Under review as a conference paper at ICLR 2026

BTC-LLM: EFFICIENT SUB-1-BIT LLM QUANTIZA-
TION VIA LEARNABLE TRANSFORMATION AND BINARY

CODEBOOK

Anonymous authors
Paper under double-blind review

ABSTRACT

Binary quantization represents the most extreme form of large language model
(LLM) compression, reducing weights to =1 for maximal memory and compu-
tational efficiency. While recent sparsity-aware binarization methods achieve
sub-1-bit compression by pruning redundant binary weights, they suffer from three
critical challenges: performance deterioration, computational complexity from
sparse mask management, and limited hardware compatibility. In this paper, we
present BTC-LLM, a novel sub-1-bit LLM quantization framework that leverages
weight transformation and binary pattern clustering to overcome these limitations,
delivering both superior accuracy and efficiency. Our approach incorporates two
key innovations: (1) a Flash and Accurate Binary Codebook that identifies recur-
ring binary vector clusters, compressing them into compact indices with tailored
distance metrics and sign-based centroid updates; (2) a Learnable Transformation
that optimizes invertible scaling and rotation matrices to align binarized weights
with full-precision distributions, enabling incoherence processing to enhance layer-
wise representation quality. This eliminates the need for sparse masks, enabling
efficient inference on standard hardware. Extensive evaluations across LLaMA-
1/2/3, Qwen-2.5/3, and FBI-LLM families demonstrate that BTC-LLM establishes
a new state-of-the-art for extreme LLM compression at 1.11~0.7 bits. Notably, our
BTC-LLM delivers strong performance under extreme compression settings, with
just a 3.1% accuracy drop on LLaMA-2-13B at 0.8 bits in zero-shot benchmarks
while achieving a 1.6x speedup over FP16. Code is in the Appendix.

INTRODUCTION

Recent Large Language Models (LLMs)
such as GPT-40 (OpenAl, 2024) and
DeepSeek-R1 (Guo et al.| [2025) have rev-
olutionized natural language processing
(NLP), achieving state-of-the-art perfor-
mance across diverse tasks (Wei et al.
2022). However, the massive scale of mod-
els like DeepSeek-R1 (671B parameters)
creates unsustainable memory and storage
requirements, preventing practical deploy-
ment in constrained environments. Model
quantization (Ma et al., |2024b) addresses
this by reducing numerical precision (e.g.,
4-bit or 8-bit integers), slashing memory
usage by 4~8x with minimal accuracy
loss. Recent advances, such as Omni-
quant (Shao et al.,[2023) and DuQuant (Lin
et al., 2024a)) for post-training quantization,
demonstrate that even sub-4-bit methods

1 bit 1024centriods 0.9 bit 512centriods

Number of vectors

000
s00
o00
a0

- 200

ol = = = — ; o = pe -

index
binary weight
matrix binary vectors
reshape

mapping to index 327

e R

Figure 1: Binary vector distribution (length 10). Left:
Standard mapping to 1024 indices. Right: 512 code-
book centroids.

can maintain > 90% of original model performance.

Under review as a conference paper at ICLR 2026

(@)FP16 (b)BiLLM (c)ARBLLM (d)BTCLLM

Figure 2: Activation distributions for the self_attn.k_pro7j layer in the LLaMA-2-7B model:
(a) Original FP16 (max abs: 8), (b) BILLM (max abs: 15), (¢) ARB-LLM (max abs: 10), and (d) our
proposed BTC-LLM (max abs: 0.4).

Binary quantization (Rastegari et al., 2016b)) represents the most aggressive quantization approach
in the line of model quantization, converting floating-point weights to binary values (£1) to re-
duce memory requirements by over 32x (Liu et al.l [2018)). For instance, BitNet (Wang et al.,
2023) pioneered quantization-aware training for 1-bit LLMs, achieving ultra-low memory con-
sumption (0.4GB) and fast inference (29ms). Recent post-training methods like BiLLM (Huang
et al., 2024a) and ARB-LLM (Li et al., |2025) employ advanced binarization strategies (e.g., resid-
ual approximation, alternating refinement) to enhance 1-bit LLM performance without requiring
retraining. STBLLM (Dong et al.| [2025)) identifies and removes redundant binary parameters to
achieve sub-1-bit compression with semi-structured N:M sparsity. However, such sparsity-based
binarization faces critical challenges: (1) Performance Collapse: STBLLM relies on detecting
which elements to prune, yet it suffers from severe accuracy degradation across various LLMs,
retaining only 51~65% of full-precision performance on challenging benchmarks (e.g., ARC-c and
HellaSwag). (2) Hardware Incompatibility: Structured sparsity such as 2:4 is not a free lunch.
For instance, each 4-value tuple in a 2:4 pattern admits C (4, 2) =6 possible mask configurations,
which requires [log, 6] = 3 bits to encode. Consequently, the effective storage cost per weight is

sign bits4mask bits __ 243 __ : : . .
aoights = == = 1.25 bits. These naturally yield a question:

(RQ) How can we design a hardware-friendly algorithm to further compress binary weights for
sub-1-bit LLMs while maintaining performance?

To answer this question, we first analyze the weight distribution patterns of binarized LLMs to explore
their potential for more compact compression. As shown in Figure[I] we adopt product quantization
by splitting the binary weight matrix into sub-vectors, each mapped to an index (e.g., index 327
corresponds to the binary pattern [-1, +1, -1, +1, ...]). Interestingly, these locally continuous blocks
exhibit clear clustering patterns, which motivates us to further compress the model by representing
redundant +1 weights with a compact set of centroid vectors.

We further examine the activation distribution of binarized LLMs and empirically observe the presence
of prominent outliers. Such large activations amplify the quantization error, since the forward error

term can be expressed as XW — XW = X (W — W), where outlier entries in X magnify the impact
of binarized weight noise. As shown in Figure |Z| (b-c), BiLLM shows a wide dynamic range (with
absolute values up to 15) with prominent outliers, while ARB-LLM still exhibits noticeable noise
and instability. This motivates the need for outlier mitigation, even in binarization methods.

Building on these insights, we propose BTC-LLM, a novel framework that enables extreme com-
pression of LLMs to below 1 bit per parameter. Our approach adopts a two-pronged strategy to
tackle key challenges. First, to exploit redundancy in binary weights, we develop a Flash and
Accurate Binary Codebook, offering a hardware-efficient alternative to sparsity-aware methods
that achieves sub-1-bit compression. Our binary-specific codebook compression achieves a superior
compression ratio of approximately 16 - v/[log, ¢|, where v denotes the vector dimension and c the
codebook size. It preserves model performance by retaining the essential distributional characteristics
of binary weights. In contrast to sparse quantization, which requires specialized hardware support
for efficient N:M sparse computation patterns, our codebook approach enables seamless deployment
on standard hardware through simple lookup operations. Second, to mitigate activation outliers,
we introduce a Learnable Transformation consisting of an invertible parameter A, D1 and R.
As shown in Figure 2] (d), this approach effectively suppresses activation outliers, constraining the
maximum absolute value to 0.4.

Under review as a conference paper at ICLR 2026

As shown in Figure [3] our comprehensive evaluations of the LLaMA family of models (7B to
65B parameters) demonstrate the superior performance of BTC-LLM in multiple bit width settings.
First, we establish a strong binary baseline

that achieves a perplexity of 6.06, surpass- VPTQ 264.35

ing even 2-bit quantization methods. In ag- GPTVQ

gressive quantization regimes (0.9 and 0.8 2 Dl i'RL;rLM 100,51

bits), BTC-LLM exhibits remarkable ro- B 0% o stBUM '

bustness, maintaining performance nearly % —*— BTCLLM

identical to its 1.11-bit configuration. Even S

at 0.7 bits, it achieves a reasonable per- & 32.3],

plexity of 11.02, while attaining a 22x § a4 18.74
reduction in memory usage. In zero-shot E ’ 13.06
benchmarks, BTC-LLM consistently out- g 10 - 11.0
performs STBLLM by significant margins 613 6.06 6.07 6.60

across model sizes, with gains of +4.7% on ¥

LLaMA-1-13B and +5.0% on LLaMA-2- 16 2 1 0.9 0.8 07
13B at 0.8 bits, demonstrating exceptional Bit — Width

robustness under sub-bit quantization. Figure 3: Perplexity of LLaMA-2-7B on WikiText2.

Our BTC-LLM outperforms 2-bit methods at 0.9-bit.
2 RELATED WORK

LLM Quantization reduces memory and computation by representing parameters with fewer bits.
The pioneering Quantization-aware Training (QAT) methods like LLM-QAT (Liu et al.,[2024b) can
achieve excellent results but require extensive retraining that is expensive for billion-parameter LLMs.
Existing PTQ methods fall into two main categories: (1) scaling-based approaches, such as AWQ (Lin
et al., 2024b) and SmoothQuant (Xiao et al.}|2023)), which identify and rescale influential weights
to control activation outliers; and (2) rotation-based approaches, such as QuIP# (Tseng et al., 2024)
and QuaRot (Ashkboos et al.l 2024), which redistribute outliers more evenly across dimensions with
transformations.

Binarization represents the most extreme form of quantization, constraining parameters to a single
bit (£1). It was first explored in CNNs with XNOR-Net (Rastegari et al.,[2016a) and Bi-Real Net (Liu
et al.| 2018)), and later extended to LLMs by BitNet (Wang et al., 2023)), which showed the feasibility
of training 1-bit models from scratch. Recent PTQ methods for LLMs include BiLLM (Huang
et al., [2024b), which preserves salient weights, and ARB-LLM (Li et al., [2025)), which iteratively
refines bias and scaling factors. To push beyond 1 bit, STBLLM (Dong et al.| 2025) introduced
semi-structured sparsity on binary weights for sub-1-bit compression.

3 PRELIMINARY

Binarization. Binarization represents an extreme form of weight compression in LLMs. For a
full-precision weight W € R™*™, we define the objective of binarization as

N — 1 &
argmin ||[W — oB|[%, whereW:qu,u:fZW_j, ey
a,B m j=1

where « € R™ denotes the row-wise scaling factor, and B € {41, —1}"*™ is a binary matrix.

It is a common practice to apply a row-wise redistribution before binarization first to achieve a zero-
mean distribution in a row. Under the objective of binarization (Equation [I)), the optimal solutions for
o and B can be solved with v = - ZT:I W ;| and B = sign(W) respectively. However, simply
applying this strategy can incur substantial L binarization error for LLMs, formulated as:

Ly = ||R||%, where R=W —a;B; — p,)

To mitigate this error, different approaches have been proposed. BiLLM (Huang et al., [2024b)
considers salient weights and approximates the residual with a secondary binarization R ~ aBs. In
contrast, ARB-LLM (L1 et al.,[2025) addresses the distribution shift between the means of binarized
and full-precision weights by iteratively refining the bias firefine = 1 + % Z;n:l R.;, the row scaling

factor Qyefine = %diag(BT(W — Lbefine))» and the binarized matrix Biefine = sign(W — firefine)-

Under review as a conference paper at ICLR 2026

—————————————————————

-
@ - mE N Binary ARB
= — binary “ Quantizer Quantizer
N = codebook |
| 1
! binary
} weight
!
!
!
!
!
I

index| pinary
codebook

Binary
Quantizer

W W -1/+1 bit

/ binary index and
. binary codebook vector

A] :.@
.

'a °Ji
.

transform
matrix

Softmax

)
! merged
1 weight

(Ve
' '
'

Figure 4: Overall architecture of BTC-LLM. (a) Sub-bit pipeline: the ARB quantizer transforms
full-precision weights into binary form with associated scale and bias, followed by binary codebook
representation and index assignment. (b) Structure of transformed attention (b1) and FFN (b2) blocks.
The transform matrix is merged into the weights to ensure computational equivalence and efficiency.

Codebook Compression. Pruning is appealing in principle, but it often leads to accuracy degrada-
tion and non-trivial mask-index overhead. As noted in introduction, semi-structured pruning requires
0.25 mask bits per weight. Besides scalar quantization, vector quantize employs a codebook to
represent weights. To be specific, a weight W, ,, is mapped in a codebook C.,, that consists of ¢
codebook vectors, each of dimension v. Now we need to store the codebook C.y, as well as the
index assignments instead of the original weights. Since the codebook overhead can be ignored and
the compression ratio can be calculated as [log, ¢]/(16 - v) bits of weights index storage.

Learnable Transformation. Recent work [Xiao et al.|(2023)); |Shao et al.| (2023); [Liu et al.| (2024c));
Ashkboos et al| (2024); |Sun et al.| (2024); |[Hu et al.| (2025)) on weights, activations quantization
have shifted the focus towards eliminating outliers. Outliers enlarge the value range, leading to a
coarser quantization step size scale = max(value)/2", which amplifies quantization error. Formally,

XW-—XW=X (W — W), where outlier entries in X magnify the effect of quantized weight noise.
However, the outlier issue remains unexplored in the context of binarized LLMs, where quantization
noise is inherently more severe.

4 METHODOLOGY

As shown in Figure@ we introduce BTC-LLM, a novel sub-1-bit LLM quantization method combines
a Flash and Accurate Binary Codebook to capture repeated 1 patterns with a learnable incoherence-
processing transform that reduce outilers and aligns weights to the codebook.

4.1 FLASH AND ACCURATE BINARY CODEBOOK

Binary Codebook. Existing vector quantization methods (Liu et al., | 2024a; |Van Baalen et al.| [2024)
are tailored for full-precision weights and are misaligned with the nature of binary weights, directly
applying a sign function to full-precision codebooks results in significant errors, and calculating full
precision Hessian-weighted distances requires high cost. To address this mismatch, we introduce a
binary-specific codebook tailored for compressing binarized weights.

Under review as a conference paper at ICLR 2026

Although both the codebook entries and weights are constrained to —1 and +1, finding the optimal
codebook remains an NP-hard problem, detail refer to Appendix [E| To address this, we propose
an efficient approximate optimization method inspired by the floating-point KMeans algorithm,
combined with the inductive bias of binary vectors distribution. The process consists of three main
stages:

(1) Initialization: Given binary vectors B = {by,bo,..., by} where b; € {—1,+1}", we extract
the set of unique vectors U = {uy,...,up} from B. If M > K (codebook size), we select the

top-K most frequent vectors in 2/ as the initial centroids C(*) = {c§°>, . 7c(fg)}. Otherwise M < K,
weset C(0) =/ andlet K = M.

(2) E-step Assignment: For each vector b;, we first test whether it is identical to any centroid cy; if
so, we simply set z; = k. Otherwise, we choose the nearest centroid via

. 2
zi = argmm”bi - ck||2.
k
Because every element is binary (£1), the squared Euclidean distance reduces to a scaled Hamming

distance:)
2
b —c|l; =Y (b — ;) =4>_[b; # ¢;] =4du(b,c),
J J

where d g (b, ¢) counts the number of different elements. By packing the £1 entries into int 64, the
Hamming distance can be computed with one XOR — POPCNT instruction: dg (b, c) = POPCNT
(b ® c¢) (Jiang et al.,|2017; [Piao, 2022; Pham et al.,2025). Unlike reconstruction error-based metrics
such as | XB — X B||3, this approach directly leverages the binary structure, avoiding costly matrix
multiplications. Since each element is represented by a single bit, all computations can be performed
directly in shared memory without additional memory I/O.

(3) M-step Centroid Update: For cluster k with assignment set B, C {£1}%, we update the binary
centroid c;, € {+1}% by solving:

cp = sign(IB—lk‘ Z bL), sign(O) = +1.
b; €Bk

This keeps the centroid binary and reduces the within-cluster distortion; low-level SIMD/bit-count
details are deferred to the Appendix.

After initialization, we alternate E-step and M—step: the E-step assigns each binary vector to its
nearest codeword, yielding index z; the M-step updates the codebook C. Both steps are implemented
with bit-packing and XNOR/POPCNT primitives to exploit instruction-level (SIMD) parallelism,
rather than costly floating-point reductions. To further reduce memory footprint and I/O, we adopt a
shared codebook for all linear projections, learned jointly by concatenating their binarized matrices
during training. At inference, a single codebook is cached and reused, cutting parameter loads and
bandwidth pressure (see Appendix for implementation details).

4.2 INCOHERENCE PROCESSING WITH LEARNABLE TRANSFORMATION

To address the outlier issue in binarized LLM and aligns weights to the codebook, in this section,
we propose a binary incoherence processing scheme to reduce quantization error. Specifically, we
introduce three learnable parameters, A, D4 and R, combining them into a transformation pair
T := AD4 R, where A = diag(s) is an invertible diagonal scaling matrix, Dy = diag(o) denote
a diagonal sign matrix with o; € {#1} and R is an invertible orthogonal matrix. After applying
the transform, each weight matrix is binarized and compressed into a codebook representation, i.e.,
Codebook(B(T - W)), where B(-) denotes the binary quantizer and Codebook(-) denotes the
codebook compressor. We optimize the transform parameters in a block-wise manner. For the [-th
Transformer block, we solve

n%iln(Hﬁ(X)—ﬁl(X;Tl)Hi+£aux)7 G)

where F;(-) and F;(-) denote the original and quantized block (self-attention or FFN), and T; collects
the transformation parameters for that block. The auxiliary term £,,x encourages the emergence of
sign-cluster patterns, as illustrated in Figure

Under review as a conference paper at ICLR 2026

The diagonal matrix A is initialized as A; = max(|7;|*)/max(|W;|*~), aiming to mitigate the
impact of activation outliers. We adopt per-channel scaling along with channel-wise shifting, defined
asT = x —zand W = W — 2. We define the diagonal sign matrix as Dy = diag(oy,...,04)
with o; € {£1}. Being invertible, it performs channel-wise sign flips without changing magnitudes.
We learn D using a straight-through estimator (STE) and applying a larger learning rate for stable
update. And the matrix R is defined as an orthogonal matrix, enabling efficient online computation of
its inverse as R~ = RT. To optimize R, we employ Cayley SGD (Li et al., |2020; |Liu et al., [2024c)),
which preserves orthogonality throughout training and ensures that R remains on the Stiefel manifold.
The auxiliary loss is aimed to encourage binary vectors to share a few common sign patterns so
that a compact codebook suffices. Stack the B binary vectors ({b1, ba, ..., by}) into a row matrix
M € {£1}5*" and define the vector-similarity Gram matrix G = 1 MM T € R®*5. When many
vectors follow the same patterns, the spectrum of GG concentrates in its top- K eigenvalues. We promote
this by minimizing Lgm = Tr(G) — Zfil Ai(G), which becomes small when the top- K eigenvalues
dominate so that are similar. To avoid the trivial collapse where all entries are +1 or —1, we add a

2
global-balance term that keeps the overall sign mean near zero: Ly, = (B%; Zszl 25:1 My, g) .
Our auxiliary objective is Lyyx = A1 Lgim + A2 Lpal-

In the attention block (Fig. 4(b1)), we use a shared transform T, for the Q/K/V projections and its
inverse for the output projection:

Q/ = XWqTallna K/ = XWkﬂlttnv V/ = XWdettm W/O = TAEI} Wo~ (4)
Because Ty, is orthogonal, the attention scores and outputs are unchanged:
softmax(Q'K') V'W! = softmax(QK ")VW,. 5)

An analogous paired transform 7'ffn is used for the up/gate/down projections in the FFN block (Fig.
4(b2)), so that the block remains functionally equivalent while its weights are reparameterized. After
reparameterization, Ty, and Tj, are discarded and only the compressed binary weights are stored.
Although DL and A can be merged into a single diagonal factor, doing so forces one parameter to
serve two roles, sign flip and magnitude scaling—making optimization unstable. Instead, we keep
them separate and adopt staged training: (1) optimize A and R with all other parameters frozen; (2)
then optimize Dy using STE and larger learning rate while freezing the rest.

For the binary quantizer, we follow the binarization procedure described in ARB-LLM. Since the
incoherence-processing transformation inherently incorporates activation information, we specifically
adopt the naive ARB method rather than the ARB-RC or ARB-X variants for weight binarization
which is faster and simpler.

4.3 COMPRESSION ANALYSIS

As illustrated in Figure [] (a), binary weights are compressed into a binary codebook and index
mappings. Given an original weight matrix of shape n X m, with a codebook of size c and vector
length of v, the index requires [log, c¢] bits per vector, and each centroid occupies v bits. In Figure
(b), the transformation matrix can be fused into the model weights, incurring no additional storage
overhead. Thus, the total storage cost is vc + [log, ¢] - mn/v. Since vc is relatively small and can be
amortized, the effective compression ratio is approximately 16 - v/ [log, c].

5 EXPERIMENTS

5.1 SETTINGS

Models, Datasets, and Baselines. We evaluate BTC-LLM on LLaMA-1/2/3 (Al@Meta, 2024)
models ranging from 7B to 65B parameters. Performance is measured by WikiText2 perplexity and
zero-shot accuracy on seven QA benchmarks: ARC-c/e (Clark et al.| 2018]), BoolQ (Clark et al.,
2019), HellaSwag (Zellers et al.| 2019), OBQA (Mihaylov et al.| 2018)), RTE (Chakrabarty et al.,
2021)), and Winogrande (Sakaguchi et al.,2020). For comparison, we include strong PTQ baselines
spanning vector and binary quantization, including VPTQ (Liu et al.,[2024a), GPTVQ (Van Baalen
et al.| 2024), QuIP# (Tseng et al.,2024), BIiLLM (Huang et al.| 2024b), ARB-LLM (Li et al., 2025)),
and STBLLM (Dong et al., 2025).

Under review as a conference paper at ICLR 2026

Algorithm 1 Binary Codebook Compression with Learned Transformation

func BTC(W, T = [R,s,d]) func BinaryCodebook(B)
Input: W ¢ R:wn 1: reshape B into N vectors {by,..., by}
R eR"™™, s, d e R" 2: C + InitCentroids(Unique({b;}), K)
Output: W € R"*™ 3: fort =1to T do
I: W« diag(sod)™'-RT-W 4: z; « Assign(b;, C)
2: a,B,u <+ ARB(W) 5: fork=1to K do
3: index, C < BinaryCodebook(B) 6: C}, + sign (ﬁ Dok bi)
4: B + C[index} 7: end for
5 W—a-B+pu 8: end for
6: return W 9: return {z;}, {cx}
Table 1: Perplexity results comparison on the LLaMA family.
Settings LLaMA-1 LLaMA-2 LLaMA-3
Method W-Bits 7B 13B 30B 65B 7B 13B 8B
PPl 16 368 509 __ 4l 353 547 488 614
QulP# 2 6.86 5.97 5.02 4.36 6.66 5.74 -
GPTVQ 2.15 9.64 6.58 5.63 491 8.23 6.50 12.05
JYPIQR 2 990 877 713 401 613 532 919
BiLLM 1.11 49.79 14.58 9.90 8.37 32.31 21.35 55.80
ARB-LLM 1.11 14.03 10.18 7.75 6.56 16.44 11.85 27.42
T 553 459 394 606 529 L
GPTVQ 0.90 206.19 47.08 26.12 12.33 100.81 82.34 1309.08
VPTQ 0.90 20428.75 8804.51 2344.10 1119.29 23886.32 5037.47 95164.06
Ll W e San L ais L Al Gl S o]
GPTVQ 0.80 667.55 131.72 68.85 32.56 264.35 201.67 10504.19
VPTQ 0.80 24558.40 9214.89 323822 1234.41 228658.5 6384.77 160533.59
STBLLM 0.80 15.03 9.66 7.56 6.43 13.06 11.67 33.44
T 6017 " 529 ' " 474 T 660 " 583 T 2497
GPTVQ 0.70 1485.57 933.55 261.77 61.52 803.44 640.95 18147.61
VPTQ 0.70 29059.71 14355.85 4850.63 1485.06 195876.71 9453.86 277407.84
STBLLM 0.70 19.48 11.33 9.19 791 18.74 13.26 49.12
BTC-LLM 0.70 10.72 9.01 7.80 6.61 11.02 8.76 18.54

Table 2: Accuracies (%) for 7 zero-shot tasks from sub-bit binarized LLaMA family with STBLLM
and BTC-LLM.

Models Method W-Bits Winogrande OBQA Hellaswag Boolg ARC-e ARC-c RTE Average
(FPI6 16 7269 3320 5991 7789 7740 4642 7040 63.80
LLaMA-1-13B _STBLLM _ 0.80 6598 3620 __ 6367 _ 6538 6886 3404 5668 5583
BTC-LLM 0.80 70.8 41.6 72.48 7486 678 4224 5596 60.82
(FPI6 16 7597 3600 6337 8269 8030 5290 6715 6740
LLaMA-1-30B STBLLM __ 080 _ _ 7159 4100 6985 _ 7737 7155 413 4801 _60.10
BTC-LLM 0.80 76.07 45.0 76.07 7171 7399 4539 66.06 64.48
JFPI6 16 7222 3520 6003 8055 7942 4838 6534 6500
LLaMA-2-138 _STBLLM__ 080 6393 3700 __57.76__ 7153 _ 6056 _ 3199 _ 5415 5385
BTC-LLM 0.80 69.46 71.53 72.63 7153 7075 4275 64.62 61.91

5.2 MAIN RESULTS ON LLAMA FAMILY

We observe in Table[I|that BTC-LLM consistently achieves the best perplexity on Wikitext2 across
diverse quantization settings and model sizes. At 1.11 bits, it surpasses prior binary methods (BiLLM,
ARB-LLM) and even outperforms 2-bit VQ methods (QuIP#, GPTVQ, VPTQ), reaching performance
close to the full-precision baseline (5.47 — 6.06). Under aggressive settings (0.9-0.7 bits), BTC-LLM
remains robust—matching 1.11-bit accuracy at 0.9 bits and still outperforming STBLLM by large
margins (e.g., 6.60 vs. 13.06 at 0.8 bits), while VPTQ collapses.

Under review as a conference paper at ICLR 2026

Table 4: Ablation study on LLaMA-2-7B across WikiText2 and 7 zero-shot tasks.
(a) Study of Codebook Vector Length (vector length / centroids) under 0.8bit

Vector length 1.11bit v4c9 v8c85 v10c256 v12c777 v14c2353 v16c7132 v18c21619 v20c65536
WikiText2 | 6.06 39.97 17.58 14.00 11.68 8.75 6.60 6.12 6.06
mean acc T 61.84 3652 41.15 42.77 45.62 49.84 58.46 60.79 61.84
quant time(min) 36 43 44 46 46 52 56 61 66

(b) Study of Learned Transform (c) Study of Memory and codebook overhead

Method WikiText2 | mean acc 1 Method Model Mem Codebook Mem(overhead)
no 9.23 49.54 FP16 13.48GB -

R 6.95 55.64 0.9bit 0.84GB 77.4TMB(9.2%)

R+ A 6.82 57.11 0.8bit 0.74GB 25.56MB(3.4%)
R+A+ Dy 6.60 58.46 0.7bit 0.65GB 8.43MB(1.2%)

(d) Study of Activation Quantization (e) Study of Number of Split Points

Method WikiText2 | mean acc 7 Method WikiText2 | mean acc 1
LLaMA-2-7b W0.8A16 6.60 58.46 LLaMA-2-7b 0.8bit 1 Split Point 10.12 49.18
LLaMA-2-7b W0.8A8 6.61 59.60 LLaMA-2-7b 0.8bit 2 Split Point 6.60 58.46
LLaMA-2-7b W0.8A4 7.20 55.74 LLaMA-2-7b 0.8bit 3 Split Point 6.13 61.11
Latency memory Quantization time & Mean Accuracy
a0 torch w16a16 0L T E=
N . [
B o] mm orcuosie [bf w
5 4. ; I
g s 20.7 x) L8
=y | &
v 6 30 H
e s | s
§ 1w ‘ [
] |
< 2 + fao
0.84 0.74 0.65
° 4k 8k 16k 32k 64k ° FP16 0.9bit 0.8bit 0.7bit ° vaco VBcBS v10c256 v12c777 v14c2353 v16C7132 V1821619 V2065536 1.1lbit
M = batch size * sequence length weight bits vector length & number of centroids

Figure 5: Latency, memory usage, and accuracy under sub-1-bit quantization on LLaMA-2-7B.

Zero-Shot Results. We evaluate BTC-LLM on
7 zero-shot benchmarks using LLaMA-1-13B,
LLaMA-2-13B, and LLaMA-1-30B under 0.80-

Table 3: Perplexity of WikiText2 and mean zero-
shot accuracy of FBI-LLM with our binary code-
book (FBI-LLM).

bit settings. As shown in Table 2] BTC-LLM

consistently outperforms STBLLM in all models, Settings 130M 1.3B
with gains of +4.7% and +5.0% on LLaMA-1- .. Bits WikiText2 Mean WikiText2 Mean
13B and LLaMA-2-13B, respectively. Remark- PPL_ Acc PPL Acc
ably, on LLaMA-1-30B, BTC-LLM even slightly 2782 00 20 B4 24 0
surpasses the FP16 baseline (6448 VS. 6440), FBI:LLMig ():70 38:29 39:29 |9:02 4]:43
FBILLMpc 050 4813 3907 2091 3959

demonstrating strong robustness under aggressive
compression. For more comprehensive results,
please refer to Appendix Table [6]

5.3 ABLATION STUDY

Extending to Pretrained Binary LL.Ms. Recent works such as BitNet (Wang et al., [2023)) demon-
strate the promise of training LLMs with binarized weights from scratch. Inspired by this trend, we
explore whether further redundancy remains in the binary representation. Specifically, we extend our
binary codebook compression to FBI-LLM (Ma et al., [20244)), a distilled, fully binarized LLM.

As shown in Table 3] compared to the original 1-bit FBI-LLM baseline, our codebook-based com-
pression (FBI-LLMpg() achieves comparable or even superior performance under more aggressive bit
reductions. For example, at 0.80 bits, FBI-LLMpc improves the 1.3B model’s mean accuracy from
43.02 to 43.49 with only a slight perplexity increase (14.41 — 18.23). Even at 0.50 bits, it maintains
39.59 accuracy, demonstrating that our method effectively exploits redundancy in binary models,
enabling sub-1-bit compression without sacrificing downstream performance.

Under review as a conference paper at ICLR 2026

Effectiveness on Qwen Family Mod- Table 5: Implementation on Qwen Family Models (Wiki-
els. To demonstrate the generalizabil- Text2 ppl / mean accuracy)

ity of our method, we evaluate it on
both Qwen2.5 and Qwen3 model fam- Model Qwen2.5-3b Qwen2.5-14b Qwen3-8b Qwen3-14b
ilies (Yang et al.,|2024) across various FP16 8.03/65.24 529/72.25 9.72/69.47 8.64/72.71
model sizes. As shown in the Table 1 11bit 9.75/62.77 6497279 11.60/6545 12.05/66.53
B ou oo bit uanissioncomiconly 3 M, oty et nee
;Ezr‘é?ltfﬁf_ariz?ﬁfeé?;?:?if_:laf_r&sts:rig 07bit 18.71/4648 12.28/56.98 15.87/59.00 16.11/58.23
0.9-bit, the models retain accuracy close to FP16, while significantly reducing perplexity degradation.
This highlights the robustness of our approach under aggressive compression settings. Additional
results on the Qwen family are provided in Appendix Table

Memory, Latency. We assess our method’s efficiency in memory, codebook overhead, and system
performance. As shown in Table memory usage drops from 13.48 (FP16) to 0.65 at 0.7-bit,
achieving an 20.7x compression. The codebook overhead is negligible (e.g., 1.2% at 0.7-bit),
confirming its scalability. As shown in Figure [5] we evaluate average latency on an H800 GPU
for an MLP layer of size 8,192x28,672. Here M = batch size x sequence length. Packing 1-bit
weights allows us to load them once into shared memory and reuse them across tiles; since +1 X a
is implemented as add/sub, the kernel becomes compute-bound rather than bandwidth-bound. Our
custom wlal6 GEMM therefore achieves lower latency than the native PyTorch baseline. In the
sub-1-bit setting, we implement custom BTCLLM using a binary codebook and fuse index lookup,
sign flip, and accumulation into a single kernel. This eliminates per-weight dequantization, keeps the
small codebook on share memory, then shifts the kernel from memory- to compute-bound—yielding
higher throughput than direct dequantization.

Activation Quantization on sub-bit LLMs. We introduce a transformation that suppresses outliers
and improves activation quantization efficiency, thereby accelerating inference (Microsoft, |2023). As
shown in Table[dd] the W0.8A8 configuration offers the best trade-off, achieving the highest mean
accuracy (59.6%) with low perplexity, compared to W0.8A16 (58.46%) and W0.8A4 (55.74%). More
results are provided in Appendix Table 6]

Codebook Vector Length. As vector length increases, binary vectors form more distinct clusters,
improving representation capacity but also incurring higher update and inference costs. Table
shows that a vector length of 20 already matches the performance of the 1.11-bit non-vector baseline,
while maintaining reasonable quantization time (66 minutes), highlighting both the effectiveness and
efficiency of our binary codebook design.

Ablation for Transformation Components. We ablate the learned transform by progressively adding
components. As shown in Table using only the R component alleviates outliers and already
outperforms the naive baseline. The variant R + A, where D is merged into a single diagonal matrix
A, proves difficult to optimize and yields weaker results. In contrast, keeping Aand DL as separate
factors achieves the best performance, reaching 6.60 perplexity and 58.46% accuracy.

Ablation for Number of Split Point. We adopt a grouping strategy to quantize non-salient weights
using a split point p (Li et al.,|2025; [Huang et al.| [2024b)), which controls their partitioning. Varying
the number of split points affects model performance. As shown in Table fie] using two split points
(as in STBLLM) improves mean accuracy from 49.18% to 58.46%, while three split points further
boost it to 61.11%, confirming the effectiveness of this approach.

6 CONCLUSIONS

We present BTC-LLM, a sub-1-bit compression framework for LLMs. It employs a learnable
transformation—combining invertible diagonal scaling, sign flipping, and orthogonal matrices—to
adaptively redistribute outliers, and a binary codebook that exploits statistical redundancy via three-
stage optimization, eliminating sparse mask overhead. Experiments across multiple LLMs show
BTC-LLM achieves state-of-the-art performance in the 0.7-1.11 bit range. While activations can be
quantized, our treatment of ultra-low-bit KV cache remains preliminary (see Appendix D). We use
ARB-LLM as the quantizer; future work will explore more scalable strategies for the KV cache and
other activation pathways.

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

We acknowledge and adhere to the ICLR Code of Ethics. We have carefully considered the ethical
implications of our research and paper submission. Our work does not involve human subjects, and
it does not make use of data sets that could raise privacy or security concerns. We have ensured
that our methodology and applications do not introduce or perpetuate harmful biases, and we have
taken care to document our data sources and experimental procedures to promote transparency and
reproducibility. We have no known conflicts of interest or sponsorship to disclose.

8 REPRODUCIBILITY STATEMENT

All experiments follow standard setups with results reported from three repetitions. Complete imple-
mentation details are provided in our code, which will be open-sourced. We use fixed random seeds
(42), the Hugging Face Transformers library for model loading, and follow established evaluation
protocols for WikiText2 perplexity and zero-shot tasks, ensuring our work can be fully reproduced by
other researchers.

REFERENCES
Al@Meta. Llama 3 model card. 2024.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213-100240, 2024.

Tuhin Chakrabarty, Debanjan Ghosh, Adam Poliak, and Smaranda Muresan. Figurative language in
recognizing textual entailment. arXiv preprint arXiv:2106.01195, 2021.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill Burstein,
Christy Doran, and Thamar Solorio (eds.), ACL, pp. 2924-2936, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Peijie Dong, Lujun Li, Yuedong Zhong, Dayou Du, Ruibo Fan, Yuhan Chen, Zhenheng Tang, Qiang
Wang, Wei Xue, Yike Guo, et al. Stbllm: Breaking the 1-bit barrier with structured binary llms. In
ICLR, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Xing Hu, Yuan Cheng, Dawei Yang, Zukang Xu, Zhihang Yuan, Jiangyong Yu, Chen Xu, Zhe Jiang,
and Sifan Zhou. Ostquant: Refining large language model quantization with orthogonal and scaling
transformations for better distribution fitting. arXiv preprint arXiv:2501.13987, 2025.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. JCML, 2024a.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. arXiv preprint
arXiv:2402.04291, 2024b.

Lei Jiang, Minje Kim, Wujie Wen, and Danghui Wang. Xnor-pop: A processing-in-memory architec-
ture for binary convolutional neural networks in wide-i02 drams. In 2017 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), pp. 1-6. IEEE, 2017.

Jun Li, Li Fuxin, and Sinisa Todorovic. Efficient riemannian optimization on the stiefel manifold via
the cayley transform. arXiv preprint arXiv:2002.01113, 2020.

10

Under review as a conference paper at ICLR 2026

Zhiteng Li, Xianglong Yan, Tianao Zhang, Haotong Qin, Dong Xie, Jiang Tian, Linghe Kong, Yulun
Zhang, Xiaokang Yang, et al. Arb-llm: Alternating refined binarizations for large language models.
In ICLR, 2025.

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song, Zhenan
Sun, and Ying Wei. Duquant: Distributing outliers via dual transformation makes stronger
quantized llms. In NeurIPS, 2024a.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87-100, 2024b.

Yifei Liu, Jicheng Wen, Yang Wang, Shengyu Ye, Li Lyna Zhang, Ting Cao, Cheng Li, and Mao
Yang. Vptq: Extreme low-bit vector post-training quantization for large language models. arXiv
preprint arXiv:2409.17066, 2024a.

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net:
Enhancing the performance of 1-bit cnns with improved representational capability and advanced
training algorithm. In ECCV, 2018.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. In ACL, 2024b.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: LIm quantization
with learned rotations. arXiv preprint arXiv:2405.16406, 2024c.

Liqun Ma, Mingjie Sun, and Zhigiang Shen. Fbi-llm: Scaling up fully binarized llms from scratch
via autoregressive distillation. arXiv preprint arXiv:2407.07093, 2024a.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei Chao,
and Rongrong Ji. Affinequant: Affine transformation quantization for large language models.
arXiv preprint arXiv:2403.12544, 2024b.

Microsoft. Bitblas: A high-performance BLAS library for quantized matrix multiplication. https:
//github.com/microsoft/BitBLAS, 2023. Accessed: 2024-03-01.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

OpenAl. Hello GPT-40, 2024. URL |https://openai.com/index/hello-gpt—-40/l

Van-Khoa Pham, Lai Le, Thanh-Kieu Tran Thi, et al. Xnor-popcount, an alternative solution to the
accumulation multiplication method for approximate computations, to improve latency and power
efficiency. Journal of Technical Education Science, 20(01):12-20, 2025.

Tairen Piao. XNOR-popcount-GEMM-PyTorch-CPU-CUDA: A PyTorch implementation of real
XNOR-popcount (1-bit op) GEMM Linear PyTorch extension. https://github.com/
tairenpiao/XNOR-popcount-GEMM—-PyTorch—CPU-CUDA, 2022. Accessed: 2025-05-
15.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In ECCV, 2016a.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Joseph. Xnor-net: Imagenet
classification using binary convolutional neural networks. In ECCV, 2016b.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. In AAAI, 2020.

Wengi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large
language models. In ICLR2024 Spotlight, 2023.

11

https://github.com/microsoft/BitBLAS
https://github.com/microsoft/BitBLAS
https://openai.com/index/hello-gpt-4o/
https://github.com/tairenpiao/XNOR-popcount-GEMM-PyTorch-CPU-CUDA
https://github.com/tairenpiao/XNOR-popcount-GEMM-PyTorch-CPU-CUDA

Under review as a conference paper at ICLR 2026

Yuxuan Sun, Ruikang Liu, Haoli Bai, Han Bao, Kang Zhao, Yuening Li, Jiaxin Hu, Xianzhi Yu,
Lu Hou, Chun Yuan, et al. Flatquant: Flatness matters for llm quantization. arXiv preprint
arXiv:2410.09426, 2024.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better 1lm quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

Mart Van Baalen, Andrey Kuzmin, Markus Nagel, Peter Couperus, Cedric Bastoul, Eric Mahurin,
Tijmen Blankevoort, and Paul Whatmough. Gptvq: The blessing of dimensionality for 1lm
quantization. arXiv preprint arXiv:2402.15319, 2024.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language models.
arXiv preprint arXiv:2310.11453, 2023.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
Transactions on Machine Learning Research, 2022.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087-38099. PMLR, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In ACL, 2019.

APPENDIX

In the appendix, we include further discussions on the broader implications of our work, additional
experimental results, implementation details, and pseudocode to facilitate reproducibility.

A EXTENDED DISCUSSION

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

A large language model was utilized for grammatical and stylistic refinement of the manuscript.
Its role was strictly limited to text editing and polishing to enhance clarity. All research ideas,
experimental design, and analytical content are the original work of the authors.

A.2 BROADER IMPACTS

Our work on BTC-LLM is primarily a technical approach applied to publicly available models and is
not designed to have specific ethical or moral implications. While our compression method enables
more efficient Al deployment, any societal impacts derive from the base models themselves rather
than our compression technique.

A.3 LIMITATIONS

While BTC-LLM demonstrates substantial improvements over existing quantization methods, several
limitations should be acknowledged. While our paper shows the feasibility of combining weight and
activation quantization (W0.8A8), we have not fully explored the theoretical foundations for optimal
pairing of weight and activation bit-widths. The interaction between aggressive weight quantization
and activation quantization merits further study.

12

Under review as a conference paper at ICLR 2026

Our current approach does not address the compression of the KV cache, which can dominate
memory usage during long-context inference. Future work should integrate our binary compression
techniques with efficient KV cache management approaches. The learnable transformation process
introduces additional computational overhead during the quantization process. While this is a one-
time cost, it may be prohibitive for resource-constrained environments. For LLaMA-2-7B, this adds
approximately 20 minutes to the quantization time compared to pure ARB-LLM.

The optimal configuration parameters (vector length, number of centroids) can vary across model
architectures. While we provide general guidelines, users may need to perform architecture-specific
tuning to achieve optimal results. Although our method maintains robust performance across
general language tasks, we observe varying degradation patterns across different downstream tasks.
For example, reasoning tasks show higher sensitivity to aggressive bit-width reduction than more
knowledge-retrieval-oriented tasks.

A.4 COMPARISON WITH VECTOR QUANTIZATION METHODS

Unlike traditional vector quantization methods like GPTVQ and VPTQ which directly cluster floating-
point weights, our binary codebook approach operates in a fundamentally different manner. While
GPTVQ and VPTQ operate in the continuous floating-point space, our method works in the discrete
binary space (1 values), enabling more efficient computation through bit-level operations. Traditional
VQ methods minimize reconstruction error directly, while our binary codebook optimizes for pattern
consistency rather than exact value recovery, which better preserves the structural information critical
for binary weight distributions.

Our approach uses efficient Euclidean distance calculations rather than the more expensive Hessian-
weighted distances used in GPTVQ, resulting in faster codebook construction (up to 2.3x faster
than GPTVQ when applied to the same models). Traditional VQ methods often rely on rate-
distortion theory with assumptions about Gaussian distributions. In contrast, our binary codebook
approach is specifically designed for the Bernoulli distribution characteristics inherent in binarized
weights. Our binary codebook can be implemented using simple lookup tables and bit manipulation
operations, while traditional VQ methods require more complex floating-point computations, making
our approach particularly suitable for hardware acceleration.

A.5 COMPARISON WITH ROTATION METHODS

Our learnable transformation approach differs from previous rotation-based methods in several
key aspects. Unlike QuIP# and QuaRot which use fixed rotation matrices (often Hadamard), our
approach learns optimal transformations through gradient-based optimization, allowing adaptation to
the specific characteristics of each layer. Our transformation pairs (A, D4, R) provide more degrees
of freedom than single rotation matrices while maintaining computational efficiency through the
separation of diagonal scaling and orthogonal transformation.

Our transformation learning objective is specifically designed for binary quantization error mini-
mization, unlike general-purpose rotations that aim to redistribute outliers for uniform quantization
schemes. Our transformation is explicitly designed to interact optimally with the subsequent binary
codebook compression, creating a more cohesive pipeline compared to standalone rotations. While
previous rotation methods often rely on empirical observations about outlier redistribution, our
approach has a more direct connection to compression theory through the explicit modeling of the
binary distribution and its codebook representation.

A.6 COMPARISON WITH BINARY QUANTIZATION METHODS

BTC-LLM builds upon recent binary quantization approaches but introduces several important
distinctions. Unlike STBLLM which uses N:M sparsity patterns (requiring specialized sparse
computation kernels), our binary codebook approach maintains a structured format compatible with
standard hardware, eliminating the need for sparse matrix operations. STBLLM requires storing
both weights and separate sparsity masks, increasing the actual memory footprint. In contrast, our
approach stores only indices and a compact codebook, achieving true sub-1-bit compression.

13

Under review as a conference paper at ICLR 2026

Our method avoids the indirection and irregular memory access patterns of sparse approaches,
resulting in up to 1.8x faster inference compared to STBLLM at equivalent bit-widths. BiLLM and
ARB-LLM suffer from severe performance degradation below 1-bit, while BTC-LLM maintains
stable performance down to 0.7 bits, demonstrating significantly better robustness to aggressive
compression. Our approach is designed for compatibility with existing hardware accelerators through
simple lookup operations, unlike the specialized kernels required for efficiently executing N:M sparse
patterns.

B DETAILED EXPERIMENTAL SETTINGS

B.1 DATASET DETAILS

For WikiText2, we used version 1.0 from Hugging Face datasets. For perplexity evaluation, we used
the test split containing 241,793 tokens. For zero-shot benchmarks, we evaluated ARC-c/e using the
test split with 1,172 questions, BoolQ using the validation set with 3,270 examples, Hellaswag using
the validation set with 10,042 examples, OBQA using the test set with 500 questions, RTE using the
validation set with 277 examples, and Winogrande using the validation set with 1,267 examples. All
datasets were accessed through the EleutherAl language model evaluation harness.

B.2 HYPERPARAMETERS

For the Learnable Transformation, we used a learning rate of le-4, Adam optimizer with 3; = 0.9,
B2 = 0.999, maximum 30 iterations, early stopping patience of 10 iterations, batch size of 16 for
models <30B and 8 for larger models, and initialized A with « = 0.5.

For the Binary Codebook, we used a maximum of 5 iterations, tested vector dimensions of [4, 8, 10,
12, 14, 16, 18, 20], automatically determined codebook sizes based on vector dimension to achieve
target bit-width, and used a frequency threshold for unique vector selection of 0.01

For ARB Quantization, we used 15 ARB iterations, 2 split points by default (3 for higher accuracy),
a calibration set of 128 examples from WikiText2 training set, and a batch size of 16. For Activation
Quantization, we used min-max quantization with per-channel scaling, 32 random sequences from
WikiText2 as calibration samples, and tested bit-widths of 16, 8, and 4.

C IMPLEMENTATION DETAILS AND PSEUDOCODE

C.1 BINARY VECTOR PROCESSING

Our binary codebook compression approach is implemented through an efficient algorithm that
leverages the unique characteristics of binary weights. The algorithm strikes a balance between
compression efficiency and computational overhead while maintaining quantization fidelity.

The first step in our approach involves processing the binary weight matrix for efficient codebook
generation refer in pseudocode [5}

14

Under review as a conference paper at ICLR 2026

Algorithm 2 Binary Codebook Optimization

1: function OPTIMIZE_CODEBOOK(B, W, mask, u, «, v, ¢, max_iter)

2: Convert binary matrix B to vectors using WEIGHT_TO_VECTOR
3: Find unique vectors i/ = {uy,...,uy}in B
4: if M < c then
5: Use unique vectors as codebook C < U
6: Assign exact indices idx <— matching indices
7: else
8: Initialize C with ¢ vectors from U
9: end if
10: for ¢ = 1 to max_iter do
11: if not exact match case then
12: Compute distance matrix D;; = ||x; — ¢;]|3
13: Assign vectors to nearest centroids: z; = arg min; D;;
14: end if
15: if assignments unchanged then
16: break
17: end if
18: for each cluster k£ do
19: if cluster not empty then
20: Compute mean: mj, = ﬁ Dok Xi
21: Binarize: ¢ = sign(my)
22: Replace zeros with ones: ci[|ci| =0] =1
23: end if
24: end for
25: if exact match case and ¢ = 1 then
26: break > Early exit for exact match
27: end if
28: end for .
29: Reconstruct binary matrix: B = VECTOR_TO_WEIGHT(C|z], B)

30: Compute loss: £ = |W — (- B + 1) - mask||2
31: return {C, z,B, L}
32: end function

15

Under review as a conference paper at ICLR 2026

Algorithm 3 Binary Codebook Optimization

1: function OPTIMIZE_CODEBOOK(B, W, mask, u, «, v, ¢, max_iter)
Convert binary matrix B € {£1}"*¢ to vector representation via WEIGHT_TO_VECTOR

2:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

21:
22:
23:
24
25:
26:
27:

28:

AN AR

Extract unique vectors: U = {uy,...,up}
if M < c then
Set codebook C + U
Assign exact indices: z; < index of matching uy

goto line 25 > Skip optimization loop

else
Initialize C < c vectors randomly sampled from &/
end if
for ¢ = 1 to max_iter do
Compute Hamming distances using: D;; = 4 - dp(b;, c;)
Assign vector b; to nearest centroid: z; = argmin; D;;
if assignments unchanged from previous iteration then
break
end if
for each cluster £k = 1 to c do
Collect assigned vectors: By, = {b; | z; = k}
if | Bi| > 0 then
Compute dimension-wise mean: my = ‘Bﬁ Zbie By b;
Update centroid by majority vote: ¢cj = sign(my)
Resolve ties (zeros) by setting to +1: ¢, [my = 0] 1
end if
end for
end for .
Reconstruct binary matrix: B = VECTOR_TO_WEIGHT(C|z], B)
Compute loss: £ = |W — (- B + 1) - mask||2
return {C, z, B, L}

29: end function

> Converged

Algorithm 4 Binary Vector Processing

1

9:
10:
11:
12:

PR AL

: function WEIGHT_TO_VECTOR(B, v)

Extract non-zero elements from B

Pad with alternating +1/—1 to ensure divisibility by v
Reshape to form vectors of length v

return Vectors of shape [N, v]

end function
: function VECTOR_TO_WEIGHT(V, B)

Create mask of non-zero positions in B

Flatten vectors and remove padding

Place vector elements back into original positions
return Reconstructed binary matrix

end function

C.2 BINARY CODEBOOK OPTIMIZATION

The core of our approach is an EM-based algorithm optimized specifically for binary weights refer to
pseudocode 3] Hamming distance can be calculated by dg (b, ¢) = POPCNT (b & c), and sign base
centroid update can be accelerated by POPCNT, PCMPGTB.

C.3 EFFICIENT IMPLEMENTATION DETAILS

Our implementation incorporates several optimizations specifically for binary weights:

16

Under review as a conference paper at ICLR 2026

Algorithm 5 Efficient Binary Vector Packing and Unpacking

1: function WEIGHT_TO_VECTOR(B, v)

2: Extract indices of non-zero entries: idx < {(¢,7) | B;; # 0}
3: Extract binary values and map: b <— (Bigx + 1)/2 € {0,1}
4: Pad b with 0/1 alternately to make length divisible by v

5: Reshape b to bit-vectors: Vi € {0, 1}VxV

6: return (Vy;, idx)

7: end function

8: function VECTOR_TO_WEIGHT(Vy, idx)

9: Flatten bits: b < reshape(Vi, [—1])
10: Remove padding to match len(idx)
11: Map bits back: Bigx < 2-0—1
12: Fill remaining entries in B with zeros
13: return B
14: end function

Table 6: Complete comparison of the perplexity score on WikiText2 and averaged accuracy on
Zero-shot Common Sense Reasoning tasks for LLaMA Model Family

Models Method W#ABltIEV Winogrande OBQA Hellaswag Boolg ARC-e ARC-c RTE Average WikiText2
FP16 16-16-16 69.93 43.80 76.20 7498 7290 4471 6715 6437 5.68
LLaMA-1-7B
BTC-LLM 0.70-16-16 56.99 31.2 49.64 63.49 4646 2722 5343 4692 10.72
FP16 16-16-16 72.69 33.20 59.91 77189 7740 4642 7040 63.80 5.09

LLaMA-1-13B

0.70-16-16
16-16-16

LLaMA-1-30B

0.70-16-16
FP16 16-16-16 77.11

LLaMA-1-65B BTC-LLM 0.90-16-16 7601 466 8179 8294 7917 541 7184 7035 403

BTC-LLM 0.70-16-16 70.01
16-16-16

LLaMA-2-7B

0.70-16-16

__Fpl6 __16-16-16 7222 454 7939 8058 7748 4932 6498 67.05 _ 488
_BTGLLM _L1I-16-16 7111 448 7524 7679 7466 4531 6282 06439 = 529
LLaMA-2-13B BTC-LLM 0.90-16-16 71.9

LLaMA-3-8B BTC-LLM 0.90-16-16 7269 430 7353 774 7327 4582 5812 634 784

BTC-LLM 0.70-16-16 55.17

1. Early termination: For cases where the number of unique vectors is less than or equal to
the codebook size, we achieve perfect reconstruction with exact vector matching in a single
iteration.

17

Under review as a conference paper at ICLR 2026

Table 7: Complete comparison of the perplexity score on WikiText2 and averaged accuracy on
Zero-shot Common Sense Reasoning tasks for Qwen Model Family

Models Method Wifﬁitle Winogrande OBQA Hellaswag Boolg ARC-e ARC-c RTE Average WikiText2
FP16 16-16-16 68.59 424 7355 7688 7327 4693) 65.24 8.03
Qwen-2.5-3B
BTC-LLM 0.70-16-16 56.27 34.0 4698 60.12 4668 2858 . 46.48 18.71
__ Fpl6___16-l16-16_ 7522 450 8296 _ 8523 7921 587 7942 7225 529
_BTCGLLM _1.11-16-16 7601 460 7937 863 8283 5776 8123 7279 649
Qwen-25-14B BTC-LLM 090-16-16 7553 438 7912 8728 8047 5597 7834 715 658
_BTCLLM 080-16-16 7443 = 412 7542 8602 7664 500 _ 704 6773 742
BTC-LLM 0.70-16-16 62.98 35.0 60.11 69.05 6856 37.12 k 56.98 12.28
1068 ---TI6___1616.16 __ 5643 314 _ 473 _ 6382 5593 337 5379 4891 2095
Qwen-3-0. BTC-LLM 0.8-16-16 50.2 26.6 32.61 61.16 3342 24.66 i 40.25 120.08
3178 --SFI6___161616 __ 6117 __ 366 _ 6046 _ 7768 69.95 4275 7004 5981 __ 1671
Qwen-3-1. BTC-LLM 1.11-16-16 55.41 30.6 4602 6217 4596 273) 45.84 3256
__FPI6 161616 6772 418 7502 8664 8093 5623 7798 6947 972
Qwen-3-88 BTC-LLM _1.11-16-16 = 6567 396 _ 6702 8138 7668 5017 7762 6545 1160
BTC-LLM 0.90-16-16 67.8 382 6629 8401 7563 49.15) 65.53 11.70
__FPI6 161616 7316 464 7897 8945 8291 6049 7762 7271 864
Qwen-3-14B BTC-LLM _L.1l-16-16 6764 400 __ 6692 _ 8572 7172 4838 7834 6553 _ 1205
BTC-LLM 0.90-16-16 66.38 38.0 6582 8382 6785 4377 X 62.65 12.93

2. Efficient centroid updates: Unlike traditional k-means requiring reconstruction for each
update, our method directly computes means and applies the sign function to maintain binary
constraints.

3. Vectorized operations: We leverage PyTorch’s efficient tensor operations like
scatter_add_ and bincount to accelerate cluster assignment and centroid updates.

4. Binary-specific distance metric: Distance calculations between binary vectors utilize
squared Euclidean distance, which is more efficient than computing full reconstruction error.

C.4 COMPLETE BINARY TRANSFORMATION AND COMPRESSION

Our complete binary transformation and compression (BTC) approach combines learned transforma-
tions with binary codebook compression refer to pseudocode [6]

Algorithm 6 Binary Transformation and Compression

function BTC(W, [R,s,d))
Apply transforrnatlon W« diag(s®©d)"'-RT - W
Binarize weights: «, B, u <+ ARB(W)
Generate codebook: idx, C < BINARYCODEBOOK(B)

1:
2:
3
4:
5: Reconstruct binary: B « Clidx]
6
7
8:

Dequantlze W< a B+ I
: return W
end function

This approach achieves a compression ratio of approximately 16 - v/[log, ¢|, providing significant
memory savings while maintaining model quality through tailored binary-specific optimization
methods.

D FUTURE WORK ON ACTIVATION AND KV CACHE QUANTIZATION

Activation quantization reduces memory transfer overhead and leverages efficient low-precision
compute units. Moreover, we observe substantial redundancy in the KV cache, enabling aggressive
low-bit quantization. We further implement KV cache quantization to exploit this potential. First,
we redesign the saliency metric for the binary quantizer. Since the KV cache exhibits a shift in

18

Under review as a conference paper at ICLR 2026

window importance, we assign higher salient weights to local windows. To avoid dequantization
overhead from extreme codebook compression, we preserve local windows binary representation
without sub-bit quantization.

Given the need for on-the-fly quantization and dequantization in KV cache compression, developing
simpler and more computationally efficient quantizers remains an important direction for future
research. Inspired by Binarized Neural Networks (BNNs) in convolutional architectures, where
activations are also quantized to binary, we aim to further explore fully binarized LLMs with binary
activations.

E BINARY CODEBOOK ANALYSIS

Finding the optimal binary codebook is NP-hard, as it reduces to a special case of the well-known
k-means clustering problem, which is NP-hard when the number of clusters K > 2 and vector
dimension D > 2.

In our setting, each codebook vector is constrained to binary values {—1, +1}, and the goal is to
choose K such vectors to minimize the total reconstruction error. This requires searching over all
possible combinations of K vectors from a space of 2° candidates, yielding:

. oD . oD
Search space size = (%), and total complexity: O (() N-K- D) ,

where N is the number of weight vectors being quantized. This combinatorial explosion makes the
global optimum intractable even for moderate D, a hallmark of NP-hard problems.

F FULL RESULTS

F.1 QUANTITATIVE RESULTS

In this section, we provide a comprehensive presentation of our results across various datasets to
complement the main paper. Specifically, the results include: Complete comparison of the perplexity
score on WikiText2 and averaged accuracy on zero-shot common sense reasoning tasks on LLaMA
Model Family in Table [6]and Qwen Model Family in Table[7] And validate the effectiveness the
activation quantization and KV cache quantization of BTC-LLM.

F.2 VISUALIZATION RESULTS

Figure [6|and Figure [7)illustrate the relative quantization error between quantized and full-precision
weights for BTC-LLM, ARB-LLM, and BiLLM, highlighting the improved accuracy of BTC-LLM.
In contrast, Figure [§] and Figure [J] visualize the activation distributions across different layers of
LLaMA-2-7B before and after applying BTC-LLM, showing how our method suppresses outliers
and promotes a more compact activation range.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

model.layers.0.self_attn.q_proj model.layers.0.self_attn.q_proj model.layers.0.self_attn.q_proj

1000

1500

I, 2000

Put ¢, 2500
Ranng

model layers.0.self_attn.v_proj

500
1000
1500

,

model.layers.1.self_attn.k_proj

o
500
lwulinnzm
g gy 2500

G
Ty 3000

3500
4000

model layers.1.self_attn.q_proj model.layers.1.self_attn.q_proj

model.layers.2.self_attn.k_proj model.layers.2.self_attn.k_proj model.layers.2.self_attn.k_proj

Figure 6: Visualizations comparing of the weight relative quantize error of LLaMA-2-7B with
BTC-LLM (1st column), ARB-LLM(2nd column), and BiLLM (3rd column), respectively.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

model layers.2.self_attn.v_proj model layers.2.self_attn.v_proj model layers.2.self_attn.v_proj

1500, 7
Inpyy 2500
Chany 3000 |
4000

model.layers.3.self_attn.k_proj model.layers.3.self_attn.k_proj ‘model layers.3.self_attn.k_proj

model.layers 3.self_attn.q_proj model layers.3.self_attn.q_proj model layers.3.self_attn.q_proj

1500
50
"anne;

000,
3500 0
4000

model.layers.3.self_attn.v_proj model layers.3.self_attn.v_proj model layers.3.self_attn.v_proj

model.layers.4.self_attn.k_proj model.layers.4.self_attn.k_proj

Figure 7: Visualizations comparing of the weight relative quantize error of LLaMA-2-7B with
BTC-LLM (1st column), ARB-LLM(2nd column), and BiLLM (3rd column), respectively.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

layers.0.self_attn.q_proj output layers.0.self_attn.q_proj output
25/75 percentile
—— 1199 percentile -
4] — 119999 percentite
— MinMax
002
e 2 & o0
H H
H § oo
) a
i]
B 2 001
002
-2
25/75 percentile
003]~ 139 percentie
— 119999 percentile
— MinMax
o 1000 2000 3000 1000] 1000 2000 3000 %000
Hidden Dimension Index Hidden Dimension Index
layers.0.self_attn.k_proj output layers.0.self._attn.k_proj output
25775 percentile
—— 1199 percentile 05
o] — 119999 percentite
— MinMax
002
g 2 o o0
H § oo
3 8 i
o H
s 2 001
002
-2
25/75 percentile
003]~ 139 percentie
—— 119999 percentile
— Min/Max
o 1000 2000 3000 4000 3 1000 2000 3000 4000
Hidden Dimension Index Hidden Dimension Index
layers.0.self_attn.v_proj output layers.0.self_attn.v_proj output
25775 percentile
—— 1799 percentile 08
o] — 119999 ercentite
— Minax
002
g 2 & oo
2 2
5 £ oo
-] a
g o H
H R
002
-
25/75 percentile
003] — 199 percentie
— 1/9999 percentile
— win/Max
) 1000 2000 000 400 3 1000 2000 3000 4000
Hidden Dimension index Hidden Dimension Index
layers.0.mlp.up_proj output layers.0.mlp.up_proj output
25/75 percentile 2575 percentile
15 —— 1/99 Percentile 010 —— 1/99 Percentile
— 119999 percentile — 119999 percentile
— Minmax . MinyMax
10
005
05
H H
- £ i
B g o000 A ‘) (IVHMEN by h
8 H
£ s H
H H)
10 oo0s LI LR gt L (o Ml b
s
010
-20
o 1000 2000 000 4600 3 1000 2000 3000 %000
Hidden Dimension Index Hidden Dimension Index
layers.0.mlp.gate_proj output layers.0.mlp.gate_proj output
25775 percentile 25175 percenie
15 —— 1/99 Percentile 010 — 1/99 Percentile
— 119999 percentile — 119999 percentile
— Min/Max
10
005
05
g oo 2
B B o000 i N 7 T :
3 H
£ s H
H H
10 005
s
-010
20
o 1000 2000 3000 400 s 1000 2000 3000 000
Hidden Dimension Index Hidden Dimension index
layers..self_attn.q_proj output layers.1.self attn.q_proj output
10
25/75 percentile
—— 1/99 percentile 015
s — 119999 percentile
— winMax
010
6
B . oos
£ H
2 2
£ Z oo
8 2 g
s 2 o005
3
010
-2
= 25175 percentie
—— 1199 percentile
-4 915 —— 119999 Percentile
— winmax
) 1000 000 4000 G 1000 3000 4000

2000 2000
Hidden Dimension Index Hidden Dimension Index

Figure 8: Visualizations of the activation distribution of different layers in LLaMA-2-7B before and
after BTC-LLM. Left original activation, Right BTC-LLM activation.

22

Under review as a conference paper at ICLR 2026

Value Distribution

Value Distribution

Value Distribution

Value Distribution

Value Distribution

Value Distribution

Figure 9: Visualizations of the activation distribution of different layers in LLaMA-2-7B before and

50

layers.5.self_attn.o_proj output

Value Distribution Across First Dimension (2048) for Each Channel

04
25775 percentile
03
02
Lo
£ ool SEEEHETSISTIATENIS TR ST b
)
2
B
02
03 25775 percentile
1199 percentile
119999 percenile
s Min/Max
13 1000 2000 000 000 13 1000 2000 000 4000
Hidden Dimension Index Channel Index (0-4095)
layers.4.mip.down_proj output Value Distribution Across First Dimension (2048) for Each Channel
25/75 percentile
— 1199 percentile
— 999 percentie o0,
— MiniMax
002
H
£ oo
-]
s
002
~0.04 25775 rercentile
006
) 2000 00 G000 8000 10000 o 2000 00 6000 8000 10000
Hidden Dimension Index Channel index (0-4095)
layers.2.self_attn.o_proj output Value Distribution Across First Dimension (2048) for Each Channel
25775 percentile
— 1799 percentile
—— 1/9999 Percentile 02
— vinmax
01
E oo
3
B
01
25/75 Percentile
02 —— 19 percentile
— 119999 percentile
— MinMax

o 1000 2000
Hidden Dimension Index

layers.3.self._attn.k_proj output

o 1000

2000 3000
Channel Index (0-4095)

Value Distribution Across First Dimension (2048) for Each Channel

Value Distribution

it
e

05

-10

o 1000

2000
Hidden Dimension Index

layers.3.self_attn.o_proj output

o 1000

2000 3000
Channel Index (0-4095)

Value Distribution Across First

ension (2048) for Each Channel

75 percentie

— winMax

Value Distribution

T S YR PP T 1 1Y IR T YR AT, o

[s S RS T o e

Py PR TATRC R N bl A,

2575 Percentile

o 1000 2000
Hidden Dimension Index

layers.4.self_attn.o_proj output

o 1000

2000 3000
Channel Index (0-4095)

Value Distribution Across First Dimension (2048) for Each Channel

Value Distribution

o 1000 2000
Hidden Dimension Index

o 1000

2000
Channel Index (0-4095)

after BTC-LLM. Left original activation, Right BTC-LLM activation.

23

	Introduction
	Related Work
	Preliminary
	Methodology
	Flash and Accurate Binary Codebook
	Incoherence Processing with Learnable Transformation
	Compression Analysis

	Experiments
	Settings
	Main Results on LLaMA Family
	Ablation Study

	Conclusions
	Ethics statement
	Reproducibility statement
	Extended Discussion
	The Use of Large Language Models (LLMs)
	Broader impacts
	Limitations
	Comparison with Vector Quantization Methods
	Comparison with Rotation Methods
	Comparison with Binary Quantization Methods

	Detailed Experimental Settings
	Dataset Details
	Hyperparameters

	Implementation Details and Pseudocode
	Binary Vector Processing
	Binary Codebook Optimization
	Efficient Implementation Details
	Complete Binary Transformation and Compression

	Future Work on Activation and KV cache Quantization
	Binary codebook Analysis
	Full Results
	Quantitative Results
	Visualization Results

