
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BTC-LLM: EFFICIENT SUB-1-BIT LLM QUANTIZA-
TION VIA LEARNABLE TRANSFORMATION AND BINARY
CODEBOOK

Anonymous authors
Paper under double-blind review

ABSTRACT

Binary quantization represents the most extreme form of large language model
(LLM) compression, reducing weights to ±1 for maximal memory and compu-
tational efficiency. While recent sparsity-aware binarization methods achieve
sub-1-bit compression by pruning redundant binary weights, they suffer from three
critical challenges: performance deterioration, computational complexity from
sparse mask management, and limited hardware compatibility. In this paper, we
present BTC-LLM, a novel sub-1-bit LLM quantization framework that leverages
weight transformation and binary pattern clustering to overcome these limitations,
delivering both superior accuracy and efficiency. Our approach incorporates two
key innovations: (1) a Flash and Accurate Binary Codebook that identifies recur-
ring binary vector clusters, compressing them into compact indices with tailored
distance metrics and sign-based centroid updates; (2) a Learnable Transformation
that optimizes invertible scaling and rotation matrices to align binarized weights
with full-precision distributions, enabling incoherence processing to enhance layer-
wise representation quality. This eliminates the need for sparse masks, enabling
efficient inference on standard hardware. Extensive evaluations across LLaMA-
1/2/3, Qwen-2.5/3, and FBI-LLM families demonstrate that BTC-LLM establishes
a new state-of-the-art for extreme LLM compression at 1.11∼0.7 bits. Notably, our
BTC-LLM delivers strong performance under extreme compression settings, with
just a 3.1% accuracy drop on LLaMA-2-13B at 0.8 bits in zero-shot benchmarks
while achieving a 1.6× speedup over FP16. Code is in the Appendix.

1 INTRODUCTION

…

𝑵
𝒖𝒎

𝒃𝒆
𝒓	
𝒐𝒇
	𝒗
𝒆𝒄
𝒕𝒐
𝒓𝒔

𝒊𝒏𝒅𝒆𝒙

+1 -1 +1 -1 -1 -1 +1 +1 +1-1

𝟏	𝒃𝒊𝒕		𝟏𝟎𝟐𝟒𝒄𝒆𝒏𝒕𝒓𝒊𝒐𝒅𝒔 𝟎. 𝟗	𝒃𝒊𝒕		𝟓𝟏𝟐𝒄𝒆𝒏𝒕𝒓𝒊𝒐𝒅𝒔

𝒓𝒆𝒔𝒉𝒂𝒑𝒆

𝒃𝒊𝒏𝒂𝒓𝒚	𝒘𝒆𝒊𝒈𝒉𝒕
𝒎𝒂𝒕𝒓𝒊𝒙 𝒃𝒊𝒏𝒂𝒓𝒚	𝒗𝒆𝒄𝒕𝒐𝒓𝒔	

𝒎𝒂𝒑𝒑𝒊𝒏𝒈	𝒕𝒐	𝒊𝒏𝒅𝒆𝒙	𝟑𝟐𝟕

Figure 1: Binary vector distribution (length 10). Left:
Standard mapping to 1024 indices. Right: 512 code-
book centroids.

Recent Large Language Models (LLMs)
such as GPT-4o (OpenAI, 2024) and
DeepSeek-R1 (Guo et al., 2025) have rev-
olutionized natural language processing
(NLP), achieving state-of-the-art perfor-
mance across diverse tasks (Wei et al.,
2022). However, the massive scale of mod-
els like DeepSeek-R1 (671B parameters)
creates unsustainable memory and storage
requirements, preventing practical deploy-
ment in constrained environments. Model
quantization (Ma et al., 2024b) addresses
this by reducing numerical precision (e.g.,
4-bit or 8-bit integers), slashing memory
usage by 4∼8× with minimal accuracy
loss. Recent advances, such as Omni-
quant (Shao et al., 2023) and DuQuant (Lin
et al., 2024a) for post-training quantization,
demonstrate that even sub-4-bit methods
can maintain > 90% of original model performance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 2: Activation distributions for the self_attn.k_proj layer in the LLaMA-2-7B model:
(a) Original FP16 (max abs: 8), (b) BiLLM (max abs: 15), (c) ARB-LLM (max abs: 10), and (d) our
proposed BTC-LLM (max abs: 0.4).

Binary quantization (Rastegari et al., 2016b) represents the most aggressive quantization approach
in the line of model quantization, converting floating-point weights to binary values (±1) to re-
duce memory requirements by over 32× (Liu et al., 2018). For instance, BitNet (Wang et al.,
2023) pioneered quantization-aware training for 1-bit LLMs, achieving ultra-low memory con-
sumption (0.4GB) and fast inference (29ms). Recent post-training methods like BiLLM (Huang
et al., 2024a) and ARB-LLM (Li et al., 2025) employ advanced binarization strategies (e.g., resid-
ual approximation, alternating refinement) to enhance 1-bit LLM performance without requiring
retraining. STBLLM (Dong et al., 2025) identifies and removes redundant binary parameters to
achieve sub-1-bit compression with semi-structured N:M sparsity. However, such sparsity-based
binarization faces critical challenges: (1) Performance Collapse: STBLLM relies on detecting
which elements to prune, yet it suffers from severe accuracy degradation across various LLMs,
retaining only 51∼65% of full-precision performance on challenging benchmarks (e.g., ARC-c and
HellaSwag). (2) Hardware Incompatibility: Structured sparsity such as 2:4 is not a free lunch.
For instance, each 4-value tuple in a 2:4 pattern admits C(4,2)=6 possible mask configurations,
which requires ⌈log2 6⌉ = 3 bits to encode. Consequently, the effective storage cost per weight is
sign bits+mask bits

#weights = 2+3
4 = 1.25 bits. These naturally yield a question:

(RQ) How can we design a hardware-friendly algorithm to further compress binary weights for
sub-1-bit LLMs while maintaining performance?

To answer this question, we first analyze the weight distribution patterns of binarized LLMs to explore
their potential for more compact compression. As shown in Figure 1, we adopt product quantization
by splitting the binary weight matrix into sub-vectors, each mapped to an index (e.g., index 327
corresponds to the binary pattern [-1, +1, -1, +1, ...]). Interestingly, these locally continuous blocks
exhibit clear clustering patterns, which motivates us to further compress the model by representing
redundant ±1 weights with a compact set of centroid vectors.

We further examine the activation distribution of binarized LLMs and empirically observe the presence
of prominent outliers. Such large activations amplify the quantization error, since the forward error
term can be expressed as XW −XŴ = X(W − Ŵ), where outlier entries in X magnify the impact
of binarized weight noise. As shown in Figure 2 (b-c), BiLLM shows a wide dynamic range (with
absolute values up to 15) with prominent outliers, while ARB-LLM still exhibits noticeable noise
and instability. This motivates the need for outlier mitigation, even in binarization methods.

Building on these insights, we propose BTC-LLM, a novel framework that enables extreme com-
pression of LLMs to below 1 bit per parameter. Our approach adopts a two-pronged strategy to
tackle key challenges. First, to exploit redundancy in binary weights, we develop a Flash and
Accurate Binary Codebook, offering a hardware-efficient alternative to sparsity-aware methods
that achieves sub-1-bit compression. Our binary-specific codebook compression achieves a superior
compression ratio of approximately 16 · v/⌈log2 c⌉, where v denotes the vector dimension and c the
codebook size. It preserves model performance by retaining the essential distributional characteristics
of binary weights. In contrast to sparse quantization, which requires specialized hardware support
for efficient N:M sparse computation patterns, our codebook approach enables seamless deployment
on standard hardware through simple lookup operations. Second, to mitigate activation outliers,
we introduce a Learnable Transformation consisting of an invertible parameter Λ, D± and R.
As shown in Figure 2 (d), this approach effectively suppresses activation outliers, constraining the
maximum absolute value to 0.4.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

As shown in Figure 3, our comprehensive evaluations of the LLaMA family of models (7B to
65B parameters) demonstrate the superior performance of BTC-LLM in multiple bit width settings.

Figure 3: Perplexity of LLaMA-2-7B on WikiText2.
Our BTC-LLM outperforms 2-bit methods at 0.9-bit.

First, we establish a strong binary baseline
that achieves a perplexity of 6.06, surpass-
ing even 2-bit quantization methods. In ag-
gressive quantization regimes (0.9 and 0.8
bits), BTC-LLM exhibits remarkable ro-
bustness, maintaining performance nearly
identical to its 1.11-bit configuration. Even
at 0.7 bits, it achieves a reasonable per-
plexity of 11.02, while attaining a 22×
reduction in memory usage. In zero-shot
benchmarks, BTC-LLM consistently out-
performs STBLLM by significant margins
across model sizes, with gains of +4.7% on
LLaMA-1-13B and +5.0% on LLaMA-2-
13B at 0.8 bits, demonstrating exceptional
robustness under sub-bit quantization.

2 RELATED WORK

LLM Quantization reduces memory and computation by representing parameters with fewer bits.
The pioneering Quantization-aware Training (QAT) methods like LLM-QAT (Liu et al., 2024b) can
achieve excellent results but require extensive retraining that is expensive for billion-parameter LLMs.
Existing PTQ methods fall into two main categories: (1) scaling-based approaches, such as AWQ (Lin
et al., 2024b) and SmoothQuant (Xiao et al., 2023), which identify and rescale influential weights
to control activation outliers; and (2) rotation-based approaches, such as QuIP# (Tseng et al., 2024)
and QuaRot (Ashkboos et al., 2024), which redistribute outliers more evenly across dimensions with
transformations.

Binarization represents the most extreme form of quantization, constraining parameters to a single
bit (±1). It was first explored in CNNs with XNOR-Net (Rastegari et al., 2016a) and Bi-Real Net (Liu
et al., 2018), and later extended to LLMs by BitNet (Wang et al., 2023), which showed the feasibility
of training 1-bit models from scratch. Recent PTQ methods for LLMs include BiLLM (Huang
et al., 2024b), which preserves salient weights, and ARB-LLM (Li et al., 2025), which iteratively
refines bias and scaling factors. To push beyond 1 bit, STBLLM (Dong et al., 2025) introduced
semi-structured sparsity on binary weights for sub-1-bit compression.

3 PRELIMINARY

Binarization. Binarization represents an extreme form of weight compression in LLMs. For a
full-precision weight W ∈ Rn×m, we define the objective of binarization as

argmin
α,B

||W̃ − αB||2F , whereW̃ = W − µ, µ =
1

m

m∑
j=1

W.j , (1)

where α ∈ Rn denotes the row-wise scaling factor, and B ∈ {+1,−1}n×m is a binary matrix.

It is a common practice to apply a row-wise redistribution before binarization first to achieve a zero-
mean distribution in a row. Under the objective of binarization (Equation 1), the optimal solutions for
α and B can be solved with α = 1

m

∑m
j=1 |W̃.j | and B = sign(W̃) respectively. However, simply

applying this strategy can incur substantial L1 binarization error for LLMs, formulated as:
L1 = ||R||2F , where R = W − α1B1 − µ, (2)

To mitigate this error, different approaches have been proposed. BiLLM (Huang et al., 2024b)
considers salient weights and approximates the residual with a secondary binarization R ≈ α2B2. In
contrast, ARB-LLM (Li et al., 2025) addresses the distribution shift between the means of binarized
and full-precision weights by iteratively refining the bias µrefine = µ+ 1

m

∑m
j=1 R·j , the row scaling

factor αrefine =
1
mdiag(B⊤(W − µrefine)), and the binarized matrix Brefine = sign(W − µrefine).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

		𝑾𝑩
𝒃𝒊𝒏𝒂𝒓𝒚
𝒘𝒆𝒊𝒈𝒉𝒕

	𝑩𝒊𝒏𝒂𝒓𝒚
𝑸𝒖𝒂𝒏𝒕𝒊𝒛𝒆𝒓

						𝑨𝑹𝑩
𝑸𝒖𝒂𝒏𝒕𝒊𝒛𝒆𝒓

						−𝟏/+𝟏		𝒃𝒊𝒕

						𝒃𝒊𝒏𝒂𝒓𝒚	𝒊𝒏𝒅𝒆𝒙	𝒂𝒏𝒅	
𝒃𝒊𝒏𝒂𝒓𝒚	𝒄𝒐𝒅𝒆𝒃𝒐𝒐𝒌	𝒗𝒆𝒄𝒕𝒐𝒓

𝑾𝒇𝒑𝟏𝟔

	𝑩
𝒊𝒏
𝒂𝒓
𝒚

𝑸
𝒖𝒂
𝒏𝒕
𝒊𝒛
𝒆𝒓

𝑾𝑩

𝑺𝒄
𝒂𝒍
𝒆

𝑩𝒊𝒂𝒔

	𝒊𝒏𝒅𝒆𝒙 ✕

	╋

𝒏

𝒎 𝒃𝒊𝒏𝒂𝒓𝒚
𝒄𝒐𝒅𝒆𝒃𝒐𝒐𝒌

𝒊𝒏𝒅𝒆𝒙

𝒃𝒊𝒏𝒂𝒓𝒚
𝒄𝒐𝒅𝒆𝒃𝒐𝒐𝒌

𝐥𝐨𝐠𝟐 𝒄 𝒃𝒊𝒕

𝒗	𝒃𝒊𝒕

𝒎 𝒄

(𝒂)

		𝑻𝒂𝒕𝒕𝒏		𝑾𝒒

		𝑻𝒂𝒕𝒕𝒏		𝑾𝒌

		𝑾𝒗

𝐑
𝐨𝐏
𝐄

		𝑻𝒂𝒕𝒕𝒏

•

𝐒𝐨
𝐟𝐭
𝐦
𝐚𝐱

• 		𝑾𝒐		𝑻𝒂𝒕𝒕𝒏𝑻

𝑾
𝒏𝒐
𝒓𝒎

𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏	𝑩𝒍𝒐𝒄𝒌(𝒃𝟏)

		𝑻𝒇𝒇𝒏𝑻 		𝐖𝒈𝒂𝒕𝒆

		𝑻𝒇𝒇𝒏𝑻 		𝐖𝒖𝒑

	𝑨𝒄𝒕

 ✕ 		𝐖𝒅𝒐𝒘𝒏 		𝑻𝒇𝒇𝒏

𝑾
𝒏𝒐
𝒓𝒎

𝑭𝑭𝑵	𝑩𝒍𝒐𝒄𝒌(𝒃𝟐) 		𝑾𝒐		𝑻𝒂𝒕𝒕𝒏𝑻 𝒎𝒆𝒓𝒈𝒆𝒅
	𝒘𝒆𝒊𝒈𝒉𝒕

		𝑻𝒇𝒇𝒏

𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎
				𝒎𝒂𝒕𝒓𝒊𝒙

𝚲 		𝑫± 𝑹= · ·

Figure 4: Overall architecture of BTC-LLM. (a) Sub-bit pipeline: the ARB quantizer transforms
full-precision weights into binary form with associated scale and bias, followed by binary codebook
representation and index assignment. (b) Structure of transformed attention (b1) and FFN (b2) blocks.
The transform matrix is merged into the weights to ensure computational equivalence and efficiency.

Codebook Compression. Pruning is appealing in principle, but it often leads to accuracy degrada-
tion and non-trivial mask-index overhead. As noted in introduction, semi-structured pruning requires
0.25 mask bits per weight. Besides scalar quantization, vector quantize employs a codebook to
represent weights. To be specific, a weight Wn×m is mapped in a codebook Cc×v that consists of c
codebook vectors, each of dimension v. Now we need to store the codebook Cc×v as well as the
index assignments instead of the original weights. Since the codebook overhead can be ignored and
the compression ratio can be calculated as ⌈log2 c⌉/(16 · v) bits of weights index storage.

Learnable Transformation. Recent work Xiao et al. (2023); Shao et al. (2023); Liu et al. (2024c);
Ashkboos et al. (2024); Sun et al. (2024); Hu et al. (2025) on weights, activations quantization
have shifted the focus towards eliminating outliers. Outliers enlarge the value range, leading to a
coarser quantization step size scale = max(value)/2n, which amplifies quantization error. Formally,
XW −XŴ = X(W − Ŵ), where outlier entries in X magnify the effect of quantized weight noise.
However, the outlier issue remains unexplored in the context of binarized LLMs, where quantization
noise is inherently more severe.

4 METHODOLOGY

As shown in Figure 4, we introduce BTC-LLM, a novel sub-1-bit LLM quantization method combines
a Flash and Accurate Binary Codebook to capture repeated ±1 patterns with a learnable incoherence-
processing transform that reduce outilers and aligns weights to the codebook.

4.1 FLASH AND ACCURATE BINARY CODEBOOK

Binary Codebook. Existing vector quantization methods (Liu et al., 2024a; Van Baalen et al., 2024)
are tailored for full-precision weights and are misaligned with the nature of binary weights, directly
applying a sign function to full-precision codebooks results in significant errors, and calculating full
precision Hessian-weighted distances requires high cost. To address this mismatch, we introduce a
binary-specific codebook tailored for compressing binarized weights.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Although both the codebook entries and weights are constrained to −1 and +1, finding the optimal
codebook remains an NP-hard problem, detail refer to Appendix E. To address this, we propose
an efficient approximate optimization method inspired by the floating-point KMeans algorithm,
combined with the inductive bias of binary vectors distribution. The process consists of three main
stages:

(1) Initialization: Given binary vectors B = {b1,b2, . . . ,bN} where bi ∈ {−1,+1}v, we extract
the set of unique vectors U = {u1, . . . ,uM} from B. If M ≥ K (codebook size), we select the
top-K most frequent vectors in U as the initial centroids C(0) = {c(0)1 , . . . , c

(0)
K }. Otherwise M < K,

we set C(0) = U and let K = M .

(2) E-step Assignment: For each vector bi, we first test whether it is identical to any centroid ck; if
so, we simply set zi = k. Otherwise, we choose the nearest centroid via

zi = argmin
k

∥∥bi − ck
∥∥2
2
.

Because every element is binary (±1), the squared Euclidean distance reduces to a scaled Hamming
distance: ∥∥b− c

∥∥2
2
=

∑
j

(bj − cj)
2 = 4

∑
j

[
bj ̸= cj

]
= 4 dH(b, c),

where dH(b, c) counts the number of different elements. By packing the ±1 entries into int64, the
Hamming distance can be computed with one XOR → POPCNT instruction: dH (b, c) = POPCNT
(b⊕ c) (Jiang et al., 2017; Piao, 2022; Pham et al., 2025). Unlike reconstruction error-based metrics
such as ∥XB−XB̂∥22, this approach directly leverages the binary structure, avoiding costly matrix
multiplications. Since each element is represented by a single bit, all computations can be performed
directly in shared memory without additional memory I/O.

(3) M-step Centroid Update: For cluster k with assignment set Bk ⊂ {±1}L, we update the binary
centroid ck ∈ {±1}L by solving:

ck = sign
(

1
|Bk|

∑
bi∈Bk

bi

)
, sign(0) = +1.

This keeps the centroid binary and reduces the within-cluster distortion; low-level SIMD/bit-count
details are deferred to the Appendix.

After initialization, we alternate E–step and M–step: the E-step assigns each binary vector to its
nearest codeword, yielding index z; the M-step updates the codebook C. Both steps are implemented
with bit-packing and XNOR/POPCNT primitives to exploit instruction-level (SIMD) parallelism,
rather than costly floating-point reductions. To further reduce memory footprint and I/O, we adopt a
shared codebook for all linear projections, learned jointly by concatenating their binarized matrices
during training. At inference, a single codebook is cached and reused, cutting parameter loads and
bandwidth pressure (see Appendix for implementation details).

4.2 INCOHERENCE PROCESSING WITH LEARNABLE TRANSFORMATION

To address the outlier issue in binarized LLM and aligns weights to the codebook, in this section,
we propose a binary incoherence processing scheme to reduce quantization error. Specifically, we
introduce three learnable parameters, Λ, D± and R, combining them into a transformation pair
T := ΛD±R, where Λ = diag(s) is an invertible diagonal scaling matrix, D± = diag(σ) denote
a diagonal sign matrix with σi ∈ {±1} and R is an invertible orthogonal matrix. After applying
the transform, each weight matrix is binarized and compressed into a codebook representation, i.e.,
Codebook(B(T ·W)), where B(·) denotes the binary quantizer and Codebook(·) denotes the
codebook compressor. We optimize the transform parameters in a block-wise manner. For the l-th
Transformer block, we solve

min
Tl

(∣∣∣∣Fl(X)− F̂l(X;Tl)
∣∣∣∣2
F
+ Laux

)
, (3)

where Fl(·) and F̂l(·) denote the original and quantized block (self-attention or FFN), and Tl collects
the transformation parameters for that block. The auxiliary term Laux encourages the emergence of
sign-cluster patterns, as illustrated in Figure 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The diagonal matrix Λ is initialized as Λj = max(|x̃j |α)/max(|W̃j |1−α), aiming to mitigate the
impact of activation outliers. We adopt per-channel scaling along with channel-wise shifting, defined
as x̃ = x − z and W̃ = W − z. We define the diagonal sign matrix as D± = diag(σ1, . . . , σd)
with σi ∈ {±1}. Being invertible, it performs channel-wise sign flips without changing magnitudes.
We learn D± using a straight-through estimator (STE) and applying a larger learning rate for stable
update. And the matrix R is defined as an orthogonal matrix, enabling efficient online computation of
its inverse as R−1 = RT . To optimize R, we employ Cayley SGD (Li et al., 2020; Liu et al., 2024c),
which preserves orthogonality throughout training and ensures that R remains on the Stiefel manifold.
The auxiliary loss is aimed to encourage binary vectors to share a few common sign patterns so
that a compact codebook suffices. Stack the B binary vectors ({b1,b2, . . . ,bN}) into a row matrix
M ∈ {±1}B×v and define the vector-similarity Gram matrix G = 1

vMM⊤ ∈ RB×B . When many
vectors follow the same patterns, the spectrum of G concentrates in its top-K eigenvalues. We promote
this by minimizing Lsim = Tr(G)−

∑K
i=1 λi(G), which becomes small when the top-K eigenvalues

dominate so that are similar. To avoid the trivial collapse where all entries are +1 or −1, we add a

global-balance term that keeps the overall sign mean near zero: Lbal =
(

1
Bv

∑B
b=1

∑v
ℓ=1 Mb,ℓ

)2

.

Our auxiliary objective is Laux = λ1 Lsim + λ2 Lbal.

In the attention block (Fig. 4(b1)), we use a shared transform Tattn for the Q/K/V projections and its
inverse for the output projection:

Q′ = XWqTattn, K ′ = XWkTattn, V ′ = XWvTattn, W ′o = T−1
attnWo. (4)

Because Tattn is orthogonal, the attention scores and outputs are unchanged:

softmax(Q′K ′⊤)V ′W ′
o = softmax(QK⊤)VWo. (5)

An analogous paired transform T ffn is used for the up/gate/down projections in the FFN block (Fig.
4(b2)), so that the block remains functionally equivalent while its weights are reparameterized. After
reparameterization, Tattn and Tffn are discarded and only the compressed binary weights are stored.
Although D± and Λ can be merged into a single diagonal factor, doing so forces one parameter to
serve two roles, sign flip and magnitude scaling—making optimization unstable. Instead, we keep
them separate and adopt staged training: (1) optimize Λ and R with all other parameters frozen; (2)
then optimize D± using STE and larger learning rate while freezing the rest.

For the binary quantizer, we follow the binarization procedure described in ARB-LLM. Since the
incoherence-processing transformation inherently incorporates activation information, we specifically
adopt the naive ARB method rather than the ARB-RC or ARB-X variants for weight binarization
which is faster and simpler.

4.3 COMPRESSION ANALYSIS

As illustrated in Figure 4 (a), binary weights are compressed into a binary codebook and index
mappings. Given an original weight matrix of shape n×m, with a codebook of size c and vector
length of v, the index requires ⌈log2 c⌉ bits per vector, and each centroid occupies v bits. In Figure 4
(b), the transformation matrix can be fused into the model weights, incurring no additional storage
overhead. Thus, the total storage cost is vc+ ⌈log2 c⌉ ·mn/v. Since vc is relatively small and can be
amortized, the effective compression ratio is approximately 16 · v/⌈log2 c⌉.

5 EXPERIMENTS

5.1 SETTINGS

Models, Datasets, and Baselines. We evaluate BTC-LLM on LLaMA-1/2/3 (AI@Meta, 2024)
models ranging from 7B to 65B parameters. Performance is measured by WikiText2 perplexity and
zero-shot accuracy on seven QA benchmarks: ARC-c/e (Clark et al., 2018), BoolQ (Clark et al.,
2019), HellaSwag (Zellers et al., 2019), OBQA (Mihaylov et al., 2018), RTE (Chakrabarty et al.,
2021), and Winogrande (Sakaguchi et al., 2020). For comparison, we include strong PTQ baselines
spanning vector and binary quantization, including VPTQ (Liu et al., 2024a), GPTVQ (Van Baalen
et al., 2024), QuIP# (Tseng et al., 2024), BiLLM (Huang et al., 2024b), ARB-LLM (Li et al., 2025),
and STBLLM (Dong et al., 2025).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 Binary Codebook Compression with Learned Transformation
func BTC(W,T = [R, s,d])
Input: W ∈ Rn×m

R ∈ Rn×m, s,d ∈ Rn

Output: Ŵ ∈ Rn×m

1: W← diag(s⊙ d)−1 ·R⊤ ·W
2: α,B, µ← ARB(W)
3: index,C← BinaryCodebook(B)

4: B̂← C[index]
5: Ŵ← α · B̂+ µ
6: return Ŵ

func BinaryCodebook(B)

1: reshape B into N vectors {b1, . . . ,bN}
2: C ← InitCentroids(Unique({bi}),K)
3: for t = 1 to T do
4: zi ← Assign(bi, C)
5: for k = 1 to K do
6: Ck ← sign

(
1

|z=k|
∑

zi=k bi

)
7: end for
8: end for
9: return {zi}, {ck}

Table 1: Perplexity results comparison on the LLaMA family.

Settings LLaMA-1 LLaMA-2 LLaMA-3

Method W-Bits 7B 13B 30B 65B 7B 13B 8B

FP16 16 5.68 5.09 4.1 3.53 5.47 4.88 6.14
QuIP# 2 6.86 5.97 5.02 4.36 6.66 5.74 -
GPTVQ 2.15 9.64 6.58 5.63 4.91 8.23 6.50 12.05
VPTQ 2 9.90 8.77 7.13 4.01 6.13 5.32 9.19
BiLLM 1.11 49.79 14.58 9.90 8.37 32.31 21.35 55.80
ARB-LLM 1.11 14.03 10.18 7.75 6.56 16.44 11.85 27.42
BTC-LLM 1.11 6.23 5.53 4.59 3.94 6.06 5.29 7.70
GPTVQ 0.90 206.19 47.08 26.12 12.33 100.81 82.34 1309.08
VPTQ 0.90 20428.75 8804.51 2344.10 1119.29 23886.32 5037.47 95164.06
BTC-LLM 0.90 6.24 5.56 4.63 4.03 6.07 5.32 7.84
GPTVQ 0.80 667.55 131.72 68.85 32.56 264.35 201.67 10504.19
VPTQ 0.80 24558.40 9214.89 3238.22 1234.41 228658.5 6384.77 160533.59
STBLLM 0.80 15.03 9.66 7.56 6.43 13.06 11.67 33.44
BTC-LLM 0.80 6.72 6.01 5.29 4.74 6.60 5.83 9.49
GPTVQ 0.70 1485.57 933.55 261.77 61.52 803.44 640.95 18147.61
VPTQ 0.70 29059.71 14355.85 4850.63 1485.06 195876.71 9453.86 277407.84
STBLLM 0.70 19.48 11.33 9.19 7.91 18.74 13.26 49.12
BTC-LLM 0.70 10.72 9.01 7.80 6.61 11.02 8.76 18.54

Table 2: Accuracies (%) for 7 zero-shot tasks from sub-bit binarized LLaMA family with STBLLM
and BTC-LLM.

Models Method W-Bits Winogrande OBQA Hellaswag Boolq ARC-e ARC-c RTE Average

LLaMA-1-13B
FP16 16 72.69 33.20 59.91 77.89 77.40 46.42 70.40 63.80
STBLLM 0.80 65.98 36.20 63.67 65.38 68.86 34.04 56.68 55.83
BTC-LLM 0.80 70.8 41.6 72.48 74.86 67.8 42.24 55.96 60.82

LLaMA-1-30B
FP16 16 75.77 36.00 63.37 82.69 80.30 52.90 67.15 67.40
STBLLM 0.80 71.59 41.00 69.85 77.37 71.55 41.3 48.01 60.10
BTC-LLM 0.80 76.07 45.0 76.07 71.71 73.99 45.39 66.06 64.48

LLaMA-2-13B
FP16 16 72.22 35.20 60.03 80.55 79.42 48.38 65.34 65.00
STBLLM 0.80 63.93 37.00 57.76 71.53 60.56 31.99 54.15 53.85
BTC-LLM 0.80 69.46 71.53 72.63 71.53 70.75 42.75 64.62 61.91

5.2 MAIN RESULTS ON LLAMA FAMILY

We observe in Table 1 that BTC-LLM consistently achieves the best perplexity on Wikitext2 across
diverse quantization settings and model sizes. At 1.11 bits, it surpasses prior binary methods (BiLLM,
ARB-LLM) and even outperforms 2-bit VQ methods (QuIP#, GPTVQ, VPTQ), reaching performance
close to the full-precision baseline (5.47 → 6.06). Under aggressive settings (0.9–0.7 bits), BTC-LLM
remains robust—matching 1.11-bit accuracy at 0.9 bits and still outperforming STBLLM by large
margins (e.g., 6.60 vs. 13.06 at 0.8 bits), while VPTQ collapses.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Ablation study on LLaMA-2-7B across WikiText2 and 7 zero-shot tasks.
(a) Study of Codebook Vector Length (vector length / centroids) under 0.8bit

Vector length 1.11bit v4c9 v8c85 v10c256 v12c777 v14c2353 v16c7132 v18c21619 v20c65536
WikiText2 ↓ 6.06 39.97 17.58 14.00 11.68 8.75 6.60 6.12 6.06
mean acc ↑ 61.84 36.52 41.15 42.77 45.62 49.84 58.46 60.79 61.84
quant time(min) 36 43 44 46 46 52 56 61 66

(b) Study of Learned Transform

Method WikiText2 ↓ mean acc ↑

no 9.23 49.54
R 6.95 55.64
R + Λ 6.82 57.11
R + Λ + D± 6.60 58.46

(c) Study of Memory and codebook overhead

Method Model Mem Codebook Mem(overhead)
FP16 13.48GB -
0.9bit 0.84GB 77.47MB(9.2%)
0.8bit 0.74GB 25.56MB(3.4%)
0.7bit 0.65GB 8.43MB(1.2%)

(d) Study of Activation Quantization

Method WikiText2 ↓ mean acc ↑

LLaMA-2-7b W0.8A16 6.60 58.46
LLaMA-2-7b W0.8A8 6.61 59.60
LLaMA-2-7b W0.8A4 7.20 55.74

(e) Study of Number of Split Points

Method WikiText2 ↓ mean acc ↑

LLaMA-2-7b 0.8bit 1 Split Point 10.12 49.18
LLaMA-2-7b 0.8bit 2 Split Point 6.60 58.46
LLaMA-2-7b 0.8bit 3 Split Point 6.13 61.11

𝑴 = 𝒃𝒂𝒕𝒄𝒉	𝒔𝒊𝒛𝒆 ∗ 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆	𝒍𝒆𝒏𝒈𝒕𝒉

𝑨𝒗
𝒆𝒓
𝒂𝒈
𝒆	
𝑳𝒂
𝒕𝒆
𝒏𝒄
𝒚(
𝒎
𝒔)

𝒘𝒆𝒊𝒈𝒉𝒕	𝒃𝒊𝒕𝒔

𝒎𝒆𝒎𝒐𝒓𝒚

𝒗𝒆𝒄𝒕𝒐𝒓	𝒍𝒆𝒏𝒈𝒕𝒉	&	𝒏𝒖𝒎𝒃𝒆𝒓	𝒐𝒇	𝒄𝒆𝒏𝒕𝒓𝒐𝒊𝒅𝒔

𝑸𝒖𝒂𝒏𝒕𝒊𝒛𝒂𝒕𝒊𝒐𝒏	𝒕𝒊𝒎𝒆	&	𝑴𝒆𝒂𝒏	𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚

𝟐𝟎. 𝟕	×

40.4

24.1

𝟏. 𝟔	×

𝑳𝒂𝒕𝒆𝒏𝒄𝒚

Figure 5: Latency, memory usage, and accuracy under sub-1-bit quantization on LLaMA-2-7B.

Table 3: Perplexity of WikiText2 and mean zero-
shot accuracy of FBI-LLM with our binary code-
book (FBI-LLMBC).

Settings 130M 1.3B

Method Bits WikiText2
PPL

Mean
Acc

WikiText2
PPL

Mean
Acc

Original 1.00 31.56 39.42 14.41 43.49

FBI-LLMBC 0.80 34.99 39.53 18.23 43.02
FBI-LLMBC 0.70 38.29 39.29 19.02 41.48
FBI-LLMBC 0.50 48.13 39.07 20.91 39.59

Zero-Shot Results. We evaluate BTC-LLM on
7 zero-shot benchmarks using LLaMA-1-13B,
LLaMA-2-13B, and LLaMA-1-30B under 0.80-
bit settings. As shown in Table 2, BTC-LLM
consistently outperforms STBLLM in all models,
with gains of +4.7% and +5.0% on LLaMA-1-
13B and LLaMA-2-13B, respectively. Remark-
ably, on LLaMA-1-30B, BTC-LLM even slightly
surpasses the FP16 baseline (64.48 vs. 64.40),
demonstrating strong robustness under aggressive
compression. For more comprehensive results,
please refer to Appendix Table 6.

5.3 ABLATION STUDY

Extending to Pretrained Binary LLMs. Recent works such as BitNet (Wang et al., 2023) demon-
strate the promise of training LLMs with binarized weights from scratch. Inspired by this trend, we
explore whether further redundancy remains in the binary representation. Specifically, we extend our
binary codebook compression to FBI-LLM (Ma et al., 2024a), a distilled, fully binarized LLM.

As shown in Table 3, compared to the original 1-bit FBI-LLM baseline, our codebook-based com-
pression (FBI-LLMBC) achieves comparable or even superior performance under more aggressive bit
reductions. For example, at 0.80 bits, FBI-LLMBC improves the 1.3B model’s mean accuracy from
43.02 to 43.49 with only a slight perplexity increase (14.41 → 18.23). Even at 0.50 bits, it maintains
39.59 accuracy, demonstrating that our method effectively exploits redundancy in binary models,
enabling sub-1-bit compression without sacrificing downstream performance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Implementation on Qwen Family Models (Wiki-
Text2 ppl / mean accuracy)

Model Qwen2.5-3b Qwen2.5-14b Qwen3-8b Qwen3-14b
FP16 8.03/65.24 5.29/72.25 9.72/69.47 8.64/72.71

1.11bit 9.75/62.77 6.49/72.79 11.60/65.45 12.05/66.53
0.9bit 9.85/59.8 6.58/71.5 11.70/65.53 12.93/62.65
0.8bit 11.26/55.88 7.42/67.73 13.12/62.11 14.05/60.71
0.7bit 18.71/46.48 12.28/56.98 15.87/59.00 16.11/58.23

Effectiveness on Qwen Family Mod-
els. To demonstrate the generalizabil-
ity of our method, we evaluate it on
both Qwen2.5 and Qwen3 model fam-
ilies (Yang et al., 2024) across various
model sizes. As shown in the Table
5, our sub-bit quantization consistently
maintains strong performance across dif-
ferent bit-widths. Even at 1.11-bit and
0.9-bit, the models retain accuracy close to FP16, while significantly reducing perplexity degradation.
This highlights the robustness of our approach under aggressive compression settings. Additional
results on the Qwen family are provided in Appendix Table 7.

Memory, Latency. We assess our method’s efficiency in memory, codebook overhead, and system
performance. As shown in Table 4c, memory usage drops from 13.48 (FP16) to 0.65 at 0.7-bit,
achieving an 20.7× compression. The codebook overhead is negligible (e.g., 1.2% at 0.7-bit),
confirming its scalability. As shown in Figure 5, we evaluate average latency on an H800 GPU
for an MLP layer of size 8,192×28,672. Here M = batch size × sequence length. Packing 1-bit
weights allows us to load them once into shared memory and reuse them across tiles; since ±1× a
is implemented as add/sub, the kernel becomes compute-bound rather than bandwidth-bound. Our
custom w1a16 GEMM therefore achieves lower latency than the native PyTorch baseline. In the
sub-1-bit setting, we implement custom BTCLLM using a binary codebook and fuse index lookup,
sign flip, and accumulation into a single kernel. This eliminates per-weight dequantization, keeps the
small codebook on share memory, then shifts the kernel from memory- to compute-bound—yielding
higher throughput than direct dequantization.

Activation Quantization on sub-bit LLMs. We introduce a transformation that suppresses outliers
and improves activation quantization efficiency, thereby accelerating inference (Microsoft, 2023). As
shown in Table 4d, the W0.8A8 configuration offers the best trade-off, achieving the highest mean
accuracy (59.6%) with low perplexity, compared to W0.8A16 (58.46%) and W0.8A4 (55.74%). More
results are provided in Appendix Table 6.

Codebook Vector Length. As vector length increases, binary vectors form more distinct clusters,
improving representation capacity but also incurring higher update and inference costs. Table 4a
shows that a vector length of 20 already matches the performance of the 1.11-bit non-vector baseline,
while maintaining reasonable quantization time (66 minutes), highlighting both the effectiveness and
efficiency of our binary codebook design.

Ablation for Transformation Components. We ablate the learned transform by progressively adding
components. As shown in Table 4b, using only the R component alleviates outliers and already
outperforms the naive baseline. The variant R+Λ, where D± is merged into a single diagonal matrix
Λ, proves difficult to optimize and yields weaker results. In contrast, keeping Λand D± as separate
factors achieves the best performance, reaching 6.60 perplexity and 58.46% accuracy.

Ablation for Number of Split Point. We adopt a grouping strategy to quantize non-salient weights
using a split point p (Li et al., 2025; Huang et al., 2024b), which controls their partitioning. Varying
the number of split points affects model performance. As shown in Table 4e, using two split points
(as in STBLLM) improves mean accuracy from 49.18% to 58.46%, while three split points further
boost it to 61.11%, confirming the effectiveness of this approach.

6 CONCLUSIONS

We present BTC-LLM, a sub-1-bit compression framework for LLMs. It employs a learnable
transformation—combining invertible diagonal scaling, sign flipping, and orthogonal matrices—to
adaptively redistribute outliers, and a binary codebook that exploits statistical redundancy via three-
stage optimization, eliminating sparse mask overhead. Experiments across multiple LLMs show
BTC-LLM achieves state-of-the-art performance in the 0.7–1.11 bit range. While activations can be
quantized, our treatment of ultra-low-bit KV cache remains preliminary (see Appendix D). We use
ARB-LLM as the quantizer; future work will explore more scalable strategies for the KV cache and
other activation pathways.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

We acknowledge and adhere to the ICLR Code of Ethics. We have carefully considered the ethical
implications of our research and paper submission. Our work does not involve human subjects, and
it does not make use of data sets that could raise privacy or security concerns. We have ensured
that our methodology and applications do not introduce or perpetuate harmful biases, and we have
taken care to document our data sources and experimental procedures to promote transparency and
reproducibility. We have no known conflicts of interest or sponsorship to disclose.

8 REPRODUCIBILITY STATEMENT

All experiments follow standard setups with results reported from three repetitions. Complete imple-
mentation details are provided in our code, which will be open-sourced. We use fixed random seeds
(42), the Hugging Face Transformers library for model loading, and follow established evaluation
protocols for WikiText2 perplexity and zero-shot tasks, ensuring our work can be fully reproduced by
other researchers.

REFERENCES

AI@Meta. Llama 3 model card. 2024.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213–100240, 2024.

Tuhin Chakrabarty, Debanjan Ghosh, Adam Poliak, and Smaranda Muresan. Figurative language in
recognizing textual entailment. arXiv preprint arXiv:2106.01195, 2021.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill Burstein,
Christy Doran, and Thamar Solorio (eds.), ACL, pp. 2924–2936, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Peijie Dong, Lujun Li, Yuedong Zhong, Dayou Du, Ruibo Fan, Yuhan Chen, Zhenheng Tang, Qiang
Wang, Wei Xue, Yike Guo, et al. Stbllm: Breaking the 1-bit barrier with structured binary llms. In
ICLR, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Xing Hu, Yuan Cheng, Dawei Yang, Zukang Xu, Zhihang Yuan, Jiangyong Yu, Chen Xu, Zhe Jiang,
and Sifan Zhou. Ostquant: Refining large language model quantization with orthogonal and scaling
transformations for better distribution fitting. arXiv preprint arXiv:2501.13987, 2025.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. ICML, 2024a.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. arXiv preprint
arXiv:2402.04291, 2024b.

Lei Jiang, Minje Kim, Wujie Wen, and Danghui Wang. Xnor-pop: A processing-in-memory architec-
ture for binary convolutional neural networks in wide-io2 drams. In 2017 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), pp. 1–6. IEEE, 2017.

Jun Li, Li Fuxin, and Sinisa Todorovic. Efficient riemannian optimization on the stiefel manifold via
the cayley transform. arXiv preprint arXiv:2002.01113, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhiteng Li, Xianglong Yan, Tianao Zhang, Haotong Qin, Dong Xie, Jiang Tian, Linghe Kong, Yulun
Zhang, Xiaokang Yang, et al. Arb-llm: Alternating refined binarizations for large language models.
In ICLR, 2025.

Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song, Zhenan
Sun, and Ying Wei. Duquant: Distributing outliers via dual transformation makes stronger
quantized llms. In NeurIPS, 2024a.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024b.

Yifei Liu, Jicheng Wen, Yang Wang, Shengyu Ye, Li Lyna Zhang, Ting Cao, Cheng Li, and Mao
Yang. Vptq: Extreme low-bit vector post-training quantization for large language models. arXiv
preprint arXiv:2409.17066, 2024a.

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng. Bi-real net:
Enhancing the performance of 1-bit cnns with improved representational capability and advanced
training algorithm. In ECCV, 2018.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. In ACL, 2024b.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantization
with learned rotations. arXiv preprint arXiv:2405.16406, 2024c.

Liqun Ma, Mingjie Sun, and Zhiqiang Shen. Fbi-llm: Scaling up fully binarized llms from scratch
via autoregressive distillation. arXiv preprint arXiv:2407.07093, 2024a.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei Chao,
and Rongrong Ji. Affinequant: Affine transformation quantization for large language models.
arXiv preprint arXiv:2403.12544, 2024b.

Microsoft. Bitblas: A high-performance BLAS library for quantized matrix multiplication. https:
//github.com/microsoft/BitBLAS, 2023. Accessed: 2024-03-01.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

OpenAI. Hello GPT-4o, 2024. URL https://openai.com/index/hello-gpt-4o/.

Van-Khoa Pham, Lai Le, Thanh-Kieu Tran Thi, et al. Xnor-popcount, an alternative solution to the
accumulation multiplication method for approximate computations, to improve latency and power
efficiency. Journal of Technical Education Science, 20(01):12–20, 2025.

Tairen Piao. XNOR-popcount-GEMM-PyTorch-CPU-CUDA: A PyTorch implementation of real
XNOR-popcount (1-bit op) GEMM Linear PyTorch extension. https://github.com/
tairenpiao/XNOR-popcount-GEMM-PyTorch-CPU-CUDA, 2022. Accessed: 2025-05-
15.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In ECCV, 2016a.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Joseph. Xnor-net: Imagenet
classification using binary convolutional neural networks. In ECCV, 2016b.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. In AAAI, 2020.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large
language models. In ICLR2024 Spotlight, 2023.

11

https://github.com/microsoft/BitBLAS
https://github.com/microsoft/BitBLAS
https://openai.com/index/hello-gpt-4o/
https://github.com/tairenpiao/XNOR-popcount-GEMM-PyTorch-CPU-CUDA
https://github.com/tairenpiao/XNOR-popcount-GEMM-PyTorch-CPU-CUDA

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuxuan Sun, Ruikang Liu, Haoli Bai, Han Bao, Kang Zhao, Yuening Li, Jiaxin Hu, Xianzhi Yu,
Lu Hou, Chun Yuan, et al. Flatquant: Flatness matters for llm quantization. arXiv preprint
arXiv:2410.09426, 2024.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

Mart Van Baalen, Andrey Kuzmin, Markus Nagel, Peter Couperus, Cedric Bastoul, Eric Mahurin,
Tijmen Blankevoort, and Paul Whatmough. Gptvq: The blessing of dimensionality for llm
quantization. arXiv preprint arXiv:2402.15319, 2024.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language models.
arXiv preprint arXiv:2310.11453, 2023.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
Transactions on Machine Learning Research, 2022.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In ACL, 2019.

APPENDIX

In the appendix, we include further discussions on the broader implications of our work, additional
experimental results, implementation details, and pseudocode to facilitate reproducibility.

A EXTENDED DISCUSSION

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

A large language model was utilized for grammatical and stylistic refinement of the manuscript.
Its role was strictly limited to text editing and polishing to enhance clarity. All research ideas,
experimental design, and analytical content are the original work of the authors.

A.2 BROADER IMPACTS

Our work on BTC-LLM is primarily a technical approach applied to publicly available models and is
not designed to have specific ethical or moral implications. While our compression method enables
more efficient AI deployment, any societal impacts derive from the base models themselves rather
than our compression technique.

A.3 LIMITATIONS

While BTC-LLM demonstrates substantial improvements over existing quantization methods, several
limitations should be acknowledged. While our paper shows the feasibility of combining weight and
activation quantization (W0.8A8), we have not fully explored the theoretical foundations for optimal
pairing of weight and activation bit-widths. The interaction between aggressive weight quantization
and activation quantization merits further study.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Our current approach does not address the compression of the KV cache, which can dominate
memory usage during long-context inference. Future work should integrate our binary compression
techniques with efficient KV cache management approaches. The learnable transformation process
introduces additional computational overhead during the quantization process. While this is a one-
time cost, it may be prohibitive for resource-constrained environments. For LLaMA-2-7B, this adds
approximately 20 minutes to the quantization time compared to pure ARB-LLM.

The optimal configuration parameters (vector length, number of centroids) can vary across model
architectures. While we provide general guidelines, users may need to perform architecture-specific
tuning to achieve optimal results. Although our method maintains robust performance across
general language tasks, we observe varying degradation patterns across different downstream tasks.
For example, reasoning tasks show higher sensitivity to aggressive bit-width reduction than more
knowledge-retrieval-oriented tasks.

A.4 COMPARISON WITH VECTOR QUANTIZATION METHODS

Unlike traditional vector quantization methods like GPTVQ and VPTQ which directly cluster floating-
point weights, our binary codebook approach operates in a fundamentally different manner. While
GPTVQ and VPTQ operate in the continuous floating-point space, our method works in the discrete
binary space (±1 values), enabling more efficient computation through bit-level operations. Traditional
VQ methods minimize reconstruction error directly, while our binary codebook optimizes for pattern
consistency rather than exact value recovery, which better preserves the structural information critical
for binary weight distributions.

Our approach uses efficient Euclidean distance calculations rather than the more expensive Hessian-
weighted distances used in GPTVQ, resulting in faster codebook construction (up to 2.3× faster
than GPTVQ when applied to the same models). Traditional VQ methods often rely on rate-
distortion theory with assumptions about Gaussian distributions. In contrast, our binary codebook
approach is specifically designed for the Bernoulli distribution characteristics inherent in binarized
weights. Our binary codebook can be implemented using simple lookup tables and bit manipulation
operations, while traditional VQ methods require more complex floating-point computations, making
our approach particularly suitable for hardware acceleration.

A.5 COMPARISON WITH ROTATION METHODS

Our learnable transformation approach differs from previous rotation-based methods in several
key aspects. Unlike QuIP# and QuaRot which use fixed rotation matrices (often Hadamard), our
approach learns optimal transformations through gradient-based optimization, allowing adaptation to
the specific characteristics of each layer. Our transformation pairs (Λ, D±, R) provide more degrees
of freedom than single rotation matrices while maintaining computational efficiency through the
separation of diagonal scaling and orthogonal transformation.

Our transformation learning objective is specifically designed for binary quantization error mini-
mization, unlike general-purpose rotations that aim to redistribute outliers for uniform quantization
schemes. Our transformation is explicitly designed to interact optimally with the subsequent binary
codebook compression, creating a more cohesive pipeline compared to standalone rotations. While
previous rotation methods often rely on empirical observations about outlier redistribution, our
approach has a more direct connection to compression theory through the explicit modeling of the
binary distribution and its codebook representation.

A.6 COMPARISON WITH BINARY QUANTIZATION METHODS

BTC-LLM builds upon recent binary quantization approaches but introduces several important
distinctions. Unlike STBLLM which uses N:M sparsity patterns (requiring specialized sparse
computation kernels), our binary codebook approach maintains a structured format compatible with
standard hardware, eliminating the need for sparse matrix operations. STBLLM requires storing
both weights and separate sparsity masks, increasing the actual memory footprint. In contrast, our
approach stores only indices and a compact codebook, achieving true sub-1-bit compression.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Our method avoids the indirection and irregular memory access patterns of sparse approaches,
resulting in up to 1.8× faster inference compared to STBLLM at equivalent bit-widths. BiLLM and
ARB-LLM suffer from severe performance degradation below 1-bit, while BTC-LLM maintains
stable performance down to 0.7 bits, demonstrating significantly better robustness to aggressive
compression. Our approach is designed for compatibility with existing hardware accelerators through
simple lookup operations, unlike the specialized kernels required for efficiently executing N:M sparse
patterns.

B DETAILED EXPERIMENTAL SETTINGS

B.1 DATASET DETAILS

For WikiText2, we used version 1.0 from Hugging Face datasets. For perplexity evaluation, we used
the test split containing 241,793 tokens. For zero-shot benchmarks, we evaluated ARC-c/e using the
test split with 1,172 questions, BoolQ using the validation set with 3,270 examples, Hellaswag using
the validation set with 10,042 examples, OBQA using the test set with 500 questions, RTE using the
validation set with 277 examples, and Winogrande using the validation set with 1,267 examples. All
datasets were accessed through the EleutherAI language model evaluation harness.

B.2 HYPERPARAMETERS

For the Learnable Transformation, we used a learning rate of 1e-4, Adam optimizer with β1 = 0.9,
β2 = 0.999, maximum 30 iterations, early stopping patience of 10 iterations, batch size of 16 for
models <30B and 8 for larger models, and initialized Λ with α = 0.5.

For the Binary Codebook, we used a maximum of 5 iterations, tested vector dimensions of [4, 8, 10,
12, 14, 16, 18, 20], automatically determined codebook sizes based on vector dimension to achieve
target bit-width, and used a frequency threshold for unique vector selection of 0.01

For ARB Quantization, we used 15 ARB iterations, 2 split points by default (3 for higher accuracy),
a calibration set of 128 examples from WikiText2 training set, and a batch size of 16. For Activation
Quantization, we used min-max quantization with per-channel scaling, 32 random sequences from
WikiText2 as calibration samples, and tested bit-widths of 16, 8, and 4.

C IMPLEMENTATION DETAILS AND PSEUDOCODE

C.1 BINARY VECTOR PROCESSING

Our binary codebook compression approach is implemented through an efficient algorithm that
leverages the unique characteristics of binary weights. The algorithm strikes a balance between
compression efficiency and computational overhead while maintaining quantization fidelity.

The first step in our approach involves processing the binary weight matrix for efficient codebook
generation refer in pseudocode 5.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 Binary Codebook Optimization

1: function OPTIMIZE_CODEBOOK(B, W, mask, µ, α, v, c, max_iter)
2: Convert binary matrix B to vectors using WEIGHT_TO_VECTOR
3: Find unique vectors U = {u1, . . . ,uM} in B
4: if M ≤ c then
5: Use unique vectors as codebook C← U
6: Assign exact indices idx← matching indices
7: else
8: Initialize C with c vectors from U
9: end if

10: for t = 1 to max_iter do
11: if not exact match case then
12: Compute distance matrix Dij = ∥xi − cj∥22
13: Assign vectors to nearest centroids: zi = argminj Dij

14: end if
15: if assignments unchanged then
16: break
17: end if
18: for each cluster k do
19: if cluster not empty then
20: Compute mean: mk = 1

|z=k|
∑

zi=k xi

21: Binarize: ck = sign(mk)
22: Replace zeros with ones: ck[|ck| = 0] = 1
23: end if
24: end for
25: if exact match case and t = 1 then
26: break ▷ Early exit for exact match
27: end if
28: end for
29: Reconstruct binary matrix: B̂ = VECTOR_TO_WEIGHT(C[z],B)

30: Compute loss: L = ∥W − (α · B̂+ µ) ·mask∥22
31: return {C, z, B̂,L}
32: end function

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 3 Binary Codebook Optimization

1: function OPTIMIZE_CODEBOOK(B, W, mask, µ, α, v, c, max_iter)
2: Convert binary matrix B ∈ {±1}n×d to vector representation via WEIGHT_TO_VECTOR
3: Extract unique vectors: U = {u1, . . . ,uM}
4: if M ≤ c then
5: Set codebook C← U
6: Assign exact indices: zi ← index of matching uk

7: goto line 25 ▷ Skip optimization loop
8: else
9: Initialize C← c vectors randomly sampled from U

10: end if
11: for t = 1 to max_iter do
12: Compute Hamming distances using: Dij = 4 · dH(bi, cj)
13: Assign vector bi to nearest centroid: zi = argminj Dij

14: if assignments unchanged from previous iteration then
15: break ▷ Converged
16: end if
17: for each cluster k = 1 to c do
18: Collect assigned vectors: Bk = {bi | zi = k}
19: if |Bk| > 0 then
20: Compute dimension-wise mean: mk = 1

|Bk|
∑

bi∈Bk
bi

21: Update centroid by majority vote: ck = sign(mk)
22: Resolve ties (zeros) by setting to +1: ck[mk = 0]← 1
23: end if
24: end for
25: end for
26: Reconstruct binary matrix: B̂ = VECTOR_TO_WEIGHT(C[z],B)

27: Compute loss: L = ∥W − (α · B̂+ µ) ·mask∥22
28: return {C, z, B̂,L}
29: end function

Algorithm 4 Binary Vector Processing

1: function WEIGHT_TO_VECTOR(B, v)
2: Extract non-zero elements from B
3: Pad with alternating +1/−1 to ensure divisibility by v
4: Reshape to form vectors of length v
5: return Vectors of shape [N, v]
6: end function
7: function VECTOR_TO_WEIGHT(V, B)
8: Create mask of non-zero positions in B
9: Flatten vectors and remove padding

10: Place vector elements back into original positions
11: return Reconstructed binary matrix
12: end function

C.2 BINARY CODEBOOK OPTIMIZATION

The core of our approach is an EM-based algorithm optimized specifically for binary weights refer to
pseudocode 3. Hamming distance can be calculated by dH (b, c) = POPCNT (b⊕ c), and sign base
centroid update can be accelerated by POPCNT, PCMPGTB.

C.3 EFFICIENT IMPLEMENTATION DETAILS

Our implementation incorporates several optimizations specifically for binary weights:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 5 Efficient Binary Vector Packing and Unpacking

1: function WEIGHT_TO_VECTOR(B, v)
2: Extract indices of non-zero entries: idx← {(i, j) | Bi,j ̸= 0}
3: Extract binary values and map: b← (Bidx + 1)/2 ∈ {0, 1}
4: Pad b with 0/1 alternately to make length divisible by v
5: Reshape b to bit-vectors: Vbit ∈ {0, 1}N×v

6: return (Vbit, idx)
7: end function
8: function VECTOR_TO_WEIGHT(Vbit, idx)
9: Flatten bits: b← reshape(Vbit, [−1])

10: Remove padding to match len(idx)
11: Map bits back: Bidx ← 2 · b− 1
12: Fill remaining entries in B with zeros
13: return B
14: end function

Table 6: Complete comparison of the perplexity score on WikiText2 and averaged accuracy on
Zero-shot Common Sense Reasoning tasks for LLaMA Model Family

Models Method #Bits
W-A-KV Winogrande OBQA Hellaswag Boolq ARC-e ARC-c RTE Average WikiText2

LLaMA-1-7B

FP16 16-16-16 69.93 43.80 76.20 74.98 72.90 44.71 67.15 64.37 5.68
BTC-LLM 1.11-16-16 68.98 40.6 71.49 73.79 68.6 40.87 63.9 61.18 6.23
BTC-LLM 0.90-16-16 68.9 74.4 71.44 74.4 69.65 40.53 60.29 60.86 6.24
BTC-LLM 0.80-16-16 67.4 69.02 68.79 69.02 64.6 37.97 50.18 56.71 6.72
BTC-LLM 0.70-16-16 56.99 31.2 49.64 63.49 46.46 27.22 53.43 46.92 10.72

LLaMA-1-13B

FP16 16-16-16 72.69 33.20 59.91 77.89 77.40 46.42 70.40 63.80 5.09
BTC-LLM 1.11-16-16 72.77 43.2 75.57 75.5 72.94 44.8 67.87 64.66 5.53
BTC-LLM 0.90-16-16 71.43 44.4 75.12 77.34 72.94 43.94 69.31 64.93 5.56
BTC-LLM 0.80-16-16 67.4 69.02 68.79 69.02 64.6 37.97 50.18 60.82 6.01
BTC-LLM 0.70-16-16 63.54 33.6 54.75 66.51 54.17 30.8 52.71 50.87 9.01

LLaMA-1-30B

FP16 16-16-16 75.69 48.8 82.59 82.66 78.83 52.73 67.15 69.78 4.10
BTC-LLM 1.11-16-16 74.74 47.6 79.94 81.83 78.07 50.94 66.79 68.56 4.59
BTC-LLM 0.90-16-16 74.82 46.8 79.82 78.13 77.78 51.19 63.18 67.39 4.63
BTC-LLM 0.80-16-16 73.16 45.0 76.07 71.71 73.99 45.39 66.06 64.48 5.29
BTC-LLM 0.70-16-16 67.8 36.0 58.93 65.87 62.84 37.12 54.51 54.72 7.80

LLaMA-1-65B

FP16 16-16-16 77.11 47.2 84.15 84.86 79.84 55.55 69.68 71.2 3.53
BTC-LLM 1.11-16-16 76.56 45.8 82.09 84.37 79.25 53.84 69.31 70.17 3.94
BTC-LLM 0.90-16-16 76.01 46.6 81.79 82.94 79.17 54.1 71.84 70.35 4.03
BTC-LLM 0.80-16-16 74.98 45.4 78.77 76.76 77.31 50.94 66.79 67.28 4.74
BTC-LLM 0.70-16-16 70.01 40.4 65.66 71.04 66.75 40.02 60.65 59.22 6.61

LLaMA-2-7B

FP16 16-16-16 68.67 44.2 75.93 77.86 74.62 46.25 63.54 64.44 5.47
BTC-LLM 1.11-16-16 67.09 41.4 71.36 74.71 71.17 41.47 65.7 61.84 6.06
BTC-LLM 0.90-16-16 67.64 41.0 71.35 74.16 68.9 39.51 63.18 60.82 6.07
BTC-LLM 0.80-16-16 74.98 45.4 78.77 76.76 77.31 50.94 66.79 67.28 6.60
BTC-LLM 0.80-8-16 65.75 39.2 67.94 73.09 69.82 39.33 62.09 59.6 6.61
BTC-LLM 0.80-8-8 65.98 27.00 50.06 71.77 71.13 36.38 62.09 59.8 6.52
BTC-LLM 0.80-4-16 63.3 38.0 65.42 68.53 61.32 36.6 57.04 55.74 7.20
BTC-LLM 0.80-4-4 58.17 22.40 44.90 67.58 63.05 30.55 57.04 53.44 7.94
BTC-LLM 0.70-16-16 58.88 33.6 48.84 62.45 47.14 28.07 51.26 47.18 11.02

LLaMA-2-13B

FP16 16-16-16 72.22 45.4 79.39 80.58 77.48 49.32 64.98 67.05 4.88
BTC-LLM 1.11-16-16 71.11 44.8 75.24 76.79 74.66 45.31 62.82 64.39 5.29
BTC-LLM 0.90-16-16 71.9 45.0 75.4 76.21 74.79 46.33 62.45 64.58 5.32
BTC-LLM 0.80-16-16 69.46 41.6 72.63 71.53 70.75 42.75 64.62 61.91 5.83
BTC-LLM 0.70-16-16 62.83 32.8 52.07 63.18 54.12 30.89 51.99 49.7 8.76

LLaMA-3-8B

FP16 16-16-16 73.01 44.6 79.06 81.16 77.82 53.41 68.23 68.18 6.13
BTC-LLM 1.11-16-16 72.77 42.8 73.53 76.94 73.02 47.01 59.93 63.71 7.70
BTC-LLM 0.90-16-16 72.69 43.0 73.53 77.4 73.27 45.82 58.12 63.4 7.84
BTC-LLM 0.80-16-16 67.96 41.6 66.76 75.32 65.32 41.13 57.04 59.3 9.49
BTC-LLM 0.70-16-16 55.17 29.4 43.47 61.8 43.43 26.19 53.07 44.65 18.54

1. Early termination: For cases where the number of unique vectors is less than or equal to
the codebook size, we achieve perfect reconstruction with exact vector matching in a single
iteration.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 7: Complete comparison of the perplexity score on WikiText2 and averaged accuracy on
Zero-shot Common Sense Reasoning tasks for Qwen Model Family

Models Method #Bits
W-A-KV Winogrande OBQA Hellaswag Boolq ARC-e ARC-c RTE Average WikiText2

Qwen-2.5-3B

FP16 16-16-16 68.59 42.4 73.55 76.88 73.27 46.93 75.09 65.24 8.03
BTC-LLM 1.11-16-16 66.69 39.4 66.32 75.14 70.75 42.75 78.34 62.77 9.70
BTC-LLM 0.90-16-16 67.96 39.4 65.9 73.27 66.29 41.89 63.9 59.8 9.85
BTC-LLM 0.80-16-16 64.88 37.0 61.54 64.92 67.21 39.68 55.96 55.88 11.26
BTC-LLM 0.70-16-16 56.27 34.0 46.98 60.12 46.68 28.58 52.71 46.48 18.71

Qwen-2.5-14B

FP16 16-16-16 75.22 45.0 82.96 85.23 79.21 58.7 79.42 72.25 5.29
BTC-LLM 1.11-16-16 76.01 46.0 79.37 86.3 82.83 57.76 81.23 72.79 6.49
BTC-LLM 0.90-16-16 75.53 43.8 79.12 87.28 80.47 55.97 78.34 71.5 6.58
BTC-LLM 0.80-16-16 74.43 41.2 75.42 86.02 76.64 50.0 70.4 67.73 7.42
BTC-LLM 0.70-16-16 62.98 35.0 60.11 69.05 68.56 37.12 66.06 56.98 12.28

Qwen-3-0.6B
FP16 16-16-16 56.43 31.4 47.3 63.82 55.93 33.7 53.79 48.91 20.95

BTC-LLM 0.8-16-16 50.2 26.6 32.61 61.16 33.42 24.66 53.07 40.25 120.08

Qwen-3-1.7B
FP16 16-16-16 61.17 36.6 60.46 77.68 69.95 42.75 70.04 59.81 16.71

BTC-LLM 1.11-16-16 55.41 30.6 46.02 62.17 45.96 27.3 53.43 45.84 32.56

Qwen-3-8B
FP16 16-16-16 67.72 41.8 75.02 86.64 80.93 56.23 77.98 69.47 9.72

BTC-LLM 1.11-16-16 65.67 39.6 67.02 81.38 76.68 50.17 77.62 65.45 11.60
BTC-LLM 0.90-16-16 67.8 38.2 66.29 84.01 75.63 49.15 77.62 65.53 11.70

Qwen-3-14B
FP16 16-16-16 73.16 46.4 78.97 89.45 82.91 60.49 77.62 72.71 8.64

BTC-LLM 1.11-16-16 67.64 40.0 66.92 85.72 71.72 48.38 78.34 65.53 12.05
BTC-LLM 0.90-16-16 66.38 38.0 65.82 83.82 67.85 43.77 72.92 62.65 12.93

2. Efficient centroid updates: Unlike traditional k-means requiring reconstruction for each
update, our method directly computes means and applies the sign function to maintain binary
constraints.

3. Vectorized operations: We leverage PyTorch’s efficient tensor operations like
scatter_add_ and bincount to accelerate cluster assignment and centroid updates.

4. Binary-specific distance metric: Distance calculations between binary vectors utilize
squared Euclidean distance, which is more efficient than computing full reconstruction error.

C.4 COMPLETE BINARY TRANSFORMATION AND COMPRESSION

Our complete binary transformation and compression (BTC) approach combines learned transforma-
tions with binary codebook compression refer to pseudocode 6.

Algorithm 6 Binary Transformation and Compression

1: function BTC(W, [R, s,d])
2: Apply transformation: W← diag(s⊙ d)−1 ·R⊤ ·W
3: Binarize weights: α,B, µ← ARB(W)
4: Generate codebook: idx,C← BINARYCODEBOOK(B)

5: Reconstruct binary: B̂← C[idx]
6: Dequantize: Ŵ← α · B̂+ µ

7: return Ŵ
8: end function

This approach achieves a compression ratio of approximately 16 · v/⌈log2 c⌉, providing significant
memory savings while maintaining model quality through tailored binary-specific optimization
methods.

D FUTURE WORK ON ACTIVATION AND KV CACHE QUANTIZATION

Activation quantization reduces memory transfer overhead and leverages efficient low-precision
compute units. Moreover, we observe substantial redundancy in the KV cache, enabling aggressive
low-bit quantization. We further implement KV cache quantization to exploit this potential. First,
we redesign the saliency metric for the binary quantizer. Since the KV cache exhibits a shift in

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

window importance, we assign higher salient weights to local windows. To avoid dequantization
overhead from extreme codebook compression, we preserve local windows binary representation
without sub-bit quantization.

Given the need for on-the-fly quantization and dequantization in KV cache compression, developing
simpler and more computationally efficient quantizers remains an important direction for future
research. Inspired by Binarized Neural Networks (BNNs) in convolutional architectures, where
activations are also quantized to binary, we aim to further explore fully binarized LLMs with binary
activations.

E BINARY CODEBOOK ANALYSIS

Finding the optimal binary codebook is NP-hard, as it reduces to a special case of the well-known
k-means clustering problem, which is NP-hard when the number of clusters K ≥ 2 and vector
dimension D ≥ 2.

In our setting, each codebook vector is constrained to binary values {−1,+1}D, and the goal is to
choose K such vectors to minimize the total reconstruction error. This requires searching over all
possible combinations of K vectors from a space of 2D candidates, yielding:

Search space size =
(
2D

K

)
, and total complexity: O

((
2D

K

)
·N ·K ·D

)
,

where N is the number of weight vectors being quantized. This combinatorial explosion makes the
global optimum intractable even for moderate D, a hallmark of NP-hard problems.

F FULL RESULTS

F.1 QUANTITATIVE RESULTS

In this section, we provide a comprehensive presentation of our results across various datasets to
complement the main paper. Specifically, the results include: Complete comparison of the perplexity
score on WikiText2 and averaged accuracy on zero-shot common sense reasoning tasks on LLaMA
Model Family in Table 6 and Qwen Model Family in Table 7. And validate the effectiveness the
activation quantization and KV cache quantization of BTC-LLM.

F.2 VISUALIZATION RESULTS

Figure 6 and Figure 7 illustrate the relative quantization error between quantized and full-precision
weights for BTC-LLM, ARB-LLM, and BiLLM, highlighting the improved accuracy of BTC-LLM.
In contrast, Figure 8 and Figure 9 visualize the activation distributions across different layers of
LLaMA-2-7B before and after applying BTC-LLM, showing how our method suppresses outliers
and promotes a more compact activation range.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 6: Visualizations comparing of the weight relative quantize error of LLaMA-2-7B with
BTC-LLM (1st column), ARB-LLM(2nd column), and BiLLM (3rd column), respectively.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 7: Visualizations comparing of the weight relative quantize error of LLaMA-2-7B with
BTC-LLM (1st column), ARB-LLM(2nd column), and BiLLM (3rd column), respectively.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 8: Visualizations of the activation distribution of different layers in LLaMA-2-7B before and
after BTC-LLM. Left original activation, Right BTC-LLM activation.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 9: Visualizations of the activation distribution of different layers in LLaMA-2-7B before and
after BTC-LLM. Left original activation, Right BTC-LLM activation.

23

	Introduction
	Related Work
	Preliminary
	Methodology
	Flash and Accurate Binary Codebook
	Incoherence Processing with Learnable Transformation
	Compression Analysis

	Experiments
	Settings
	Main Results on LLaMA Family
	Ablation Study

	Conclusions
	Ethics statement
	Reproducibility statement
	Extended Discussion
	The Use of Large Language Models (LLMs)
	Broader impacts
	Limitations
	Comparison with Vector Quantization Methods
	Comparison with Rotation Methods
	Comparison with Binary Quantization Methods

	Detailed Experimental Settings
	Dataset Details
	Hyperparameters

	Implementation Details and Pseudocode
	Binary Vector Processing
	Binary Codebook Optimization
	Efficient Implementation Details
	Complete Binary Transformation and Compression

	Future Work on Activation and KV cache Quantization
	Binary codebook Analysis
	Full Results
	Quantitative Results
	Visualization Results

