model the weights of INRs via a transformer network. And Park et al. (2024) proposed to
learn sample-specific dynamic positional embeddings, rather than modeling INRs weights.

Meta-learning is a learning approach where algorithms are designed to improve their learning
efficiency and adaptability across different tasks and domain shifts. In model-agnostic meta-learning
(MAML), the aim is to fine-tune the trained model using test instances with gradient updates (Finn &
Levine, 2017; Wang et al., 2020). This is particularly relevant in scenarios when adaptation of the
model is needed for unseen data during inference. MAML is widely used to update INR weights
(Dupont et al., 2022a; Jeong & Shin, 2022; Niemeyer et al., 2022; Bamford et al., 2023), however, its
reliance on a test-time optimization step for each sample introduces computational overhead scaling
with the number of test instances.

2.2 TIME SERIES IMPUTATION AND FORECASTING

RNNs are frequently used for time series forecasting, due of their ability to capture sequential
dependencies (Chung et al., 2015; Hewamalage et al., 2021; Che et al., 2018; Guo et al., 2016).
However, they assume fixed frequencies and struggle with long-term dependencies. To address these
limitations, LSTM networks incorporate memory cells that retain relevant historical information
while discarding irrelevant data (Hochreiter, 1997; Hua et al., 2019; Chen et al., 2022). Recent
advancements have also embraced transformer-based architectures for time series modeling. Models
such as SAITS (Du et al., 2023), PatchTST (Nie et al., 2023) and iTransformer (Liu et al., 2023)
leverage attention and embedding strategies to capture both short- and long-term time dependencies
within time series. Despite their strengths, transformers are inherently discrete and may fail to

2

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

Under review as a conference paper at ICLR 2026

Time T (i)

t
(i)
1

t
(i)
2

t
(i)
3

...

t
(i)
L

Ti
m

es
te

ps

Feature Matrix Y (i)

y
(i)
1,1

y
(i)
2,1

y
(i)
3,1

...

y
(i)
L,1

. . .

. . .

. . .

. . .

. . .

y
(i)
1,d

y
(i)
2,d

y
(i)
3,d

...

y
(i)
L,d

Channels
Mask Ω(i)

...

1 . . . 1

1 . . . 0

0 . . . 1

...
.

1 . . . 1

Masked Features Ỹ (i)

...

y
(i)
1,0

y
(i)
2,0

0

y
(i)
4,0
...

y
(i)
5,0y
(i)
L,0

· · · y
(i)
L,d

0. . .

y
(i)
2,1

. . .

y
(i)
3,1

. . .

y
(i)
4,1
...

. . .

0y
(i)
L,0

· · · y
(i)
L,d

. . .

y
(i)
1,d

0

y
(i)
3,d

y
(i)
4,d
...

y
(i)
5,dy

(i)
L,0

· · · y
(i)
L,d

Static Covariates C(i)

c
(i)
1

... c
(i)
k

Observed Value

Missing Value
(Zero-filled)

Figure 1: Visualization of temporal stamps T , features Y , mask Ω, and static covariates C. T
and Y represent the input signal, Ω indicates missing values with binary entries, and C contains
time-invariant covariates.

interpolate between time steps unless they are carefully redesigned for this task (Chen et al., 2024).
Moreover, they may have trouble identifying and preserving key information when attending to large
inputs (Wen et al., 2022). Likewise, conditional diffusion models like CSDI operate on fixed temporal
grids and rely on architectural workarounds to manage irregular observations (Tashiro et al., 2021).
Recently, INRs have been used in continuous modeling of time series data for imputation and
forecasting tasks (Naour et al., 2024; Fons et al., 2022; Cho et al., 2024), and for anomaly detection
(Jeong & Shin, 2022). Fons et al. (2022) use a set-encoder approach to generate latent representations
to parameterize INRs through hypernetworks for time series generation. Similarly, Bamford et al.
(2023) adopt this approach for time series imputation, utilizing an auto-decoding strategy that requires
back-propagation to learn these latent representations. Naour et al. (2024); Cho et al. (2024); Woo
et al. (2023) use gradient-based meta-learning approaches to learn per instance modulations on INRs
to perform imputation and forecasting on test data. Therefore, these methods encounter scalability
challenges with an increasing number of test instances, since each requires per-instance optimization,
and they may underperform in scenarios characterized by limited data availability.

3 TEMPORAL VARIATIONAL IMPLICIT NEURAL REPRESENTATIONS

In this section, we introduce Temporal Variational Implicit Neural Representations (TV-INRs). Our
approach is motivated by representing time series as continuous functions using Implicit Neural
Representations (INRs). Leveraging the amortized inference framework of Variational Autoencoders
(Kingma, 2013; Rezende et al., 2014), TV-INRs learns distributions over INR parameters through
encoder networks, eliminating per-sample optimization during inference while enabling efficient
scaling to large datasets (Cremer et al., 2018; Hoffman et al., 2013; Mnih & Gregor, 2014). This
approach maintains competitive performance for time series modeling tasks such as imputation and
forecasting while facilitating personalized modeling through latent variables.
Notation. Let [L] = {1, . . . , L} denote the set of positive integers from 1 to L and d denote the total
number of feature dimensions. We consider a dataset of N samples {(T (i),Y (i),C(i))}Ni=1, where
each sample i ∈ [N] as shown in Fig. 1 includes:

• Temporal stamps: A point cloud of Li temporal stamps (i.e. temporal coordinates), T (i) =

{t(i)l }Li

l=1, with t ∈ R.

• Feature vectors: Corresponding feature vectors Y (i) = {y(i)
l }Li

l=1, where y
(i)
l ∈ Rd

(i)
l with

d
(i)
l ≤ d representing the number of observed channels at index l. The set A(i) identifies indexes

(l) where channels (j) are absent in the original dataset.

• Static covariates: Static covariatesC(i) = {c(i)}, where c ∈ Rk, which are constant for all stamps
in the sample.

We denote the multichannel i-th time series as a tupleX(i) = (T (i),Y (i)), consisting ofLi (irregular)
temporal stamps and their corresponding features. To effectively handle missing data, we distinguish
between three sets of indices. The observed indices O(i) represent available data points in our dataset,
which we input to the model. The masked indices M(i) correspond to entries we artificially mask
during training to facilitate self-supervised learning and improve generalization to missing data

3

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

Under review as a conference paper at ICLR 2026

c

z

gϕ θ

gϕ(z, c) = θ

tl

fθ

yl

L

fθ(tl) = yl

(a) Generative Model

z ψz

Cond. Prior
tl

yl
Lobs

z

Approx.
Posterior

γz

tl

yl

L

(b) Conditional Prior and Inference Model

Figure 2: Graphical models for generative and inference tasks.

scenarios (Moreno-Muñoz et al., 2023). Finally, the absent indices A(i) are inherent to the data and
represent entries of missing channels due to partial observations or limitations in data collection
which we exclude from the training process as they represent inherent data incompleteness rather
than synthetic masks. We define a binary mask Ω(i) to formalize this as:

Ω
(i)
l,k =


1 if (l, k) ∈ O(i)

0 if (l, k) ∈ M(i)

0 if (l, k) ∈ A(i)

(1)

where O(i),M(i),A(i) ⊆ [Li]× [d] with O(i) ∩M(i) = ∅. Finally, we denote by τ the percentage

of observed indices in the available data, i.e., τ = |O(i)|
|O(i)∪M(i)| .

3.1 MODEL DESCRIPTION

Generative model. To ease readability, we consider the model for a single sample and omit the use
of the superscript (i). TV-INRs is generative model for the feature set Y given timestamps T . For
now, we assume that (T ,Y) is a timeseries with L elements and d channels without any absence,
e.g. A = ∅. The observed data Yobs indexed by O(i) and corresponding timestamps Tobs are given as
context to the model, while Ym indexed by M(i) represents the masked values to predict at given
timestamps Tm. Together, they form the complete datasets: Y = Ym ∪ Yobs and T = Tm ∪ Tobs with
the assumption of A = ∅. The joint distribution can be written in a general form

p(Ym,Yobs, z|Yobs,T , c) = pψz(z|Yobs,Tobs)

L∏
l=1

pθ(z,c)(yl|tl) (2)

where z represents a latent variable and c denotes covariates. To generate such a signal, the
process begins by sampling a continuous latent variable z from a conditional prior distribution,
pψz(z|Yobs,Tobs) = N (z|fψz(Yobs,Tobs)), which is parameterized by ψz using a Transformer
encoder. The resulting vector z, concatenated with random variable c , acts as input to the hyper-
generator. Here, the hypergenerator is an MLP-based hypernetwork gϕk

(z, c), with input [z, c] that
outputs a set of parameters θk = gϕk

(z, c); and, a data generator, fθ, parametrized by the output of
the hypernetwork. Thus, both z and θ encode the information shared among the stamps in the data
(e.g., features) generation process as shown in Fig. 2a. Moreover, we refer to TV-INRs as C-TV-INRs
when covariates are available and used.
Inference model. We approximate posterior distribution as qγz (z|Y ,T) = N (z|fγz (Y ,T)),
parameterized by γz . It’s important to note that this distribution is shared among the complete
instance (e.g., time series signal), thus z contains global information as shown in Fig. 2b.
Training. We employ masked training by maximizing the evidence lower bound (ELBO) of the
proposed model, which is given by

L(T ,Y ,C) = Eqγ

[
log pθ(z,c)[Y | T]

]
−DKL (qγz (z | Y ,T)∥pψz(z|Yobs,Tobs)) (3)

where pψz and qγz
are Gaussian distributions, and we model pθ(z,c) with a Laplace distribution as it

demonstrates better performance in capturing high-frequency components.

4

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

Under review as a conference paper at ICLR 2026

3.2 IMPLEMENTATION DETAILS

We model the conditional prior and approximate posterior with Transformer encoders. To handle het-
erogeneity in the input data, we augment the input features by concatenating them with a binary mask,
(Ω(i) ∈ 0, 1Li×d), which indicates observed entries across both temporal and feature dimensions.

Input processing. For each sample i ∈ [N], we process the input tuple (T (i),Y (i),C(i)) to handle
missing values. We construct the input representation using the binary mask (Ω(i)) as follows:

1. Fill masked values in Y (i) with zeros:

Ỹ
(i)
l,k =

{
Y

(i)
l,k if (l, k) ∈ O(i)

0 if (l, k) ∈ U (i)
(4)

where Ỹ (i) ∈ RLi×d, in case for the input of the posterior encoder we give full available data.

2. Concatenate the mask along the feature dimension and transform the processed features with a
linear layer for spatial encoding, which captures relationships among different channels, yielding
E

(i)
spatial = flinear(Ȳ

(i)) ∈ RLi×dmodel , where Ȳ (i) = [Ỹ (i); Ω(i)] ∈ RLi×2d.

3. Expand temporal coordinates with channel indices vd = [0, ..., d − 1] and encode them with
Fourier Features (FoF) (Dupont et al., 2021): E(i)

temporal = FoF(T̄ (i)) ∈ RLi×dmodel , where T̄ (i) =

T (i) ⊗ vd ∈ RLi×d.

The final embeddingE(i) = E
(i)
spatial+E

(i)
temporal is element-wise summed and then fed into the encoder.

Encoding. The embedded input E(i) is processed through a transformer encoder to model the
conditional distributions pψz(z|Yobs,Tobs) and qγz

(z|Y ,T). The encoder takes E(i), transforms the
input through self-attention, applies pooling (POOL) over temporal dimension, and a feed-forward
network (FFN) generates parameters to model the latent features z:

z ∼ N (µ,Σ) where µ,σ = FFN(POOL(H)), andH = Transformer(E(i)) (5)

where Σ = diag(σ2). Here, we make sure masked values are not used during attention computation.
Decoding. The latent representation (z) is combined with conditional variables to construct the
decoder input through the following steps:

1. The conditional variables C(i) are transformed by a feed-forward network into c̄ = FFN(C(i)) ∈
Rdc , which is then concatenated with the latent representation to form the decoder input hdec =
[z; c̄].

2. The resulting hdec is passed through a hypernetwork gϕ to generate the parameters θ = gϕ(hdec)
for the implicit neural representation (INR), fθ, which is continuous over t (Sitzmann et al., 2020).

3. The INR, fθ, models the output feature values as ŷl ∼ Laplace(µl, bl), where the distribution’s
parameters (µl, bl) = fθ(el) are the output of mapping the encoded time point el.

4 EXPERIMENTS

Baselines. We thoroughly tested TV-INRs framework across imputation and forecasting tasks in
full and limited data regimes with uni- and multi-variate datasets. We compare our model with
TimeFlow (Naour et al., 2024), an INR-based time series model. It requires training separate models
for different missingness ratios or horizon lengths, and performs gradient-based meta-learning during
inference (details in App. A.8). We include two baselines specifically designed for time series
imputation: SAITS (Du et al., 2023), which is based on self-attention, and CSDI (Tashiro et al.,
2021), a conditional diffusion model that operates on a fixed temporal grid. For the forecasting task,
we compare with DeepTime (Woo et al., 2023), which learns deep time-index models specifically
designed for time series forecasting. Potential baselines HyperTime (Fons et al., 2022) and MADS
(Bamford et al., 2023) were not available as open-source models, and were therefore not tested.
Univariate datasets. We conducted experiments on four univariate datasets (App. A.2 Table 4),
and compared our approach to Timeflow (Naour et al., 2024), DeepTime (Woo et al., 2023), SAITS
(Du et al., 2023), and CSDI Tashiro et al. (2021). Each dataset comprises one-dimensional signals
originating from various locations or sources, and is available at the Monash Time Series Forecasting
repository (Godahewa et al., 2021).

5

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

Under review as a conference paper at ICLR 2026

Multivariate datasets. While some datasets contain regular sampling (e.g., electricity), others are
irregular, and have multiple sensors with unique temporal patterns. TV-INRs is the first temporal INR
model to handle such multivariate signals, leading us to exclude Timeflow from these comparisons.
We conducted experiments on two multivariate datasets, namely, HAR and The PhysioNet Challenge
2012 (P12), and compared our method with SAITS (Du et al., 2023) and CSDI (Tashiro et al., 2021).
Additional details on the datasets, including missingness patterns, are provided in App. A.2.

Next, we describe the imputation and forecasting tasks. Let the i-th sample, T (i) = {t(i)j }Li
j=1,

contain Li stamps. For both tasks, we compare predicted values against the ground truth for test data
using Mean Squared Error (MSE) and Mean Absolute Error (MAE).
Imputation task. We partition the data based on an observed ratio τ . Given the observed stamps
T

(i)
obs , the goal is to predict features at the unobserved stamps T (i)

unobs, where

T (i) = T
(i)
obs ∪ T

(i)
unobs, Y (i) = Y

(i)
obs ∪ Y (i)

unobs, Ŷunobs ∼ pθ(z,c)(Yunobs | Tunobs). (6)

The task’s difficulty increases as τ decreases. For prediction, we use the conditional prior distribution
pψz(z|Yobs,Tobs) and covariates c (if available).
Forecasting task. We partition data at a horizon thorizon into history and forecast sets. Given
the observed historical data Y (i)

hist , our task is to predict Y (i)
forecast. We use our conditional prior

pψz(z|Yhist,Thist) and covariates c (if available) to generate predictions:

T
(i)
hist = {t(i)j ∈ T (i) | t(i)j ≤ thorizon}, T (i)

forecast = {t(i)j ∈ T (i) | t(i)j > thorizon} (7)

Ŷforecast ∼ pθ(z,c)(Yforecast | Tforecast). (8)

4.1 RESULTS

In Sections 4.1.1 and 4.1.2, we explore TV-INRs performance in imputation and forecasting on
univariate datasets in comparison with the baseline models Timeflow (Naour et al., 2024), SAITS
(Du et al., 2023), CSDI (Tashiro et al., 2021) and DeepTime (Woo et al., 2023). We comment on the
training efficiency in Sections 4.1.3 and App. A.10. In Section 4.1.4, we report TV-INRs performance
on multivariate datasets including the conditional version of our model, C-TV-INRs, compared with
SAITS (Du et al., 2023) and CSDI (Tashiro et al., 2021). Statistical significance (p < 0.05) was
assessed using independent t-tests performed on results from non-overlapping test windows and
three different seeds of model training. Ablation studies on the number of Fourier Features and our
INR-based decoder are in App. A.12 and A.13, respectively. The code will be accessible in our
repository.

4.1.1 IMPUTATION ON UNIVARIATE DATASETS

For imputation, we compared TV-INRs against the selected baselines across varying signal lengths
L. We used L = 2000 (2K) time points to match published baseline experiments, and L = 200
time points to evaluate performance in lower-data regimes. We define the rate of observed data
points during testing as τTest. The low-data regime is characterized by conditions of data scarcity,
which includes all scenarios with a limited training set (L = 200) and sparse test-time observations
τTest ∈ {0.5, 0.3, 0.05}) as well as the experiments with a larger training set but very sparse test-time
observations (L = 2000, τTest = 0.05). In contrast, the high-data regime represents scenarios
with a relative abundance of data, specifically when a larger training set is available (L = 2000)
and the observation rates at test time are higher (τTest ∈ {0.5, 0.3}) or when L = 10000 and
τTest ∈ {0.5, 0.3, 0.05}. To improve robustness under low observation rates, we sample the observed
fraction at random during training, e.g. τTrain ∼ S = {0.05, 0.30, 0.50, 0.75, 0.90, 1.0}. TimeFlow
requires separate training for each τTest value, while SAITS fixes τTrain = 0.80 and CSDI uses a
uniform distribution τTrain ∼ U(0, 1).
The results in Table 1 demonstrate the advantages of our approach over gradient-based meta-learning,
particularly in low-data regimes. With shorter signals (L = 200) and lower observation percentages
τTest, TV-INRs consistently performs on par or better than all baselines, achieving up to 88% improve-
ment in MSE scores. In Solar-10 at (L = 200) specifically, TV-INRs achieves substantially lower
error rates, with a MSE of 0.0383 compared to TimeFlow’s 0.3304, SAITS’ 0.0660 and CSDI’s
1.010 at τTest = 0.50. At the highest missingness setting, τTest = 0.05, TV-INRs also performs best
on average, though it is only comparable to TimeFlow on the Solar-10 dataset. As Solar-10 has
significantly longer time series (L = 10K) and thus a larger number of training observations, results
indicate that TV-INRs excels primarily in low-data regimes.

6

https://archive.ics.uci.edu/dataset/240/human+activity+recognition+using+smartphones
https://physionet.org/content/challenge-2012/1.0.0/
https://physionet.org/content/challenge-2012/1.0.0/

336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

Under review as a conference paper at ICLR 2026

Table 1: Univariate imputation results with signal lengths L, training/testing observation rates
τtrain,test, and MSE/MAE evaluated on unobserved indices from non-overlapping test signals. Bold
values indicate significantly better results, while underlined values denote results that are comparable.

Electricity Traffic Solar-10

Model L τTrain τTest MSE MAE MSE MAE L MSE MAE

SAITS 2K 0.80
0.50 0.569 ± 0.048 0.542 ± 0.022 0.251 ± 0.028 0.246 ± 0.015

10K
1.086 ± 0.005 0.648 ± 0.022

0.30 0.793 ± 0.055 0.654 ± 0.023 0.337 ± 0.033 0.306 ± 0.015 1.087 ± 0.009 0.651 ± 0.024
0.05 1.318 ± 0.051 0.902 ± 0.025 0.824 ± 0.040 0.619 ± 0.014 1.126 ± 0.061 0.676 ± 0.062

CSDI 2K ∼ U
0.50 2.070 ± 0.194 1.033 ± 0.023 1.150 ± 0.029 0.773 ± 0.144

10K
1.275 ± 0.382 0.699 ± 0.781

0.30 2.287 ± 0.157 1.045 ± 0.012 1.146 ± 0.103 0.773 ± 0.165 1.285 ± 0.191 0.703 ± 0.749
0.05 1.742 ± 0.265 1.050 ± 0.013 1.139 ± 0.111 0.773 ± 0.171 1.279 ± 0.020 0.700 ± 0.737

TimeFlow 2K
0.50 0.50 0.131 ± 0.011 0.252 ± 0.010 0.346 ± 0.036 0.369 ± 0.017

10K
0.710 ± 0.040 0.617 ± 0.056

0.30 0.30 0.166 ± 0.012 0.288 ± 0.011 0.390 ± 0.042 0.388 ± 0.018 0.812 ± 0.128 0.658 ± 0.121
0.05 0.05 0.378 ± 0.034 0.458 ± 0.025 0.590 ± 0.048 0.496 ± 0.020 0.833 ± 0.010 0.663 ± 0.096

TV-INRs 2K ∼ S
0.50 0.249 ± 0.019 0.331 ± 0.012 0.546 ± 0.022 0.401 ± 0.015

10K
0.955 ± 0.059 0.645 ± 0.038

0.30 0.250 ± 0.017 0.332 ± 0.012 0.551 ± 0.029 0.403 ± 0.017 0.954 ± 0.074 0.646 ± 0.050
0.05 0.289 ± 0.019 0.360 ± 0.015 0.570 ± 0.019 0.415 ± 0.013 1.104 ± 0.265 0.688 ± 0.132

SAITS 200 0.80
0.50 0.124 ± 0.014 0.223 ± 0.010 0.230 ± 0.015 0.245 ± 0.008

200
0.066 ± 0.035 0.140 ± 0.021

0.30 0.231 ± 0.025 0.317 ± 0.017 0.345 ± 0.019 0.320 ± 0.009 0.099 ± 0.060 0.168 ± 0.030
0.05 0.937 ± 0.040 0.743 ± 0.018 0.904 ± 0.020 0.641 ± 0.016 0.564 ± 0.107 0.502 ± 0.037

CSDI 200 ∼ U
0.50 1.380 ± 0.216 0.944 ± 0.035 1.169 ± 0.204 0.787 ± 0.187

200
1.010 ± 0.261 0.602 ± 0.122

0.30 1.399 ± 0.144 0.945 ± 0.021 1.167 ± 0.183 0.789 ± 0.194 1.052 ± 0.209 0.625 ± 0.109
0.05 1.226 ± 0.065 0.911 ± 0.011 1.158 ± 0.200 0.795 ± 0.194 1.196 ± 0.716 0.700 ± 0.124

TimeFlow 200
0.50 0.50 0.163 ± 0.009 0.240 ± 0.007 0.233 ± 0.009 0.230 ± 0.006

200
0.330 ± 0.046 0.223 ± 0.032

0.30 0.30 0.331 ± 0.014 0.396 ± 0.010 0.419 ± 0.015 0.370 ± 0.009 0.518 ± 0.057 0.331 ± 0.038
0.05 0.05 0.963 ± 0.019 0.811 ± 0.011 1.303 ± 0.103 0.830 ± 0.028 0.877 ± 0.077 0.707 ± 0.098

TV-INRs 200 ∼ S
0.50 0.113 ± 0.018 0.212 ± 0.015 0.188 ± 0.041 0.212 ± 0.027

200
0.038 ± 0.031 0.089 ± 0.035

0.30 0.135 ± 0.027 0.232 ± 0.021 0.214 ± 0.042 0.228 ± 0.028 0.051 ± 0.051 0.098 ± 0.042
0.05 0.318 ± 0.063 0.368 ± 0.041 0.453 ± 0.074 0.368 ± 0.042 0.244 ± 0.226 0.234 ± 0.099

For longer signal lengths (L = 2K, 10K), TimeFlow shows stronger performance on the Electricity
and Traffic datasets at higher τTest values. Overall, TV-INRs maintains competitive performance
across all scenarios while offering two crucial advantages: it provides a unified model that handles
all cases without requiring per-case training, and enables efficient inference through gradient-
free meta-learning that requires only a forward pass. These results highlight how our variational
framework effectively balances performance with practical efficiency, and excels in scenarios where
data availability is limited. In App. B.1, Figures 4-5 show sample outputs generated by TV-INRs.

4.1.2 FORECASTING ON UNIVARIATE DATASETS

For forecasting, we compare TV-INRs with TimeFlow and DeepTime using the same experimental
settings as in their original publications. The historical length H is set to the first 512 elements, and
forecasting performance is evaluated over forecasting lengths F of 96, 192, 336, and 720. TV-INRs
is trained by sampling forecasting lengths FTrain ∈ F = {96, 192, 336, 720}. Since H is fixed, the
binary mask has the same number of observed indices; however, the total length of the mask is adapted
to different lengths of F . As shown in Table 2, both TimeFlow and DeepTime require separate
training for each forecasting length, while our approach uses a single model for all horizons. For
TV-INRs and TimeFlow, there is a dramatic increase in MSE for long-range forecasting (F = 720) in
the Electricity dataset, reaching ≈ 9.5 and ≈ 9.4 respectively, while maintaining relatively moderate
MAE (≈ 0.53), which strongly indicates the presence of significant outlier errors in the predictions.
DeepTime shows even higher errors in this scenario (MSE = 10.18). For shorter forecasting horizons
(F = {96, 192}), our method demonstrates competitive or superior performance, notably achieving
a MSE of 0.3359 versus TimeFlow’s 0.4250 and DeepTime’s 0.4359 for F = 96 in the Electricity
dataset. Our approach significantly outperforms DeepTime on the Solar-H dataset, with MSE of
0.3456 versus 0.6410 at F = 96. TimeFlow achieves lower errors in specific scenarios (Traffic at
F = 96, Solar-H at F = {336, 720}), but requires separate training per horizon and gradient-based
meta-learning for each test sample. Similarly, DeepTime needs individual models for each forecast
length. Our approach’s key advantage is handling multiple forecasting horizons with a single trained
model while maintaining competitive performance. Sample outputs are shown in App. B.1 (Fig.6).

7

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

Under review as a conference paper at ICLR 2026

Table 2: Univariate forecasting results with history length H , training/testing forecasting lengths
Ftrain,test, and MSE/MAE evaluated for forecasting. Bold values indicate significantly better results,
while underlined values denote results that are comparable.

Electricity Traffic Solar-H

Model H Ftrain Ftest MSE MAE MSE MAE MSE MAE

DeepTime 512

96 96 0.436 ± 0.020 0.503 ± 0.016 0.419 ± 0.103 0.411 ± 0.047 0.641 ± 0.183 0.651 ± 0.089
192 192 0.551 ± 0.157 0.525 ± 0.055 0.382 ± 0.056 0.372 ± 0.027 0.432 ± 0.121 0.514 ± 0.081
336 336 0.793 ± 0.046 0.689 ± 0.037 0.446 ± 0.107 0.397 ± 0.058 0.821 ± 0.013 0.804 ± 0.002
720 72010.178 ± 0.218 0.970 ± 0.178 0.485 ± 0.059 0.406 ± 0.014 0.793 ± 0.041 0.741 ± 0.001

TimeFlow 512

96 96 0.425 ± 0.057 0.318 ± 0.050 0.289 ± 0.113 0.281 ± 0.064 0.503 ± 0.424 0.336 ± 0.142
192 192 0.498 ± 0.078 0.362 ± 0.060 0.324 ± 0.076 0.298 ± 0.050 0.476 ± 0.191 0.352 ± 0.077
336 336 1.347 ± 0.210 0.389 ± 0.065 0.407 ± 0.122 0.329 ± 0.057 0.364 ± 0.106 0.301 ± 0.055
720 720 9.422 ± 0.217 0.525 ± 0.150 0.413 ± 0.050 0.327 ± 0.020 0.353 ± 0.092 0.325 ± 0.032

TV-INRs 512 ∼ F
96 0.336 ± 0.068 0.296 ± 0.040 0.383 ± 0.143 0.305 ± 0.082 0.346 ± 0.303 0.325 ± 0.123
192 0.446 ± 0.107 0.415 ± 0.036 0.377 ± 0.094 0.294 ± 0.056 0.469 ± 0.125 0.389 ± 0.031
336 0.544 ± 0.216 0.442 ± 0.040 0.373 ± 0.073 0.292 ± 0.049 0.451 ± 0.140 0.383 ± 0.039
720 9.515 ± 0.218 0.535 ± 0.162 0.448 ± 0.088 0.313 ± 0.043 0.509 ± 0.194 0.404 ± 0.061

4.1.3 EXPLANATION OVER GENERALIZATION CLAIMS

We assess model generalization by its robust performance across a range of distinct tasks, each
applied to N unique time series. For imputation, these tasks are defined by varying the observation
rate τ , challenging the model under different levels of data scarcity. For forecasting, we measure
generalization by the model’s ability to maintain accuracy over increasingly long forecasting windows,
F ∈ {96, 192, 336, 720}. TV-INRs uses a unified model capable of imputation with different
observed ratios and forecasting across all horizon lengths, which significantly reduces or eliminates
the need for additional fine-tuning or multiple-model optimizations, enhancing its overall efficiency.
To illustrate this, we show that TimeFlow has to be trained per scenario, e.g. different observed
ratios and horizon lengths, in Table 19 in App.A.6. We report the training times for TV-INRs and
TimeFlow across all experiments in App. A.10. Our findings indicate that TV-INRs achieves notable
improvements in cumulative training efficiency: it requires between 2.41× to 3.70× less training time
than TimeFlow for forecasting tasks, and between 1.30× to 2.81× less training time for imputation
tasks. These results are shown in App. A.10 - Table 20, and demonstrate that TV-INRs offers
substantial advantages in computational efficiency and generalization by handling multiple tasks with
a single training. We also provide the memory and time complexity analysis of TV-INR in App. A.9.

4.1.4 IMPUTATION ON MULTIVARIATE DATASETS

In the HAR dataset, motion data from a single smartphone presents simultaneous missing values
across all channels at specific timestamps due to device failures. Formally, given X(i) = X

(i)
obs ∪

X
(i)
unobs, whereX(i)

unobs =X
(i)
l : l ∈ U (i), any missing timestamp l ∈ (U (i)) affects all d channels.

For the P12 dataset, we evaluate TV-INRs on patient-specific time series imputation from eight
measurements (urine output, SysABP, DiasABP, MAP, HR, NISysABP, NIDiasABP, NIMAP) and
four covariates (gender, age, height, weight). The dataset has irregular missingness across timestamps
and channels, which makes the imputation task more challenging (details in App. A.2).

• Conditional vs. unconditional. We test C-TV-INRs conditional formulation (Equation 2) on HAR
by incorporating activity labels alongside latent codes, and on P12 by including patient covariates.
On HAR, Table 3 shows C-TV-INRs significantly outperforms TV-INRs at higher missingness
rates (τTest = 0.05). For P12, both variants perform comparably at higher observation rates
(τTest = 0.50, 0.30). But at extreme sparsity (τTest = 0.10), C-TV-INRs significantly outperforms
with MSE=0.9627 versus SAITS’s 0.9704, CSDI’s 1.024, and TV-INRs’s 0.9795, with the lowest
MAE (0.7326). This confirms conditional models’ advantage with sparse time series data. Overall,
both the conditional and non-conditional versions of TV-INRs outperform baselines for multivariate
imputation.

• Downstream classification. To assess the impact of imputation on classification, we trained an
XGBoost classifier (Chen & Guestrin, 2016) on HAR data, testing across varying observation ratios
by removing random timepoints and imputing using our methods, baselines, and mean imputation.
Fig. 3 shows both TV-INRs variants substantially outperforming baselines, with the conditional
model showing increasing advantage as missingness grows, demonstrating the value of covariates
for individualized predictions. Complete AUC-ROC values are in Table 11.

8

448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503

Under review as a conference paper at ICLR 2026

Table 3: Multivariate imputation results with signal lengths L, training/testing observation rates
τtrain,test, and MSE/MAE evaluated on unobserved indices from non-overlapping test signals. Bold
values indicate significantly better results, while underlined values denote results that are comparable.

HAR (L=128) P12 (L=48)

Model τTrain τTest MSE MAE τTrain τTest MSE MAE

SAITS 0.80
0.50 0.998 ± 0.003 0.793 ± 0.006

0.80
0.50 0.985 ± 0.128 0.746 ± 0.070

0.30 1.001 ± 0.004 0.793 ± 0.007 0.30 0.998 ± 0.092 0.760 ± 0.067
0.05 1.004 ± 0.001 0.793 ± 0.007 0.10 0.970 ± 0.048 0.746 ± 0.052

CSDI ∼ U
0.50 1.083 ± 0.062 0.821 ± 0.067

∼ U
0.50 0.861 ± 0.174 0.691 ± 0.070

0.30 1.084 ± 0.060 0.823 ± 0.063 0.30 0.930 ± 0.146 0.724 ± 0.067
0.05 1.090 ± 0.015 0.826 ± 0.054 0.10 1.024 ± 0.093 0.765 ± 0.057

TV-INRs ∼ S
0.50 0.382 ± 0.067 0.414 ± 0.041

∼ S
0.50 0.822 ± 0.171 0.660 ± 0.074

0.30 0.533 ± 0.050 0.505 ± 0.031 0.30 0.892 ± 0.146 0.692 ± 0.071
0.05 0.995 ± 0.070 0.722 ± 0.034 0.10 0.980 ± 0.118 0.739 ± 0.058

C-TV-INRs ∼ S
0.50 0.379 ± 0.065 0.412 ± 0.041

∼ S
0.50 0.824 ± 0.175 0.662 ± 0.076

0.30 0.523 ± 0.047 0.502 ± 0.029 0.30 0.883 ± 0.141 0.690 ± 0.073
0.05 0.976 ± 0.058 0.708 ± 0.022 0.10 0.963 ± 0.099 0.733 ± 0.052

Figure 3: Classification performance (AUC-ROC) at various missingness levels; a higher value
indicates better performance.

5 CONCLUSION

We have introduced TV-INRs, demonstrating its effectiveness in imputation and forecasting across
various time series domains and data conditions. Our results highlight superior performance in
low-data regimes and robust handling of varying observation patterns. Furthermore, the amortization
of INR weights in our probabilistic setting enables adaptation to unseen data without fine-tuning
or per-sample optimization, a key advantage over traditional hypernetwork-based methods that rely
on meta-learning. We have also illustrated the potential of TV-INRs for downstream tasks with
improved classification on HAR data. While baseline methods TimeFlow and DeepTime showed
stronger performance in specific scenarios, TV-INRs frequently produced comparable or superior
results while offering substantial practical benefits: unified model training across multiple tasks,
individualization without meta-learning, and significantly improved cumulative training and inference
efficiency. The ability to handle multiple forecasting horizons with a single model represents a
considerable advantage in real-world applications where computational resources may be limited.
To further enhance our model, future directions may include reducing hypernetwork complexity
with transformer-based architectures (Chen & Wang, 2022), or modeling per-sample positional
embeddings rather than weights directly (Park et al., 2024). The variational framework could also
be extended to incorporate additional forms of domain knowledge. These improvements could
strengthen its potential, particularly in healthcare domains such as personalized medicine and patient
monitoring, where efficiency and the ability to model highly sparse data are especially critical.

9

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we have included our complete source code as sup-
plementary material. Our code submission contains the model implementation, training scripts
for experiments, and instructions for setting up the required environment. Furthermore, a detailed
description of all experimental settings, including dataset preprocessing steps (App. A.3,A.5) and the
final hyperparameter configurations (App. A.6) are provided.

REFERENCES

Tom Bamford, Elizabeth Fons, Yousef El-Laham, and Svitlana Vyetrenko. Mads: Modulated
auto-decoding siren for time series imputation. arXiv preprint arXiv:2307.00868, 2023.

Parikshit Bansal, Prathamesh Deshpande, and Sunita Sarawagi. Missing value imputation on multidi-
mensional time series, 2023. URL https://arxiv.org/abs/2103.01600.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent neural
networks for multivariate time series with missing values. Scientific reports, 8(1):6085, 2018.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pp. 785–794, New York, NY, USA, 2016. Association for Computing Machinery.
ISBN 9781450342322. doi: 10.1145/2939672.2939785. URL https://doi.org/10.1145/
2939672.2939785.

Wenhao Chen, Guangjie Han, Hongbo Zhu, and Lyuchao Liao. Short-term load forecasting with an
ensemble model based on 1d-ucnn and bi-lstm. Electronics, 11(19):3242, 2022.

Yinbo Chen and Xiaolong Wang. Transformers as meta-learners for implicit neural representations.
In European Conference on Computer Vision, pp. 170–187. Springer, 2022.

Yuqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Weiwei Sun, and Dongsheng Li. Contiformer:
Continuous-time transformer for irregular time series modeling. Advances in Neural Information
Processing Systems, 36, 2024.

Woojin Cho, Minju Jo, Kookjin Lee, and Noseong Park. NeRT: Implicit neural representation for
time series, 2024. URL https://openreview.net/forum?id=FpElWzxzu4.

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Gated feedback recurrent
neural networks. In International conference on machine learning, pp. 2067–2075. PMLR, 2015.

Chris Cremer, Xuechen Li, and David Duvenaud. Inference suboptimality in variational autoencoders.
In International conference on machine learning, pp. 1078–1086. PMLR, 2018.

Wenjie Du, David Côté, and Yan Liu. Saits: Self-attention-based imputation for time series. Expert
Systems with Applications, 219:119619, 2023.

Emilien Dupont, Yee Whye Teh, and Arnaud Doucet. Generative models as distributions of functions.
CoRR, abs/2102.04776, 2021. URL https://arxiv.org/abs/2102.04776.

Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami, Danilo Jimenez Rezende, and Dan Rosenbaum.
From data to functa: Your data point is a function and you can treat it like one. In 39th International
Conference on Machine Learning (ICML), 2022a.

Emilien Dupont, Hrushikesh Loya, Milad Alizadeh, Adam Goliński, Yee Whye Teh, and Arnaud
Doucet. Coin++: Neural compression across modalities. arXiv preprint arXiv:2201.12904, 2022b.

Chelsea Finn and Sergey Levine. Meta-learning and universality: Deep representations and gradient
descent can approximate any learning algorithm. arXiv preprint arXiv:1710.11622, 2017.

Elizabeth Fons, Alejandro Sztrajman, Yousef El-laham, Alexandros Iosifidis, and Svitlana Vyetrenko.
Hypertime: Implicit neural representation for time series, 2022. URL https://arxiv.org/
abs/2208.05836.

Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I. Webb, Rob J. Hyndman, and Pablo Montero-
Manso. Monash time series forecasting archive. In Neural Information Processing Systems Track
on Datasets and Benchmarks, 2021.

10

https://arxiv.org/abs/2103.01600
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://openreview.net/forum?id=FpElWzxzu4
https://arxiv.org/abs/2102.04776
https://arxiv.org/abs/2208.05836
https://arxiv.org/abs/2208.05836

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615

Under review as a conference paper at ICLR 2026

Tian Guo, Zhao Xu, Xin Yao, Haifeng Chen, Karl Aberer, and Koichi Funaya. Robust online time
series prediction with recurrent neural networks. In 2016 IEEE international conference on data
science and advanced analytics (DSAA), pp. 816–825. Ieee, 2016.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks for time
series forecasting: Current status and future directions. International Journal of Forecasting, 37
(1):388–427, 2021.

S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference.
Journal of Machine Learning Research, 2013.

Yuxiu Hua, Zhifeng Zhao, Rongpeng Li, Xianfu Chen, Zhiming Liu, and Honggang Zhang. Deep
learning with long short-term memory for time series prediction. IEEE Communications Magazine,
57(6):114–119, 2019.

Kyeong-Joong Jeong and Yong-Min Shin. Time-series anomaly detection with implicit neural
representation, 2022. URL https://arxiv.org/abs/2201.11950.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Batuhan Koyuncu, Pablo Sanchez-Martin, Ignacio Peis, Pablo M Olmos, and Isabel Valera. Vari-
ational mixture of hypergenerators for learning distributions over functions. arXiv preprint
arXiv:2302.06223, 2023.

Roderick JA Little and Donald B Rubin. Statistical analysis with missing data. John Wiley & Sons,
2019.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In
International Conference on Machine Learning, pp. 1791–1799. PMLR, 2014.

Pablo Moreno-Muñoz, Pol Garcia Recasens, and Søren Hauberg. On masked pre-training and the
marginal likelihood. Advances in Neural Information Processing Systems, 36:79781–79791, 2023.

Etienne Le Naour, Louis Serrano, Léon Migus, Yuan Yin, Ghislain Agoua, Nicolas Baskiotis, patrick
gallinari, and Vincent Guigue. Time series continuous modeling for imputation and forecasting
with implicit neural representations. Transactions on Machine Learning Research, 2024. ISSN
2835-8856. URL https://openreview.net/forum?id=P1vzXDklar.

Phuoc Nguyen, Truyen Tran, Sunil Gupta, Santu Rana, Hieu-Chi Dam, and Svetha Venkatesh. Varia-
tional hyper-encoding networks, 2022. URL https://arxiv.org/abs/2005.08482.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers, 2023. URL https://arxiv.org/abs/
2211.14730.

M. Niemeyer, J. T. Barron, B. Mildenhall, M. S. M. Sajjadi, A. Geiger, and N. Radwan. Regnerf: reg-
ularizing neural radiance fields for view synthesis from sparse inputs. 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2022. doi: 10.1109/cvpr52688.2022.00540.

Dogyun Park, Sihyeon Kim, Sojin Lee, and Hyunwoo J Kim. Ddmi: Domain-agnostic latent diffusion
models for synthesizing high-quality implicit neural representations. In The Twelfth International
Conference on Learning Representations, 2024.

Ignacio Peis, Batuhan Koyuncu, Isabel Valera, and Jes Frellsen. Hyper-transforming latent diffusion
models, 2025. URL https://arxiv.org/abs/2504.16580.

11

https://arxiv.org/abs/2201.11950
https://openreview.net/forum?id=P1vzXDklar
https://arxiv.org/abs/2005.08482
https://arxiv.org/abs/2211.14730
https://arxiv.org/abs/2211.14730
https://arxiv.org/abs/2504.16580

616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671

Under review as a conference paper at ICLR 2026

Tommaso Proietti and Diego J. Pedregal. Seasonality in high frequency time series. Economet-
rics and Statistics, 27:62–82, 2023. ISSN 2452-3062. doi: https://doi.org/10.1016/j.ecosta.
2022.02.001. URL https://www.sciencedirect.com/science/article/pii/
S2452306222000090.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In International conference on machine learning,
pp. 1278–1286. PMLR, 2014.

Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predicting in-hospital
mortality of icu patients: The physionet/computing in cardiology challenge 2012. In 2012
computing in cardiology, pp. 245–248. IEEE, 2012.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

Yannick Strümpler, Janis Postels, Ren Yang, Luc Van Gool, and Federico Tombari. Implicit neural
representations for image compression. In European Conference on Computer Vision, pp. 74–91.
Springer, 2022.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in neural information processing
systems, 33:7537–7547, 2020.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based diffu-
sion models for probabilistic time series imputation. Advances in neural information processing
systems, 34:24804–24816, 2021.

M. Vetsch, S. Lombardi, M. Pollefeys, and M. R. Oswald. Neuralmeshing: differentiable meshing
of implicit neural representations. Lecture Notes in Computer Science, pp. 317–333, 2022. doi:
10.1007/978-3-031-16788-1_20.

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. On the global optimality of model-
agnostic meta-learning. In International conference on machine learning, pp. 9837–9846. PMLR,
2020.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Learning deep time-
index models for time series forecasting. In International Conference on Machine Learning, pp.
37217–37237. PMLR, 2023.

Dominic Zhao, Seijin Kobayashi, João Sacramento, and Johannes von Oswald. Meta-learning via
hypernetworks. In 4th Workshop on Meta-Learning at NeurIPS 2020 (MetaLearn 2020). NeurIPS,
2020.

12

https://www.sciencedirect.com/science/article/pii/S2452306222000090
https://www.sciencedirect.com/science/article/pii/S2452306222000090

672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727

Under review as a conference paper at ICLR 2026

A APPENDIX A

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

The authors used a large language model (LLM) as a general-purpose writing assistant during the
preparation of this paper. Its application was exclusively for grammar checking. The LLM played no
role in the research ideation, methodology, or the generation of the core manuscript content, which
remains the sole contribution of the authors.

A.2 DATASETS

Table 4: Dataset Descriptions. #Series denotes the number of distinct timeseries signals with
corresponding lenghts and covariates if available.

Dataset Domain Freq. #Dims #Series Length Cov.

Electricity R0
+ Hourly 1 321 26304 ✗

Traffic [0,1] Hourly 1 862 17544 ✗
Solar-10 R0

+ 10 Mins 1 137 52560 ✗
Solar-H R0

+ Hourly 1 137 8760 ✗
HAR R 50Hz 3 30 43940 ✓
P12 R0

+ Hourly 8 3938 48 ✓

In this section, we provide more details about the datasets we have used. We start with the list of
uni-variate datasets:
Electricity Dataset records hourly electricity consumption from 321 customers in Portugal for the
period 2012 to 2014, displaying both daily and weekly seasonality.
Traffic Dataset includes hourly road occupancy rates from 862 locations in San Francisco during
2015 and 2016, and exhibits similar daily and weekly seasonal patterns.
Solar Dataset The Solar-10 dataset comprises measurements of solar power production from 137
photovoltaic plants in Alabama, captured every 10 minutes in 2006. Additionally, there is an hourly
version of this dataset, known as Solar-Hourly.

For some datasets, the feature vectors Y (i) = {y(i)
l }Li

l=1 expand from univariate (d = 1) to mul-
tivariate (d > 1), with each dimension representing a unique sensor used to collect observations
{y(i)

l } ∈ Rd. For these purposes, we experiment with two multi-variate datasets, namely:
HAR Dataset. Here, we experiment with the Human Activity Recognition (HAR) dataset from
the UC Irvine ML Repository, which is dense with regular time points at 2.56 second intervals,
enabling quantitative imputation assessment through random removal. It contains 10,299 samples of
accelerometer measurements across x, y, and z axes.
P12 Dataset. The PhysioNet Challenge 2012 (P12) dataset contains ICU stay measurements including
sensor readings and lab results. After outlier removal, it comprises 11,817 visits across 37 channels
with maximum 215 time points over 48 hours. We use eight measurements urine output, systolic
arterial blood pressure (SysABP), diastolic arterial blood pressure (DiasABP), mean arterial pressure
(MAP), heart rate (HR), and their non-invasive counterparts (NISysABP, NIDiasABP, NIMAP). We
also incorporate patient-specific covariates including gender, age, height, and weight. Conditional
TV-INRs use covariates Unlike HAR, P12 is highly sparse (X(i)

obs is 15.68% ofX on average) with
irregularity across times and sensors, where T (i) may be unique for each time series i.
Missingness Patterns of the Datasets. To ensure a comprehensive evaluation, our experiments
address diverse data missingness patterns, including both random and non-random scenarios. For
Missing Completely at Random (MCAR) patterns, we adhere to standard literature practices by
introducing artificial missingness (Little & Rubin, 2019) during training across the Electricity, Traffic,
and Solar datasets. This methodology aligns with the protocols used by the baseline models we
compare against. Furthermore, we assess performance on Missing Not at Random (MNAR) patterns,
which are prevalent in real-world applications. Our analysis includes the P12 dataset, which exhibits
MNAR characteristics where clinical data is informatively missing; here, we evaluate imputation
quality indirectly via a downstream classification task. To create a controlled non-random evaluation,
we also synthetically modified the fully-observed HAR dataset by dropping entire channels at random
timestamps to mimic sensor failures, a scenario where the missingness mechanism depends on
unobserved factors.

13

https://archive.ics.uci.edu/dataset/240/human+activity+recognition+using+smartphones
https://physionet.org/content/challenge-2012/1.0.0/

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783

Under review as a conference paper at ICLR 2026

A.3 DATA-PREPROCESSING

We apply channel-wise standardization to each time series. For each channel d in a time series with
length L, we compute the channel-wise mean µd, standard deviation σc, and normalize signal x̂(i)l,d as
follows:

x̂
(i)
l,d =

x
(i)
l,d − µ

(i)
d

σ
(i)
d

(9)

where x(i)l,d represents the value of channel d at time l for sample i.

A.4 ANALYSIS FOR STATISTICAL DIFFERENCES

To compare the performance of TV-INRs and baseline models, we conducted a systematic statistical
analysis using Welch’s t-test which accounts for potentially unequal variances between the two
models. For each configuration defined by sequence length L and sampling ratio τ , we evaluated
both mean squared error (MSE) and mean absolute error (MAE). The statistical significance was
assessed at α = 0.05.
In classification experiments, the HAR dataset was normalized independently per channel but not
per individual, ensuring consistency across subjects and allowing XGBoost to learn global patterns.
This differs from the normalization procedure used for TV-INRs, which normalized data at both
the channel and individual level in order to model data on a per-user basis. When mentioned, we
computed the relative performance difference as ∆ = (µTimeFlow − µTV-INRs)/µTimeFlow × 100%.

A.5 TRAINING, VALIDATION, AND TEST SPLITS FOR ALL EXPERIMENTS

Here, we give information about all datasplits for all experiments in Tables 5, 6, 7. For univariate
datasets, test windows are extracted sequentially from the end of each time series. Moreover, training
data precedes validation data.

Table 5: Dataset splitting details for univariate imputation experiments. Training and validation sets
has 5:1 ratio.

Dataset Series Count Window Length Test Windows Training/Val.
(L) (NO & FE) 1 Stride

Electricity 321 200 50 50
2000 5 500

Traffic 862 200 20 50
2000 2 500

Solar-10 137 200 100 50
10000 2 250

Table 6: Dataset splitting details for univariate forecasting experiments. Training and validation sets
has 5:1 ratio. Training and validation series are constructed with using offsetting from the available
data points.

Dataset Series Count History Forecast Window Length Test Windows Training/Val.
(H) (F) (L) (NO & FE) 2 Offset

Electricity 321 512 [96,192,336,720] 1232 7 ✓

Traffic 862 512 [96,192,336,720] 1232 7 ✓

Solar-H 137 512 [96,192,336,720] 1232 3 ✓

1NO: Non-overlapping, FE: From end of the series

14

784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839

Under review as a conference paper at ICLR 2026

Table 7: Dataset splitting details for HAR imputation experiments. The dataset is split by users, with
24 users for training and 6 users for testing. From the training users, we further split into training and
validation sets using a 4:1 ratio of users.

Dataset Series Count Window Length (L) #Classes #Train Users #Test Users

HAR 30 128 6 24 6
P12 11817 48 NA 9454 2363

A.6 HYPERPARAMETERS FOR ALL EXPERIMENTS

Hyperparameters for all TV-INR experiments on an NVIDIA V100 GPU can be seen in Tables 8-9.
In case of HAR dataset, C-TV-INRs extra parameters of feed forward encoder of covariates with
layers [8, 8] and dim_c = 4. The details of the hyperparameter grid search space are provided in
Table 10.

Table 8: Hyperparameter details of TV-INRs for imputation task.

ELECTRICITY TRAFFIC SOLAR-10 HAR

L 200 2000 200 2000 200 10000 128

dim_z 32 64 32 64 32 64 32
epochs 2000 4000 2000 4000 2000 4000 3000

bs 256 64 256 64 256 32 128
lr 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4

Transformer Enc.
dmodel 128 128 128 128 128 128 128

#heads 2 4 2 4 2 4 4
#layers 2 2 2 2 2 2 4

Hypernetwork layers [128,256]

Generator layers [64,64,64] [64,64,64,64] [64,64,64] [64,64,64,64] [64,64,64] [64,64,64,64] [64,64,64,64]

RFF m = 256, σ = 2

Table 9: Hyperparameter details of TV-INRs for forecasting task.

ELECTRICITY TRAFFIC SOLAR-H

dim_z 32 64 32
max epochs 2000 4000 2000

bs 256 64 256
lr 1e-4 1e-4 1e-4

Transformer Enc.
dmodel 128 128 128

#heads 2 4 2
#layers 2 2 2

Hypernetwork layers [128,256]

Generator layers [64,64,64] [64,64,64,64] [64,64,64]

Random Fourier Features m = 256, σ = 2

For classification with XGBoost, all hyperparameters used were the default in Chen & Guestrin
(2016)’s XGBoost library, with the following exceptions; early stopping was set to 10 rounds, and
categorical features were enabled to preserve channel identity as nonordinal.

A.7 CLASSIFER RESULTS

We present the AUC-ROC scores for different models across varying levels of missingness in Table
11, where higher scores indicate better classification performance.

A.8 TIMEFLOW RESULTS FOR DIFFERENT MISSINGNESS RATES

To thoroughly demonstrate TV-INRs’s capability to handle different missing data scenarios, we
conducted extensive experiments by training and testing with various observed ratios (τ), further
supporting our claims regarding its efficiency and its ability to serve as a single model for all cases. It
is important to note that in the TimeFlow GitHub repository3, the missing data rate (“draw_ratio”)

3https://github.com/EtienneLnr/TimeFlow/blob/main/experiments/training/
inr_imputation.sh

15

https://github.com/EtienneLnr/TimeFlow/blob/main/experiments/training/inr_imputation.sh
https://github.com/EtienneLnr/TimeFlow/blob/main/experiments/training/inr_imputation.sh

840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895

Under review as a conference paper at ICLR 2026

Table 10: Hyperparameter Grid Search Configuration

Hyperparameter Search Range
General Parameters
Learning rate (lr) [1e-5, 1e-4, 5e-4]
Latent dimension (dim_z) [16, 32, 64]
Dropout rate [0.0, 0.1, 0.2]

Transformer Encoder
d_model [64, 128, 256]
Attention layers [2, 4, 6]
Number of heads [2, 4, 8]
Causal attention [True, False]

Hypernetwork
Layers [[32,64], [64,128], [128,256], [256,512]]
Activation [’relu’, ’lrelu_01’, ’gelu’]

Generator (INR)
dim_inner [32,64,128]
num_layers [2, 3, 4]
Activation [’relu’, ’lrelu_01’, ’gelu’]

Random Fourier Features
m [128, 256, 512]
σ [1, 2, 4]

Table 11: AUC-ROC scores for different models across varying levels of missingness. Higher scores
indicate better performance. All values are rounded to three decimal places.

Model 50% Missingness 70% Missingness 95% Missingness

C-TV-INR 0.969 ± 0.012 0.968 ± 0.012 0.882 ± 0.028
TV-INR 0.967 ± 0.013 0.963 ± 0.016 0.868 ± 0.025
SAITS 0.906 ± 0.040 0.831 ± 0.036 0.719 ± 0.039
CSDI 0.928 ± 0.023 0.900 ± 0.035 0.847 ± 0.037
Mean Imputation 0.894 ± 0.039 0.818 ± 0.036 0.784 ± 0.030

can be set as a training argument, with options including {0.05, 0.10, 0.20, 0.30, 0.50}. Although
this may appear to be a hyperparameter choice, it affects the task itself, as the model is optimized for
a specific level of missingness.
As shown in Table 12, TimeFlow’s performance varies significantly across different training/testing τ
combinations, requiring training different model instances for each scenario. In contrast, TV-INRs
has comparable or better performance when compared with Timeflow with a single trained model.
These results align with the observation stated in Table 10 of the original TimeFlow paper Naour et al.
(2024) that while higher sampling rates simplify the imputation task, they complicate optimization,
making it challenging for the model to generalize effectively across different sparsity levels.

A.9 COMPLEXITY ANALYSIS FOR TV-INR

This section provides the time and memory complexity analysis for the TV-INR model, broken down
by its core components: the Transformer-based encoder and the MLP-based decoder (hypernetwork).
Notation. To facilitate the analysis, we define the following notation: L is the input sequence length;
C is the number of input channels; E is the embedding dimension; Dp is the hidden dimension of
the projection layer; Z is the latent dimension; N and M are the number of layers and attention
heads in the encoder, respectively; N ′ and Dh are the number of layers and hidden dimensions of the
hypernetwork; and R is the total flattened dimension of the INR parameters being modeled. Typically,
the sequence length is the dominant factor, such that L≫ E ≫ Z.
Time complexity. The overall time complexity is determined by the sum of the model’s parts. The
Transformer-based encoder has a complexity of O(N · L2 · E), which is quadratic with respect to
the sequence length L due to the self-attention mechanism. The subsequent projection layer has a
complexity of O(E ·Dp). The MLP-based hypernetwork’s complexity is O(Z ·Dh + (N ′ − 1) ·
D2

h +Dh · R), which depends on its depth and width. Given that L is the largest dimension, the
encoder is the computational bottleneck, making the model’s overall time complexity O(N · L2 ·E).

16

896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951

Under review as a conference paper at ICLR 2026

Table 12: TimeFlow model performance at different training and testing missing ratios (τ).
MSE and MAE metrics are reported for electricity dataset.

Test τ

MSE MAE

Model L Train τ 0.05 0.3 0.5 0.05 0.3 0.5

TimeFlow 200

1.00 605909.85 7.77814 0.44302 358.39774 1.87872 0.49501
0.95 2611667.2 145.28325 0.33257 587.75934 2.32136 0.42111
0.50 350.9098 0.34692 0.16299 11.31193 0.43012 0.23984
0.30 18.90844 0.32993 0.20594 2.99975 0.39625 0.30289
0.05 0.96294 0.74811 0.6934 0.81073 0.71435 0.69580

TV-INRs 200 ∼ S 0.3175 0.1352 0.1132 0.3681 0.2320 0.2123

TimeFlow 2K

1.00 108812.06 0.18195 0.13066 26.16919 0.28272 0.25084
0.95 22579.357 0.15164 0.1275 15.57548 0.27184 0.24665
0.50 56.5905 0.14723 0.13238 1.88119 0.26775 0.25275
0.30 2.58694 0.16536 0.15019 0.85563 0.28756 0.27291
0.05 0.37793 0.22935 0.21811 0.45838 0.34629 0.33603

TV-INRs 2K ∼ S 0.2889 0.2502 0.2491 0.3595 0.3317 0.3311

Memory complexity. The memory complexity during a forward pass is also dominated by the
encoder. The Transformer requires O(M · L2) memory to store the attention score matrix. The
memory requirements for the projection layer and the MLP-based hypernetwork are O(max(E,Z))
and O(max(Z,Dh, R)), respectively, as they are determined by the largest linear layer within each
component. Consequently, the overall memory complexity is dictated by the encoder, resulting in
O(M · L2).

A.10 TRAINING TIMES COMPARISON

In this part, we are reporting the cumulative training times in hours (h) of TV-INRs and Timeflow per
task. All training times are rounded to 5-minute intervals and were acquired using an NVIDIA V100
GPU and reported in Tables 13,14,15 and 17,18,19 for imputation and forecasting tasks, respectively.
As training times of C-TV-INRs are in the same order with TV-INRs, we omit them to include
them in the tables. SAITS demonstrates moderate training times ranging from 1h45m to 13h35m
across various datasets, offering a reasonable compromise between efficiency and performance. A
drawback of CSDI Tashiro et al. (2021) is its extended training duration, primarily due to the iterative
optimization process inherent in diffusion model training. DeepTime Woo et al. (2023) is very fast to
train due to number of epochs selected in the original work; however it also has the worst performance
among the baselines as shown in Table 2. Our primary baseline, TimeFlow, demands significantly
greater computational resources, with cumulative training durations consistently exceeding those of
TV-INR across most experimental scenarios. Efficiency analyses reveal TimeFlow requires up to
3.70× longer training periods, particularly pronounced in forecasting applications as shown in Table
20.

Table 13: Training times for imputation task, TV-INRs.

Model Name Dataset L Max Epochs Training Time

TV-INR Electricity 200 2000 8h45m
TV-INR Electricity 2000 4000 12h55m
TV-INR Traffic 200 2000 10h35m
TV-INR Traffic 2000 4000 15h50m
TV-INR Solar-10 200 2000 10h25m
TV-INR Solar-10 10000 4000 19h15m
TV-INR HAR 128 3000 6h45m
TV-INR P12 128 1000 4h05m

17

952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007

Under review as a conference paper at ICLR 2026

Table 14: Training times for imputation task, TimeFlow.

Model Name Dataset L τ Max Epochs Training Time

TimeFlow Electricity 200 0.05 40000 6h35m
TimeFlow Electricity 200 0.30 40000 6h40m
TimeFlow Electricity 200 0.50 40000 6h35m
TimeFlow Electricity 2000 0.05 40000 5h35m
TimeFlow Electricity 2000 0.30 40000 5h30m
TimeFlow Electricity 2000 0.50 40000 5h40m
TimeFlow Traffic 200 0.05 40000 9h45m
TimeFlow Traffic 200 0.30 40000 9h50m
TimeFlow Traffic 200 0.50 40000 10h10m
TimeFlow Traffic 2000 0.05 40000 8h30m
TimeFlow Traffic 2000 0.30 40000 8h30m
TimeFlow Traffic 2000 0.50 40000 8h45m
TimeFlow Solar-10 200 0.05 40000 6h45m
TimeFlow Solar-10 200 0.30 40000 6h30m
TimeFlow Solar-10 200 0.50 40000 6h35m
TimeFlow Solar-10 10000 0.05 40000 12h5m
TimeFlow Solar-10 10000 0.30 40000 11h50m
TimeFlow Solar-10 10000 0.50 40000 12h15m

Table 15: Training times for imputation task, SAITS.

Model Name Dataset L Max Epochs Training Time

SAITS Electricity 200 10000 3h45m
SAITS Electricity 2000 10000 3h35m
SAITS Traffic 200 10000 3h25m
SAITS Traffic 2000 10000 7h45m
SAITS Solar-10 200 10000 1h45m
SAITS Solar-10 10000 10000 6h05m
SAITS HAR 128 10000 13h35m
SAITS P12 48 10000 10h40m

Table 16: Training times for imputation task, CSDI.

Model Name Dataset L Max Epochs Training Time

CSDI Electricity 200 200 2h55m
CSDI Electricity 2000 200 6h
CSDI Traffic 200 200 3h20m
CSDI Traffic 2000 200 7h20m
CSDI Solar-10 200 200 1h30m
CSDI Solar-10 10000 200 12h
CSDI HAR 128 200 8h5m
CSDI P12 48 200 16h10m

Table 17: Training times for forecasting task, TV-INRs.

Model Name Dataset H Max Epochs Training Time

TV-INR Electricity 512 2000 5h25m
TV-INR Traffic 512 4000 11h05m
TV-INR Solar-H 512 2000 5h15m

18

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063

Under review as a conference paper at ICLR 2026

Table 18: Training times for forecasting task, TimeFlow.

Model Name Dataset H F Max Epochs Training Time

TimeFlow Electricity 512 96 40000 4h25m
TimeFlow Electricity 512 192 40000 4h30m
TimeFlow Electricity 512 336 40000 4h40m
TimeFlow Electricity 512 720 40000 4h30m
TimeFlow Traffic 512 96 40000 10h10m
TimeFlow Traffic 512 192 40000 10h15m
TimeFlow Traffic 512 336 40000 10h20m
TimeFlow Traffic 512 720 40000 10h15m
TimeFlow Solar-H 512 96 40000 3h25m
TimeFlow Solar-H 512 192 40000 2h55m
TimeFlow Solar-H 512 336 40000 3h05m
TimeFlow Solar-H 512 720 40000 3h15m

Table 19: Training times for forecasting task, DeepTime.

Model Name Dataset H F Max Epochs Training Time

DeepTime Electricity 512 96 50 5m
DeepTime Electricity 512 192 50 5m
DeepTime Electricity 512 336 50 5m
DeepTime Electricity 512 720 50 10m
DeepTime Traffic 512 96 50 10m
DeepTime Traffic 512 192 50 10m
DeepTime Traffic 512 336 50 15m
DeepTime Traffic 512 720 50 15m
DeepTime Solar-H 512 96 50 5m
DeepTime Solar-H 512 192 50 5m
DeepTime Solar-H 512 336 50 5m
DeepTime Solar-H 512 720 50 5m

Table 20: Training Time Efficiency Ratio: TV-INR vs TimeFlow in hours (h).

Forecasting Task TV-INR TimeFlow Ratio (TimeFlow/TV-INR)

Dataset H Training Time (h) Cumulative Time (h) Absolute Multiplier

Electricity 512 5.42 18.08 12.66 3.34×
Traffic 512 11.08 41.00 29.92 3.70×
Solar 512 5.25 12.67 7.42 2.41×

Imputation Task TV-INR TimeFlow Ratio (TimeFlow/TV-INR)

Dataset L Training Time (h) Cumulative Time (h) Absolute Multiplier

Electricity 200 8.75 19.83 11.08 2.27×
Electricity 2000 12.92 16.75 3.83 1.30×

Traffic 200 10.58 29.75 19.17 2.81×
Traffic 2000 15.83 25.75 9.92 1.63×
Solar 200 10.42 19.83 9.41 1.90×
Solar 10000 19.25 36.17 16.92 1.88×

A.11 INFERENCE TIMES COMPARISON

We evaluated the computational efficiency of TV-INRs against TimeFlow by measuring inference
times on an NVIDIA V100 GPU. Under identical conditions with a batch size of 1, we recorded
forward pass execution times in seconds for both models. TimeFlow was configured to use 3 gradient
steps during meta-learning, as specified in the original paper Naour et al. (2024). A key advantage of
TV-INRs is that its inference time remains constant, unlike TimeFlow, which exhibits linear scaling
with the number of gradient steps performed during meta-learning. This makes TV-INRs particularly
attractive for applications requiring consistent and predictable inference latency.

19

1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119

Under review as a conference paper at ICLR 2026

Table 21: Comparison of inference time of TV-INRs and SAITS in seconds for imputation task.

Electricity Traffic Solar-10

Model L τTrain τTest Time (s) Time (s) L Time (s)

TimeFlow 2K
0.50 0.50 0.017 ± 0.001 0.016 ± 0.001

10K
0.038 ± 0.001

0.30 0.30 0.016 ± 0.001 0.016 ± 0.001 0.037 ± 0.001
0.05 0.05 0.016 ± 0.001 0.016 ± 0.001 0.037 ± 0.001

TimeFlow 200
0.50 0.50 0.013 ± 0.001 0.015 ± 0.001

200
0.015 ± 0.001

0.30 0.30 0.012 ± 0.001 0.015 ± 0.001 0.015 ± 0.001
0.05 0.05 0.012 ± 0.001 0.015 ± 0.001 0.015 ± 0.001

TV-INRs 2K ∼ S
0.50 0.016 ± 0.001 0.017 ± 0.001

10K
0.060 ± 0.001

0.30 0.017 ± 0.001 0.017 ± 0.001 0.059 ± 0.001
0.05 0.017 ± 0.001 0.017 ± 0.001 0.059 ± 0.001

TV-INRs 200 ∼ S
0.50 0.014 ± 0.001 0.013 ± 0.001

200
0.014 ± 0.001

0.30 0.014 ± 0.002 0.013 ± 0.001 0.014 ± 0.001
0.05 0.014 ± 0.001 0.013 ± 0.001 0.014 ± 0.001

Table 22: Comparison of inference time of TV-INRs and Timeflow in seconds for forecasting task.

Electricity Traffic Solar-H

Model H Ftrain Ftest Time (s) Time (s) Time (s)

TimeFlow 512

96 96 0.016 ± 0.001 0.017 ± 0.001 0.016 ± 0.001
192 192 0.016 ± 0.001 0.019 ± 0.001 0.015 ± 0.001
336 336 0.016 ± 0.001 0.020 ± 0.001 0.015 ± 0.001
720 720 0.016 ± 0.001 0.020 ± 0.001 0.015 ± 0.001

TV-INRs 512 ∼ F 720 0.016 ± 0.001 0.018 ± 0.001 0.017 ± 0.002

A.12 ABLATION STUDY ON THE NUMBER OF FOURIER FREQUENCIES

To empirically quantify the contribution of Fourier Features to the performance of TV-INR, we
conduct an ablation study analyzing the model’s performance with different numbers of Fourier
frequencies (NFF). The experiment is conducted on Electricity dataset for imputation task, and the
results are reported, with performance statistics—mean and standard deviation—computed over
multiple non-overlapping test windows. The table below presents the Mean Squared Error (MSE) on
the imputed values for configurations with NFF ∈ {256, 128, 32, 0}. The results clearly demonstrate
that incorporating Fourier Features provides a significant performance benefit, which aligns with
findings in the broader literature Tancik et al. (2020); Dupont et al. (2021). Across all sequence
lengths and observation rates, performance degrades substantially as the number of frequencies is
reduced, with the best results consistently achieved for NFF = 256.

Table 23: Ablation study on the effect of Fourier Features. We report MSE on the Electricity dataset
for different numbers of Fourier Feature frequencies (NFF). The best performing configuration for
each row is in bold.

Number of Fourier Feature Frequencies (NFF)

Model L τ 256 128 32 0 (None)

TV-INRs 200
0.50 0.1213 ± 0.0131 0.1391± 0.0140 0.1523± 0.0186 0.8099± 0.0522
0.30 0.1359 ± 0.0265 0.1756± 0.0211 0.2711± 0.0386 0.8587± 0.0502
0.05 0.3312 ± 0.0968 0.4655± 0.1198 0.8643± 0.1206 1.2215± 0.1335

TV-INRs 2000
0.50 0.2555 ± 0.0280 0.3563± 0.0236 1.0414± 0.0233 1.0542± 0.0239
0.30 0.2423 ± 0.0276 0.3444± 0.0095 1.0341± 0.0503 1.0531± 0.0221
0.05 0.3142 ± 0.0742 0.4984± 0.0390 1.0687± 0.0400 1.1004± 0.0278

A.13 COMPARISON WITH STANDARD VAE BASELINE

To empirically validate the contribution of our Implicit Neural Representation (INR) based decoder,
we conduct an ablation study comparing TV-INR against a baseline with a standard decoder, which

20

1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175

Under review as a conference paper at ICLR 2026

we term TV-VAE. This baseline is designed to isolate the impact of the INR by replacing the
hypernetwork decoder with a conventional MLP. Specifically, the TV-VAE decoder processes a
direct concatenation of the learned latent representation z and the time encoding t. To ensure a fair
comparison, the MLP architecture for the TV-VAE decoder is constructed from the same building
blocks as the hypernetwork in TV-INR.
We performed a thorough hyperparameter search for the TV-VAE model, evaluating various MLP
depths and multiple configurations of Fourier Features for the time encoding. All other experimental
settings, including the AdamW optimizer, followed the protocol used for the main TV-INR experi-
ments as detailed in App. A.6. The results, presented in App. [Reference to the new tables], show that
TV-INR consistently and significantly outperforms all tested variants of TV-VAE on the electricity
dataset for sequence lengths L = 200, 2000 and across all observation rates (τ). This consistent
superiority demonstrates that the INR-based architecture is more effective at modeling the continuous
temporal structure of time series signals than a standard decoder that treats time as a concatenated
input feature, thereby justifying our architectural choice.

Table 24: Ablation study on the Electricity dataset (L=200). We compare TV-INR with TV-VAE
variants using different MLP decoder depths (D) and numbers of Fourier Feature frequencies (NFF).
Best results are in bold.

τ = 0.05 τ = 0.3 τ = 0.5

Model D NFF MSE MAE MSE MAE MSE MAE

TV-VAE 5 256 0.98 ± 0.22 0.78 ± 0.10 0.44 ± 0.10 0.48 ± 0.06 0.34 ± 0.07 0.41 ± 0.05
TV-VAE 5 128 1.00 ± 0.21 0.80 ± 0.01 0.48 ± 0.12 0.51 ± 0.08 0.35 ± 0.08 0.42 ± 0.05
TV-VAE 5 32 1.11 ± 0.39 0.83 ± 0.16 0.52 ± 0.16 0.52 ± 0.09 0.36 ± 0.10 0.42 ± 0.06
TV-VAE 5 0 1.24 ± 0.14 0.83 ± 0.06 0.52 ± 0.05 0.50 ± 0.02 0.43 ± 0.05 0.45 ± 0.02
TV-VAE 4 256 0.90 ± 0.14 0.74 ± 0.07 0.32 ± 0.05 0.39 ± 0.04 0.23 ± 0.04 0.33 ± 0.03
TV-VAE 4 128 1.07 ± 0.14 0.84 ± 0.06 0.57 ± 0.08 0.59 ± 0.05 0.43 ± 0.07 0.51 ± 0.04
TV-VAE 4 32 0.65 ± 0.12 0.61 ± 0.07 0.25 ± 0.04 0.34 ± 0.03 0.20 ± 0.04 0.30 ± 0.02
TV-VAE 4 0 1.41 ± 0.11 0.91 ± 0.04 0.59 ± 0.10 0.54 ± 0.05 0.45 ± 0.07 0.47 ± 0.03
TV-VAE 3 256 0.62 ± 0.16 0.59 ± 0.08 0.21 ± 0.04 0.31 ± 0.03 0.18 ± 0.03 0.28 ± 0.02
TV-VAE 3 128 0.50 ± 0.12 0.43 ± 0.07 0.19 ± 0.04 0.28 ± 0.03 0.17 ± 0.03 0.27 ± 0.02
TV-VAE 3 32 0.66 ± 0.13 0.62 ± 0.08 0.25 ± 0.05 0.34 ± 0.03 0.20 ± 0.03 0.30 ± 0.02
TV-VAE 3 0 1.58 ± 0.27 0.97 ± 0.08 0.63 ± 0.09 0.59 ± 0.04 0.51 ± 0.06 0.53 ± 0.03
TV-VAE 2 256 0.88 ± 0.13 0.78 ± 0.07 0.45 ± 0.06 0.53 ± 0.05 0.34 ± 0.06 0.44 ± 0.04
TV-VAE 2 128 0.87 ± 0.12 0.78 ± 0.06 0.41 ± 0.05 0.51 ± 0.04 0.30 ± 0.05 0.42 ± 0.04
TV-VAE 2 32 0.79 ± 0.20 0.70 ± 0.10 0.30 ± 0.05 0.40 ± 0.04 0.23 ± 0.04 0.34 ± 0.03
TV-VAE 2 0 1.59 ± 0.51 0.97 ± 0.11 0.84 ± 0.08 0.71 ± 0.03 0.76 ± 0.08 0.67 ± 0.03
TV-VAE 1 256 0.39 ± 0.10 0.43 ± 0.07 0.21 ± 0.05 0.30 ± 0.03 0.20 ± 0.04 0.29 ± 0.03
TV-VAE 1 128 0.41 ± 0.06 0.43 ± 0.08 0.21 ± 0.05 0.30 ± 0.03 0.20 ± 0.04 0.30 ± 0.03
TV-VAE 1 32 0.39 ± 0.06 0.44 ± 0.05 0.23 ± 0.05 0.32 ± 0.03 0.22 ± 0.04 0.31 ± 0.03
TV-VAE 1 0 1.37 ± 0.12 0.93 ± 0.04 1.13 ± 0.05 0.84 ± 0.02 1.09 ± 0.07 0.82 ± 0.02

TV-INRs 3 256 0.32 ± 0.06 0.37 ± 0.04 0.14 ± 0.03 0.23 ± 0.02 0.11 ± 0.02 0.21 ± 0.02

21

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231

Under review as a conference paper at ICLR 2026

Table 25: Ablation study on the Electricity dataset (L=2000). We compare TV-INR with TV-VAE
variants using different MLP decoder depths (D) and numbers of Fourier Feature frequencies (NFF).
Best results are in bold.

τ = 0.05 τ = 0.3 τ = 0.5

Model D NFF MSE MAE MSE MAE MSE MAE

TV-VAE 6 256 0.92 ± 0.11 0.78 ± 0.05 0.51 ± 0.04 0.51 ± 0.03 0.43 ± 0.03 0.46 ± 0.02
TV-VAE 6 128 0.43 ± 0.06 0.46 ± 0.03 0.37 ± 0.04 0.42 ± 0.03 0.36 ± 0.04 0.42 ± 0.03
TV-VAE 6 32 0.94 ± 0.02 0.74 ± 0.01 0.89 ± 0.03 0.71 ± 0.01 0.89 ± 0.02 0.71 ± 0.01
TV-VAE 6 0 1.17 ± 0.03 0.84 ± 0.01 1.06 ± 0.02 0.80 ± 0.01 1.06 ± 0.02 0.80 ± 0.01
TV-VAE 5 256 1.06 ± 0.23 0.83 ± 0.11 0.61 ± 0.07 0.59 ± 0.05 0.46 ± 0.03 0.48 ± 0.02
TV-VAE 5 128 0.44 ± 0.05 0.46 ± 0.04 0.38 ± 0.04 0.43 ± 0.03 0.37 ± 0.04 0.42 ± 0.02
TV-VAE 5 32 0.92 ± 0.03 0.72 ± 0.01 0.86 ± 0.03 0.70 ± 0.01 0.86 ± 0.03 0.70 ± 0.01
TV-VAE 5 0 1.16 ± 0.03 0.84 ± 0.01 1.05 ± 0.02 0.80 ± 0.01 1.05 ± 0.02 0.80 ± 0.01
TV-VAE 4 256 0.33 ± 0.02 0.39 ± 0.02 0.28 ± 0.02 0.36 ± 0.01 0.26 ± 0.02 0.35 ± 0.01
TV-VAE 4 128 0.35 ± 0.03 0.41 ± 0.02 0.32 ± 0.02 0.39 ± 0.01 0.32 ± 0.02 0.39 ± 0.01
TV-VAE 4 32 0.75 ± 0.02 0.67 ± 0.02 0.72 ± 0.02 0.65 ± 0.02 0.72 ± 0.03 0.65 ± 0.02
TV-VAE 4 0 1.10 ± 0.01 0.83 ± 0.01 1.04 ± 0.02 0.80 ± 0.01 1.05 ± 0.02 0.80 ± 0.01
TV-VAE 3 256 0.37 ± 0.02 0.43 ± 0.02 0.33 ± 0.02 0.40 ± 0.02 0.32 ± 0.03 0.40 ± 0.02
TV-VAE 3 128 0.43 ± 0.05 0.48 ± 0.04 0.40 ± 0.04 0.46 ± 0.03 0.40 ± 0.04 0.46 ± 0.03
TV-VAE 3 32 0.98 ± 0.01 0.80 ± 0.01 0.91 ± 0.01 0.77 ± 0.01 0.91 ± 0.01 0.76 ± 0.01
TV-VAE 3 0 1.09 ± 0.01 0.82 ± 0.01 1.04 ± 0.03 0.80 ± 0.01 1.05 ± 0.02 0.80 ± 0.01
TV-VAE 2 256 0.34 ± 0.03 0.41 ± 0.02 0.31 ± 0.02 0.38 ± 0.01 0.30 ± 0.02 0.38 ± 0.01
TV-VAE 2 128 0.56 ± 0.08 0.58 ± 0.05 0.53 ± 0.07 0.56 ± 0.05 0.53 ± 0.08 0.56 ± 0.05
TV-VAE 2 32 1.05 ± 0.01 0.82 ± 0.01 1.01 ± 0.03 0.79 ± 0.01 1.01 ± 0.02 0.79 ± 0.01
TV-VAE 2 0 1.08 ± 0.01 0.81 ± 0.01 1.06 ± 0.03 0.80 ± 0.01 1.06 ± 0.02 0.80 ± 0.01

TV-INRs 4 256 0.29 ± 0.02 0.36 ± 0.02 0.25 ± 0.02 0.33 ± 0.01 0.25 ± 0.02 0.33 ± 0.01

22

1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287

Under review as a conference paper at ICLR 2026

B APPENDIX B

B.1 VISUALS FROM EXPERIMENTS

(a) Imputation task for Electricity dataset L = 200, τ = 0.05.

(b) Imputation task for Electricity dataset L = 200, τ = 0.5.

Figure 4: TV-INRs imputation predictions for Electricity dataset (L = 200).

23

1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343

Under review as a conference paper at ICLR 2026

(a) Imputation task for Electricity dataset L = 2000, τ = 0.05.

(b) Imputation task for Electricity dataset L = 2000, τ = 0.5.

Figure 5: TV-INRs imputation predictions for Electricity dataset (L = 2000).

24

1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399

Under review as a conference paper at ICLR 2026

(a) Forecasting task for Traffic dataset, H = 512, F = 196.

(b) Forecasting task for Traffic dataset, H = 512, F = 720.

Figure 6: TV-INRs forecasting predictions for Traffic dataset.

25

1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455

Under review as a conference paper at ICLR 2026

(a) HAR Sample with τ = 0.05

(b) HAR Sample with τ = 0.5

Figure 7: TV-INRs imputations for HAR dataset.

26

	Introduction
	Background & related work
	Learning implicit neural representations
	Time series imputation and forecasting

	Temporal variational implicit neural representations
	Model description
	Implementation details

	Experiments
	Results
	Imputation on univariate datasets
	Forecasting on univariate datasets
	Explanation over generalization claims
	Imputation on multivariate datasets

	Conclusion
	Reproducibility Statement
	Appendix A
	The Use of Large Language Models (LLMs)
	Datasets
	Data-preprocessing
	Analysis for statistical differences
	Training, validation, and test splits for all experiments
	Hyperparameters for all experiments
	Classifer results
	TimeFlow results for different missingness rates
	Complexity analysis for TV-INR
	Training times comparison
	Inference times comparison
	Ablation study on the number of Fourier Frequencies
	Comparison with standard VAE baseline

	Appendix B
	Visuals from experiments

