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ABSTRACT

Post-hoc explanation methods attempt to make the inner workings of deep neural
networks more comprehensible and trustworthy, which otherwise act as black
box models. However, since a ground truth is in general lacking, local post-hoc
explanation methods, which assign importance scores to input features, are
challenging to evaluate. One of the most popular evaluation frameworks is to
perturb features deemed important by an explanation and to measure the change
in prediction accuracy. Intuitively, a large decrease in prediction accuracy would
indicate that the explanation has correctly quantified the importance of features
with respect to the prediction outcome (e.g., logits). However, the change in
the prediction outcome may stem from perturbation artifacts, since perturbed
samples in the test dataset are out of distribution (OOD) compared to the training
dataset and can therefore potentially disturb the model in an unexpected manner.
To overcome this challenge, we propose feature perturbation augmentation
(FPA) which creates and adds perturbed images during the model training. Our
computational experiments suggest that FPA makes the considered models more
robust against perturbations. Overall, FPA is an intuitive and straightforward data
augmentation technique that renders the evaluation of post-hoc explanations more
trustworthy.

Codes and models trained with FPA are available: https://github.com/
lenbrocki/Feature-Perturbation-Augmentation

1 INTRODUCTION

Deep learning exhibits state-of-the-art performance in a wide range of computer vision tasks. How-
ever, the reasons underlying classifications and predictions made by deep neural networks (DNN)
are difficult to extract due to their nested non-linear structure and a large number of parameters
(Samek et al., 2019). A popular method to make deep learning models more interpretable are post-
hoc explanations, which estimate the importance of input features with respect to the model’s output
(Simonyan et al., 2014; Smilkov et al., 2017; Sundararajan et al., 2017). However, evaluating the
fidelity of post-hoc importance estimators is highly convoluted due to a lack of ground truth and the
issue of unintentionally triggering perturbation artifacts. In this study, we introduce feature pertur-
bation augmentation (FPA) which aims to avoid the pitfalls of a perturbation-based evaluation of
interpretability methods.

A promising approach for comparing importance estimators despite the aforementioned lack of
ground truth is the perturbation of input features (Samek et al., 2016; Petsiuk et al., 2018; Kin-
dermans et al., 2017). Conceptually, if the model’s accuracy rapidly decreases by masking pixels
deemed most important by some estimator, then it can be concluded that the considered estimator
describes the model more accurately than others that result in a slower decrease. However, such an
evaluation by perturbation may be problematic due to the risk of unwittingly triggering artifacts of
the deep learning model (Hooker et al., 2019; Fong & Vedaldi, 2017). In other words, even when
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truly unimportant pixels are masked, the accuracy might decrease considerably nonetheless, casting
doubt on the reliability of the perturbation-based evaluation approach.

Our proposed approach mitigates the influence of perturbation artifacts by training the model with
data augmentation that reflects the perturbation used in the evaluation frameworks. We apply the
proposed methods on three datasets (CIFAR-10 (Krizhevsky et al.), Food101 (Bossard et al., 2014),
the ImageNet (Deng et al., 2009)), using four different post-hoc explanation methods. Subsequently,
we measure the model output while perturbing an increasing fraction of input features sorted either
in most important first (MIF) or least important first (LIF) order. MIF and LIF perturbation curves
demonstrate that when using FPA during training, the resulting model exhibits increased robustness
against perturbation artifacts and the evaluation of importance estimators is more reliable.

2 RELATED WORK

The explainability of deep learning is an active and diverse area of research (reviewed in Samek
et al. (2021)). There are many desired properties (desideratas) of interpretability methods. In this
work, we focus on faithfulness of post-hoc explanations to the underlying model. Other desider-
atas of interpretability methods include localisation around a region of interest (ROI) (Zhou et al.,
2016; Selvaraju et al., 2017; Brocki et al., 2022), sensitivity to randomizations of model parameters
(Adebayo et al., 2018) or targeted logits (Sixt et al., 2020), sparseness (Chalasani et al., 2020), and
axiomatic properties (Sundararajan et al., 2017).

Faithfulness or fidelity describes how accurately explanation methods estimate the contribution of
input features to the model’s predictions. The proposed FPA is related to pixel-flipping (Bach et al.,
2015), region-perturbation (Samek et al., 2016) and Remove and Retrain (ROAR) (Hooker et al.,
2019). All these methods perturb input pixels and measure the resulting change in model perfor-
mance. Other methods to evaluate faithfulness include faithfulness correlation (Bhatt et al., 2020)
and sensitivity-n (Ancona et al., 2017), which measure the correlation between the sum of impor-
tance scores of masked pixels and the delta in model output. Dabkowski & Gal (2017) proposes
to crop images to a region deemed important and feed the resized crop back to the model. Related
faithfulness methods include Performance Information Curves (Kapishnikov et al., 2019), ROAD
(Rong et al., 2022), IROF (Rieger & Hansen, 2020), and Infidelity (Yeh et al., 2019).

Data augmentation can also make machine learning models more robust and generalizable. From
noise injection to utilizing complex DNNs for synthetic data, there are many data augmentation tech-
niques (reviewed in Shorten & Khoshgoftaar (2019)). In deep learning, one may apply geometric
and color manipulations, make use of noise and filters, and modify feature space. The closest ap-
proach to the proposed FPA method is “random erasing” (Zhong et al., 2020). Random erasing aug-
ments the data by selecting a random rectangle in an image and replacing them with non-informative
values such as white, black, or random RGB values. FPA may be seen as a generalization of noise
injection and random erasing where rectangles of varying sizes are probabilistically used to perturb
the input data. Of course, the aim of FPA is very different from other data augmentations techniques,
since we focus on improving post-hoc interpretability (Dziugaite et al., 2020).

3 METHODS AND MATERIALS

FEATURE PERTURBATION AUGMENTATION

The perturbation-based evaluation of importance estimators has been criticized (Hooker et al., 2019)
since the perturbation of input pixels leads to a shift in the data distribution, violating the key as-
sumption that training and test data stem from the same distribution. It is then unclear whether the
observed degradation of model performance is due to this OOD problem or the removal of informa-
tive features. Fong & Vedaldi (2017) presents concrete examples of how pixel perturbations can act
as adversarial examples. In fact, it has been argued (Samek et al., 2021) that certain importance es-
timators do very well in perturbation-based evaluations because they effectively trigger perturbation
artifacts and not because they faithfully describe the model.

We propose to overcome this problem by augmenting the data during training using the same data
perturbation that is used for the subsequent evaluation of importance estimators. Using this simple
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augmentation technique, FPA mitigates the risk of the OOD problem and one can be more confident
that a perturbation-based evaluation of importance estimators actually quantifies the removal of
information that is relevant for the model’s predictions.

In FPA, mini-batches in training are selected for perturbation with a probability p. Within a selected
image, we iterate through input features; p1 refers to the probability of masking a single pixel and
p2 refers to the probability of creating a non-informative square. For each mini-batch, first draw p1

from Uniform(0, p1max) distribution and set input pixels to 0 with a probability of p1. Second, with a
probability of p2 for each selected pixel, we create a non-informative square of 0’s, with a randomly
chosen side length in the interval [1, smax]. See details in the Algorithm 1.

Algorithm 1 Feature Perturbation Augmentation in a Selected Mini-batch

Require: K samples Xk
w,h,c for k = 0, . . . ,K, where Xk is of dimension W ×H × C.

Require: smax < min(W,H), p1max ∈ (0, 1), p2 ∈ (0, 1)
Set p1 ∼ Uniform(0, p1max)
for k ← 0 to K

for w ← 0 to W
for h← 0 to H

With p1, Xk
w,h ← 0 (i.e., a non-informative value).

Set s← {1, 2, . . . , smax}
With p2, Xk

w:(w+s),h:(h+s) ← 0 (i.e., a s× s square of non-informative values).

Different schemes of masking pixels are possible, such as setting pixels to random, minimum, or
maximum values or applying blurring, bokeh, or other filters. The choice of non-informative values
should reflect the application domain and the evaluation method.

DATASETS AND IMPORTANCE ESTIMATORS

We demonstrate our approach using two popular deep learning architectures and three datasets,
namely the ResNet-50 (He et al., 2016) architecture trained on ImageNet (Deng et al., 2009) and
Food101 (Bossard et al., 2014), and ResNet-18 trained on CIFAR-10 (Krizhevsky et al.), see Ap-
pendix A.1 for details concerning the datasets and training procedure. We compare the following
four importance estimators: vanilla gradient (VG) (Simonyan et al., 2014), integrated gradients (IG)
(Sundararajan et al., 2017), SmoothGrad (SG) (Smilkov et al., 2017) and squared SmoothGrad (SQ-
SG) (Hooker et al., 2019).

These methods output three-dimensional maps of importance scores (height, width, and color chan-
nels). To obtain two-dimensional maps for the pixel-wise perturbation, we explore two variants:
unsigned and signed. First, for the unsigned estimators, we sum the absolute values of color chan-
nels, which are denoted by the subscript abs. In this case, very small values (≳ 0) have minimal
influence on that prediction. Second, for the signed estimators, we multiply the raw importance
scores element-wise with the input image (Shrikumar et al., 2017), (indicated by a prime) and sum
over the resulting color channels (indicated by a subscript sum). Negative importance scores from the
signed estimators may imply counter-evidence for the predicted class. IG includes a multiplication
with the input by definition and will therefore not appear primed. See Appendix A.2 for more details
about the importance estimators.

FIDELITY OF IMPORTANCE ESTIMATORS

Perturbation-based evaluation methods are both intuitive and popular (Samek et al., 2016; Petsiuk
et al., 2018; Kindermans et al., 2017). For our evaluation of fidelity, we create perturbation curves of
changes in logits, i.e. pre-softmax activations in the prediction vector, with respect to an increasing
amount of perturbation (e.g., Fig. 1). When needed for comparison, logits are normalized against
the original model prediction without any masked pixel. A given importance estimator computes
a set of importance scores for input pixels, which indicate how much each pixel contributed to the
final prediction. Then, input pixels are perturbed in order of either the most important first (MIF)
or the least important first (LIF). In the case of signed importance scores, the ranking goes from the
highest positive values to the lowest negative ones (MIF), or reversely (LIF). Therefore, the lowest
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negative importance scores, which are ranked first in LIF, may indicate strong counter-evidence for
the predicted class.

Least Important First (LIF)

Most Imporant First (MIF)

Area A

Figure 1: The fidelity metric A is defined as
the area between the LIF (orange) and MIF
(blue) curves. Importance estimators with
larger A are considered to explain the model
more accurately.

When the importance estimator deems a certain fea-
ture important, ideally the removal of this feature would
strongly decrease the associated logit. A greater logit de-
crease would imply that a chosen feature is more impor-
tant for the model’s prediction. Inversely, if a feature has
a low-ranked importance score, its removal would lead
to a minimal accuracy decrease (unsigned estimators) or
potentially an accuracy increase for removing counter-
evidence (signed estimators). To obtain the final perturba-
tion curves, we average normalized logits over all 10,000
samples in the test set for CIFAR-10. For ImageNet and
Food101, we average over a randomly selected subset of
5,000 samples from the test set.

In order to combine these two aspects, we use the area
A between the MIF and LIF curves (Fig. 1) as a metric
to measure the relative fidelity of importance estimators.
A small area under the MIF curve indicates that the es-
timator is good at detecting features that are important
evidence for a given class. A large area under the LIF
curve, on the other hand, means that the estimator can
reliably find unimportant features. Negative importance
scores (e.g., gradients) would imply counter-evidence for
the prediction. With A as fidelity metric, we therefore
consider importance estimators with large A to be overall superior to ones with lower A.

4 RESULTS

Figure 2: Perturbation curves for the ResNet-50 trained on Food101 data with importance scores obtained
using signed importance estimators. Logits have been normalized to the initial values without perturbation.
“Rectangle” proposed in (Zhong et al., 2020). “Random” means that importance scores are randomly assigned.

We applied the proposed FPA on three datasets; the ImageNet (Deng et al., 2009), Food101 (Bossard
et al., 2014), and CIFAR-10 (Krizhevsky et al.). The ResNet-50 (He et al., 2016) architecture is used
for ImageNet and Food101 and ResNet-18 for CIFAR-10. We wanted to find parameters for FPA
that significantly improve the model’s robustness while maintaining its accuracy. To this end we
performed a partial grid search, keeping p2 and smax fixed and varying p in the range [0.2, 0.5] and
p1max in [0.1, 0.4] using 0.1 and 0.5 steps for Food101 and CIFAR-10, respectively. Due to restrictions
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in computing resources, we did not include p2 and smax in the grid search. FPA parameters for the
ImageNet were set to the same parameters selected for Food101. For the augmentation of CIFAR-
10, we chose p1max = 0.25, p2 = 0.1, smax = 3 and for ImageNet and Food101 p1max = 0.3, p2 =
0.01, smax = 10. We set p = 0.5 for all three datasets. Evaluated on the same images that are
used to obtain the perturbation curves, the models trained on CIFAR-10 have an accuracy of 93.0%,
92.7% and 93.1% for no augmentation, proposed FPA and “random erasing” (Zhong et al., 2020)
(“Rectangle” in our figures), respectively. In the same order, the models trained on ImageNet have
an accuracy of 76.2%, 74.7% and 75.9% and on Food101 83.5%, 81.5% and 83.5%.

Figure 3: Comparison of the model perfor-
mance (logits) and importance scores when
FPA is used.

Once the model is trained with or without data augmen-
tation, vanilla gradient (VG), integrated gradient (IG),
Smoothgrad (SG), and squared SmoothGrad (SQ-SG) are
applied to obtain matrices of importance scores. We also
calculate perturbation curves as described in Section 3.
In Fig. 2, the MIF perturbation curves (top row) fall off
slower when the model was trained with the proposed
FPA, compared to those with no augmentation or Rect-
angle augmentation (Zhong et al., 2020). For LIF per-
turbation curves (bottom row, Fig. 2), the logits initially
increase before decreasing if FPA is used. In contrast,
without or with Rectangle augmentation, the logits imme-
diately and rapidly decrease. The random baseline (where
importance scores are randomly assigned to pixels) does
not exhibit the early increase of logits.

These operating characteristics are expected when the in-
fluence of artifacts is removed, or at least strongly re-
duced, by our proposed augmentation. Generally, some
of the logit decrease is expected to be due to perturba-
tion artifacts, thus removing perturbation artifacts would
delay the logit decrease. In the LIF curves in Fig. 2,
pixels with large negative importance scores are masked
first which removes counter-evidence. This is highlighted
in Fig. 3, which demonstrates that masking pixels with
a large negative importance score coincides with an in-
crease in the logit values (see Fig. A.4 for equivalent
graphs for CIFAR-10 and ImageNet). Without FPA this
effect can not be observed, instead leading to a net de-
crease of the logits, despite pixels with negative scores
being masked. This behavior is consistent across the three considered datasets and architectures
(see Figs. A.2 and A.3).

We compare the fidelity A of importance estimators (Tables 1, A.1 and A.2) considering two differ-
ent settings. In the first setting, we take into account the magnitude of importance scores and dis-
regard whether their signs correctly indicate evidence or counter-evidence for the prediction. Non-
negative importance scores are obtained from the unsigned estimators are: IGabs, VGabs, VG′

abs,
SGabs, SG′

abs and SQ-SGsum. Among those that rank pixels purely by the magnitude of impor-
tance scores, we find that across all three considered datasets, and regardless of the augmentation,
SQ-SGsum consistently performs best and VGabs worst.

For the second setting, we consider signed importance scores from the signed estimators; namely,
IGsum, VG′

sum and SG′
sum, which multiply the gradients and input element-wise1. With FPA, the

signed estimators consistently outperform the unsigned ones across all three datasets, with IGsum
and SG′

sum in the leading positions. Intuitively, this makes sense since the signed estimators con-
tain more information than the unsigned ones, allowing them to describe the models’ predictions
more accurately. Without FPA, however, the unsigned SQ-SGsum outperforms all other methods on

1Without multiplying with the input, the gradients by themselves do not infer the sign of importance scores
correctly. Consider a linear model f(x) = ωx, the gradient ∂f

∂x
= ω does not contain information on the sign

of f , if x can be negative. Multiplying with the input yields x ∂f
∂x

and thus VG′ gives the correct sign in the
linear case. IG has a multiplication with the input built into its definition.
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Food101 and ImageNet and only on CIFAR-10 SG′
sum performs best. This indicates that using FPA

makes the obtained ranking of importance estimators more reliable.

Aug. Random IGsum IGabs VGabs VG′
sum

None 0.0± 0.7 15.9± 0.7 29.2± 0.7 14.6± 0.8 6.2± 0.7
Proposed 0.0± 0.5 61.8± 0.8 29.2± 0.6 18.7± 0.6 45.6± 0.9

Aug. VG′
abs SGabs SG′

sum SG′
abs SQ-SGsum

None 23.0± 0.8 36.4± 0.7 38.1± 0.9 40.0± 0.7 42.7± 0.6
Proposed 23.7± 0.6 31.0± 0.6 57.3± 0.8 33.9± 0.6 36.2± 0.6

Table 1: The fidelity of importance estimators A (the area between LIF and MIF perturbation curves), measured
on the ResNet-50 trained on ImageNet with 95% confidence intervals. See the main text for difference between
the unsigned and signed importance estimators.

5 DISCUSSION

As this work has been focused on the interpretability and trustworthiness of deep learning models,
there still is room for performance improvement. Training the models with FPA leads to a slight
decrease in performance compared to training them without augmentation. This might be due to
“augment ambiguity” Wei et al. (2020), which occurs when the annotated class is not recognizable
anymore as a result of an augmentation. On the other hand, random erasing, which is closely related
to FPA, reported an increase in the model performance in certain settings (Zhong et al., 2020). In
future work, we plan to explore variations of FPA and training schemes to mitigate the performance
loss, but also point out that trading some accuracy for increased interpretability can be worthwhile.

Although FPA has been introduced here for the case of perturbing pixels with constant values it
is applicable to any perturbation scheme, e.g. blurring. The only requirement is that the pertur-
bation performed to augment images needs to reflect the perturbation applied during evaluation of
interpretability methods.

Since FPA randomly selects pixels to construct augmented training samples it can be expected to
only increase a model’s robustness against such random perturbations. To increase the robustness
against adversarial perturbations, we plan to extend our work by additionally performing adversarial
training Goodfellow et al. (2014); Madry et al., which would allow to rule out perturbation artifacts
during evaluation with even higher confidence.

Lastly, training with FPA elucidates counter-evidence associated with negative importance scores.
Often only the absolute values of importance scores are considered in practice. In contrast, if per-
turbation artifacts are accounted for, the sign of importance scores can help us understand the model
characteristics.
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Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PloS one, 10(7):e0130140, 2015.
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A APPENDIX

A.1 DATASETS AND TRAINING PROCEDURE

We adapted the ResNet-18 architecture to be suitable for the smaller input dimensions of CIFAR-
10. The ResNet-50 model was trained on ImageNet for 90 epochs using the SGD optimizer with
momentum 0.9, weight decay 10−4 and initial learning rate 0.1, which we reduced by a factor of
10 on epochs 30 and 60. On Food101, Resnet-50 was trained for 68 epochs with momentum set to
0.9, weight decay 5 × 10−4 and an initial learning rate of 0.1, where a cosine annealing schedule
was used to continuously reduce the learning rate to zero. The ResNet-18 model was trained for 40
epochs using the SGD optimizer with momentum 0.9, weight decay 5 × 10−4 and initial learning
rate 0.01, which we reduced by a factor of 10 on epoch 30. For CIFAR-10 and ImageNet, we scaled
input images to the range [−1, 1] and for Food101 we performed a z-score normalization with mean
and standard deviation from the training set. In all three cases, we performed a horizontal flip with
a probability of 0.5 to augment the data.

A.2 IMPORTANCE ESTIMATORS

We compare the following four importance estimators:

Vanilla gradient (VG) (Simonyan et al., 2014): Gradients of the class score Sc with respect to input
pixels xi

e =
∂Sc

∂x

The class score Sc is the activation of the neuron for the predicted class c.

Integrated gradient (IG) (Sundararajan et al., 2017): Average over gradients obtained from inputs
interpolated between a reference point x0 and input x

e =
(
x− x0

)
×

m∑
k=1

∂Sc

(
x0 + k

m

(
x− x0

))
∂x

× 1

m
,

where x0 is chosen to be a black image and m = 200.

SmoothGrad (SG) (Smilkov et al., 2017): Average over gradients obtained from inputs with in-
jected noise

e =
1

n

n∑
1

ê
(
x+N

(
0, σ2

))
,

where N
(
0, σ2

)
is Gaussian noise, ê is obtained using vanilla gradient, and n = 15.

Squared SmoothGrad (SQ-SG) (Hooker et al., 2019): Variant of SmoothGrad that squares ê

e =
1

n

n∑
1

ê
(
x+N

(
0, σ2

))2
.

A.3 SUPPLEMENTARY FIGURES AND TABLES

Figure A.1: Examples of feature perturbation augmentation (FPA) applied on Left: CIFAR-10 and Right:
ImageNet.
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Figure A.2: Overview of perturbation curves for signed importance estimators for all three considered datasets.
The raw importance scores are multiplied element-wise with the input image (Shrikumar et al., 2017), indicated
by a prime, and then followed by summing over the resulting color channels. By definition, IG includes a
multiplication with the input already. The change in normalized logits is measured as a percentage of pixels that
are masked according to the Most Important First (MIF; Left) and the Least Important First (LIF; Right). Note
that masking pixels with negative importance scores can increase logits, as counter-evidence for the predicted
class is removed from the input image.

Figure A.3: Overview of perturbation curves for unsigned importance estimators for all three considered
datasets. Sums of the absolute values of color channels are used. The change in normalized logits is plot-
ted as a percentage of pixels that are masked according to the Most Important First (MIF; Left) and the Least
Important First (LIF; Right). Notice that in comparison to the LIF perturbation curves from the signed estima-
tors (Figure A.2), the initial increase for LIF perturbation does not occur for the unsigned estimators.
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Figure A.4: Top row: LIF perturbation curves averaged over CIFAR-10 and ImageNet test samples. Bottom
row: The curve has been obtained by flattening the heat map and plotting the importance scores in LIF order,
with the x-axis indicating their position in the ranking. At each point on the x-axis, one can compare the
importance scores of a group of pixels (y-axis labeled ‘importance scores’) and the influence of their masking
on the model output (y-axis labeled ‘logits’).

Aug. Random IGsum IGabs VGabs VG′
sum

None 0.0± 0.7 14.0± 0.8 21.9± 0.6 5.6± 0.6 8.0± 0.7
Proposed 0.0± 0.5 59.6± 0.7 34.9± 0.5 16.9± 0.5 47.0± 0.7

Aug. VG′
abs SGabs SG′

sum SG′
abs SQ-SGsum

None 16.1± 0.6 18.5± 0.6 34.6± 0.8 27.0± 0.6 27.9± 0.6
Proposed 25.8± 0.5 35.4± 0.5 80.5± 0.6 39.2± 0.5 41.1± 0.5

Table A.1: The fidelity of importance estimators A (the area between LIF and MIF perturbation curves), mea-
sured on the ResNet-18 trained on CIFAR-10 with 95% confidence intervals.

Aug. Random IGsum IGabs VGabs VG′
sum

None 0.0± 0.8 11.6± 0.7 22.6± 0.8 15.5± 0.8 8.7± 0.6
Proposed 0.0± 0.6 67.7± 1.0 29.4± 0.6 24.8± 0.7 66.0± 1.0

Aug. VG′
abs SGabs SG′

sum SG′
abs SQ-SGsum

None 15.5± 0.8 22.2± 0.8 30.3± 0.8 23.7± 0.7 31.2± 0.8
Proposed 24.8± 0.7 28.9± 0.7 69.4± 0.9 27.0± 0.6 31.3± 0.7

Table A.2: The fidelity of importance estimators A (the area between LIF and MIF perturbation curves), mea-
sured on the ResNet-50 trained on Food101 with 95% confidence intervals.
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