
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCALECUA: SCALING OPEN-SOURCE COMPUTER USE
AGENTS WITH CROSS-PLATFORM DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-Language Models (VLMs) have enabled computer use agents (CUAs) that
operate GUIs autonomously with great potential. However, developing robust
CUAs requires extensive in-domain knowledge about software interfaces and
operations. Unlike image–text pairs that are widely available on the Internet,
computer-use data, particularly operation trajectories, are rare, costly to collect.
Consequently, advancement in this field remains constrained by both data scale and
the limited transferability of existing VLMs. In this work, we introduce ScaleCUA,
a step toward scaling open-source CUAs. It offers a large-scale dataset spanning six
operating systems and 3 task domains, via a closed-loop pipeline uniting automated
agents with human experts. Trained on this scaled-up data, ScaleCUA can operate
seamlessly across platforms. Specifically, it delivers substantial gains over baselines
(+26.6 on WebArena-Lite-v2, +10.7 on ScreenSpot-Pro) and sets new state-of-the-
art results (94.4% on MMBench-GUI L1-Hard, 60.6% on OSWorld-G, 47.4% on
WebArena-Lite-v2). These findings underscore the power of data-driven scaling
for general-purpose cross-platform CUAs. We will release data, models, and code
to advance future research.

1 INTRODUCTION

GUI Understanding Online Benchmarks (Desktop & Mobile & Web)GUI Grounding

MMBench-GUI L1-Hard ScreenSpot-Pro WindowsAgentArena WebArena-Lite-v2

Figure 1: Performance comparison. The top row showcases performance overview on GUI-centric
benchmarks. The bottom row demonstrates the consistent improvements from our collected data.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Humans are able to interact with digital environments through graphical user interfaces (GUIs) to
acquire information and accomplish tasks efficiently. The recent advances in Vision-Language Models
(VLMs), which exhibit powerful capabilities in visual perception and task planning, have made it
increasingly feasible to automate such interactions. Consequently, recent research has increasingly
focused on computer use agents (CUAs), also referred to as GUI agents, aiming to autonomously
operate desktop, mobile, and web platforms by relying exclusively on visual observations.

Some works (Qin et al., 2025; Anthropic, 2025; Hong et al., 2025; OpenAI, 2025; Guo et al., 2025;
Hong et al., 2025) demonstrate strong performance on computer use, while they are typically built on
closed-source models or inaccessible proprietary datasets. More fundamentally, effective computer
use requires rich in-domain knowledge of software and operational procedures, which remains a
substantial gap for current foundation models. Unlike image–text pairs that are abundantly available
on the Internet, computer-use data, particularly fine-grained action trajectories, are scarce, costly to
collect, and not naturally archived online. Furthermore, as software, web pages and operating systems
evolve rapidly, existing trajectories face the risk of obsolescence, further limiting their utility. These
challenges result in a significant bottleneck for scaling computer use agents in both data scale and
model generalizability. To tackle these limitations, we make significant efforts on two aspects: (a)
constructing a large-scale, cross-platform and GUI-centric training corpus, and (b) developing
a family of scalable, versatile foundation models for general-purpose computer use.

We first present a Cross-Platform Interactive Data Pipeline composed of two synergistic loops.
The Agent-Environment Interaction Loop enables automated agents to interact with diverse GUI
environments, while the Agent-Human Hybrid Data Acquisition Loop integrates expert-collected
trajectories to ensure coverage and quality. The pipeline spans six major platforms, including
Windows, macOS, Linux, Android, iOS, and Web, which facilitates the collection of rich screen-state
observations, metadata (e.g., A11y Trees, XLM, DOM structures, etc.), and raw trajectories. In this
pipeline, we design a unified action space, allowing for more consistent and efficient interaction
with diverse real-world environments. Leveraging this infrastructure, we curate and annotate a
comprehensive training dataset with advanced VLMs such as Claude-3.7 for an open computer use
dataset, covering three major task families: (a) GUI Understanding with 471K examples covering
regional captioning, OCR, and layout comprehension, etc.; (b) GUI Grounding with 17.1M training
samples supporting more accurate UI element localization; and (c) Task Completion with over 15K
weak-semantic trajectories and 4K high-level goal-directed trajectories.

Building upon this corpus, we train a series of base agent models termed as ScaleCUA with Qwen2.5-
VL (Bai et al., 2025). It supports three inference paradigms to offer enhanced flexibility and
compatibility with agent frameworks: (a) a Grounding Mode, which focuses on locating UI elements
based on textual descriptions, allowing for integration with more powerful planners, (b) a Direct
Action Mode, which enables efficient task completion by directly generating executable actions
without additional intermediate reasoning and (c) a Reasoned Action Mode, which enhances task
planning with Chain-of-Thought process before generating the following action. We conduct extensive
quantitative studies to investigate how different data sources, diverse training tasks, agent designs, etc.,
influence agent performance. Our findings highlight the benefits of data augmentation, weak semantic
trajectories, and general reasoning data for enhancing planning capabilities. As previous studies (Xu
et al., 2024; Qin et al., 2025; Anthropic, 2025) also probe into the important research questions with
limited open-sourced training data or under closed conditions with proprietary data, our investigations
aim to provide foundational and unified insights for advancing vision-based computer automation.

Our contributions are summarized as follows:

1) We curate a cross-platform computer use dataset, collected via an interactive data pipeline that
integrates automated agents with human experts. It covers six major platforms (Windows, macOS,
Linux, Android, iOS, and Web) and three GUI-centric task domains (i.e., understanding, grounding,
and task completion), which provide a robust foundation for studying and training universal CUAs.

2) We develop ScaleCUA, a family of robust base agent models that unify perception, reasoning,
and action into a single model. It supports flexible inference paradigms, including grounding, direct
action, and reasoned action, along with a unified action space for seamless cross-platform interaction.

3) We conduct a comprehensive evaluation spanning understanding, grounding, and end-to-end task
completion across several platforms. The results not only demonstrate that our agents can achieve
competitive performance but also provide fundamental insights for developing more powerful CUAs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Vision-Language Models (VLM). Recent years have witnessed rapid progress in VLMs spanning
proprietary APIs (Team et al., 2023; 2024; Anthropic, 2024a; xAI, 2025; OpenAI, 2023; Hurst et al.,
2024) and open-source models (Wang et al., 2024; Bai et al., 2025; Chen et al., 2024b; Zhu et al.,
2025; Xiaomi, 2025; Team et al., 2025a; MetaAI, 2025), greatly expanding task coverage. Some
VLMs (Team et al., 2025c; Guo et al., 2025; Bai et al., 2025; Xiaomi, 2025; Wang et al., 2025a)
integrate GUI knowledge during pre-training or SFT, thereby gaining explicit computer-use abilities.
Yet, despite strong generalization and planning capabilities, they still rely on proprietary GUI corpora.

Computer Use Agents (CUAs) / GUI Agents. Advances in general-purpose VLMs (e.g., GPT-4o)
have enabled modular CUAs that decompose decision-making into planner–grounder roles (Cheng
et al., 2024; Hong et al., 2024; Lu et al., 2024b; Yu et al., 2025; Wu et al., 2025; Gou et al., 2024;
Zhang et al., 2025b; Wu et al., 2024b; Zhou et al., 2025). A VLM-based planner predicts high-level
operations, while a specialized grounder localizes targets. Enhancements such as incorporating action
histories (Yang et al., 2024) improve contextual grounding, and multi-agent agentic workflows (Wu
et al., 2023b; Li et al., 2023; Hong et al., 2023; Wu et al., 2024a; Liu et al., 2025a; Zhao et al.,
2025; Agashe et al., 2025; Chen et al., 2025b) coordinate planning, reflection, and memory. Despite
strong performance, such workflows incur high computational latency and token cost, remaining
bounded by underlying VLM capacity. In contrast, native agents (Xu et al., 2024; Wu et al., 2024b;
Sun et al., 2024b; Qin et al., 2025; Luo et al., 2025; Liu et al., 2025b; Sun et al., 2025) integrate
planning and grounding end-to-end, directly predicting low-level executable actions from raw visual
inputs. Systems such as AGUVIS (Xu et al., 2024) and UI-TARS (Qin et al., 2025) trained on
extensive trajectories show strong reasoning and adaptability. Native agents thus achieve tighter
perception–action alignment while also benefiting modular setups. Our work extends this direction
by training cross-platform base models and open-sourcing all data.

GUI Datasets. Open-source datasets have accelerated CUA’s development by capturing diverse
interactions and instruction-following behaviors. For mobile, RICO (Deka et al., 2017) contains 70k+
Android screens, AITW (Rawles et al., 2023) offers ∼715k demonstrations with 30k commands, and
AitZ (Zhang et al., 2024) provides 18,643 screen–action pairs with action-thought annotations. In
the web domain, MiniWoB (Shi et al., 2017) simulates diverse tasks, WebShop (Yao et al., 2022)
collects language-driven e-commerce trajectories, and Mind2Web (Deng et al., 2023) scales to 137
websites and 2,350 open-ended tasks. For desktop, Xie et al. (2024) synthesizes 4M examples to boost
grounding, and He et al. (2025) adds 312 human-annotated, trajectory-boosted samples. Scalable
data generation includes OS-Genesis (Sun et al., 2024b) for mobile/web exploration and AGUVIS (Xu
et al., 2024) for multimodal grounding–reasoning corpora. Tutorial-style datasets mitigate scarcity:
META-GUI(Sun et al., 2022) introduces dialogue-based annotations; TongUI(Zhang et al., 2025a)
offers ∼143k trajectories linking instructions to screenshots; and GUI-World (Chen et al., 2025a)
records 12k GUI videos for temporal understanding. Nevertheless, coverage and diversity remain
limited, especially for desktop, posing challenges for UI element grounding and multi-step planning.

3 CROSS-PLATFORM INTERACTIVE DATA PIPELINE

Collecting computer use trajectories is exceptionally costly and inefficient, primarily due to the
dynamic nature of environments and their frequent dependency on task-specific resources. In this
section, we elaborate on the pipeline of data collection and annotation.

3.1 DATA ACQUISITION

Existing computer-use datasets generally rely on either manual trajectory collection or automated
search-based exploration. While manual collection (Zhang et al., 2024; Rawles et al., 2023; Deng
et al., 2023; Lu et al., 2024a) yields high-quality trajectories, it is costly and difficult to scale.
Automated exploration (Sun et al., 2024b) is more scalable but typically noisy. Neither approach
alone achieves the required balance of quality and diversity for training versatile GUI agents.

To address this, we propose a Cross-Platform Interactive Data Pipeline that integrates automated
agents with human experts. As shown in Fig. 2, it operates in two synergistic loops. The Agent-
Environment Interaction Loop enables agents or humans to interact with multi-platform GUI

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

ObservationAction

Multi-Platform Environments

iOSAndroid iPadOS Web Linux (Ubuntu) macOS Windows

TrainingGathering

GUI Understanding

Task Completion

GUI Grounding

Training Corpora

Human Expert

Agent

Raw Trajectories
Metadata (A11y Tree / DOM / XML) Screenshots

Augment+

…

Annotate

Figure 2: Cross-platform interactive data pipeline. Our pipeline consists of two synergistic loops:
(1) the Agent-Environment Interaction Loop, where agents interact with multi-platform GUI
environments via observation and actions; and (2) the Agent-Human Hybrid Data Acquisition
Loop, where both autonomous agents and human experts contribute to collecting raw trajectories
with screenshots and structural metadata. The resulting trajectories are then annotated and processed
into several GUI-centric tasks such as understanding, grounding, and task completion.

environments, while the Agent-Human Hybrid Data Acquisition Loop merges trajectories from
autonomous agents and experts.

Specifically, in the agent-environment interaction loop, we standardize observation acquisition and
action execution across Windows, Ubuntu, macOS, Web browsers, Android, and iOS. This unified
abstraction supports closed-loop data collection and diverse agent architectures. Platform-specific
metadata is extracted from A11y Trees (Desktop), DOM (Web), and XML layout files (Android).
When metadata is incomplete or restricted, as in iOS/iPadOS, OmniParser (Yu et al., 2025) estimates
UI bounding boxes. In the agent-human hybrid data acquisition loop, human experts and automated
agents both share the same interfaces to collect diverse trajectories. For automated agents, we
evaluate two exploration strategies: VLM-driven agents (e.g., GPT-4o, Claude-3.7, etc.) and rule-
driven random-walk agents. The former relied on proprietary VLMs, which often led to significant
bias and hallucinations, especially for computer use, and thus was not used as the primary strategy
for data collection. The latter performs depth-first exploration, randomly selecting actions from the
available action space at each step. Heuristic pruning removes redundant or uninformative branches,
broadening GUI coverage. Although these trajectories often lack clear high-level goals, their sub-
sequences still yield valuable supervision for the agent. As both system-derived metadata and
vision-based bounding boxes can be noisy, we complement it with expert-curated trajectories. Human
experts first create a task list and then collect trajectory data in the environment. In addition, human
experts are required to randomly sample and review 20% of the agent-collected trajectories after
both collection and annotation to ensure quality. This is what we refer to as hybrid data acquisition.
This unified pipeline decouples front-end interfaces from back-end environments, allowing collectors
to efficiently switch between platforms and complete domain-specific tasks. These screenshots
and metadata are then annotated into GUI-centric tasks such as understanding, grounding, and task
completion, forming a robust foundation for training generalizable agents.

3.2 DATA ANNOTATION AND STATISTICS

This dual-loop framework collects extensive screenshots, structural metadata, and raw trajectories
across Windows, macOS, Linux, Android, iOS, and Web platforms. Advanced VLMs (e.g., GPT-4o
and Claude-3.7) are then used to annotate the corpus into three major task families: GUI Understand-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Datasets comparisons on computer-use datasets in terms of platform coverage, data types
(Understanding, Grounding and Trajectories), and collection methods.

Data source Platform Understanding Grounding Trajectories Collection
MethodDesktop Mobile Web #Samples #Elements #Samples Avg. Steps

SeeClick (2024) ✗ ✓ ✓ – 763K – – Auto
GUIEnv (2024a) ✗ ✗ ✓ – 10.7M – – Auto
Widget Captioning (2020b) ✗ ✓ ✗ – 163K – – Human
RicoSCA (2020a) ✗ ✓ ✗ – 178K – – Auto
RICO (2017) ✗ ✓ ✗ – 72K – – Hybrid
OmniACT (2024) ✓ ✗ ✓ – 9.8K – – Auto
GUIAct (2024a) ✗ ✗ ✓ – 67K 5.7K 6.7 Auto
AitZ (2024) ✗ ✓ ✗ – – 2.5K 6.0 Human
AndroidControl (2024a) ✗ ✓ ✗ – – 13.6K 5.5 Human
GUI Odyssey (2024a) ✗ ✓ ✗ – – 7.7K 15.3 Human
AMEX (2024) ✗ ✓ ✗ – – 3.0K 11.9 Human
AitW (2023) ✗ ✓ ✗ – – 2.3K 8.1 Human
OS-Atlas (2024b) ✗ ✓ ✓ – 13.6M – – Auto
OS-Genesis (2024b) ✗ ✓ ✓ – – 2.5K 6.4 Auto
JEDI (2025) ✓ ✗ ✗ 877K 3.1M – – Auto
AgentNet (2025b) ✓ ✗ ✗ – – 22K – Human

Ours ✓ ✓ ✓ 471K 17.1M 19.0K 9.0 Hybrid

ing, GUI Grounding, and Task Completion. At the element and screenshot levels, understanding
tasks cover visual description, OCR, layout reasoning, interface captioning, and state transition
analysis, while grounding tasks provide point, bounding-box, and action-level supervision to align
natural-language instructions with UI regions. Task Completion is composed of a) weak-semantic
trajectories derived from rule-driven exploration that supply low-cost navigation patterns, and b)
expert-curated demonstrations with realistic, goal-directed signals for reasoning and planning. Aug-
mentation techniques such as element cropping, synthetic resolution scaling, and reasoning-prompt
enrichment further diversify the training data. The final corpus spans 471K GUI-understanding exam-
ples, over 17.1M grounding annotations, and 19K trajectories averaging 9 steps each. As summarized
in Table 1, we believe this dataset enables balanced evaluation of understanding, grounding, and task
completion across all platforms. More statistics are shown in the Appendix.

Discussions. By leveraging a dual-loop pipeline, we ensure coverage of low-level element recognition,
mid-level grounding, and high-level task planning. Compared with current works (Sun et al., 2024b;
Wu et al., 2024b; Zhang et al., 2024; Rawles et al., 2023), we explore more diverse data collection
strategies (human experts and automated agents) and cover a broader range of platforms (desktop,
mobile, and web). Specifically, for the random-walk agent, we designed a more efficient algorithm
through extensive experimentation and iterative improvements, significantly enhancing both data
collection efficiency and GUI coverage. With this pipeline, we have collected over 2M raw screenshots
across multiple platforms. We acknowledge that this pipeline is conceptually straightforward, but
executing it across heterogeneous operating systems and software ecosystems entails substantial non-
trivial engineering. Our contributions in the data pipeline are threefold: 1) We propose a robust and
scalable data acquisition pipeline that balances automation and expert supervision, along with a set of
effective heuristics improving data diversity and quality. 2) We summarize a comprehensive guideline
covering platform-specific issues and their resolutions in the Appendix, which significantly improves
the purity and efficiency of data collection. 3) We commit to releasing all data, ensuring transparency
and reusability for future research. Generally, we emphasize that our work delivers a practically
validated, cross-platform solution addressing real-world bottlenecks in scaling computer-use agents.
Despite involving many engineering-oriented efforts, we still aim to share these experiences and
provide valuable guidance for future developments in this field.

4 THE DESIGN OF COMPUTER USE AGENTS

4.1 TASK DEFINITION

VLMs allow agents to achieve pixel-level perception and interaction on graphical user interfaces. We
formulate the interaction between the agent and environment at one time step as follows:

at = πθ(task, ot, h<t), ot+1 = E(at), (1)

where π denotes the agent model parameterized by θ, and E represents the environment, such as
virtual machines or Docker containers. The task denotes the task instruction. The observation o

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Action: <action> click(1848, 166) </action>
Bbox: <box> [1826, 143, 1873, 190] </box>
Point: <point> [1848, 166] </point>

Action: <action> click (655, 411) </action>
Bbox: <box> [20, 369, 110, 463] </box>
Point: <point> [655, 411] </point>

<operation> Click on the YouTube search bar and write "Python Tutorial" to find programming tutorials. </operation>
<action> click(943, 168)\nwrite(“Python Tutorial”) </action>

Task: I want to find some Python video tutorials, can you help me?

Task: Click on the notifications icon

Task: Find the button named “Shorts”

Reasoned Action Mode

Grounding Mode

Direct Action Mode

<think> Based on the observation, I can see that to find Python video tutorials on YouTube, I would use the search bar
at the top of the page. The search bar is currently empty with the placeholder text “Search” visible, and it‘s the primary
way to find specific content on YouTube. Clicking on the search bar and typing “Python Tutorial” would allow you to
search for relevant videos … </think>

Figure 3: Three Inference Paradigms in ScaleCUA: (1) Grounding Mode, which focuses on
localizing target UI elements; (2) Direct Action Mode, where the agent solely generates executable
actions based on current observations and instructions; and (3) Reasoned Action Mode, where the
agent first generates a chain-of-thought rationale before producing structured actions. These modes
enable varying levels of functionality for computer use agents to complete tasks.

encompasses elements such as raw screen pixels, accessibility trees, or DOM data. The history
h<t = {(a0, o0), . . . , (at−1, ot−1)} provides context for agent’s decision-making process. Similar to
some works (Sun et al., 2024b; Xu et al., 2024), we choose to generate natural language descriptions
for (ai, oi) as history, as it can save a large amount of inference cost budget. Each action specifies
an operation with corresponding arguments, as detailed in Table 14, which is then executed in the
environment. In this work, we adopt screenshots as the observation space. This paradigm aligns with
human behavior and effectively avoids interference from noisy accessibility Tree and DOM data.

4.2 AGENT MODELS

We build our ScaleCUA family upon Qwen2.5-VL for its strong multimodal understanding and
scalability across diverse GUI platforms. As shown in Fig. 3, it supports three inference paradigms.
In Grounding Mode, the model localizes UI elements via points, boxes, or coordinate-based actions
from screenshots and instructions, making it suitable as a modular “grounder” for external planners. In
Direct Action Mode, the model directly emits low-level instructions and executable actions, enclosed
in <operation> and <action> tags. Given the current screen and interaction history, it enables
fast perception–action loops without explicit reasoning. In Reasoned Action Mode, it first generates a
rationale inside <think> tags before producing the action, improving reliability and interpretability
on ambiguous or long-horizon tasks with extra latency. This design allows flexible integration with
different agentic workflows while maintaining consistent control semantics across platforms.

Action Space. We design a unified action space for data collection and environment interaction.
Table 14 summarizes our cross-platform action space spanning desktop, mobile, and web. It combines
universal operations (e.g., click, write, etc.) with platform-specific actions (e.g., long press
and open app for mobile), ensuring consistent behavior modeling and simplifying downstream
policy learning. More details appear in Sec. A.4.

Training Recipes. We train three model scales under hardware-aware configurations: ScaleCUA-3B
(mini-batch 4, grad-accum 1 on 128 A100 GPUs), ScaleCUA-7B (mini-batch 2, grad-accum 2 on
128 A100 GPUs), and ScaleCUA-32B (mini-batch 2, grad-accum 2 on 128 H200 GPUs). All use a
learning rate of 1× 10−5 and a maximum token length of 40,960. To balance general multimodal
knowledge with GUI-specific skills, we vary the ratio of general-purpose data to GUI data: 25%
for 3B, 50% for 7B, and 75% for 32B. Empirically, this scaling yields substantial gains on GUI

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

understanding, grounding, and task completion benchmarks, confirming that larger models can absorb
higher proportions of general data without diluting GUI competence.

5 EXPERIMENTS

Evaluation Setup. We comprehensively evaluate our ScaleCUA across three dimensions: GUI
understanding, GUI grounding, and end-to-end task completion. All evaluations are performed
under pure visual observation to align with real-world usage. For GUI understanding, we use
MMBench-GUI L1 (Wang et al., 2025c), which tests fine-grained perception and reasoning about
interface content. For GUI grounding, we conduct structured evaluations on ScreenSpot-v2 (Wu
et al., 2024b), ScreenSpot-Pro (Li et al., 2025), and OSWorld-G (Xie et al., 2025), covering cross-
platform localization and domain-specific scenarios. By default, ScreenSpot-Pro is evaluated at 2K
resolution and other benchmarks at 1080p. For end-to-end task completion, we test our models
on AndroidControl, OSWorld (Xie et al., 2024), WindowAgentArena (WAA) (Bonatti et al., 2024),
macOSArena (MA) (Wang et al., 2025c), AndroidWorld (AW) (Rawles et al., 2024), and WebArena-
Lite-v2 (WAL-v2). These benchmarks span desktop, mobile, and web settings, with a 50-step budget
applied when not specified, enabling a realistic assessment of platform-specific performance. We
further validate general vision-language capabilities on several well-known benchmarks (Yue et al.,
2024; Lu et al., 2023; Liu et al., 2024b; xAI, 2024). In addition, we deploy Qwen2.5VL models with
vLLM (Kwon et al., 2023) to ensure scalable and consistent online evaluation.

5.1 COMPREHENSIVE AGENT EVALUATION

Table 2: Results on MMBench-GUI L1 (GUI Con-
tent Understanding) (Wang et al., 2025c).

Model Easy Medium Hard

GPT-4o (2024) 60.2 57.2 53.5
Claude-3.7 (2025) 39.1 38.4 35.7
Qwen2.5-VL-72B (2025) 67.0 67.5 64.6
UI-TARS-72B-DPO (2025) 40.2 41.8 35.8
InternVL3-72B (2025) 79.2 77.9 75.7
GUI-Owl-7B (2025) 84.5 86.9 90.9
GUI-Owl-32B (2025) 92.8 91.7 94.2
ScaleCUA-3B 83.6 85.6 89.9
ScaleCUA-7B 88.4 90.1 92.3
ScaleCUA-32B 92.5 92.5 94.4

GUI Understanding. MMBench-GUI L1
(GUI Content Understanding) assesses fine-
grained perception and reasoning across six
platforms following MMBench-GUI protocols.
In Table 2, our ScaleCUA consistently de-
livers competitive or superior results. Even
the lightweight ScaleCUA-3B attains 89.9%,
surpassing Qwen2.5-VL-72B by +25.3 points.
ScaleCUA-7B further improves to 92.3%, while
ScaleCUA-32B reaches 94.4%. These results
highlight the efficacy of scaling with cross-
platform GUI-specific data, confirming that di-
verse training corpora substantially enhance vi-
sual comprehension across heterogeneous envi-
ronments.

GUI Grounding. We then evaluate models on GUI grounding, which measures the ability to
localize and associate visual elements with textual or functional references across desktop, mobile,
and web. As shown in Fig. 4, our ScaleCUA consistently achieves state-of-the-art performance
across different benchmarks. On the challenging ScreenSpot-Pro, ScaleCUA-32B again dominates,
achieving 59.2% overall and delivering strong accuracy across diverse domains such as Creative
software, CAD, and office applications. More detailed comparisons are presented in A.2. Overall,
these results demonstrate that scaling with GUI-specific data yields substantial benefits for grounding.
The consistent improvements across GUI grounding benchmarks confirm the effectiveness of our
dual-loop data pipeline in learning robust UI element localization.

Task Completion. We evaluate end-to-end task completion on Mobile (AndroidWorld), Ubuntu
(OSWorld), Windows (WindowsAgentArena), macOS (MacOSArena), and Web (WebArena-Lite-v2),
considering both native agents and planner–grounder workflows. The results is shown in Table 3.
First, our native ScaleCUA-32B achieves the strongest Web performance: 44.2% (15 steps budget)
and 47.4% (50 steps), outperforming the best native baseline (UI-TARS-72B-DPO) by +20.8 and
+26.0 points, respectively, and substantially surpassing Qwen2.5-VL-72B. Then, the workflow setting
with GPT-4o as planner and ScaleCUA-7B as the grounder yields 48.3% on AndroidWorld and
28.1% on OSWorld (50 steps), outperforming other strong grounders such as JEDI-7B. Beyond these
highlights, several trends emerge. (i) Scaling from 3B→7B→32B produces monotonic gains on
different platforms, indicating that our cross-platform data and unified action space translate into

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Online evaluation across different platforms. AndroidWorld has its own predefined step
budget. ♣ denotes the unkown step budget and ⋆ indicates more than 50 steps is used.

Method
Mobile Ubuntu Windows MacOS Web

(AndroidWorld) (OSWorld) (WindowsAgentArena) (MacOSArena) (WebArena-Lite-v2)

Predefined Steps 15 Steps 50 Steps 15 Steps 50 Steps 15 Steps 50 Steps 15 Steps 50 Steps

Native Agent

Kimi-VL-A3B (2025b) – 8.2♣ 10.4♣ – – – –
Seed1.5-VL (2025) 62.1 36.7⋆ 39.6⋆ – – – –
GLM-4.1V-Thinking (2025) 41.7 14.9⋆ – – – – – –
GLM-4.5V-Thinking (2025) 57.0 35.8⋆ – – – – – –
COMPUTERRL (2025) – 47.3♣ – – – – – –
PC Agent-E (2025) – 14.9♣ – – – – – –
GPT-4o (2024) 21.6 6.8 10.1 5.6 3.5 0.0 1.4 2.0 3.3
Claude-3.7 (2025) 11.2 7.4 10.3 7.1 6.4 5.7 7.1 2.0 2.6
Qwen2.5-VL-72B (2025) 27.6 9.8 10.6 11.8 9.7 1.4 5.7 15.6 14.4
InternVL3.5-241B-A28B (2025a) 29.7 11.1 11.6 15.2 18.0 2.9 5.7 11.7 11.7
Aguvis-72B (2024) 26.1 3.8 4.2 4.1 3.5 0.0 0.0 5.8 9.0
UI-TARS-7B-SFT (2025) 33.0 17.7 – – – – – 11.0 13.6
UI-TARS-1.5-7B (2025) 31.6 22.1 23.9 11.1 15.9 7.1 7.1 20.8 26.0
UI-TARS-72B-DPO (2025) 46.6 24.2 25.2 11.1 17.9 8.6 8.6 23.4 21.4
OpenCUA-7B (2025b) – 24.3 28.1 – – – – – –
OpenCUA-32B (2025b) – 29.7 34.1 – – – – – –

ScaleCUA-3B 23.7 9.6 12.4 13.1 15.2 0.0 1.4 31.8 33.1
ScaleCUA-7B 27.2 14.3 15.0 18.0 20.7 4.3 4.3 37.7 37.7
ScaleCUA-32B 30.6 16.5 17.7 21.4 24.2 7.1 7.1 44.2 47.4

Agentic Workflow

Planner Grounder

GPT-4o

Aria-UI (2024) 44.8 15.2♣ – – – – – –
OS-Atlas-7B (2024b) – 14.6♣ – – – – – –
UGround-V1-7B (2024) 32.8 13.1 16.1 13.1 20.7 1.4 0.0 23.2 26.5
UI-TARS-1.5-7B (2025) 37.9 16.5 19.1 14.5 26.2 1.4 0.0 28.6 28.6
JEDI-3B (2025) – 22.4 – 29.1 – – – – –
JEDI-7B (2025) – 22.7 25.0 30.2 32.9 – – – –

ScaleCUA-7B 48.3 22.9 28.1 31.7 36.6 5.7 8.6 28.6 35.1

stronger computer use agents as capacity grows. (ii) The effect of the step budget is consistent: a
majority of the agents, including ScaleCUA, achieve substantial performance improvements under a
50-step limit. (iii) Even employing our proposed data, the planning ability of our model still lags
substantially behind GPT-4o in agentic workflows, and models trained with existing and proprietary
datasets continue to exhibit a considerable performance gap. We must acknowledge that there remains
significant room for improvement and further development.

5.2 DIAGNOSTIC ANALYSIS ON COMPUTER USE AGENTS

To elucidate the main factors that affect agent performance, we conduct detailed ablations, which
reveal key trade-offs between accuracy, efficiency, and generalization:

Input Resolution: OSWorld-G uses strictly standardized 1080p frames. When the input resolution is
set at or above 1080p, the performance saturates because the inputs still match the maximum training
resolution, i.e., 1080p. In ScreenSpot-v2, the majority of screenshots are at or below 1080p, yet this
results in negative impacts when the resolution is increased further. By contrast, ScreenSpot-Pro
contains a large proportion of native 4K screenshots. The performance on it benefits from higher
resolutions up to 2K but drops at 4K. Overall, we observe that the impact of resolution on grounding
performance depends largely on the benchmark’s data distribution.

ScreenSpot-v270

75

80

85

90

95

100

Ac
cu

ra
cy

 (%
)

94.7 93.8 93.2 92.7 91.7 91.3 90.3 89.2

ScreenSpot-Pro30

35

40

45

50

55

60

65

59.2 58.0

49.6
47.9 47.6

42.3
39.5

38.1

OSWorld-G30

35

40

45

50

55

60

65

60.6
58.0 57.8 57.1 56.0 55.7

54.1

46.5

ScaleCUA-32B GUI-Owl-32B UI-TARS-1.5-7B ScaleCUA-7B Qwen2.5-VL-32B ScaleCUA-3B JEDI-7B UI-TARS-72B

Figure 4: Results on GUI grounding datasets.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(b) Direct Action vs. Reasoned Action(a) Test-time resolution in GUI grounding (c) Performance curve when scaling our data (c) General data used in training

Figure 5: Evaluations across diverse conditions. (a) Accuracy of GUI grounding under different
screenshot resolutions. (b) Success rates of Direct Action vs. Reasoned Action Modes, where
reasoning consistently improves performance. (c) Training data scaling. (d) Effect of using general
data, showing distinct trends between GUI and multimodal benchmarks.

Inference Modes: Fig. 5 (b) compares the two inference modes for computer use agents. Across all
benchmarks, reasoned action mode (RAM) yields higher success rates than direct action mode (DAM),
with absolute gains ranging from +1.4% to + 8.2%. However, this mode also incurs longer inference
time and greater token cost. DAM, in contrast, produces actions directly from the visual–textual
context, yielding faster responses but being more prone to cumulative drift in long-horizon tasks. In
the Table 3, when ScaleCUA-7B as a grounding model is integrated with GPT-4o under an agentic
workflow, it shows higher success on task completion benchmarks than the reasoned action mode (e.g.,
28.1% vs. 15.0% on OSWorld, 36.6% vs. 20.7% on WindowsAgentArena, etc.). The agentic workflow
allows GPT-4o to handle long-context planning while leveraging grounding mode in ScaleCUA,
demonstrating complementarity between ScaleCUA and general VLMs. Nevertheless, this paradigm
cannot generate actions in an end-to-end manner and brings higher costs even than RAM.

Data Scaling: In Fig. 5 (c), success rates generally improve with more training data. Specifically,
WebArena-Lite-v2 shows nearly linear gains, whereas ScreenSpot-Pro reaches strong accuracy with
about half the data. For WindowsAgentArena, the observed gains appear smaller primarily because
tasks in the online benchmark are more difficult with relatively low baseline scores, where even small
improvements are challenging to achieve. These results intuitively reflect the task’s difficulty, and
also imply a larger data volume required to achieve the desired performance.

General Multimodal Data: Fig. 5 (d) analyzes the effect of employing general-purpose multimodal
data in training. We find a clear divergence: GUI benchmarks suffer a gradual decline in performance
as the ratio of general data increases, while general benchmarks improve steadily, peaking around
75%. As the multimodal corpus expands, the model’s general capabilities improve, but GUI-specific
knowledge may be diluted. The results indicate that a data-balanced training strategy is crucial for
preserving GUI specialization without compromising general reasoning abilities. Since the larger
models are able to memorize more knowledge, Since the larger VLMs can memorize more knowledge,
it is reasonable to increase the ratio to 50% for the 7B model and further to 75% for the 32B model.

AndroidWorld
 (Mobile)

WebArena-Lite-v2
 (Web)

OSWorld
 (Desktop)

WindowsAgentArena
 (Desktop)

0

5

10

15

20

25

30

Su
cc

es
s R

at
e

(%
)

17.7

25.3

11.7

14.5

19.8

24.7

11.1
13.1

Trained only on this domain Trained on all domains

Figure 6: The effects of training on
domain-specific data.

Multi-platform Ablation: Furthermore, the Fig. 6 shows
that models trained exclusively on a single domain slightly
outperform the cross-domain model on desktop and web
benchmarks, whereas the cross-domain model performs
better on the mobile benchmark. One plausible reason lies
in the inherent differences in aspect ratio and UI layout
across platforms. Mobile interfaces typically feature more
vertically constrained layouts and standardized compo-
nents with larger, touch-friendly elements, whereas desk-
top and web pages provide horizontally richer screens with
denser and more variable UI structures. Since web/desktop
data can enrich the feature space without fundamentally
altering the underlying interaction patterns, the model
trained on cross-platform data can thus generalize more
effectively to the mobile domain with simpler visual hierarchies. Conversely, models trained on
desktop or web data are exposed to information-dense layouts where UI elements may be small,
overlapping, or nested within complex DOM structures. Introducing mobile data during multi-domain

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

training can dilute the model’s specialized representations for these fine-grained desktop layouts,
leading to small performance drops in desktop and web benchmarks.

Generally, high-resolution inputs and reasoning-based inference enhance grounding and task comple-
tion but incur extra cost. Data scaling remains crucial but benchmark-sensitive, and heterogeneous
data mixtures improve general reasoning at the expense of GUI capabilities. These insights motivate
scalable, cross-platform training pipelines with deliberate data composition to build robust agents.

5.3 ABLATION ON DATA

Table 4: Ablation studies on data. The maximum steps used in online benchmarks are set to 50.

(a) The ablation on data augmentation. We only
use GUI-related data in training.

Model Training Data Aug. SS-Pro

Qwen2.5VL-3B ours-only ✗ 37.8
✓ 41.3

(b) The ablation on weak semantic trajectories. The public
datasets used are shown in Table 13.

Model Training Data + WS OSWorld WAL-v2

Qwen2.5VL-3B public-only ✗ 7.6 8.4
✓ 8.5 14.3

(c) The ablation on coordinate types.

Model Type ScreenSpot-Pro

Qwen2.5VL-3B Norm. 37.9
Raw 42.3

(d) The ablation on the maximum resolution during training.

Model Res. SS-Pro OSWOrld-G OSWorld AW

Qwen2.5VL-3B 1080P 42.3 54.3 12.4 23.3
2K 45.5 52.5 11.2 13.4

In this section, we aim to ablate our data. As shown in Fig. 1, training with our curated training
corpus yields consistent improvements over the baseline trained on public data. In Table 4, we further
highlight the effects of augmentation, weak semantic trajectories, coordinate formats, and resolution.

First, the results verify that data augmentation can improve performance by 3.5% on ScreenSpot-Pro.
This confirms that augmentation enhances generalization and robustness by exposing the model to a
wider range of visual conditions. Second, we investigate weak semantic trajectories derived from
rule-based random exploration. Despite lacking explicit high-level goals, these trajectories provide
low-cost supervision of interface navigation. Third, we study the impact of coordinate representations
in grounding. Models trained with raw coordinates outperform those with normalized coordinates.
This indicates that GUI grounding should follow the absolute position used in Qwen2.5VL. Finally,
we ablate the training resolution. Higher resolutions yield trade-offs across benchmarks: while
2K improves grounding on ScreenSpot-Pro (45.5% vs. 42.3%) and preserves OSWorld-G accuracy
(52.5% vs. 54.3%), it slightly reduces agent success rates on OSWorld and AndroidWorld. This
suggests that fine-grained grounding benefits from high-resolution supervision, whereas agentic
benchmarks may suffer from overfitting to pixel-level details. The ablation studies across UI element
grounding and task completion demonstrate that the design of training data is the key to building
scalable and generalizable CUAs.

6 CONCLUSION

In this work, we curate a large-scale multi-platform dataset with our dual-loop data pipeline that
integrates automated agents and human experts into data construction. The training corpus spans
understanding, element grounding, and task completion. With this dataset, we develop a new family of
CUAs, i.e., ScaleCUA, which support flexible inference paradigms for scalable integration with agent
frameworks. Extensive experiments demonstrated the efficacy of our proposed method. Together,
these contributions advance the frontier of computer use agents by bridging vision-language modeling
with practical GUI interaction. We hope that ScaleCUA and its released resources will serve as a
solid foundation for future research in building capable, trustworthy, and deployable CUAs.

Limitations. Although our framework study multi-platform agents with a scalable data pipeline,
several challenges remain. First, integrating automatic data collection with iterative refinement into a
self-improving loop is still insufficiently explored. Second, we have not employed advanced agentic
techniques such as reflection or reinforcement learning, which are likely to improve long-horizon
control. Third, the current history design is flat and cannot fully capture long-term dependencies.
Despite not exploring these aspects in this work, we believe that releasing the full data, models, and
training configurations lays a solid foundation for future progress in computer-use agents.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work complies with the ICLR Code of Ethics. The proposed dataset and models are constructed
without collecting any personally identifiable information or sensitive data. All screenshots, metadata,
and trajectories are obtained from synthetic or publicly accessible software environments and do
not involve real users’ private data. When automated agents interact with platforms, they operate
within controlled virtualized settings to avoid unintended data capture. Human experts are limited to
interface-level information (e.g., UI element labels, bounding boxes, or action descriptions) without
exposure to personal content. The released resources (dataset, models, and code) are intended
solely for research purposes to advance open and reproducible study of cross-platform computer use
agents. We explicitly discourage any misuse of these models in ways that could compromise privacy,
security, or fairness. No conflicts of interest or sponsorship bias exist in this work, and all authors
adhere to research integrity practices, including transparent documentation of data sources, collection
procedures, and evaluation protocols.

REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure reproducibility of our results. This work elaborate on the
data acquisition pipeline (Sec. 3), dataset composition and statistics (Table 1 and Fig. 11), unified
action space (Table 14), training recipes for different model scales (Sec. 4.2), and comprehensive eval-
uation protocols (Sec. 5). Additional implementation details and ablation studies are provided in the
Appendix to guide replication of our experiments. We will release the dataset, model checkpoints, and
source code to facilitate verification and reproducibility. Together, these resources allow researchers
to reproduce our key findings and build upon our work with minimal additional assumptions.

REFERENCES

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s2:
A compositional generalist-specialist framework for computer use agents, 2025. URL https:
//arxiv.org/abs/2504.00906.

Anthropic. Claude 3.5. Anthropic AI Assistant, September 2024a. URL https://www.
anthropic.com/claude. Accessed: 2025-06-23.

Sonnet Anthropic. Model card addendum: Claude 3.5 haiku and upgraded claude 3.5 sonnet, 2024b.
URL https://api.semanticscholar.org/CorpusID:273639283.

Sonnet Anthropic. Claude 3.7 sonnet system card, 2025. URL https://www.anthropic.
com/news/claude-3-7-sonnet.

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas Sunkara, Abhinav Rastogi, Jindong Chen, and
Blaise Agüera y Arcas. Uibert: Learning generic multimodal representations for UI understanding.
In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, 2021.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, et al. Windows agent arena: Evaluating
multi-modal os agents at scale. arXiv preprint arXiv:2409.08264, 2024.

Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Dingyu Zhang, Peng Gao, Shuai Ren,
and Hongsheng Li. Amex: Android multi-annotation expo dataset for mobile gui agents. ArXiv
preprint, 2024. URL https://arxiv.org/abs/2407.17490.

11

https://arxiv.org/abs/2504.00906
https://arxiv.org/abs/2504.00906
https://www.anthropic.com/claude
https://www.anthropic.com/claude
https://api.semanticscholar.org/CorpusID:273639283
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2407.17490

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dongping Chen, Yue Huang, Siyuan Wu, Jingyu Tang, Huichi Zhou, Qihui Zhang, Zhigang He, Yilin
Bai, Chujie Gao, Liuyi Chen, et al. Gui-world: A video benchmark and dataset for multimodal
gui-oriented understanding. In ICLR, 2025a.

Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu,
Guirong Chen, Yupeng Huo, et al. Guicourse: From general vision language models to versatile
gui agents. arXiv preprint arXiv:2406.11317, 2024a.

Xuetian Chen, Yinghao Chen, Xinfeng Yuan, Zhuo Peng, Lu Chen, Yuekeng Li, Zhoujia Zhang,
Yingqian Huang, Leyan Huang, Jiaqing Liang, et al. Os-map: How far can computer-using agents
go in breadth and depth? arXiv preprint arXiv:2507.19132, 2025b.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 24185–24198, 2024b.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiy-
ong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. arXiv preprint
arXiv:2401.10935, 2024.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

Google Deepmind. Introducing gemini 2.0: our new ai model for the agen-
tic era. https://blog.google/technology/google-deepmind/
google-gemini-ai-update-december-2024/, 2024.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, Jeffrey
Nichols, and Ranjitha Kumar. Rico: A mobile app dataset for building data-driven design
applications. In Proceedings of the 30th annual ACM symposium on user interface software and
technology, pp. 845–854, 2017.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091–28114, 2023.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents.
arXiv preprint arXiv:2410.05243, 2024.

Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,
Jianyu Jiang, Jiawei Wang, et al. Seed1. 5-vl technical report. arXiv preprint arXiv:2505.07062,
2025.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024.

Yanheng He, Jiahe Jin, and Pengfei Liu. Efficient agent training for computer use, 2025. URL
https://arxiv.org/abs/2505.13909.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
collaborative framework. arXiv preprint arXiv:2308.00352, 3(4):6, 2023.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024.

12

https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://arxiv.org/abs/2505.13909

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning
with scalable reinforcement learning. arXiv preprint arXiv:2507.01006, 2025.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem AlShikh,
and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist
autonomous agents for desktop and web. In European Conference on Computer Vision, pp.
161–178. Springer, 2024.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Hanyu Lai, Xiao Liu, Yanxiao Zhao, Han Xu, Hanchen Zhang, Bohao Jing, Yanyu Ren, Shuntian
Yao, Yuxiao Dong, and Jie Tang. Computerrl: Scaling end-to-end online reinforcement learning
for computer use agents. arXiv preprint arXiv:2508.14040, 2025.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for” mind” exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991–52008, 2023.

Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use.
arXiv preprint arXiv:2504.07981, 2025.

Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
and Oriana Riva. On the effects of data scale on computer control agents, 2024a. URL https:
//arxiv.org/abs/2406.03679.

Wei Li, William E Bishop, Alice Li, Christopher Rawles, Folawiyo Campbell-Ajala, Divya Tyama-
gundlu, and Oriana Riva. On the effects of data scale on ui control agents. Advances in Neural
Information Processing Systems, 37:92130–92154, 2024b.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
instructions to mobile UI action sequences. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Association for Computational Linguistics, 2020a.
URL https://aclanthology.org/2020.acl-main.729.

Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. Widget captioning:
Generating natural language description for mobile user interface elements. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). Asso-
ciation for Computational Linguistics, 2020b. URL https://aclanthology.org/2020.
emnlp-main.443.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Weixian Lei,
Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui visual
agent, 2024. URL https://arxiv.org/abs/2411.17465.

Haowei Liu, Xi Zhang, Haiyang Xu, Yuyang Wanyan, Junyang Wang, Ming Yan, Ji Zhang, Chunfeng
Yuan, Changsheng Xu, Weiming Hu, and Fei Huang. Pc-agent: A hierarchical multi-agent
collaboration framework for complex task automation on pc. arXiv preprint arXiv:2502.14282,
2025a.

13

https://arxiv.org/abs/2406.03679
https://arxiv.org/abs/2406.03679
https://aclanthology.org/2020.acl-main.729
https://aclanthology.org/2020.emnlp-main.443
https://aclanthology.org/2020.emnlp-main.443
https://arxiv.org/abs/2411.17465

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Yifan Xu, Xixuan Song, Shudan Zhang, Hanyu Lai,
Xinyi Liu, Hanlin Zhao, et al. Visualagentbench: Towards large multimodal models as visual
foundation agents. arXiv preprint arXiv:2408.06327, 2024a.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
and Fei Wu. Infigui-r1: Advancing multimodal gui agents from reactive actors to deliberative
reasoners. arXiv preprint arXiv:2504.14239, 2025b.

Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xu-Cheng Yin,
Cheng-Lin Liu, Lianwen Jin, and Xiang Bai. Ocrbench: on the hidden mystery of ocr in large
multimodal models. Science China Information Sciences, 67(12):220102, 2024b.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
of foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app gui
navigation on mobile devices. arXiv preprint arXiv:2406.08451, 2024a.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
gui agent, 2024b. URL https://arxiv.org/abs/2408.00203.

Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Han Xiao, Shuai Ren,
Guanjing Xiong, and Hongsheng Li. Ui-r1: Enhancing efficient action prediction of gui agents by
reinforcement learning. arXiv preprint arXiv:2503.21620, 2025.

Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1: A generalist r1-style vision-language
action model for gui agents. arXiv preprint arXiv:2504.10458, 2025.

MetaAI. llama4, 2025. URL https://ai.meta.com/blog/
llama-4-multimodal-intelligence/. Accessed: 2025-06-23.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023. URL https://api.
semanticscholar.org/CorpusID:257532815.

OpenAI. Computer-using agent: Introducing a universal interface for ai to interact with the digital
world, 2025. URL https://openai.com/index/computer-using-agent.

Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei Leng, Bing Jiang, Hangyu Liu, Yanyi
Shang, Shuyan Zhou, Tongshuang Wu, et al. Webcanvas: Benchmarking web agents in online
environments. arXiv preprint arXiv:2406.12373, 2024.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36:59708–59728, 2023.

Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A dynamic
benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573, 2024.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits:
An open-domain platform for web-based agents. In Doina Precup and Yee Whye Teh (eds.),
Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, volume 70 of Proceedings of Machine Learning Research, pp. 3135–
3144. PMLR, 2017. URL http://proceedings.mlr.press/v70/shi17a.html.

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, Zichen Zhu, and Kai Yu. Meta-gui: Towards
multi-modal conversational agents on mobile gui. arXiv preprint arXiv:2205.11029, 2022.

14

https://arxiv.org/abs/2408.00203
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://openai.com/index/computer-using-agent
http://proceedings.mlr.press/v70/shi17a.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
Chengcheng Han, Renyu Zhu, Shuai Yuan, et al. A survey of neural code intelligence: Paradigms,
advances and beyond. arXiv preprint arXiv:2403.14734, 2024a.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
Chengyou Jia, Liheng Chen, Zhoumianze Liu, et al. Os-genesis: Automating gui agent trajectory
construction via reverse task synthesis. arXiv preprint arXiv:2412.19723, 2024b.

Qiushi Sun, Zhoumianze Liu, Chang Ma, Zichen Ding, Fangzhi Xu, Zhangyue Yin, Haiteng Zhao,
Zhenyu Wu, Kanzhi Cheng, Zhaoyang Liu, et al. Scienceboard: Evaluating multimodal autonomous
agents in realistic scientific workflows. arXiv preprint arXiv:2505.19897, 2025.

Fei Tang, Zhangxuan Gu, Zhengxi Lu, Xuyang Liu, Shuheng Shen, Changhua Meng, Wen Wang,
Wenqi Zhang, Yongliang Shen, Weiming Lu, et al. Gui-g 2: Gaussian reward modeling for gui
grounding. arXiv preprint arXiv:2507.15846, 2025.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025a.

Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin
Zhang, Chenzhuang Du, Chu Wei, Congcong Wang, Dehao Zhang, Dikang Du, Dongliang Wang,
Enming Yuan, Enzhe Lu, Fang Li, Flood Sung, Guangda Wei, Guokun Lai, Han Zhu, Hao Ding,
Hao Hu, Hao Yang, Hao Zhang, Haoning Wu, Haotian Yao, Haoyu Lu, Heng Wang, Hongcheng
Gao, Huabin Zheng, Jiaming Li, Jianlin Su, Jianzhou Wang, Jiaqi Deng, Jiezhong Qiu, Jin Xie,
Jinhong Wang, Jingyuan Liu, Junjie Yan, Kun Ouyang, Liang Chen, Lin Sui, Longhui Yu, Mengfan
Dong, Mengnan Dong, Nuo Xu, Pengyu Cheng, Qizheng Gu, Runjie Zhou, Shaowei Liu, Sihan
Cao, Tao Yu, Tianhui Song, Tongtong Bai, Wei Song, Weiran He, Weixiao Huang, Weixin Xu,
Xiaokun Yuan, Xingcheng Yao, Xingzhe Wu, Xinxing Zu, Xinyu Zhou, Xinyuan Wang, Y. Charles,
Yan Zhong, Yang Li, Yangyang Hu, Yanru Chen, Yejie Wang, Yibo Liu, Yibo Miao, Yidao Qin,
Yimin Chen, Yiping Bao, Yiqin Wang, Yongsheng Kang, Yuanxin Liu, Yulun Du, Yuxin Wu,
Yuzhi Wang, Yuzi Yan, Zaida Zhou, Zhaowei Li, Zhejun Jiang, Zheng Zhang, Zhilin Yang, Zhiqi
Huang, Zihao Huang, Zijia Zhao, and Ziwei Chen. Kimi-VL technical report, 2025b. URL
https://arxiv.org/abs/2504.07491.

Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin
Zhang, Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. arXiv preprint arXiv:2504.07491,
2025c.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3. 5: Advancing open-source multimodal
models in versatility, reasoning, and efficiency. arXiv preprint arXiv:2508.18265, 2025a.

Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng, Xiaole
Guo, Yiheng Xu, Chen Henry Wu, Zhennan Shen, Zhuokai Li, Ryan Li, Xiaochuan Li, Junda Chen,
Boyuan Zheng, Peihang Li, Fangyu Lei, Ruisheng Cao, Yeqiao Fu, Dongchan Shin, Martin Shin,
Jiarui Hu, Yuyan Wang, Jixuan Chen, Yuxiao Ye, Danyang Zhang, Dikang Du, Hao Hu, Huarong
Chen, Zaida Zhou, Haotian Yao, Ziwei Chen, Qizheng Gu, Yipu Wang, Heng Wang, Diyi Yang,
Victor Zhong, Flood Sung, Y. Charles, Zhilin Yang, and Tao Yu. Opencua: Open foundations for
computer-use agents, 2025b. URL https://arxiv.org/abs/2508.09123.

15

https://arxiv.org/abs/2504.07491
https://arxiv.org/abs/2508.09123

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Xuehui Wang, Zhenyu Wu, JingJing Xie, Zichen Ding, Bowen Yang, Zehao Li, Zhaoyang Liu,
Qingyun Li, Xuan Dong, Zhe Chen, et al. Mmbench-gui: Hierarchical multi-platform evaluation
framework for gui agents. arXiv preprint arXiv:2507.19478, 2025c.

Jason Wu, Siyan Wang, Siman Shen, Yi-Hao Peng, Jeffrey Nichols, and Jeffrey Bigham. Webui: A
dataset for enhancing visual ui understanding with web semantics. ACM Conference on Human
Factors in Computing Systems (CHI), 2023a.

Qianhui Wu, Kanzhi Cheng, Rui Yang, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu,
Baolin Peng, Bo Qiao, Reuben Tan, et al. Gui-actor: Coordinate-free visual grounding for gui
agents. arXiv preprint arXiv:2506.03143, 2025.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent
conversation. arXiv preprint arXiv:2308.08155, 2023b.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024a.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen
Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for generalist gui
agents. arXiv preprint arXiv:2410.23218, 2024b.

xAI. Grok-1.5 vision preview, 2024. URL https://x.ai/blog/grok-1.5v.

xAI. Grok-3, 2025. URL https://x.ai/blog/grok-3.

LLM-Core-Team Xiaomi. Mimo-vl technical report, 2025. URL https://arxiv.org/abs/
2506.03569.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. Advances in Neural Information Processing
Systems, 37:52040–52094, 2024.

Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
Xinyuan Wang, Yuhui Xu, Zekun Wang, Yiheng Xu, Junli Wang, Doyen Sahoo, Tao Yu, and
Caiming Xiong. Scaling computer-use grounding via user interface decomposition and synthesis,
2025. URL https://arxiv.org/abs/2505.13227.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. arXiv
preprint arXiv:2412.04454, 2024.

Tianci Xue, Weijian Qi, Tianneng Shi, Chan Hee Song, Boyu Gou, Dawn Song, Huan Sun, and Yu Su.
An illusion of progress? assessing the current state of web agents. arXiv preprint arXiv:2504.01382,
2025.

Yan Yang, Dongxu Li, Yutong Dai, Yuhao Yang, Ziyang Luo, Zirui Zhao, Zhiyuan Hu, Junzhe
Huang, Amrita Saha, Zeyuan Chen, et al. Gta1: Gui test-time scaling agent. arXiv preprint
arXiv:2507.05791, 2025.

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-ui:
Visual grounding for gui instructions. arXiv preprint arXiv:2412.16256, 2024.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scal-
able real-world web interaction with grounded language agents. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html.

16

https://x.ai/blog/grok-1.5v
https://x.ai/blog/grok-3
https://arxiv.org/abs/2506.03569
https://arxiv.org/abs/2506.03569
https://arxiv.org/abs/2505.13227
http://papers.nips.cc/paper_files/paper/2022/hash/82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu
Gao, Junjie Cao, Zhengxi Lu, et al. Mobile-agent-v3: Foundamental agents for gui automation.
arXiv preprint arXiv:2508.15144, 2025.

Wenwen Yu, Zhibo Yang, Jianqiang Wan, Sibo Song, Jun Tang, Wenqing Cheng, Yuliang Liu, and
Xiang Bai. Omniparser v2: Structured-points-of-thought for unified visual text parsing and its
generality to multimodal large language models. arXiv preprint arXiv:2502.16161, 2025.

Xinbin Yuan, Jian Zhang, Kaixin Li, Zhuoxuan Cai, Lujian Yao, Jie Chen, Enguang Wang, Qibin Hou,
Jinwei Chen, Peng-Tao Jiang, et al. Enhancing visual grounding for gui agents via self-evolutionary
reinforcement learning. arXiv preprint arXiv:2505.12370, 2025.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal under-
standing and reasoning benchmark for expert agi. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9556–9567, 2024.

Bofei Zhang, Zirui Shang, Zhi Gao, Wang Zhang, Rui Xie, Xiaojian Ma, Tao Yuan, Xinxiao Wu, Song-
Chun Zhu, and Qing Li. Tongui: Building generalized gui agents by learning from multimodal
web tutorials. arXiv preprint arXiv:2504.12679, 2025a.

Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu
Tang. Android in the zoo: Chain-of-action-thought for GUI agents. In Yaser Al-Onaizan, Mohit
Bansal, and Yun-Nung Chen (eds.), Findings of the Association for Computational Linguistics:
EMNLP 2024, Miami, Florida, USA, November 12-16, 2024, pp. 12016–12031. Association
for Computational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-EMNLP.702. URL
https://doi.org/10.18653/v1/2024.findings-emnlp.702.

Junlei Zhang, Zichen Ding, Chang Ma, Zijie Chen, Qiushi Sun, Zhenzhong Lan, and Junxian
He. Breaking the data barrier–building gui agents through task generalization. arXiv preprint
arXiv:2504.10127, 2025b.

Di Zhao, Longhui Ma, Siwei Wang, Miao Wang, and Zhao Lv. Cola: A scalable multi-agent
framework for windows ui task automation. arXiv preprint arXiv:2503.09263, 2025.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

Yuqi Zhou, Sunhao Dai, Shuai Wang, Kaiwen Zhou, Qinglin Jia, and Jun Xu. Gui-g1: Understanding
r1-zero-like training for visual grounding in gui agents. arXiv preprint arXiv:2505.15810, 2025.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Yuchen Duan, Hao
Tian, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
open-source multimodal models. arXiv preprint arXiv:2504.10479, 2025.

17

https://doi.org/10.18653/v1/2024.findings-emnlp.702

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A APPENDIX

This section provides supplementary materials that complement the main paper.

A.1 – Large Language Model Usage: We make a clarification on large language model usage.

A.2 – More Results: We report extended evaluations across multiple benchmarks (MMBench-GUI
L2, OSWorld-G, AndroidControl, ScienceBoard, and general multimodal benchmarks), highlighting
the scalability and cross-platform generalization of our models.

A.3 – Public Data Used in Training: We list the public datasets incorporated into ScaleCUA training,
specifying the portion of each source utilized.

A.4 – Action Space: We describe the unified action space that abstracts platform-specific operations
into a concise yet expressive set of commands, enabling consistent control across desktop, mobile,
and web environments.

A.5 – Error Case Analysis: We provide representative failure cases on desktop, Android, and web
platforms to analyze limitations such as incomplete procedural understanding, insufficient state
tracking, and positional reasoning errors.

A.6 – Details of Data Curation: We detail the multi-platform GUI data collection process underlying
ScaleCUA, including sources, application coverage, and platform diversity, which jointly ensure
comprehensive domain knowledge and improved generalization.

A.7 – Data Visualization: Consolidates illustrative figures for GUI Understanding, GUI Ground-
ing, Weak-Semantic and Human-Curated Trajectories, and trajectory annotation to aid qualitative
inspection.

A.8 – Lessons from Data Acquisition: We summarizes common pitfalls and platform-specific notes
(Windows, Ubuntu, macOS, Mobile, Web), distilling practical guidance for future collection runs.

A.9 – The Details of WebArena-Lite-v2: We clarifies details of the benchmark construction and
evaluation protocols (e.g., step budgets, metrics) to ensure fair comparisons .

A.10 – Prompt Engineering: We release prompt templates for both agent inference and annotation
workflows to facilitate reproducibility and adaptation.

A.1 LARGE LANGUAGE MODEL USAGE

In this submission, we utilize LLMs (GPT-5, Gemini, etc.) to help us polish paper writing and
summarize related works.

A.2 MORE RESULTS

To fully demonstrate the potential of ScaleCUA, we provide additional results on serveral benchmarks.

On MMBench-GUI L2 (Wang et al., 2025c), which incorporates stratified grounding difficulty across
major operating systems, ScaleCUA-32B demonstrates performance comparable to state-of-the-art
methods as shown in Table 8. It achieves leading scores in the basic difficulty setting across several
platforms including Android (96.4), Web (93.9), Linux (81.2), and macOS (88.1), while maintaining
competitive results in the advanced difficulty setting (e.g., Web 76.3, Android 81.7). Furthermore,
ScaleCUA-7B and ScaleCUA-3B achieve average scores of 78.2 and 73.7, respectively. They
demonstrate particularly robust performance in the basic difficulty setting, especially on Windows,
where both models score 78.6, and on iOS, with respective scores of 96.1 and 93.0.

On OSWorld-G (Xie et al., 2025) for Ubuntu grounding, ScaleCUA-32B demonstrates impressive
results with an overall performance of 60.6 shown in Table 9, which includes strong marks in layout
understanding (70.0), element recognition (66.7), and fine-grained manipulation (51.0). All of our
models underperform on the Refusal subtask because we deliberately excluded the Refusal-specific
training data provided by JEDI (Xie et al., 2025). Incorporating these examples may pose a risk of
biasing the model toward emitting an await/refusal state in complex grounding scenarios. Such bias
diminishes the agent’s propensity for active exploration within the environment, thereby degenerating
its success rate in task completion.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: Results on MMBench-GUI L1 (GUI Content Understanding) (Wang et al., 2025c).

Model Windows MacOS Linux iOS Android Web Overall

Easy Level
GPT-4o (2024) 62.5 67.9 62.4 58.5 56.4 58.5 60.2
Claude-3.5 (2024a) 41.3 50.0 41.6 42.0 39.0 41.8 41.5
Claude-3.7 (2025) 34.7 49.1 39.4 42.8 37.5 40.8 39.1
Qwen-Max-VL (2023) 69.1 72.5 69.9 70.8 63.1 69.5 68.2
Qwen2.5-VL-72B (2025) 65.9 75.2 73.0 67.2 58.1 72.1 67.0
UI-TARS-72B-DPO (2025) 41.6 28.5 35.2 31.1 52.3 35.3 40.2
InternVL3-72B (2025) 74.7 78.7 79.2 83.6 80.1 81.2 79.2
GUI-Owl-7B (2025) 83.0 84.5 85.6 82.6 83.3 88.1 84.5
GUI-Owl-32B (2025) 93.7 89.3 93.3 95.7 90.5 94.1 92.8
ScaleCUA-3B 86.4 83.5 79.9 85.4 80.3 87.4 83.6
ScaleCUA-7B 89.5 86.9 89.1 86.2 87.0 90.1 88.4
ScaleCUA-32B 93.4 91.7 94.3 93.1 90.5 92.3 92.5

Medium Level
GPT-4o (2024) 56.3 63.1 59.7 54.1 57.7 55.0 57.2
Claude-3.5 (2024a) 39.3 47.6 46.0 44.6 42.0 34.3 41.3
Claude-3.7 (2025) 39.3 39.2 42.3 39.5 36.1 36.2 38.4
Qwen-Max-VL (2023) 63.4 73.9 66.9 68.0 63.7 64.6 65.4
Qwen2.5-VL-72B (2025) 66.3 72.7 72.6 59.3 66.2 68.2 67.5
UI-TARS-72B-DPO (2025) 38.8 41.6 37.1 41.7 54.7 31.6 41.8
InternVL3-72B (2025) 71.5 78.6 79.9 78.4 81.4 78.7 77.9
GUI-Owl-7B (2025) 88.9 88.1 91.2 84.4 85.3 83.6 86.9
GUI-Owl-32B (2025) 94.1 84.5 95.9 87.8 92.8 88.6 91.7
ScaleCUA-3B 91.8 78.5 88.7 74.8 88.6 79.5 85.6
ScaleCUA-7B 93.6 91.7 93.4 84.3 89.6 85.8 90.1
ScaleCUA-32B 95.1 89.4 96.3 92.2 92.6 87.2 92.5

Hard Level
GPT-4o (2024) 60.7 60.4 52.4 45.3 50.9 50.8 53.5
Claude-3.5 (2024a) 37.4 42.7 34.1 40.9 37.0 38.1 37.6
Claude-3.7 (2025) 33.0 34.5 32.0 39.2 37.0 38.9 35.7
Qwen-Max-VL (2023) 66.6 67.6 65.8 60.2 58.8 65.3 63.7
Qwen2.5-VL-72B (2025) 70.7 68.9 71.0 57.6 53.9 68.1 64.6
UI-TARS-72B-DPO (2025) 31.5 35.9 24.2 36.3 58.1 19.9 35.8
InternVL3-72B (2025) 75.1 77.4 76.2 70.4 75.7 78.1 75.7
GUI-Owl-7B (2025) 87.8 96.4 94.3 87.8 88.9 94.1 90.9
GUI-Owl-32B (2025) 93.3 95.2 95.9 92.2 95.4 92.7 94.2
ScaleCUA-3B 92.3 89.4 93.8 85.3 88.3 88.6 89.9
ScaleCUA-7B 91.9 91.9 94.9 89.6 92.9 91.4 92.3
ScaleCUA-32B 93.0 96.5 96.4 93.1 94.5 94.0 94.4

On AndroidControl (Li et al., 2024b) which is an offline planning benchmark developed for the
Android, all ScaleCUA variants exhibit consistently strong performance demonstrated in Table 10. On
the AndroidControl-Low, ScaleCUA-7B attains the highest task completion rate, whereas ScaleCUA-
32B achieves the most reliable grounding, indicating that the compact model favors execution
efficiency while the larger capacity maximizes perceptual fidelity. As for AndroidControl-High,
ScaleCUA-32B demonstrates the highest success rate while showing the smallest degradation from
Low to High. ScaleCUA-3B and ScaleCUA-7B achieve a favorable trade-off, sustaining solid
performance across both low and high settings. The relatively small variance in type prediction across
sizes suggests that residual failures arise more from long-horizon interaction and error accumulation
than from intent misclassification or localization.

On ScienceBoard (Sun et al., 2025), a computer use benchmark designed for scientific professionals,
our models show modest yet meaningful capability as shown in 11. The ScaleCUA-32B outperforms
strong VLMs such as GPT-4o (1.6) while remaining below Qwen2.5-VL-72B (12.9) and Claude-3.7-
Sonnet (10.5). Our model excels in domains demanding factual and visual-text reasoning over those
requiring specialized symbolic workflows.

To evaluate the transfer learning capabilities of ScaleCUA-32B, we augment our training with a
diverse set of multimodal data focusing on coding, math and reasoning. These data, sourced from the
post-training corpus of InternVL3 (Zhu et al., 2025), encompass a range of tasks, including OCR,
mathematics, coding, reasoning-QA, and general multimodal understanding. We then assess perfor-
mance on four standard General Multimodal Benchmarks shown in Table 12. These benchmarks
jointly evaluate skills such as mathematical and commonsense reasoning, text comprehension, and

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 6: Results on ScreenSpot-v2 (Wu et al., 2024b).

Method Mobile Desktop Web Avg
Text Icon/Widget Text Icon/Widget Text Icon/Widget

Proprietary Models
Operator (2025) 47.3 41.5 90.2 80.3 92.8 84.3 70.5
Claude-3.7-Sonnet (2025) – – – – – – 87.6
Seed-1.5-VL (2025) – – – – – – 95.2

General Open-source Models
Kimi-VL-A3B-Thinking-2506 (2025b) – – – – – – 91.4
MiMo-VL-7B-RL (2025) – – – – – – 90.5
InternVL3.5-241B-A28B (2025a) 97.9 91.5 97.4 82.9 94.0 89.2 92.9
Qwen2.5-VL-3B (2025) 93.4 73.5 88.1 58.6 88.0 71.4 80.9
Qwen2.5-VL-7B (2025) 97.6 87.2 90.2 74.2 93.2 81.3 88.8
Qwen2.5-VL-32B (2025) 97.9 88.2 98.5 79.3 91.2 86.2 91.3

GUI Specialist
OS-Atlas-Base-7B (2024b) 95.2 75.8 90.7 63.6 90.6 77.3 84.1
UI-TARS-2B (2025) 95.2 79.1 90.7 68.6 87.2 78.3 84.7
UI-TARS-7B (2025) 96.9 89.1 95.4 85.0 93.6 85.2 91.6
UI-TARS-72B (2025) 94.8 86.3 91.2 87.9 91.5 87.7 90.3
UI-TARS-1.5 (2025) – – – – – – 94.2
GUI-Owl-7B (2025) 99.0 92.4 96.9 85.0 93.6 85.2 92.8
GUI-Owl-32B (2025) 98.6 90.0 97.9 87.8 94.4 86.7 93.2

GUI Grounding Models
SeeClick (2024) 78.4 50.7 70.1 29.3 55.2 32.5 55.1
OmniParser-v2 (2024b) 95.5 74.6 92.3 60.9 88.0 59.6 80.7
JEDI-3B (2025) 96.6 81.5 96.9 78.6 88.5 83.7 88.6
JEDI-7B (2025) 96.9 87.2 95.9 87.9 94.4 84.2 91.7
GUI-Actor-7B (2025) 97.6 88.2 96.9 85.7 93.2 86.7 92.1
GUI-G2-7B (2025) 98.3 91.9 95.4 89.3 94.0 87.7 93.3
InfiGUI-G1-3B (2025) 99.3 88.2 94.8 82.9 94.9 80.3 91.1
InfiGUI-G1-7B (2025b) 99.0 91.9 94.3 82.1 97.9 89.2 93.5
GTA1-7B (2025) 99.0 88.6 94.9 89.3 92.3 86.7 92.4
GTA1-32B (2025) 98.6 89.1 96.4 86.4 95.7 88.7 93.2

Ours
ScaleCUA-3B 94.1 86.3 94.9 79.3 89.7 85.7 89.2
ScaleCUA-7B 97.3 90.5 95.4 87.9 94.0 88.7 92.7
ScaleCUA-32B 98.6 91.9 99.0 90.0 94.4 91.6 94.7

open-domain visual question answering, which are also fundamental for computer-use agents. The
“ScaleCUA-3B (25%)” specifies the proportion of this general-purpose data relative to the core GUI
data used in training.

Based on Table 12, several consistent trends emerge regarding the interaction between the proportion
of general-purpose data and agent performance on general VLM benchmarks. First, incorporating
moderate amounts of general-purpose data (e.g., 25–50% relative to GUI-specific data) yields
notable gains over the 0% setting, particularly on MathVista and MMMUvalid, suggesting that
exposing the agent to broader multimodal reasoning tasks improves its mathematical and cross-
domain inference ability. For instance, ScaleCUA-3B rises from 52.8 to 58.7 on MathVista and from
48.8 to 52.4 on MMMU when increasing general data to 50%, while maintaining stable performance
on RealWorldQA. Second, the results indicate a saturation effect: pushing the general data ratio to
75% or 100% offers only marginal or inconsistent benefits. Third, scaling model capacity amplifies
the positive effect of general data. However, our 7B and 32B models still exhibit a substantial
performance gap compared to the baseline on general benchmarks, indicating that the proportion of
general-purpose data could be further increased. Such adjustments must also consider their potential
impact on the computer-use capability of agent models.

A.3 PUBLIC DATA USED IN TRAINING

Table 13 summarizes the public datasets used for training ScaleCUA. Please note that the reported
statistics refer to the portion of each dataset actually utilized in our experiments, rather than the
original sizes of the source datasets.

A.4 ACTION SPACE

To enable robust cross-platform control, we define a unified action space that abstracts low-level
GUI actions into a concise yet expressive set of semantic commands. As shown in Table 14, this
action space is designed to be platform-aware yet semantically consistent, allowing our agents to

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Results on ScreenSpot-Pro (Li et al., 2025).

Agent Model Development Creative CAD Scientific Office OS Avg
Text Icon Avg Text Icon Avg Text Icon Avg Text Icon Avg Text Icon Avg Text Icon Avg

Proprietary Models
Claude (2024b) 22.0 3.9 12.6 25.9 3.4 16.8 14.5 3.7 11.9 33.9 15.8 25.8 30.1 16.3 26.9 11.0 4.5 8.1 17.1
Operator (2025) 50.0 19.3 35.1 51.5 23.1 39.6 16.8 14.1 16.1 58.3 24.5 43.7 60.5 28.3 53.0 34.6 30.3 32.7 36.6

General Open-source Models
Qwen2-VL-7B (2024) 2.6 0.0 1.3 1.5 0.0 0.9 0.5 0.0 0.4 6.3 0.0 3.5 3.4 1.9 3.0 0.9 0.0 0.5 1.6
CogAgent-18B (2024) 14.9 0.7 8.0 9.6 0.0 5.6 7.1 3.1 6.1 22.2 1.8 13.4 13.0 0.0 10.0 5.6 0.0 3.1 7.7
Qwen2.5-VL-3B (2025) 38.3 3.4 21.4 40.9 4.9 25.8 22.3 6.3 18.4 44.4 10.0 29.5 48.0 17.0 40.9 33.6 4.5 20.4 25.9
Qwen2.5-VL-7B (2025) 51.9 4.8 29.1 36.9 8.4 24.9 17.8 1.6 13.8 48.6 8.2 31.1 53.7 18.9 45.7 34.6 7.9 22.4 27.6
Qwen2.5-VL-32B (2025) 74.0 21.4 48.5 61.1 13.3 41.1 38.1 15.6 32.6 78.5 29.1 57.1 76.3 37.7 67.4 55.1 27.0 42.3 47.6

GUI Specialist
ShowUI-2B (2024) 16.9 1.4 9.4 9.1 0.0 5.3 2.5 0.0 1.9 13.2 7.3 10.6 15.3 7.5 13.5 10.3 2.2 6.6 7.7
OS-Atlas-7B (2024b) 33.1 1.4 17.7 28.8 2.8 17.9 12.2 4.7 10.3 37.5 7.3 24.4 33.9 5.7 27.4 27.1 4.5 16.8 18.9
UI-TARS-2B (2025) 47.4 4.1 26.4 42.9 6.3 27.6 17.8 4.7 14.6 56.9 17.3 39.8 50.3 17.0 42.6 21.5 5.6 14.3 27.7
UI-TARS-7B (2025) 58.4 12.4 36.1 50.0 9.1 32.8 20.8 9.4 18.0 63.9 31.8 50.0 63.3 20.8 53.5 30.8 16.9 24.5 35.7
UI-TARS-72B (2025) 63.0 17.3 40.8 57.1 15.4 39.6 18.8 12.5 17.2 64.6 20.9 45.7 63.3 26.4 54.8 42.1 15.7 30.1 38.1
UI-TARS-1.5-7B (2025) – – – – – – – – – – – – – – – – – – 49.6
UI-TARS-1.5 (2025) – – – – – – – – – – – – – – – – – – 61.6
GUI-Owl-7B (2025) 76.6 31.0 54.5 59.6 27.3 46.1 64.5 21.9 54.1 79.1 37.3 61.0 77.4 39.6 68.7 59.8 33.7 47.9 54.9
GUI-Owl-32B (2025) 84.4 39.3 62.5 65.2 18.2 45.5 62.4 28.1 54.0 82.6 39.1 63.8 81.4 39.6 71.8 70.1 36.0 54.6 58.0

GUI Grounding Models
SeeClick (2024) 0.6 0.0 0.3 1.0 0.0 0.6 2.5 0.0 1.9 3.5 0.0 2.0 1.1 0.0 0.9 2.8 0.0 1.5 1.1
Aria-UI (2024) 16.2 0.0 8.4 23.7 2.1 14.7 7.6 1.6 6.1 27.1 6.4 18.1 20.3 1.9 16.1 4.7 0.0 2.6 11.3
UGround-V1-7B (2024) – – 35.5 – – 27.8 – – 13.5 – – 38.8 – – 48.8 – – 26.1 31.1
UGround-V1-72B (2024) – – 31.1 – – 35.8 – – 13.8 – – 50.0 – – 51.3 – – 25.5 34.5
JEDI-3B (2025) 61.0 13.8 38.1 53.5 8.4 34.6 27.4 9.4 23.0 54.2 18.2 38.6 64.4 32.1 57.0 38.3 9.0 25.0 36.1
JEDI-7B (2025) 42.9 11.0 27.4 50.0 11.9 34.0 38.0 14.1 32.2 72.9 25.5 52.4 75.1 47.2 68.7 33.6 16.9 26.0 39.5
UI-R1-3B (2025) 22.7 4.1 – 27.3 3.5 – 11.2 6.3 – 42.4 11.8 – 32.2 11.3 – 13.1 4.5 – 17.8
InfiGUI-R1-3B (2025b) 51.3 12.4 – 44.9 7.0 – 33.0 14.1 – 58.3 20.0 – 65.5 28.3 – 43.9 12.4 – 35.7
InfiGUI-R1-7B (2025b) 57.4 23.4 – 74.7 24.1 – 64.6 15.4 – 80.6 31.8 – 75.7 39.6 – 57.0 29.2 – 51.9
GUI-G1-3B (2025) 50.7 10.3 31.1 36.6 11.9 26.6 39.6 9.4 32.2 61.8 30.0 48.0 67.2 32.1 59.1 23.5 10.6 16.1 37.1
GUI-G2-7B (2025) 55.8 12.5 – 68.8 17.2 – 57.1 15.4 – 77.1 24.5 – 74.0 32.7 – 57.9 21.3 – 47.5

Ours
ScaleCUA-3B 57.8 18.6 38.8 42.9 16.8 32.0 54.3 28.1 47.9 64.6 35.5 52.0 66.7 37.7 53.9 31.8 16.9 25.0 42.3
ScaleCUA-7B 66.2 20.7 44.1 56.6 20.3 41.3 54.8 21.9 46.7 77.1 24.5 54.3 74.0 45.3 67.4 49.5 18.0 35.2 47.9
ScaleCUA-32B 75.3 35.2 55.8 73.2 30.8 55.4 60.4 39.1 55.2 76.4 46.4 63.4 81.4 49.1 73.9 63.6 41.6 53.6 59.2

operate seamlessly across Desktop (Windows, macOS, Ubuntu), Mobile (Android, iOS), and Web
platforms. The action set includes universally supported operations such as click, write, wait,
and terminate, which are shared across all platforms. It also accommodates platform-specific
interactions, including swipe and long press for mobile devices, and fine-grained mouse or
keyboard controls such as doubleClick, rightClick, dragTo, and hotkey for desktop and
web interfaces. To handle modern interactive elements, swipe operation has also been implemented
for Web. By standardizing the operation interface through a shared action space, we simplify training
and inference while supporting both generalization and specialization. Each action is defined with
explicit arguments (e.g., coordinates, keypresses), enabling precise control and compatibility with
structured outputs in grounding, direct-action, and reasoned-action inference modes. This design
facilitates modular training, policy transfer, and scalable data annotation, forming a critical foundation
for developing universal GUI agents.

Table 8: Performance on the MMBench-GUI L2 (GUI Element Grounding) (Wang et al., 2025c).

Model Windows MacOS Linux iOS Android Web Avg
Basic Adv. Basic Adv. Basic Adv. Basic Adv. Basic Adv. Basic Adv.

GPT-4o (2024) 1.5 1.1 8.7 4.3 1.1 1.0 5.1 3.3 2.5 1.4 3.2 2.9 2.9
Claude-3.7 (2025) 1.5 0.7 12.5 7.5 1.1 0.0 13.7 10.6 1.4 1.4 3.2 2.3 4.7
Qwen-Max-VL (2023) 43.9 36.8 58.8 56.1 53.9 30.1 77.4 59.1 79.5 70.1 74.8 58.8 58.0
Aguvis-7B-720P (2024) 37.3 21.7 48.1 33.3 33.5 25.0 67.5 65.2 61.0 51.0 61.6 45.5 45.7
ShowUI-2B (2024) 9.2 4.4 24.1 10.4 25.1 11.7 29.0 19.7 17.4 8.7 22.9 12.7 16.0
OS-Atlas-Base-7B (2024b) 36.9 18.8 44.4 21.7 31.4 13.3 74.8 48.8 69.6 46.8 61.3 35.4 41.4
UGround-V1-7B (2024) 66.8 39.0 71.3 48.6 56.5 31.1 92.7 70.9 93.5 71.0 88.7 64.6 65.7
InternVL3-72B (2025) 70.1 42.6 75.7 52.3 59.2 41.3 93.6 80.6 92.7 78.6 90.7 65.9 72.2
Qwen2.5-VL-72B (2025) 55.7 33.8 49.9 30.1 40.3 20.9 56.1 28.2 55.6 25.4 68.4 45.8 41.8
Qwen2.5-VL-7B (2025) 31.4 16.5 31.3 22.0 21.5 12.2 66.6 55.2 35.1 35.2 40.3 32.5 33.9
UI-TARS-1.5-7B (2025) 68.3 39.0 69.0 44.5 64.4 37.8 88.5 69.4 90.5 69.3 81.0 56.5 64.3
UI-TARS-72B-DPO (2025) 78.6 51.8 80.3 62.7 68.6 51.5 90.8 81.2 93.0 80.0 88.1 68.5 74.3
GUI-Owl-7B (2025) 86.3 61.8 81.7 64.5 74.4 61.7 94.9 83.0 95.8 83.7 93.2 72.7 80.5
GUI-Owl-32B (2025) 85.6 65.1 84.9 67.1 77.0 63.3 95.2 85.5 96.1 87.0 95.5 80.8 83.0
InfiGUI-G1-3B (2025b) 74.2 47.1 78.8 55.2 65.4 41.8 95.2 78.8 92.1 78.0 89.7 64.3 73.4
InfiGUI-G1-7B (2025b) 82.7 61.8 83.8 63.9 72.3 52.0 94.9 89.4 95.2 85.6 93.5 76.3 80.8
ScaleCUA-3B 78.6 46.0 79.4 52.9 73.3 49.0 93.0 73.3 94.1 74.4 92.6 63.6 73.7
ScaleCUA-7B 78.6 54.0 82.3 58.7 74.4 56.6 94.3 81.8 96.1 81.1 92.6 73.1 78.2
ScaleCUA-32B 83.0 62.9 88.1 64.2 81.2 65.8 95.9 84.9 96.4 81.7 93.9 76.3 82.0

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 9: Performance comparison on OSWorld-G (Xie et al., 2025).

Agent Model Text
Matching

Element
Recognition

Layout
Understanding

Fine-grained
Manipulation Refusal Overall

Gemini-2.5-Pro (2025) 59.8 45.5 49.0 33.6 38.9 45.2
Operator (2025) 51.3 42.4 46.6 31.5 0.0 40.6
Seed1.5-VL (2025) 73.9 66.7 69.6 47.0 18.5 62.9
OS-Atlas-7B (2024b) 44.1 29.4 35.2 16.8 7.4 27.7
UGround-V1-7B (2024) 51.3 40.3 43.5 24.8 0.0 36.4
Aguvis-7B (2024) 55.9 41.2 43.9 28.2 0.0 38.7
UI-TARS-7B (2025) 60.2 51.8 54.9 35.6 0.0 47.5
UI-TARS-1.5-7B (2025) 70.1 57.9 59.7 51.7 0.0 56.0
UI-TARS-72B (2025) 69.4 60.6 62.9 45.6 0.0 57.1
Qwen2.5-VL-3B (2025) 41.4 28.8 34.8 13.4 0.0 27.3
Qwen2.5-VL-7B (2025) 45.6 32.7 41.9 18.1 0.0 31.4
Qwen2.5-VL-32B (2025) 63.2 47.3 49.0 36.9 0.0 46.5
InternVL3.5-241B-A28B (2025a) 64.4 58.8 55.3 43.0 0.0 53.2
JEDI-3B (2025) 67.4 53.0 53.8 44.3 7.4 50.9
JEDI-7B (2025) 65.9 55.5 57.7 46.9 7.4 54.1

ScaleCUA-3B 64.8 61.8 64.0 43.6 0.0 55.7
ScaleCUA-7B 67.8 61.8 64.8 49.7 0.0 57.8
ScaleCUA-32B 69.0 66.7 70.0 51.0 0.0 60.6

Table 10: Performance comparison on AndroidControl (Li et al., 2024b).

Agent Model AndroidControl-Low AndroidControl-High
Type Grounding SR Type Grounding SR

Claude (2024b) 74.3 0.0 19.4 63.7 0.0 12.5
GPT-4o (2024) 74.3 0.0 19.4 66.3 0.0 20.8
SeeClick (2024) 93.0 73.4 75.0 82.9 62.9 59.1
InternVL-2-4B (2024b) 90.9 84.1 80.1 84.1 72.7 66.7
Qwen2-VL-7B (2024) 91.9 86.5 82.6 83.8 77.7 69.7
Aria-UI (2024) – 87.7 67.3 – 43.2 10.2
OS-Atlas-4B (2024b) 91.9 83.8 80.6 84.7 73.8 67.5
OS-Atlas-7B (2024b) 93.6 88.0 85.2 85.2 78.5 71.2
Aguvis-7B (2024) – – 80.5 – – 61.5
Aguvis-72B (2024) – – 84.4 – – 66.4
OS-Genesis-7B (2024b) 91.3 – 74.2 66.2 – 44.5
UI-TARS-2B (2025) 98.1 87.3 89.3 81.2 78.4 68.9
UI-TARS-7B (2025) 98.0 89.3 90.8 83.7 80.5 72.5
UI-TARS-72B (2025) 98.1 89.9 91.3 85.2 81.5 74.7
Qwen2.5-VL-3B (2025) – – 90.8 – – 63.7
Qwen2.5-VL-7B (2025) – – 91.4 – – 60.1
Qwen2.5-VL-32B (2025) – – 93.3 – – 69.6
Qwen2.5-VL-72B (2025) – – 93.7 – – 67.4
InternVL3.5-241B-A28B (2025a) 88.1 93.4 82.1 81.0 81.5 68.2

ScaleCUA-3B 91.4 93.7 84.1 81.4 83.9 70.3
ScaleCUA-7B 93.3 93.1 86.0 86.3 84.3 74.8
ScaleCUA-32B 91.9 94.7 85.7 85.7 87.3 75.9

A.5 ERROR CASE ANALYSIS

We here provide several error cases across different platforms to analyze the limitations of our
ScaleCUA.

On desktop platforms, ScaleCUA frequently violates procedural prerequisites shown in Fig 7 and
Fig 8, such as attempting to compress files without selecting them or changing font styles without
highlighting the target text. These issues stem from an incomplete understanding of interface states
and sub-task dependencies. Moreover, a significant limitation of ScaleCUA emerges when actions
result in silent failures, characterized by a lack of discernible state transition. In such instances,
the model tends to perseverate on the unsuccessful operation, revealing the absence of a robust
error-recovery mechanism. This issue underscores the critical requirement for fine-grained perception

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 11: Performance comparison on ScienceBoard (Sun et al., 2025).

Model Algebra Biochem GIS ATP Astron Doc Overall

GPT-4o (2024) 3.2 0.0 0.0 0.0 0.0 6.3 1.6
Claude-3.7-Sonnet (2025) 9.7 37.9 2.9 0.0 6.1 6.3 10.5
Gemini-2.0-Flash (2024) 6.5 3.5 2.9 0.0 0.0 6.1 3.2
Qwen2.5-VL-72B (2025) 22.6 27.6 5.9 0.0 9.1 12.5 12.9
InternVL3-78B (2025) 6.5 3.5 0.0 0.0 0.0 6.3 2.7
UI-TARS-1.5-7B (2025) 12.9 13.8 0.0 0.0 6.1 0.0 5.9

ScaleCUA-3B 6.5 13.8 0.0 0.0 0.0 0.0 3.6
ScaleCUA-7B 3.2 3.4 0.0 0.0 1.8 0.0 1.8
ScaleCUA-32B 9.7 10.3 0.0 0.0 12.1 0.0 5.9

Table 12: Performance on General VLM Benchmarks. ScaleCUA-3B (25%) denotes that, during
training, the number of general-purpose data samples was set to 25% of the GUI data samples (e.g.,
Understanding, Grounding, and Planning).

Model MathVistaMINI (2023) OCRBench (2024b) MMMUvalid (2024) RealWorldQA (2024)

Qwen2.5-VL-3B (2025) 62.3 797 (79.7) 53.1 65.4
ScaleCUA-3B (0%) 52.8 819 (81.9) 48.8 65.2
ScaleCUA-3B (25%) 58.6 823 (82.3) 50.6 65.4
ScaleCUA-3B (50%) 58.7 824 (82.4) 52.4 65.1
ScaleCUA-3B (75%) 59.3 818 (81.8) 55.6 65.2
ScaleCUA-3B (100%) 60.6 806 (80.6) 53.4 63.5
Qwen2.5VL-7B (2025) 68.2 864 (86.4) 58.6 68.5
ScaleCUA-7B (50%) 65.4 852 (85.2) 54.7 69.8
Qwen2.5-VL-32B (2025) 74.7 854 (85.4) 70.0 72.2
ScaleCUA-32B (75%) 69.8 827 (82.7) 61.9 72.3

and a robust understanding of element state to interact with context-dependent UI elements, such as
focus and selection.

For the Android platform, there exist precision and positional challenges demonstrated in Fig 9. In
the first case, the instruction explicitly requires appending text to the top of a file within a note-taking
application (Markor). However, the agent fails to recognize this positional constraint, instead inserting

Task: Help me change the 2 in \"H2O\" to a subscript.

Task: Create a zip archive named \"DownloadsBackup.zip\" from all files in the Downloads folder.

······

No files in the folder are selected for compression.

Agent repeats clicking the wrong spot without correction.

······

Figure 7: Error cases on the Windows platform. The first case shows ScaleCUA creating an archive
without having selected any files, revealing that it sometimes fails to follow the full instruction and
only completes a sub-step. The second case shows ScaleCUA persistently repeating the same action
until the step limit, when it misses the correct element and the screen remains unchanged.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 13: Public data sources used for training our models. The “*” indicates that we count the
number of samples we use rather than the full size of the original dataset because we have processed
these datasets and filtered some noisy examples. Some statistics are calculated from Aguvis (2024).

GUI Task Data source Platform #Elements / #Steps

Grounding

SeeClick (2024) Website 271K
GUIEnv (2024a) Website 328K
GUIAct (2024a) Website 67K
WebUI (2023a) Website 57K
Widget Captioning (2020b) Mobile 101K
RicoSCA (2020a) Mobile 173K
UI RefExp (2021) Mobile 16K
RICO Icon (2017) Mobile 16K
OmniACT (2024) Desktop & Website 7K
UGround (2024)* Website 1404K
OS-Atlas (2024b)* Desktop 799K
JEDI (2025)* Desktop 550K
Total – 3789K

Planning

MM-Mind2Web (2023) Website 7.8K
GUIAct (2024a) Website 16.6K
MiniWoB++ (2017) Website 9.9K
AitZ (2024) Mobile 11.9K
AndroidControl (2024a) Mobile 74.8K
GUI Odyssey (2024a) Mobile 118.3K
AMEX (2024) Mobile 35.6K
AitW (2023) Mobile 19.0K
PC Agent-E (2025) Desktop 27.8K
Total – 321.7K

Table 14: Actions space.

Action Platforms Description

click(x, y, clicks, button) All Perform a mouse click at coordinates (x, y) using the specified
button and number of clicks.

write(message) All Input the given message.
wait(seconds) All Pause execution for the specified number of seconds.
response(answer) All Submit a response to the environment or task prompt.
terminate(status) All Terminate the current task with a given completion status.
scroll(clicks, x, y) Desktop Performs a scroll of the mouse scroll wheel at position (x, y).
doubleClick(x, y, button) Desktop & Web Perform a double click at coordinates (x, y) with the specified

button.
rightClick(x, y, button) Desktop & Web Perform a right click at coordinates (x, y) with the specified

button.
hotkey(*args) Desktop & Web Trigger a keyboard shortcut composed of one or more keys.
moveTo(x, y) Desktop & Web Move the mouse pointer to the specified (x, y) position.
dragTo(x, y, button) Desktop & Web Drag the mouse to (x, y) while holding the specified button.
press(keys, presses) Desktop & Web Press the specified key(s) a given number of times.
keyDown(key) Desktop & Web Press and hold a key without releasing it.
keyUp(key) Desktop & Web Release a previously held key.
swipe(from, to, direction, amount) Mobile & Web Swipe from a start to end point in the specified direction with a

given intensity or distance.
navigate home() Mobile Return to the mobile home screen.
navigate back() Mobile Navigate back to the previous screen on mobile.
long press() Mobile Perform a long-press gesture on the current focus or location.
open app(app name) Mobile Launch a mobile application by its name.

content at the current cursor location without adjusting it. This suggests that ScaleCUA lacks a
fine-grained understanding of positional semantics in natural language instructions, as well as the
ability to reason about UI state changes like cursor positioning. In the second case, the agent is
instructed to ”Take one photo.” Despite correctly launching the camera and triggering the shutter
once, the agent erroneously repeats the same actions multiple times. This behavior stems from
a failure to detect visual feedback or confirm state transitions (e.g., a captured photo thumbnail),

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Task: In the first slide, insert the title "Happy Family" and make the font style "Microsoft JhengHei".

Task: I am currently using an Ubuntu system, and I have wrongly deleted a poster of party night. Could you
help me recover it from the Trash?

······

······

Attempt to restore without an image being selected.

Forgot to select the text need to change.

Figure 8: Error cases on the Ubuntu platform. ScaleCUA repeatedly fails tasks because it does not
comprehend procedural prerequisites. The agent attempts to execute a final command without first
performing the necessary intermediate step of selecting the target object. For instance, it tries to
restore a file without selecting it from the trash or alter a font without highlighting the text. Critically,
this operational flaw generates no explicit error message, trapping the agent in a repetitive loop of
ineffective actions.

Task: Edit note_SiFbv.txt in Markor. Add to the top of the note Hello, World!

Task: Take one photo.

······

······

 Repeat the same actions.

Ignore the key information in the instructions.

Figure 9: Error cases on the Android platform. The first case shows an instruction requiring content
to be inserted at the top of a document; however, ScaleCUA opens the file and inserts directly at the
current cursor location, ignoring the positional prerequisite. The second case shows that when the
UI exhibits no obvious state change after an operation, ScaleCUA repeats the same action multiple
times, causing tasks such as taking a photo to fail.

leading to unnecessary repetition. These failure modes indicate two key limitations: (1) insufficient
grounding of spatial and contextual cues embedded in task descriptions, and (2) inadequate visual
state tracking, particularly under conditions where UI feedback is subtle. Addressing these issues may
require enhanced visual reasoning modules, memory-based state modeling, or task-guided grounding
refinements.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Task: Edit my post on Star Trek Starfleet Academy series by adding a line to the body that says "Every watch
makes me feel like a kid again“.

Task: What do customers say about brush from sephora?

······

Agent subjectively chooses another item with reviews rather than the brush task needs.

Agent selects post for editing that not related to the “Star Trek Starfleet Academy” topic.

······

Figure 10: Error cases on the Web platform. The first case shows ScaleCUA made subjective
analytical assumptions, presuming the product necessarily contained reviews, while disregarding
the explicitly specified product category in the task instructions. The second case shows ScaleCUA
struggles with complex tasks in complex initial environments (where numerous posts already exist on
the starting interface). When faced with multifaceted requirements (needing to identify both ”my”
posts and posts on a specified topic), it neglected the explicitly stated topic in the instructions, instead
selecting only posts visible in the current observation space that belonged to me.

Empirical analysis of trajectories from web platform reveals that ScaleCUA may struggle with seman-
tic disambiguation. ScaleCUA often selects visually salient but instruction-inconsistent elements (e.g.,
wrong product category or unrelated post) as presented in Fig 10, revealing a bias toward superficial
cues over explicit constraints like ownership (“my post”) or topical relevance (“Starfleet Academy”).

To mitigate these issues, three avenues may show promise: (1) Reflection and State Verification.
Integrating lightweight screen-change detectors and visual precondition checkers can allow agents
to validate action effects and avoid ineffective loops. (2) Reinforcement Learning with Recovery
Signals. Reward structures should penalize redundant, non-progressive behaviors and incentivize
predicate satisfaction (e.g., “text selected”, “correct tab active”) before proceeding. (3) Memory-
Augmented Planning. By introducing episodic memory to recall past interactions (e.g., whether a
menu opened successfully), the agent can reason across time and avoid retrying failed subgoals.

A.6 THE DETAILS OF DATA CURATION

A.6.1 DATA SOURCES

We systematically collect GUI data across diverse platforms to construct ScaleCUA-Data, including
desktop, mobile, and web environments. As shown in Table. 15, ScaleCUA-Data spans 7 major
operation systems: Windows, Ubuntu, macOS, iOS, iPadOS, Android, and Web. Each platform
features a broad spectrum of frequently used applications designed for productivity, communication,
entertainment, browsing, and utilities.

On desktop platforms, Windows includes both native and third-party applications such as Microsoft
Office Suite, Adobe Creative Cloud, Visual Studio, and system utilities, offering a comprehensive
view of traditional GUI layouts. Ubuntu and macOS incorporate open-source and system software,
including LibreOffice, GIMP, Terminal, Finder, and Safari.

Mobile data is collected from the iOS and Android platforms. The data from the iOS platform
includes system applications such as Settings, Safari, Calendar, and Health, as well as third-party
applications including Weibo, Notability, and Spotify. The Android platform, by virtue of its open
ecosystem, serves as the greatest diversity of data sources, encompassing both system applications

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 15: The main sources of GUI corpora across different platforms.

Platform Application
Windows File Explorer, OS, Chrome, Microsoft Edge, Word, Excel, PowerPoint, LibreOffice Calc, LibreOffice Impress, LibreOffice

Writer, Maps, Camera, Calculator, Microsoft Store, Clock, Photos, Outlook, Media Player, VLC Media Player, Calendar,
Paint, Paint 3D, QQ Music, KuGou Music, Spotify, Tencent QQ, Visual Studio Code, Dev-C++, Microsoft Solitaire & Casual
Game, Pycharm, Android Studio, Vmware Workstation Pro, Vmware Fusion, Adobe Photoshop, Adobe Premiere Pro, Adobe
Illustrator, Blender, FL Studio, Unreal Engine, DaVinci Resolve, AutoCAD, SolidWorks, Inventor, Vivado, MATLAB, Origin,
Stata, Eviews

Ubuntu Files, OS, Firefox, Chrome, LibreOffice Calc, LibreOffice Impress, LibreOffice Writer, OneNote, GIMP, Slack, Thunderbird,
Visual Studio Code, Zotero

MacOS Finder, OS, Safari, Chrome, Pages, Numbers, Keynote, Calculator, Maps, Notes, Calendar, Contacts, Reminders, Apple Music,
Podcasts, Weather, Stocks, Freeform, Terminal, Clock, Pycharm, Android Studio, App Store, Mail, Visual Studio Code

iOS Weather, Maps, Find My, Settings, Stocks, Safari, Mail, Calendar, App Store, Home, Camera, Files, Wallet, Contacts,
Shortcuts, Clock, Twitter, Weibo, Outlook, Reddit, Instagram, Notes, Keynote, Reminders, Notability, GoodNotes, Rednote,
Translate, Calculator, Voice Memos, Shadowrocket, Music, Podcasts, Spotify, iTunes Store, Apple TV, Books, Zhihu, Health

iPadOS Weather, Settings, Safari, Camera, Goodnotes, Translate, Notes, Freeform, Chrome
Android Settings, Clock, Desktop Clock, Calendar, Contacts, Files, Camera, LinkedIn, Weibo, Twitter, Tieba, Reddit, Zoom, Gmail,

Duolingo, Xueersi, Wikipedia, XuetangX, edX, Coursera, Skillshare, ZLibrary, To Do, Word, Excel, PowerPoint, OneNote,
Taskade, Notion, TickTick, Google Maps, AMap, Tencent Map, Qunar, Trip.com, Ctrip, Qunar, LY.com, Fliggy, Zhixing
Train Tickets, Map.me, Booking, Amazon, eBay, Taobao, Alipay, Poizon, VIPShop, 58.com, Beike, Anjuke, Zhuanzhuan,
Douyin Mall, Shihuo, Nike, Bilibili, Bilibili CN, QQ Music, himalaya, Classical Music, News, Toutiao, Sohu News, NetEase
News, Hupu, Huya, Sohu Video, Pi Music Player, NetEase Cloud Music, Kuaishou, Kugou, WeSing, Douban, Xiaohongshu,
Zhihu, Qidian, Xiaoheihe, Prime Video, CNN, Quora, Cantook, Spotify, Apple Music, YouTube, Fitness, Health, JD Health,
Translate, Moji Weather, App Store, Google Chrome, BlueCoins, VPN, Shadowrocket, Surfboard, Speedtest, Meitu, Jianying,
Canva, Procreate, Pinterest, GitHub, DeepSeek, Grok

Web 5i5j(sh.5i5j.com), AccuWeather(accuweather.com), adidas China(adidas.com.cn), Adobe(adobe.com), Amazon(amazon.com),
American Kennel Club(akc.org), Apple(apple.com), arXiv(arxiv.org), BabyCenter(babycenter.com), Baidu(baidu.com),
Baidu Baike(baike.baidu.com), Baidu Tieba(tieba.baidu.com), Beihang University(buaa.edu.cn), Bilibili(bilibili.com),
BoardGameGeek(boardgamegeek.com), BoardMix(boardmix.cn), Booking.com(booking.com), Budget(budget.com),
Cambridge Dictionary(dictionary.cambridge.org), Cars.com(cars.com), CNBlogs(cnblogs.com), CNN(cnn.com),
CoinMarketCap(coinmarketcap.com), Coursera(coursera.org), CSDN(csdn.net), Ctrip(ctrip.com), Damai(damai.cn),
Dianping(dianping.com), Dior(dior.com), Douban(douban.com), Douyin(douyin.com), Drugs.com(drugs.com),
eBay(ebay.com), Britannica(britannica.com), ePay(epay.com), Epicurious(epicurious.com), Facebook(facebook.com),
Fastly(fastly.com), FedEx(fedex.com), Fliggy(fliggy.com), Food Network(foodnetwork.com), Gaode Maps(gaode.com),
Gmail(gmail.com), GitHub(github.com), Google Finance(finance.google.com), Google Maps(map.google.com), Google
Scholar(scholar.google.com), GOV.UK(gov.uk), Healthline(healthline.com), Hugging Face(huggingface.co), Hupu(hupu.com),
IGN(ign.com), IMDb(imdb.com), Indeed UK(uk.indeed.com), iQiyi(iqiyi.com), JD.com(jd.com), JetBrains(jetbrains.com),
KAYAK(kayak.com), Kohl’s(kohls.com), Last.fm(last.fm), LeetCode(leetcode.cn), LinkedIn(linkedin.com), Mar-
riott(marriott.com), Microsoft Azure(azure.microsoft.com), Microsoft Office(office.com), ModelScope(modelscope.cn),
MSN(msn.com), NBA(nba.com), National Relocation(nationalrelocation.com), NetEase Cloud Music(music.163.com),
Newegg(newegg.com), OpenStreetMap(openstreetmap.org), PayPal(paypal.com), PJLab GitLab(gitlab.pjlab.org.cn),
QQ(qq.com), QQ Music(y.qq.com), QS China(qschina.cn), Reddit(reddit.com), Redfin(redfin.com), REI(rei.com),
Rotten Tomatoes(rottentomatoes.com), Ryanair(ryanair.com), Samsung(samsung.com), Shimo(shimo.im), Sina
News(news.sina.com.cn), Skype(skype.com), SpotHero(spothero.com), Stack Overflow(stackoverflow.com), Steam
Store(store.steampowered.com), Student.com(student.com), TensorFlow(tensorflow.org), Tencent Docs(docs.qq.com),
Tencent Video(v.qq.com), The Weather Channel(weather.com), The Weather Network(theweathernetwork.com), Thumb-
tack(thumbtack.com), Ticket Center(ticketcenter.com), Trip.com US(us.trip.com), TripAdvisor(tripadvisor.com), UNIQLO
China(uniqlo.cn), United Airlines(united.com), University of Cambridge(cam.ac.uk), University of Michigan(umich.edu),
Vmall(vmall.com), Virginia DMV(dmv.virginia.gov), WebArena Forum(wa forum), WebArena GitLab(wa gitlab),
WebArena Shopping(wa shopping), WebArena CMS(wa shopping admin), WebMD(webmd.com), Weibo(weibo.com),
Wikipedia(wikipedia.org), WolframAlpha(wolframalpha.com), X(x.com), Xiaohongshu(xiaohongshu.com), Yahoo
Finance(finance.yahoo.com), Yahoo Sports(sports.yahoo.com), Yelp(yelp.com), YouTube(youtube.com), Zhihu(zhihu.com),
Zhaopin(i.zhaopin.com), Zhaopin Landing Page(landing.zhaopin.com), Zhipin(zhipin.com) and ∼ 0.2M URLs selected from
TOP-1M URLs(https://tranco-list.eu/)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

and a broad array of commercial software from domains such as productivity, e-commerce, social
media, and multimedia (e.g., WeChat, Taobao, TikTok, and Google Suite).

For tablet interfaces, our data collection primarily focused on iPadOS, encompassing a selection of
its most frequently utilized system applications.

As for Web, we collected pages from over 200 frequently accessed websites spanning e-commerce,
social media, education, government services, travel, and developer tools. These sources encompass
major websites such as Amazon, YouTube, Reddit, Wikipedia, Coursera, and GitHub, with data
captured through both static DOM snapshots and dynamic interaction traces.

The collected dataset constitutes a high-coverage, cross-platform corpus of real-world graphical
interfaces which endows the model with comprehensive domain knowledge and leads to significantly
improved generalization.

A.6.2 GUI UNDERSTANDING

To support the development of general-purpose computer use agents, we construct a large-scale
corpus for GUI understanding that encompasses both element-level and screenshot-level semantics.
This corpus is designed to facilitate fine-grained perception and reasoning over static and dynamic
user interfaces.

For element-level understanding, we define five task formulations targeting visual appearance, spatial
layout, textual grounding, and semantic functionality. First, we introduce the Element Appearance
Captioning task, which requires the model to describe visual features (e.g., shape, color, borders) of a
given GUI component. These attributes often signal affordances and can help distinguish between
interactive and static elements. Second, we incorporate Referring OCR, a referring task where the
model extracts the textual content within a specified bounding box, enabling alignment between visual
context and embedded text. Third, to capture spatial organization, the Element Layout Understanding
task asks the model to predict both absolute screen coordinates and relative positions with respect
to nearby components. Fourth, to understand the operational roles of components, we define the
Element Functionality Captioning task, where the model infers the intended function of a labeled
element within its surrounding interface. Finally, we propose a User Intention Prediction task, where
the model is asked to infer the user’s likely goal based on contextual clues and ongoing interactions.

For screenshot-level understanding, we formulate two tasks that promote global comprehension. The
Interface Captioning task prompts the model to generate a high-level textual description summarizing
the overall structure, visual hierarchy, and content of the interface. This encourages holistic reasoning
and layout recognition. Complementarily, the Screen Transition Captioning task focuses on temporal
changes by asking the model to describe the differences between two consecutive screenshots. This
enables the model to understand GUI dynamics, such as state updates, navigation events, or content
refreshes.

Together, these tasks define a comprehensive benchmark for GUI understanding. We leverage vision-
language models to automatically generate annotations for both element-level and screenshot-level
tasks, using visual context, structural metadata, and interaction histories. This corpus provides the
foundation for training agents capable of fine-grained perception, robust grounding, and high-level
reasoning in complex GUI environments.

A.6.3 METADATA EXTRACTION

Windows Platform. To facilitate the automated analysis and interaction with graphical user interfaces
(GUIs), we design and implement a framework for extracting UI metadata on the Windows operating
system. The core of this framework leverages the UI Automation (UIA) technology to perform a
depth-first traversal of an application’s A11y Trees, initiated from the foreground window identified
via native Win321 API calls. Subsequently, the collected raw data undergoes a multi-stage filtering
and refinement pipeline to ensure its relevance and actionability. This pipeline first performs a
geometric validity check to filter out improperly sized or off-screen controls, followed by a visibility
and occlusion analysis to retain only the topmost, unobscured elements. Furthermore, a semantic
pruning module uses a predefined keyword list (e.g., “close”, “save”) to remove controls that

1https://learn.microsoft.com/en-us/windows/win32/

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

might cause task interruption, while a system component exclusion module discards elements
within standard OS regions like the taskbar based on their absolute coordinates. Each element that
successfully passes through this pipeline is then abstracted into a structured JSON object. This object
encapsulates its multi-dimensional attributes, including identity properties (control type, name),
state information (is enabled), spatial coordinates (bbox), and descriptive text (description,
tooltip). The aggregation of these objects yields a comprehensive metadata representation of the
UI, establishing the foundation for subsequent automated tasks.

Ubuntu Platform. To extract Ubuntu metadata, we process an XML string representation of the
A11y Trees, leveraging Python’s built-in xml library for parsing2. The process commences by
parsing the raw XML data into a tree structure. Following this, we linearize these nodes into
structural elements. Specifically, for each node in this set, we programmatically extract key attributes,
including its tag (representing the element’s role), name, class, and description. To capture the
semantic content robustly, the element’s text is derived either directly from its text content or inferred
from its value attribute, particularly for input fields. Positional and dimensional data are extracted
from screencoord and size attributes, which together define the element’s bounding box. The final
output is a structured, tab-separated string where each line represents a single UI element. This
entry is composed of seven fields: (1) tag indicating the UI type, (2) name for the element’s
given name, (3) text capturing its content or value, (4) class specifying its component class, (5)
description for accessibility-related details, (6) position as a top-left (x, y) coordinate, and
(7) size as a width and height pair. In essence, this process distills raw, platform-specific A11y
Trees into a flattened, semantically-annotated dataset, providing a crucial foundation for downstream
understanding, grounding tasks.

MacOS Platform. We extract UI metadata from macOS applications by leveraging the ma-
cOS Accessibility API, primarily via the ApplicationServices3 frameworks. It allows
structured traversal of the A11y Trees by programmatically accessing on-screen UI windows
and querying attributes such as AXPosition, AXSize, AXRole, AXTitle, AXValue, and
AXDescription. To initiate the process, we identify top-level windows from the system window
list using CGWindowListCopyWindowInfo, filter for visible application windows, and create
AX references using AXUIElementCreateApplication. A recursive collection strategy is
then applied, traversing each window’s A11y Trees up to a bounded depth while filtering out off-
screen or irrelevant elements. To ensure semantic clarity, we enrich metadata by inferring contextual
labels for interactive elements (e.g., AXButton, AXTextField) based on their surrounding static
text, spatial layout, and role. Further, we apply spatial deduplication heuristics to eliminate overlap-
ping or redundant elements, and merge content-bearing AXStaticText regions with their parent
interactive widgets when appropriate. The final output is a flattened list of UI elements, each anno-
tated with role, text content, description, and bounding box information. Structurally, each metadata
entry consists of: (1) role indicating UI type (e.g., AXButton), (2) text and description
capturing semantic content, (3) a bbox dictionary with x, y, width, and height, and (4) op-
tionally a list of children for nested components. This pipeline enables robust and interpretable
extraction of macOS GUI structures, supporting downstream tasks such as screen annotation, interac-
tion modeling, and agent behavior learning. Additionally, due to the limited accessibility information
exposed by some system-level macOS applications or the difficulty in filtering non-visible elements,
we incorporate omniparser-v2 as a complementary mechanism to refine and validate extracted
elements based on screenshot alignment and bounding box overlap.

Mobile Platform. For Android, we begin by using UIAutomator24 to dump the current app’s
accessibility hierarchy as XML and parse it into an in-memory lxml tree. In a depth-first walk, we
record each node’s class, resourceID, text and content description, and parse its
bounds string (e.g. "[x1,y1][x2,y2]") into integer coordinates to build robust locators and
raw geometry. During this pass we filter out any control that is off-screen, too small (for example,
width < 5 px or height < 15 px), devoid of both text/description and interaction flags (clickable,
focusable, scrollable, or long-clickable), or fully occluded by its parent—leaving
only truly visible, actionable elements. For each remaining node, we generate a concise label by
combining up to the first ten words of its text or description with its UI role (e.g. “Button” or

2https://docs.python.org/3/library/xml.etree.elementtree.html
3https://developer.apple.com/documentation/applicationservices
4https://uiautomator2.readthedocs.io/en/latest/

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

“EditText”) and infer possible actions (click, swipe, long press, write). In a second sweep, we
detect exactly which elements support taps, focus moves, scrolling, or long presses, then wrap each
into a structured record containing its unique identifier, bounding-box coordinates, a summary of
core attributes (ID, text, type, state flags like enabled and visible to user), and the full raw
attribute map (package, index, checkable/checked, password, etc.). Finally, we serialize
this collection as a flat JSON array or tab-separated lines, producing a complete, coordinate-aware
metadata set that underpins precise mobile UI analysis and automated testing. For iOS, we feed the
screenshot directly into OmniParser V2 (Yu et al., 2025), which parses the page elements—extracting
their type, bounding box, interactivity, content, and so on—and uses this information as metadata.

Web Platform. Our web metadata extraction pipeline employs Selenium WebDriver5 with
ChromeDriver6 to automate web interaction trajectory acquisition using a random walk algo-
rithm. At each step, it leverages browser-native rendering to ensure visual fidelity while cap-
turing the current page’s element metadata, including coordinates, descriptions, types, and spe-
cial attribute information. The pipeline executes a JavaScript parsing pipeline via Chrome
DevTools Protocol (CDP) that implements a comprehensive element classification and filter
methodology. Clickable elements are identified through a multi-criteria approach combining
semantic HTML tags (<a>, <button>, <input>, <select>, <textarea>, <option>,
<video>), CSS properties (cursor:pointer, since CSS properties cascade to child elements,
we only treat an element as clickable if its parent lacks cursor:pointer, ensuring accurate detec-
tion of standalone clickable elements), JavaScript click event listeners, and element attributes
(onclick, ondblclick, roles contain button, option, tab); Non-interactive elements are
systematically classified as text objects, media objects, or structural panels through DOM hier-
archy analysis. All elements undergo rigorous validation including geometric verification using
getBoundingClientRect() to filter occluded components, visibility validation through CSS
property checks (display:none, visibility:hidden, opacity:0), and active validation
via document.elementFromPoint() center-point sampling to confirm visual prominence and
top-layer activity. Finally, we perform a set difference operation with the elements from the last step
to filter out the set of new elements for the random walk. Text description metadata aggregation
incorporates content from over 12 attributes including textContent, innerText, value, alt,
title, and aria-label, normalized through whitespace compression algorithms. The frame-
work implements multiple integrity safeguards including dynamic language detection via langdetect7,
sensitive lexicon pattern matching, and visual anomaly detection with adaptive boundary refinement.
Cross-resolution robustness is achieved through randomized viewport initialization spanning device
pixel ratios (1.4–2.1) and common resolutions (720p, 1080p, 2K, 4K, 2560×1600), stabilized via
CSS viewport normalization techniques. This comprehensive web trajectory metadata extraction
pipeline ensures exceptional data integrity, security, diversity, granularity, and accuracy, thereby
establishing a robust foundation for instruction construction and model training.

A.6.4 GUI GROUNDING

GUI grounding is a fundamental capability for computer use agents, enabling them to associate the
natural language instruction with a corresponding region of interest. Effective grounding determines
whether the agent can interact with the correct interface components, directly impacting its ability to
complete downstream tasks. In fact, a grounding-only agent can be paired with a general-purpose
planner (e.g., GPT-4o (Hurst et al., 2024)) to complete tasks via a modular style.

To support various grounding demands, we construct a multi-format GUI grounding corpus with
three distinct supervision targets: point grounding, bounding box grounding, and action grounding.
Point grounding requires the model to identify a single pixel-level location, typically the center of a
button, icon, or control, that corresponds to a user instruction. Bounding box grounding extends this
capability by predicting rectangular regions that encapsulate target elements, which is particularly
useful for operations involving region selection, such as dragging or editing. Action grounding
combines spatial localization with operational semantics by producing an executable command, such
as click(x=105, y=23), that aligns with the intended interaction. As for the annotation, we
reuse structured annotations generated during the GUI understanding stage. Specifically, appearance,

5https://www.selenium.dev/
6https://www.google.cn/chrome
7https://github.com/Mimino666/langdetect

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

spatial, and functional descriptions of each UI element provide rich supervision signals. The center
point and bounding box coordinates are extracted directly from UI layout metadata or visual parsing
modules. Action-level grounding pairs these spatial targets with predefined atomic operations based
on the element’s inferred function. In addition, we explore data augmentation strategies to expand
the grounding corpus. Specifically, we filter out previously annotated elements from the metadata
and use prompt templates combined with GPT-4o to generate a larger set of grounding annotations.
This augmented data is designed to improve the model’s generalization ability across diverse GUI
layouts and interaction patterns. This annotated corpus serves as a foundation for learning robust
visual-linguistic alignment and facilitates both direct interaction and integration with high-level task
planners.

A.6.5 WEAK-SEMANTIC TRAJECTORY

While the trajectories collected by rule-based agents do not correspond to explicit task objectives,
we incorporate heuristics into the exploration process to encourage transitions into deeper and
less frequently visited interface states. This results in more diverse and representative interaction
sequences, which are critical for training agents to generalize across complex GUI structures.

To further exploit the potential of these unsupervised trajectories, we segment long interaction
sequences into shorter, weakly semantic sub-trajectories. The segmentation is based on screenshot
similarity: when a current screen is visually similar to a previous one, it often indicates that the agent
has reached a terminal or redundant interface state with minimal novelty in further interactions. These
similarity-based boundaries serve as natural points for restarting exploration, thereby improving
coverage and trajectory diversity.

We refer to the resulting sequences as weak-semantic trajectories, as they preserve partial continuity
and structural coherence without being aligned to manually defined tasks. Despite their lack of strong
supervision, such trajectories often reflect meaningful UI flows, especially when the agent is biased
toward newly rendered elements.

We hypothesize that exposure to weak-semantic trajectories can help the agent internalize common
patterns of GUI interaction and enhance its planning ability. If validated, this approach may offer a
cost-effective alternative to large-scale manual annotation, accelerating the evolution of more capable
computer use agents through low-cost, high-coverage exploration.

A.6.6 HUMAN-CURATED TRAJECTORY

In addition to rule-driven exploration, we incorporate human-curated trajectories to address the
limitations of automatically collected data. While rule-driven agents enable scalable collection, they
inherently exhibit stochasticity and often fail to uncover certain goal-directed operations, especially for
tasks requiring deep or context-specific interactions. Moreover, although weak-semantic trajectories
segmented from raw explorations provide partial structure, their action sequences are not always
aligned with human reasoning. As a result, they may contain fragmented or noisy behaviors that limit
their utility for downstream training.

To overcome these limitations, we design a human-in-the-loop protocol for collecting high-quality
task trajectories. We begin by constructing a seed task set, categorizing applications into common
use domains such as daily utilities, entertainment, and productivity. For each domain, we identify
representative applications and select frequently used functions based on user documentation and
empirical analysis. Annotators are then instructed to convert these functions into clear, goal-oriented
task descriptions, ensuring linguistic clarity and operational feasibility. Using our unified cross-
platform recording system, human experts remotely interact with each application environment
encapsulated within a Docker container. This design provides process isolation, avoids side effects
such as misoperation. Annotators are able to finish tasks in a natural and fluent manner, producing
coherent action trajectories that reflect realistic usage patterns across platforms.

These curated trajectories serve as high-quality supervision for training agents with accurate planning
and execution capabilities. They complement the broader, noisier dataset collected via automation,
and provide reference paths that guide model alignment with human intent and behavior.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

A.6.7 ANNOTATION SCHEMES

In our data acquisition, we collect screenshots along with their metadata, which includes all potentially
interactive elements on the page. Since different exploration paths can lead to the same state and
common states like the homepage are visited frequently, we employed image feature similarity to
deduplicate these screenshots. This yields a unique set of interface screenshots paired with their
corresponding metadata. To reduce redundancy and mitigate noise within the metadata, we randomly
sample 25 to 40 elements per screenshot. These elements are then semantically filtered using GPT-4o
to ensure both efficacy and diversity.

For each retained element, we mark its position on the image using a red box with an arrow. By
combining with associated metadata, we prompt GPT-4o to generate appearance and position descrip-
tions, and Claude-3.7-Sonnet (Anthropic, 2025) to generate functional descriptions. These serve as
ground truth annotations for our Element Appearance Captioning, Element Layout Understanding,
and Element Functionality Captioning, respectively. These descriptions are further used to construct
grounding tasks, where the appearance and position descriptions are used for non-action grounding
and the function description is used for action-based grounding. To simulate all possible positions of
elements and accommodate a wider range of usage scenarios, we perform data augmentation. This
includes simulating higher resolutions by stitching two images together, as well as cropping elements
and pasting them onto solid-color backgrounds or real-world backgrounds from images captured by
the author’s own device.

For each unique interface screenshot, GPT-4o is also used to generate an overall caption. If the image
was not the final step of a trajectory, we additionally provided GPT-4o with the subsequent screenshot
along the same exploration path to summarize the UI changes and infer the intention. These are used
for Screen Transition Captioning and User Intention Prediction tasks.

For all trajectories, we provide Claude-3.7-Sonnet with the current and next screenshots, as well as a
cropped image of the interacted element, to infer both the step-level instruction and the reasoning
process. For weakly semantic trajectories that primarily involve navigation across pages, we generate
high-level task objectives. To do this, we provide Claude-3.7-Sonnet with the first and last screenshots
of the trajectory to synthesize a navigation-related task goal. Considering that different annotators
have varying styles of writing instructions and different operational habits, we implement two types of
augmentations for trajectories to improve model generalization. The first is instruction augmentation,
where we prompt the model to generate task instructions in diverse styles, aiming to cover all possible
user scenarios. The second is trajectory augmentation, for which we prompt the model to generate
several step-level instructions and the reasoning process based on the trajectory. This can help
mitigate the noise introduced by model labeling. All prompts used for annotation are provided in the
Appendix A.10.2.

A.6.8 MORE DETAILS OF DATA DISTRIBUTION

In Fig. 11, we visualize the data distribution for each task domain. Fig. 11b provides a hierarchical
view of the trajectory composition across platforms and types. By integrating agent-generated and
expert-curated signals, we ensure both data diversity and quality. Our ScaleCUA-Data delivers
the largest GUI grounding dataset to date, coupled with substantial understanding and planning
examples. Its platform coverage and hierarchical task composition form a comprehensive foundation
for training robust, cross-platform GUI agents. The performance of ScaleCUA validates the quality
of ScaleCUA-Data, and highlights future directions in data-centric agent training.

A.7 DATA VISUALIZATION

A.7.1 GUI UNDERSTANDING

To qualitatively demonstrate our data in GUI understanding tasks, we provide examples that cover
both element-level and screenshot-level understanding. At the element level, we have designed five
distinct tasks regarding individual GUI elements. Table 17 showcases specific examples of these
tasks. At the screenshot level, we focus on the ability to comprehend the entire GUI interface globally
and its dynamic changes. Table 18 provides examples for these two tasks.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 16: Distribution of examples in our training corpus.

Task Domain Tasks #Images #Examples

Understanding

Element Appearance Captioning,

355.5K 471.4K

Referring OCR,
Element Layout Understand,
Element Functionality Captioning,
User Intention Prediction,
Interface Captioning,
Screen Transition Captioning

Grounding
Bounding Box

1.6M 17.1M
Point, Action

Task Planning
Weak Semantics Trajectories 5.5K 15.0K
Human-Curated Trajectories 29.3K 4.0K
Enhanced Trajectories 29.3K 48.2K

Web
(34.1%)

W
indows

(30.3%
)

Android

(26.9%)

Ubuntu (4.7%) iPh
on

e

(3
.4%

)

M
ac

O
S

(0
.6

%
) Gr

ou
nd

ing
 (5

5.6
%)

Planning (13.5%)

Understanding (30.8%)
Grounding (97.6%)

Planning (0.5%
)

Understanding (1.9%
)

Grounding (55.4%)

Planning (7.3%)

Understanding (37.3%)

Grounding (45.9%)
Planning (23.5%)

Understa
nding (30.7%) Grou

nd
ing

 (8
0.6

%)

Un
de

rst
an

din
g (

19
.4%

)

Gr
ou

nd
in

g
(5

4.
3%

)

Pl
an

ni
ng

 (1
1.

7%
)

Un
de

rs
ta

nd
in

g
(3

4.
0%

)

(a) Task domain distribution of our dataset.

Linux

(35.4%)

W
eb

(23.8%
)

Android

(20.5%)

Wind
ow

s

(14
.4%

)

M
ac

os
(5

.8
%

)

we
ak

 se
m

. (
10

.7
%

)
Hu

m
an

 (7
.2

%
)

Enhanced (82.1%)

weak sem. (46.8%)

Hum
an (5.0%

)

Enhanced (48.2%
)

weak sem. (36.0%)

Human (4.3%)

Enhanced (59.7%)

Human (5.4%)

En
ha

nce
d (

94
.6%

)

Hu
m

an
 (9

.8
%

)

En
ha

nc
ed

 (9
0.

2%
)

(b) The composition of Trajectories.

Figure 11: Data distribution of our dataset.

A.7.2 GUI GROUNDING

To enable precise interaction, a model must be able to map natural language instructions to specific
elements on an interface. As mentioned in Section 4.2, we support three distinct GUI grounding
modes to accommodate a variety of scenarios and Table 19 provides a visual illustration of these
three modes.

A.7.3 WEAK-SEMANTIC TRAJECTORY

As mentioned in Sec. A.6.5, the weak-semantic trajectory processing pipeline begins with rule-driven
agents performing depth-first exploration across GUI environments. These agents generate extensive
interaction sequences by randomly selecting actions from available options at each step, while
heuristic pruning eliminates redundant branches to improve efficiency. Although these trajectories
lack explicit high-level goals, they provide broad coverage of interface states. To enhance the utility
of these unsupervised trajectories, we segment them into coherent sub-sequences based on visual
similarity between screenshots.

Fig. 12 demonstrates the exploration pattern in desktop environments, while Fig. 13 and 14 show
the equivalent processes for mobile and web platforms, respectively. In each case, the random-walk
agent generates comprehensive navigation patterns through systematic exploration of the interface.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 17: Task visualization for element-level understanding.

Examples of Five Types of Tasks.
[Element Appearance Captioning]
Q: Please describe the appearance of the element
marked in the image.
A: A rectangular search bar with a white/light gray
background and placeholder text ’Search with Google
or enter address’ in light gray font. The search bar
has smooth, rounded corners and a subtle border. It
appears to be empty with no entered text.
[Referring OCR]
Q: Please output the text content correctly responding
to this term: <box>[[61, 563, 435, 651]]</box>
A: A rectangular search bar with a white/light gray
background and placeholder text ’Search with Google
or enter address’ in light gray font. The search bar
has smooth, rounded corners and a subtle border. It
appears to be empty with no entered text.
[Element Layout Understanding]
Q: Describe the position of the highlighted elements
in the image, such as their location relative to other
objects, alignment, and any spatial relationships.
A: Located in the top toolbar of the application win-
dow, positioned between the interface navigation con-
trols on the left and the viewport controls on the right.
It sits approximately in the upper third of the screen,
within the main toolbar area.

[Element Functionality Captioning]
Q: Describe the position of the highlighted elements
in the image, such as their location relative to other
objects, alignment, and any spatial relationships.
A: Use the size grip at the corner of the PowerPoint
Options window to change its size

[User Intention Prediction]
Q: Analyze the current image and the provided action
’click(x=540, y=1686)’, then predict the user’s intent
based on these inputs
A: The user likely intends to view detailed informa-
tion or a complete list of their past workout activi-
ties, specifically the ”Latest: Karate Power Fat Burn”
session recorded on 8/25/2024 at 20:27, as the label
”Show all” suggests an expansion or summary of his-
torical data.

These weak-semantic trajectories serve as valuable training signals despite their lack of strong
task alignment. They expose models to common GUI interaction patterns and state transitions,
complementing the more structured but limited human-curated data.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 18: Task visualization for screenshot-level understanding.

Examples of Two Types of Tasks.
[Interface Captioning]
Q: Provide a detailed description in the current image.
A:The image shows a weather application interface displaying
the forecast for Shanghai. The current temperature is 66°F
(about 19°C) with sunny conditions. The interface shows a
detailed forecast for Friday, April 4, 2025, with a high of 69°F
and a low of 48°F. The hourly forecast indicates temperatures
will range from 66°F to 50°F throughout the day, with sunset
occurring at 6:14 PM. Wind conditions show a speed of 3
MPH with gusts up to 11 MPH. The interface also displays
additional weather information including visibility (14 mi),
UV index (7 - High), and a five-day forecast showing temper-
atures for upcoming days. The air quality map shows green
areas indicating good air quality around the user’s location.
[Screen Transition Captioning]
Q: Analyze the differences between two consecutive GUI
screenshots. Describe the initial state, highlight the changes
in the second screenshot.
A:In the first screenshot, we see the Trip.com mobile app
homepage with various booking options including Hotels,
Flights, Flight + Hotel, Trains, and other services. After
tapping on Flight + Hotel option, the second screenshot shows
the Flight + Hotel booking page where users can input their
travel details. The page displays a one-way/return toggle
(with ’Return’ selected), origin and destination fields set to
Hong Kong and Dubai respectively, travel dates (Wed, Apr
23 - Sat, Apr 26 for 3 nights), traveler count settings, and a
search button at the bottom.

Summarization: I aim to set language to English (USA) then return to my.

Similar
Image !

Figure 12: An example of a weak semantic trajectory on the Ubuntu platform.

Similar
Image !

Summarization: Forward the address from the File Transfer chat in WeChat to John.

Figure 13: An example of a weak semantic trajectory on the Android platform.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 19: Task visualization for GUI grounding

Examples of Three Modes.
[Point Grounding]
Q: Return the point within this UI element:
<ref>Preformatted Text button in the EDITOR tab’s
formatting toolbar that allows users to insert pre-formatted
text tags in MATLAB’s editor.</ref>
A: <ref>Preformatted Text button in the EDITOR tab’s
formatting toolbar that allows users to insert pre-formatted
text tags in MATLAB’s editor.</ref><point>[[223,
45]]</point>

[Bbox Grounding]
Q: Indicate the location with a bounding box to this UI
element: <ref>A white-faced analog clock with black nu-
merals (1-12) and three hands, placed in the upper left
corner.<ref>
A: <ref>A white-faced analog clock with black numer-
als (1-12) and three hands, placed in the upper left cor-
ner.<ref>>[[97, 69, 218, 227]]<bbox>

[Action Grounding]
Q: Click the ’Open’ option to open the selected file
A: <action>click(x=0.7983, y=0.4967) </action>

Summarization: Try reading the Advanced volume of On Java Chinese version.

Similar
Image !

Figure 14: An example of a weak semantic trajectory on the web platform.

A.7.4 HUMAN-CURATED TRAJECTORY

Fig. 15-19 illustrate human-curated trajectories across five platforms: Windows, Ubuntu, macOS,
Android and Web. Each trajectory demonstrates precise human-annotated interactions, rendered as
mouse/gesture traces over consecutive screenshots, forming high-quality demonstrations for data
collection. These trajectories span diverse applications such as Excel, SolidWorks, Gmail, Numbers,
Amap, Twitter/X, and GitHub, showcasing real-world complexity in cross-platform environments.
The visualizations highlight platform-specific GUI logic (e.g., desktop file operations vs. mobile touch
navigation), as well as long-horizon reasoning steps (e.g., multi-page exploration, search-before-edit
workflows).

A.7.5 TRAJECTORY ANNOTATION

Building upon the annotation schemes detailed in Sec. A.6.7, we systematically process tra-
jectory data to generate high-quality training corpora. Our trajectory annotation focuses on
two key aspects: (1) low-level operational instructions generated for each interaction step,
(2) chain-of-thought rationales explaining the decision process. As demonstrated in Ta-

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Task: Visualize the 2024 business performance metrics using a clustered column chart in Excel.

Task: Create a 3D cylinder on the top reference plane in SolidWorks.

Figure 15: Examples of human-curated trajectories on the Windows platform.

Task: Make a copy of sheet1 and name it as “sheet1(copy)”, positioning it after all existing sheets.

Task: Write a new email to guiagent@gmail.com. The subject is OpenCUA for GUIAgent.

Figure 16: Examples of human-curated trajectories on the Ubuntu platform.

Task: Use conditional formatting to highlight values greater than 20 in Numbers.

Task: Add high-priority reminder “Paper Reading” due tomorrow at 6 PM.

Figure 17: Examples of human-curated trajectories on the macOS platform.

ble 20, these annotations are formally represented using XML tags to distinguish between
operational instructions (<operation>...</operation>) and their cognitive justification

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Task: Search “ChatGPT” in X and like the first tweet in the results.

Task: In Amap, navigate the route from Shanghai Jiao Tong University Xuhui Campus to the Bund.

Figure 18: Examples of trajectory data collection on the Android platform.

Task: Check the public list of members of the “google” organization.

Task: Please tell me which games are in the top three of the popular games list.

Figure 19: Examples of trajectory data collection on the web platform.

(<think>...</think>), which support both direct-action execution and reasoned-action
paradigms.

A.8 LESSONS FROM DATA ACQUISITION

A.8.1 COMMON PROBLEMS

Adaptive Bounding Box Tightening(ABT). The heterogeneity across platforms results in significant
discrepancies in UI interaction logic and responsive regions. Therefore, we aim to ensure that the
bounding boxes of UI elements are as close as possible to their central regions, in order to minimize
inconsistencies in actionable areas across different platforms. As illustrated at the top of Fig. 20, these
parsed bounding boxes are aligned with the boundaries of the UI elements; however, their centers,
which serve as the ground truth for click prediction, often reside in empty regions rather than in areas
with meaningful content. This misalignment introduces a detrimental click-whitespace bias during
model training. To mitigate this issue, we propose the Adaptive Bounding Box Tightening (ABT)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 20: Visualization of trajectory annotation

Examples of Two Modes.
[Reasoned-Action Mode]
Q: Please generate the next move according to the UI
screenshot, task and previous operations.
Task:
Search openai and like the first video, sorted by view count
and video type.
Previous operations:
Step 1: Click on the search box at the top of the YouTube
page and type ”openai”
Step 2: Search for OpenAI on YouTube and press Enter
to see search results and the OpenAI channel page
A: <think>
The YouTube interface shows a search for ”openai” with
a filters button visible in the top navigation area. Clicking
on the filters option would allow sorting videos by criteria
such as view count, which is needed to complete the task
of finding the most viewed OpenAI videos. This filtering
functionality is essential to organize search results in a
way that aligns with the requirement to sort by view count
and video type before liking the first video.
</think>
<operation>
Click on the ”Filters” button at the top right of the
YouTube search results to access advanced filtering op-
tions for your search.
</operation>
<action>
click(x=0.9043, y=0.0788)
</action>

[Direct-Action Mode]
Q: Please generate the next move according to the UI
screenshot, task and previous operations.
Task:
In the Calendar app, show only events in the ’School’
calendar.
Previous operations:
None
A: <operation>
Click on the blue checkbox next to ”Family” in the calen-
dar sidebar under ”On My Mac” section.
</operation>
<action>
click(x=0.0187, y=0.1128)
</action>

algorithm. ABT dynamically refines bounding boxes through iterative, proportional contraction of
their lateral boundaries. This contraction is guided by the detection of contiguous uniform-color
regions, representing target whitespace, within defined tolerance thresholds. The process terminates
when no significant contractible uniform regions remain, yielding substantially tighter bounding
boxes where centers align with actual content, as shown in the bottom of Fig. 20. While ABT’s
effectiveness is inherently limited by complex backgrounds and gradients, empirical validation
confirms its significant value in improving ground truth alignment for interfaces featuring simple
solid-color backgrounds. This paradigm remains dominant in modern systems and web design.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Deep Exploration. Modeling GUI platform state transition graphs presents inherent complexity.
Random walks, a common approach, suffer from limitations: unpredictable transitions induce
pervasive back edges, causing frequent state revisitation or trapping in local loops due to insufficient
backtracking mechanisms. To address these issues and enable automated deep exploration for
acquiring meaningful weakly semantic trajectories, we propose a single-history-frame element
filtering algorithm. Specifically, we use a queue to maintain all interactive elements appearing in the
last screenshot. At each exploration step during random walk, some of elements are filtered out when
their Intersection over Union (IoU) exceeds a predefined threshold and their textual content exactly
matches any element in the queue. This guarantees exclusive interaction with elements absent in the
preceding state, thereby actively steering exploration toward novel pages. This mechanism proves
particularly effective for interfaces with persistent components (e.g., navigation bars, sidebars) or
dense icon arrays, as evidenced in Fig. 21 where it achieves significantly broader page coverage and
yields non-redundant, semantically valuable trajectories compared to conventional random walks.

Figure 20: Examples of adaptive bounding box tightening(ABT) algorithm.

A.8.2 WINDOWS

Cross-Framework UI Parsing Challenges and Denoising Strategies. When processing Java-based
software like PyCharm and Android Studio, the standard Win32 API exposes significant limitations.
As illustrated in Fig. 22, the Win32 API fails to effectively parse their UI structure, resulting in
an incomplete A11y Tree. Consequently, we must switch to using the specialized Java Access
Bridge (JAB8) API. The JAB successfully retrieves the complete A11y Tree (as shown in Fig. 23,
thus resolving the issue. This requirement to adapt different APIs for various application frameworks
significantly increases the complexity of our data collection efforts. Moreover, the raw A11y Trees

8https://docs.oracle.com/javase/8/docs/technotes/guides/access/jab/index.html

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Figure 21: Examples of deep exploration algorithm.

present challenges: they are typically deeply nested, noisy, and the density of functionally relevant UI
elements is low. To address these issues and improve data quality, we apply a set of heuristic filters to
prune and refine the tree. 24 visualizes this transformation, showing a comparison of the A11y Tree
before and after processing. Our filtering strategies exclude elements from background applications
and select elements by their screen-to-area ratio, roles (e.g., button, text, hyperlink).

Data Deduplication and Geometric Refinement. Data acquisition in Windows faces several
significant data quality challenges. First, minimal UI changes following user interactions lead to high
redundancy of UI elements due to nearly identical screen captures. Second, lack of layer information
in the A11y Trees results in erroneous inclusion of occluded elements (e.g., dropdown).To overcome
these challenges, we implemented a multi-stage refinement pipeline. We first mitigate redundancy
with a similarity algorithm that filters images based on the Euclidean distance of their feature vectors.
A post-processing filter then identifies occluded elements by detecting solid-color regions within
their bounding boxes.

Prioritized Random Walk for Automated UI Exploration. The random walk algorithm is central
to our automated data acquisition on the Windows platform. To minimize redundant interactions
and enhance element diversity, we have augmented the standard Random Walk with principles from
Depth-First Search (DFS). As mentioned in the above common problems, our modified algorithm
prioritizes interaction with newly appeared UI elements while concurrently reducing the selection
priority of elements that have already been interacted with. If no new elements are detected, or if their
count falls below a predefined threshold, the algorithm defaults to interacting with any remaining,
previously unvisited elements within the current view’s A11y Trees. Furthermore, we account for
scenarios where interactions navigate away from the primary application, such as launching a web
browser to view a user manual. In such cases, our algorithm allows for limited interaction within
the external application (e.g., the browser) before automatically shifting focus back to continue
navigating the initial application.

A.8.3 UBUNTU

This section details the challenges encountered and solutions developed for autonomous agent
interaction with the Ubuntu environment. The primary challenges originate from the inherent structure
of the accessibility tree (A11y tree), which serves as the main interface for observing and interacting
with the application. Our solutions focus on refining the accessibility tree data and optimizing the
agent’s interaction strategy to ensure reliable and efficient operation. The successful resolution of
these issues is paramount, as a clean, accurate, and efficiently navigable UI representation is the
foundation for any effective automated UI-based task.

Denoising in the Accessibility Tree. The raw data provided by the accessibility tree on Ubuntu
is often noisy, containing redundant information and occasional inaccuracies that can mislead an
autonomous agent. We identified and implemented solutions for three primary issues. First, the
A11tree’s hierarchical structure often includes redundant parent elements that do not correspond
to distinct interactive components. This is particularly prevalent in applications built with Web,
such as Chrome. To address this, we apply a two-stage filtering process. We begin by pruning
elements whose roles are typically non-interactive or structural based on type, such as ‘heading’,

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Figure 22: An example of Win32 API failing to parse A11y Trees in PyCharm.

Figure 23: An example of JAB API successfully parsing A11y Trees in PyCharm.

‘paragraph’, and ‘section’. This denoising is critical because it exposes the true, underlying interactive
elements, preventing the agent from attempting to interact with large, non-interactive container
widgets. Subsequently, we analyze the geometric relationships of the remaining elements’ bounding
boxes. If an element’s bounding box is significantly occluded by a smaller one (i.e., the smaller box’s
area occupies a large percentage of the larger box’s area), we infer a container-child relationship and
discard the larger, containing element. Second, the standard accessibility tree does not inherently
account for the visual occlusion and invalidity of elements. An element may be present in the tree
but be completely obscured by another element on the screen as shown in Fig. 25. We tackle this
with LLMs. Third, we observed that for certain applications, the accessibility tree reports incorrect
coordinates for all UI elements immediately after the application is launched, as shown in Fig. 26. The
entire tree appears to have a coordinate offset. Through empirical testing, we discovered a practical
solution: initiating a short sequence of random interactions within the application window causes
the accessibility tree’s coordinate system to recalibrate, restoring correct positional data. Ensuring
coordinate accuracy is fundamental; without it, any attempt by the agent to click or type at a specific
location would fail, rendering automation impossible.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Figure 24: An example of denoising on Windows, transforming a raw A11y Tree (top) into a clear
structure (down).

GUI Exploration Optimization via an Improved Random Walk. A pure random walk over all
available UI elements is highly inefficient. To improve the agent’s ability to explore an application’s
state space, we developed a more intelligent interaction strategy. This strategy is based on filtering the
action space and prioritizing the exploration of novel UI states. To reduce the number of futile actions,
the agent’s action space is constrained to only include elements that are designated as interactive.
We maintain a whitelist of interactive type, including ‘button’, ‘box’, ‘menu’, ‘entry’, ‘link’, ‘bar’,
and ‘item’. Conversely, elements with non-interactive roles are excluded from the potential action
set. These non-interactive roles include ‘heading’, ‘static’, ‘document’, ‘label’, ‘cell’, ‘text’, ‘icon’,
‘paragraph’, and ‘section’. To prevent the agent from becoming trapped in interaction loops within
a static UI state, we implemented a state-aware exploration logic. After the agent acts, we only
visit newly appeared UI elements. These novel elements are given interaction priority, as they are
most likely to lead to a new application state. If the action does not yield any new elements, the
agent then selects an action randomly from the set of previously known elements that it has not yet
interacted with in the current state. This process continues until all interactive elements have been
exhausted. This exploration strategy is vital for efficiency, as it directs the agent towards discovering

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

new functionalities and application states, thereby maximizing the coverage of the application’s
features in a limited time and avoiding redundant, non-productive interactions.

Figure 25: Examples of visual occlusion and invalidity of elements.

Figure 26: Examples of coordinate offset.

A.8.4 MACOS

Robust A11y Tree Extraction and Denoising. The macOS pipeline first locates the active top-level
window, then exhaustively traverses its accessibility hierarchy. Every bounding box is mapped from
logical coordinates to device pixels by multiplying by the screen-scale factor. After flattening the tree,
only nodes whose roles are interactive (e.g. AXButton, AXPopUpButton, AXTextField) are
retained. Moreover, we would discard boxes with a width or height of 2px or less and remove nodes
whose text, description, and value are all empty or punctuation. A role-aware merging
process replaces overlapping AXStaticText siblings and their interactive parent with a minimal
bounding box. The resulting set contains clean, tightly localised interactive elements. (see Fig. 27).

Hybrid A11y Tree & Omniparser combination for System Panels. Several built-in utilities, most
notably System Settings, draw controls in private layers that have no corresponding accessibility
tree Yu et al. (2025), as shown in Fig. 28. To recover these missing widgets, each screenshot is
processed by Omniparser, yielding a set of vision-detected bounding boxes. An element would be

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

retained when its IoU with any Omniparser box exceeds 0.15 or when it is selected during exploration.
This combination renders previously invisible elements in the A11y tree, thereby yielding a more
comprehensive understanding of macOS applications.

Figure 27: Refined AXTree overlay on the Mail application: all interactive elements are tightly
bound after heuristic pruning.

Figure 28: The failure case in System Settings: the AXTree omits right-pane controls, illustrating
the necessity of Omniparser fusion.

A.8.5 MOBILE

Occlusion and Invisibility Correction. Mobile interfaces frequently employ high-level components
such as dialogs, side drawers, and floating menus. These are rendered at the topmost Z-order, so
underlying nodes remain in the XML yet can no longer be clicked, producing “ghost” targets(see
Fig.29a). To improve visibility and hierarchy accuracy at the source, we replace the traditional
adb shell uiautomator dump with uiautomator2.dump_hierarchy(). The latter

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

prunes recognisably occluded nodes while generating the XML and, for pages that adb fails to
parse, still returns a complete hierarchy—significantly increasing data coverage. Coupled with the
random-walk heuristic that “prioritises newly appeared elements,” this greatly reduces mis-clicks
caused by occlusion. In addition, UIAutomator2 markedly lowers the probability of XML retrieval
failures, accelerating exploration efficiency.

Attribute Completion and Correction. Many commercial apps do not fully propagate accessibility
traits in their custom views; a typical pattern is a parent node with clickable=true while all its
children are clickable=false, leading to the issue shown in Fig.29b. Genuine clickable regions
are thus ignored. We employ an “inherit-then-suppress” strategy: when a parent is clickable and
every descendant is marked non-clickable, the clickable flag is inherited downward; if any descendant
is already declared clickable, inheritance stops to avoid creating false hotspots. Experiments show
that this method restores the vast majority of missing attributes while maintaining a low false-positive
rate.

Semantic and Functional Ambiguities. Semantic ambiguity arises when an XML bounding box
is too large and covers multiple sub-controls (for example, the playback button, author area and
more-options button), making a single node unable to convey precise meaning. In Fig.29c, the green
box shows one clickable bounding-box region in the XML, but taps in different parts of that region
may produce different results, creating semantic ambiguity. To address this, we prioritise leaf nodes
and tighten their bounding boxes; we only retain a parent node when its centre lies outside every
child’s bounds, thus preserving the overall intent of the composite control. Functional ambiguity
occurs when the same layout triggers different actions in different software or operating systems. In
Fig.29d and Fig.29e, for example, both the text and the icon of a switch are tappable in stock Android
settings, whereas in iOS only the icon responds to taps and the rest of the region is inert. To reduce
such mispredictions, whenever we detect an “icon + text” sibling pattern we give the icon a higher
click priority. This approach produces more consistent cross-device behaviour during training and
testing. By systematically handling overlay occlusion, attribute omissions and both semantic and
functional ambiguities, we significantly improve the reliability of mobile-side data collection and
increase the success rate of downstream automation tasks.

(a) Mobile element
occlusion

(b) Mobile element
attribute loss

(c) Semantic ambi-
guity

(d) Effective bound-
ing box for setting
WiFi in Android

(e) Effective bound-
ing box for setting
WiFi in iOS

Figure 29: Examples of potential challenges in mobile data acquisition:(a) The problem of occluded
elements being indistinguishable during XML extraction.(b) The potential inaccuracy of extracted
bounding boxes due to loss of element attributes.(c) The problem of semantic ambiguity caused by
insufficiently detailed XML extraction.(d, e) Differences in the functionality of similar regions across
different systems or apps.

A.8.6 WEB

Addressing Limitations in Automation Tools. Automation tools like Automation tools like Selenium
and Playwright suffer from a critical limitation where their page.screenshot() function fails

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Playwright Origin Screenshot Playwright Modified Screenshot Operating System Screenshot

Figure 30: Examples of native browser UI limitations in automation tools.

to capture native browser UI components rendered outside the DOM. This omission disrupts essential
visual feedback for sequential decision-making in web agents. We categorize these problematic
elements into two classes: predictable UI triggered by deliberate actions (e.g., context menus, tab
navigation, forward/back buttons), and unpredictable UI emerging during tasks (browser dialogs
and native select dropdowns). The inherent invisibility of predictable UI components prevents
agents from developing interaction intentions for these features; while our methodological constraint
limiting interactions to left-clicks effectively eliminates potential negative impacts from this omission.
However, to compensate for the unavoidably reducing behavioral diversity in captured data and
ensure comprehensive functional coverage, we conducted extensive web data collection in native
desktop environments, enriching our training corpus with full-spectrum browser interaction examples.
The unpredictable UI category proves more severe, as evidenced in Fig. 30 (Playwright Origin vs.
OS Screenshot), where missing elements prevent task completion and impact evaluation integrity.
Our behavioral simulation solution addresses this: for select elements, JavaScript modifies
the size attribute to visually expand options within the DOM, with event listeners reverting the
state; for dialogs, an interceptor captures properties, dismisses the native instance, and injects a
visually identical DOM-based replica with non-functional buttons. The efficacy of this approach is
demonstrated in Fig. 30 (Modified Screenshot), which illustrates the successful visual simulation of
both UI components. While other potential related issues may exist beyond our current observations,
they have not manifested in our evaluation scenarios and thus remain outside the scope of our present
investigation.

Metadata Advantages and Parsing Challenges. Web page content, structured through HTML and
DOM trees, inherently provides rich metadata advantages over alternative platforms. JavaScript
enables precise element positioning and hierarchical analysis that significantly exceeds capabilities
in other contexts, enhancing metadata extraction efficiency as illustrated in Fig. 31d. However,
the heterogeneity of the web ecosystem—diverse frontend frameworks, inconsistent development
practices, and variable standards—prevents comprehensive coverage by data collection algorithms.
Two representative challenges emerge: First, as shown in Fig. 31a, developers misapply attributes such
as role=button to non-interactive images, introducing semantic inconsistencies that cause parsing
anomalies. Second, current algorithms exhibit deficiencies in hierarchical analysis and visibility
detection, resulting in inadequate filtration of underlying or invisible elements as demonstrated in
Fig. 31b. Considering the substantial volume of extractable elements in web environments, we
propose that maximizing the recall of valid interactive elements should be the primary objective
across platforms. This position advocates for aggressive filtering strategies rather than conservative
approaches that might inadvertently retain invalid elements. While this methodology may occasionally
exclude some valid elements, the benefits of reducing noise in the dataset significantly outweigh the
potential costs of missing a limited number of interactive elements.

It is particularly noteworthy that the technical limitations have not been explicitly addressed in the
extant literature on WebAgent papers, despite their profound implications for agent functionality
and evaluation methodology. We therefore advocate for increased attention to these considerations
in future WebAgent research. Additionally, our analysis reveals that web environments lacking
browser UI elements significantly constrain an agent’s exploration capabilities in the absence of
compensatory action mechanisms (e.g., returning to a previous page—a trivial operation when using
a browser’s back button—may require complex navigation sequences or prove entirely infeasible

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

within the constrained visual context available). Fortunately, the refined WebArena-Lite benchmark
evaluation has been specifically designed to eliminate such problematic scenarios, thereby ensuring
methodological integrity and evaluation reliability. Nevertheless, based on our findings, we strongly
recommend that future research prioritize the execution of web-based tasks within native desktop
environments, which may necessitate the development of new benchmarks and the migration of
existing benchmarks.

Temporal Synchronization in Dynamic Page States. The web platform exhibits substantial
dynamism, frequently causing temporal discrepancies between page states during element parsing
and screenshot capture. The non-instantaneous nature of parsing further compounds this issue by
permitting mid-process element state changes. A characteristic scenario involves the auto-hiding
behavior of video player control bars, illustrated in Fig. 31c. Current mitigation strategies employ
dual measures: Initially awaiting complete page stabilization, followed by proactively triggering
state persistence for specific elements—such as maintaining video control visibility through cursor
hovering. Nevertheless, managing dynamic content remains a core challenge in web data acquisition.

Leveraging Multi-Source Textual Semantics. Web elements contain rich semantic description
layers extending far beyond basic textContent compared to other platforms. Functional icons
often convey operational semantics through alt and title attributes, while accessibility-compliant
sites provide enhanced descriptions via properties like aria-label. Systematically aggregating
these multi-source textual features establishes strong semantic associations, furnishing comprehensive
contextual grounding for model annotations and effectively suppressing annotation hallucinations.

A.9 THE DETAILS OF WEBARENA-LITE-V2

Current web platform evaluation benchmarks can be categorized into two main types based on the
website environment. The first type utilizes real websites for online evaluation, primarily derived
from the offline evaluation work Mind2Web (Deng et al., 2023). Examples include Mind2Web-
Live (Pan et al., 2024), Online-Mind2Web (Xue et al., 2025), and WebVoyager (He et al., 2024),
with UI-TARS (Qin et al., 2025) employing WebVoyager and Online-Mind2Web for web domain
evaluation. The second type conducts evaluations on locally deployed websites, pioneered by
WebArena (Zhou et al., 2023), which leverages open-source website code and databases (Sun et al.,
2024a) to provide highly simulated and interactive local Docker deployment environments for
five functionally diverse websites, including GitLab, map services, forums, online shopping, and
content management platforms (CMS). WebArena has constructed over 800 web tasks, inspiring
derivative evaluation frameworks such as VisualAgentBench (WebArena-Lite) (Liu et al., 2024a) and
VisualWebArena (Koh et al., 2024). Furthermore, the evaluation protocols can be classified into two
categories: rule-based evaluation exemplified by WebArena (Zhou et al., 2023) and VLM-as-a-Judge
evaluation, such as Online-Mind2Web (Xue et al., 2025).

Rationale for Selecting Local Website Environments. We deliberately abandoned evaluation
benchmarks based on real websites for several compelling reasons. The primary concern is the
temporal instability of online environments—tasks that are currently feasible may become impossible
due to website updates, domain changes, or site closures. Despite efforts by frameworks like
Mind2Web-Live to maintain and update tasks periodically, such updates inevitably compromise
evaluation fairness. Additionally, as noted in (Xu et al., 2024), automated tools frequently encounter
anti-automation barriers such as reCAPTCHA verification. Moreover, since most target websites
are hosted in the United States, researchers in non-US regions (particularly China) face persistent
connectivity issues and access restrictions even with VPN services—different VPN providers often
yield inconsistent access results. These factors significantly undermine fair model comparison and
hinder the extraction of valuable insights from evaluation results.

WebArena-Lite-v2. Consequently, we focused on the WebArena series, whose locally deployed
website environments offer substantial stability and internal accessibility, enabling flexible task
construction and evaluation design. Considering that WebArena often includes three or more itera-
tions of the same task template, resulting in repetitive and time-consuming evaluations, we selected
the WebArena-Lite subset, which provides 165 high-quality refined tasks. However, our empiri-
cal evaluation and manual inspection revealed persistent issues. Therefore, we further refined the
benchmark to create WebArena-Lite-v2, comprising 154 tasks optimized for both headed browser
environments and headless automation tool environments. Recent developments, such as OpenAI’s

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Operator, demonstrate a transition from headless environments provided by automation tools toward
headed desktop browser environments for web agent evaluation. As detailed in A.8.6, both environ-
ments present distinct advantages and limitations. To facilitate comprehensive ablation studies on
these different operational modes, WebArena-Lite-v2 ensures that all tasks can be solved through at
least one viable path using desktop action spaces (without specialized web actions like go forward,
go backward, open url, or tab switch) in both headed and headless environments. Furthermore,
all tasks are designed to provide sufficient visual information guidance, eliminating the necessity
for DOM information and thus making the benchmark suitable for pure vision-based evaluation
(while remaining compatible with SoM or DOM-enhanced assessment). Finally, we implemented
comprehensive yet flexible evaluation criteria–comprehensive in accommodating multiple possible
solutions through the |OR| operator where satisfying any one solution is sufficient and flexible in
employing LLM-based fuzzy match for semantic similarity assessment in tasks involving question
answering or content completion.

Discussions between WebArena-Lite and WebArena-Lite-v2. Our refinements encompass both
environmental and task improvements. For the evaluation environment, we implemented two
significant enhancements. First, we addressed the OpenStreetMap website’s limitations, where the
official Docker environment lacked local database storage for node information, rendering tasks
like “What is the phone number of Western Pennsylvania Hospital” impossible to complete. We
resolved this by importing Pennsylvania state PBF data, enabling the completion of such tasks.
Second, we developed consistent solutions for headless automation environments to overcome the
observation challenges with select option dropdowns and dialog windows, as illustrated in A.8.6
with Fig. 30. Regarding task refinement, we eliminated 11 tasks requiring multi-tab interactions,
resulting in a curated set of 154 tasks. We conducted a comprehensive revision of instructions and
evaluation functions for all remaining tasks. The instruction refinements encompassed semantic
clarification, typographical correction, and minimal reconstruction of impracticable directives (e.g.,
the instruction “Re-post the image of the costume contest in this page to the funny subreddit and
note “from /f/pics”’ proved infeasible since headless environments lack image URL extraction
capabilities). Our evaluation function enhancements incorporated supplementary valid solutions
(e.g., for the query “What is the zip code of Chatham University?”, we augmented the answer
from exclusively “15232” to “15232 |OR| 15208” after identifying multiple Chatham University
locations through OpenStreetMap queries) and accommodated semantically equivalent solution
expressions (e.g., for “Show me products under $100 in ‘Men Shoes’ category”, we recognized
both SHOPPING /clothing-shoes-jewelry/men/shoes.html?price=0-100
and SHOPPING /clothing-shoes-jewelry.html?cat=145&price=0-100 as
valid pathways to identical content pages). This methodological approach ensures comprehensive
answer validation. Additionally, acknowledging language models’ inherent variability in textual
response generation, we systematically replaced all exact match evaluation criteria within
the string match classification with more nuanced must include, must exclude, and
fuzzy match parameters, thereby significantly enhancing evaluation robustness and interpretative
flexibility. However, WebArenaLite-v2 still employs static evaluation methodologies for certain tasks
(such as when identifying user’s most recent order, where the Ground Truth is predetermined as
a specific order number or webpage). Although executing evaluations within a local environment
has mitigated the impact of this limitation, a critical future direction involves developing evaluation
protocols that are both dynamic and precise. This advancement necessitates addressing the challenge
of extracting Ground Truth information from web pages that may not have been accessed by the
agent during its navigation trajectory. This capability is essential for comprehensive evaluation of
agent performance across diverse web interaction scenarios.

A.10 PROMPT ENGINEERING

To facilitate reproducibility and offer practical guidance for future research, we include all prompt
templates utilized throughout our work in this section. These prompts cover a wide range of use
cases, including data filtering, annotation, and the prompts used in our ScaleCUA. Specifically,
we detail the instructions employed for GUI understanding, grounding supervision, and trajectory
annotation, as well as those used to elicit reasoning traces and alternative actions. Each prompt is
carefully crafted to align with the capabilities of large vision-language models such as GPT-4o and
Claude-3.7, ensuring high-quality outputs for downstream training. By releasing these prompts, we

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

aim to enhance transparency and support the development of more robust and interpretable computer
use agents.

A.10.1 PROMPTS FOR OUR AGENT

To ensure generalizable and controllable agent behavior, we design a structured system prompt
template for ScaleCUA that explicitly encodes the available action space. This template serves as the
foundational context for all three inference paradigms—Grounding Mode, Direct-Action Mode, and
Reasoned-Action Mode—guiding the model to produce spatially grounded and semantically aligned
outputs. The system prompt defines the operational semantics of each action type, including spatial
commands such as click(x, y), dragTo(x, y), and write(text), as well as higher-level
control tokens like terminate and wait.

We envision the system prompt as a modular and extensible interface. In future iterations, we aim
to decouple the action space definition from the core prompt logic, allowing for a plug-and-play
architecture that can dynamically adapt to the interaction paradigms of diverse computing platforms.
This modularity would enable seamless integration of device-specific actions, such as swipe for
mobile interfaces or hotkey for desktop environments, while preserving consistency in agent
behavior. Our design lays the foundation for building a unified prompting framework that can scale
to arbitrary GUI-based control systems.

System Prompt Template For Action Grounding Mode

You are an autonomous GUI agent capable of operating on desktops, mobile devices, and
web browsers. Your primary function is to analyze screen captures and perform
appropriate UI actions to complete assigned tasks.

Action Space
def click(

x: float | None = None,
y: float | None = None,
clicks: int = 1,
button: str = "left",

) -> None:
"""Clicks on the screen at the specified coordinates. The `x` and `y` parameter
specify where the mouse event occurs. If not provided, the current mouse position
is used. The `clicks` parameter specifies how many times to click, and the `button`
parameter specifies which mouse button to use ('left', 'right', or 'middle')."""
pass

def doubleClick(
x: float | None = None,
y: float | None = None,
button: str = "left",

) -> None:
"""Performs a double click. This is a wrapper function for click(x, y, 2,
'left')."""
pass

def rightClick(x: float | None = None, y: float | None = None) -> None:
"""Performs a right mouse button click. This is a wrapper function for click(x, y,
1, 'right')."""
pass

def moveTo(x: float, y: float) -> None:
"""Move the mouse to the specified coordinates."""
pass

def dragTo(
x: float | None = None, y: float | None = None, button: str = "left"

) -> None:
"""Performs a drag-to action with optional `x` and `y` coordinates and button."""
pass

def swipe(
from_coord: tuple[float, float] | None = None,

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

to_coord: tuple[float, float] | None = None,
direction: str = "up",
amount: float = 0.5,

) -> None:
"""Performs a swipe action on the screen. The `from_coord` and `to_coord` specify
the starting and ending coordinates of the swipe. If `to_coord` is not provided,
the `direction` and `amount` parameters are used to determine the swipe direction
and distance. The `direction` can be 'up', 'down', 'left', or 'right', and the
`amount` specifies how far to swipe relative to the screen size (0 to 1)."""
pass

def long_press(x: float, y: float, duration: int = 1) -> None:
"""Long press on the screen at the specified coordinates. The `duration` specifies
how long to hold the press in seconds."""
pass

Input Specification
- Screenshot of the current screen + task description

Output Format
<action>
[A set of executable action command]
</action>

Note
- Avoid action(s) that would lead to invalid states.
- The generated action(s) must exist within the defined action space.
- The generated action(s) should be enclosed within <action></action> tags.

System Prompt Template For Direct Action Mode

You are an autonomous GUI agent operating on the **{PLATFORM}** platform(s). Your
primary function is to analyze screen captures and perform appropriate UI actions to
complete assigned tasks.

Action Space
def click(

x: float | None = None,
y: float | None = None,
clicks: int = 1,
button: str = "left",

) -> None:
"""Clicks on the screen at the specified coordinates. The `x` and `y` parameter
specify where the mouse event occurs. If not provided, the current mouse position
is used. The `clicks` parameter specifies how many times to click, and the `button`
parameter specifies which mouse button to use ('left', 'right', or 'middle')."""
pass

def doubleClick(
x: float | None = None,
y: float | None = None,
button: str = "left",

) -> None:
"""Performs a double click. This is a wrapper function for click(x, y, 2,
'left')."""
pass

def rightClick(x: float | None = None, y: float | None = None) -> None:
"""Performs a right mouse button click. This is a wrapper function for click(x, y,
1, 'right')."""
pass

def scroll(clicks: int, x: float | None = None, y: float | None = None) -> None:
"""Performs a scroll of the mouse scroll wheel at the specified coordinates. The
`clicks` specifies how many clicks to scroll. The direction of the scroll (vertical
or horizontal) depends on the underlying operating system. Normally, positive
values scroll up, and negative values scroll down."""
pass

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

def moveTo(x: float, y: float) -> None:
"""Move the mouse to the specified coordinates."""
pass

def dragTo(
x: float | None = None, y: float | None = None, button: str = "left"

) -> None:
"""Performs a drag-to action with optional `x` and `y` coordinates and button."""
pass

def press(keys: str | list[str], presses: int = 1) -> None:
"""Performs a keyboard key press down, followed by a release. The function supports
pressing a single key or a list of keys, multiple presses, and customizable
intervals between presses."""
pass

def hotkey(*args: str) -> None:
"""Performs key down presses on the arguments passed in order, then performs key
releases in reverse order. This is used to simulate keyboard shortcuts (e.g.,
'Ctrl-Shift-C')."""
pass

def keyDown(key: str) -> None:
"""Performs a keyboard key press without the release. This will put that key in a
held down state."""
pass

def keyUp(key: str) -> None:
"""Performs a keyboard key release (without the press down beforehand)."""
pass

def write(message: str) -> None:
"""Write the specified text."""
pass

def call_user() -> None:
"""Call the user."""
pass

def wait(seconds: int = 3) -> None:
"""Wait for the change to happen."""
pass

def response(answer: str) -> None:
"""Answer a question or provide a response to an user query."""
pass

def terminate(status: str = "success", info: str | None = None) -> None:
"""Terminate the current task with a status. The `status` specifies the termination
status ('success', 'failure'), and the `info` can provide additional information
about the termination."""
pass

Input Specification
- Screenshot of the current screen + task description + your past interaction history
with UI to finish assigned tasks.

Output Format
<operation>
[Next intended operation description]
</operation>
<action>
[A set of executable action commands]
</action>

Note
- Avoid action(s) that would lead to invalid states.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

- The generated action(s) must exist within the defined action space.
- The generated operation and action(s) should be enclosed within
<operation></operation> and <action></action> tags, respectively.

System Prompt Template For Reasoned-Action Mode

You are an autonomous GUI agent operating on the **{PLATFORM}** platform. Your primary
function is to analyze screen captures and perform appropriate UI actions to complete
assigned tasks.

Action Space
def click(

x: float | None = None,
y: float | None = None,
clicks: int = 1,
button: str = "left",

) -> None:
"""Clicks on the screen at the specified coordinates. The `x` and `y` parameter
specify where the mouse event occurs. If not provided, the current mouse position
is used. The `clicks` parameter specifies how many times to click, and the `button`
parameter specifies which mouse button to use ('left', 'right', or 'middle')."""
pass

def doubleClick(
x: float | None = None,
y: float | None = None,
button: str = "left",

) -> None:
"""Performs a double click. This is a wrapper function for click(x, y, 2,
'left')."""
pass

def rightClick(x: float | None = None, y: float | None = None) -> None:
"""Performs a right mouse button click. This is a wrapper function for click(x, y,
1, 'right')."""
pass

def scroll(clicks: int, x: float | None = None, y: float | None = None) -> None:
"""Performs a scroll of the mouse scroll wheel at the specified coordinates. The
`clicks` specifies how many clicks to scroll. The direction of the scroll (vertical
or horizontal) depends on the underlying operating system. Normally, positive
values scroll up, and negative values scroll down."""
pass

def moveTo(x: float, y: float) -> None:
"""Move the mouse to the specified coordinates."""
pass

def dragTo(
x: float | None = None, y: float | None = None, button: str = "left"

) -> None:
"""Performs a drag-to action with optional `x` and `y` coordinates and button."""
pass

def press(keys: str | list[str], presses: int = 1) -> None:
"""Performs a keyboard key press down, followed by a release. The function
supports pressing a single key or a list of keys, multiple presses, and
customizable intervals between presses."""
pass

def hotkey(*args: str) -> None:
"""Performs key down presses on the arguments passed in order, then performs key
releases in reverse order. This is used to simulate keyboard shortcuts (e.g.,
'Ctrl-Shift-C')."""
pass

def keyDown(key: str) -> None:

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

"""Performs a keyboard key press without the release. This will put that key in a
held down state."""
pass

def keyUp(key: str) -> None:
"""Performs a keyboard key release (without the press down beforehand)."""
pass

def write(message: str) -> None:
"""Write the specified text."""
pass

def call_user() -> None:
"""Call the user."""
pass

def wait(seconds: int = 3) -> None:
"""Wait for the change to happen."""
pass

def response(answer: str) -> None:
"""Answer a question or provide a response to an user query."""
pass

def terminate(status: str = "success", info: str | None = None) -> None:
"""Terminate the current task with a status. The `status` specifies the termination
status ('success', 'failure'), and the `info` can provide additional information
about the termination."""
pass

Input Specification
- Screenshot of the current screen + task description + your past interaction history
with UI to finish assigned tasks.

Output Format
```
<think>
[Your reasoning process here]
</think>
<operation>
[Next intended operation description]
</operation>
<action>
[A set of executable action command]
</action>
```

Note
- Avoid actions that would lead to invalid states.
- The generated action(s) must exist within the defined action space.
- The reasoning process, operation and action(s) in your response should be enclosed
within <think></think>, <operation></operation> and <action></action> tags,
respectively

User Prompt Template For Direct-Action Mode and Reasoned-Action Mode

Please generate the next move according to the UI screenshot, the task and previous
operations.

Task:
{instruction}

Previous operations:
{history}
...

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

A.10.2 PROMPTS FOR ANNOTATIONS

To support reproducibility and transparency, we release all annotation-related prompts used in
our data processing pipeline. These prompts cover a wide range of tasks, including trajectory
filtering, GUI understanding, grounding supervision and chain-of-thought generation for goal-directed
demonstrations. Each prompt is carefully designed to elicit accurate and semantically consistent
annotations from large vision-language models such as GPT-4o and Claude-3.7.

Empirically, our prompts have demonstrated strong effectiveness in producing high-quality labels,
which in turn significantly benefit the training of general-purpose computer use agents. By sharing
these templates, we aim to standardize annotation practices in this emerging domain and foster
broader progress in building scalable and open computer use systems. We hope this contributes to
lowering the barrier for future research and accelerating the development of robust, multimodal GUI
agents.

Prompt For Element Appearance, Layout and Functionality

You are a GUI analysis agent, and you are currently working with a {os_name} device.
You will be provided with the following resources:
1. The first image is a original screenshot from an {application}.
2. The second image is marked to highlight the selected element.
3. The A11Tree attributes of the selected element: {element_a11tree}.

Your task is to generate detailed descriptions of this marked element from appearance
and position. Each description must uniquely identify the element and adhere to the
following structure:

{
"appearance": "A detailed visual description of the element, including its shape,
color, size, text content (if any), and any distinguishing features.",
"position": "A clear description of the element's location on the screen, including
its relative position to nearby elements (e.g., 'below the search bar', 'to the right
of the logo'), its order in a sequence (e.g., 'third button in the top navigation
bar'), and its general area (e.g., 'top-left corner of the window'). Avoid using
direct coordinates or the red indicator.",

}

Guidelines for Generating Descriptions:
1. **Appearance**:

- Focus on visual characteristics that uniquely identify the element.
- Include details such as color, shape, size, text content (if applicable), icons,
borders, shadows, or patterns.
- If the element contains text, describe the font style, size, and content briefly.
- Please avoid using {marker} as part of your description. Because we draw {marker}
for reference and they does not exist in the original screenshot.

2. **Position**:
- Describe the element's location relative to other prominent elements in the UI
that uniquely identify the element.
- Specify its general area (e.g., 'top-right corner', 'center of the screen') and
its order in a group (e.g., 'second icon in the toolbar').
- Please avoid using {marker} as part of your description. Because we draw {marker}
for reference and they does not exist in the original screenshot.
- Avoid vague terms like 'near' or 'close to'. Instead, use precise language such as
'directly below', 'aligned with', or 'to the left of'.

Example Output:
{
"appearance": "A circular icon with a white background and a magnifying glass symbol
in black, surrounded by a thin gray border.",
"position": "Located in the top-right corner of the application window, directly to
the right of the profile avatar icon.",

}

Important Notes:
- Do not copy or paraphrase the content of the A11Tree attributes directly.
- Please avoid using {marker} as part of your description. Because we draw {marker} for
reference and they does not exist in the original screenshot.
- Ensure each description is detailed enough to uniquely identify the element without
ambiguity.

RETURN THE DICTIONARY IN STRICT JSON FORMAT:

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

Prompt For Screen Transition Captioning and User Intention Prediction

You are a GUI agent currently operating on a {os_name} device. You will be provided
with:
1. The first image is a screenshot from an {application}, which are marked with
{marker} to highlight the selected element.
2. The second image is the results of the operation {action} executed on the selected
element.
3. The third image is a sub-image, which is cropped from the screenshot around the
selected element and is marked with {marker}.
4. The A11Tree attributes of the selected element: {element_a11tree}.

Your task is to analyze these two consecutive screenshots and complete the following
tasks:
1. **State Transition Explanation**: Describe the state change caused by the operation.
This should include a detailed description of the first screenshot, the action
performed on the element, the differences observed in the second screenshot compared to
the first, and an explanation of the most likely user action that occurred between the
two frames.
2. **User Intention Inference**: Based on the action performed and the differences
between the two screenshots, infer the user's intent. Explain what the user likely
aimed to achieve and how the action led to the observed changes in the GUI.

Your response should be formatted as follows:
{
"state-transition": "...",
"user-intention": "...",
}

Example Output:
{
"state-transition": "In the first screenshot, the main dashboard of the Bluecoins app
is displayed with a calendar showing February 2025, and the date '3' is highlighted.
After tapping on the '3', the second screenshot navigates the app to a detailed
calendar view for February 2025, showing tabs like 'CATEGORIES,' 'ACCOUNTS,'
'TRANSACTIONS,' and 'REMINDERS,' with no transactions listed.",
"user-intention": "The user likely wanted to view detailed transactions and account
categories for the selected date.",
}

Important Notes:
- Avoid directly copying the A11Tree attributes of the element when writing
instructions.
- Ensure the instructions are clear, unambiguous, and concise, preferably described in
a single sentence.
- Do not reference the distinctive red indicator when describing UI elements.

RETURN THE DICTIONARY IN STRICT JSON FORMAT:

Prompt For Interface Captioning

You are a GUI analysis agent currently working with a {os_name} device. You will
receive a full screenshot of an {application}. Your objective is to produce
comprehensive descriptions of the screenshot's contents and functionality. These
descriptions should thoroughly explain each visible element by covering its visual
attributes, spatial arrangement, and purpose within the interface.

Key Requirements for Descriptions:
- Contextual Details: Explain the interface's overall structure and the spatial
relationships between elements.
- Visual Characteristics: colors, shapes, icons, text labels, and other distinguishing
visual properties.
- User Interaction: Specify how users can interact with each element and the expected
results of those interactions.
- Functional Purpose: Clarify the screenshot's role within the broader application
workflow.

Important Notes:
- Synthesize the attribute information to create natural, user-friendly descriptions.
- Maintain conciseness while ensuring the descriptions are sufficiently detailed to
convey the GUI's structure and operation.

PLEASE GENERATE CAPTION:

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

Prompt For LLM-assist Filter

You are a GUI analysis agent tasked with evaluating a user interface on a {os_name}
device. You will be provided with the following resources:
1. The first image is a full screenshot of an {application}, where the area of interest
is highlighted with {marker}.
2. The second image is a sub-image, which is cropped from the screenshot around the
selected element and is marked with {marker}.

Your objective is to determine whether the marked area resides in the topmost layout
and can be directly clicked. Your response must be returned in JSON format, adhering to
the structure below:
```json
{"answer": "No"}
```
The value of `"answer"` can only be one of the following:
- `"Yes"`: Indicates that the marked area is in the topmost view and contains a
clickable or valid element that is the focus element of the current interface.
- `"No"`: Indicates that the marked area is obstructed, intercepted, non-interactive,
or otherwise non-clickable due to errors, loading issues, or the absence of a valid
interactive element, or the marked area is not the focus element of the current
interface.

Here are some conditions that make an area non-clickable:
- The marked area resides in the background and is not the focus element of the current
interface.
- The image displays an error or fails to load content properly.
- The marked area corresponds to an empty or blank region with no visible or
interactive elements.
- The marked area contains anomalies such as overlapping elements, misplaced
components, or other irregularities that hinder proper interaction.
- The marked area located in background and not the focus element of the current
interface.

RETURN THE DICTIONARY IN STRICT JSON FORMAT:

Prompt For High-Level Objective in Weak-Semantic Trajectories

You are an expert in designing and analyzing GUI navigation tasks. specializing in
evaluating a user’s interaction trajectory within an {application} on a {os_name}
device to deduce their overarching navigation goal.

You will be given the following information:
1. **Initial State Image**: A visual representation of the starting point of the
interaction shown in the first image.
2. **Final State Image**: A visual representation of the endpoint of the interaction
shown in the second image.
3. **Interaction Trajectory**: A detailed log of each step taken by the user, including
the intent behind each action:
{history}

Your task is to craft a concise summary (1-2 sentences) that describes the navigation
journey by focusing on the goal and outcome.
1. **Identifies the user’s core objective**:

- Emphasize the transition from the initial state to the final state (implicitly or
explicitly).
- Focus on the user's overall intent as inferred from the interaction history and
the final state, avoiding overly detailed descriptions of operational steps (e.g.,
describe the task as "updating preferences" rather than "toggle the switch").

2. **Highlights the functionality of the final state**:
- Briefly describe the primary function of the final state, focusing on what the
user can accomplish or access as a result of completing the navigation task.

For example:
- The phone is displaying Amap's app info page. My goal is to access the "My Guide"
section on Amap's homepage from here.
- To view Amap's notification permission, I want to move from Amap's homepage to system
settings page for Amap.
- Starting from Amap's battery usage settings, I need to reach the "Offline Maps"
section in the app's main interface.
- With the aim of saving posts in Instagram, please advance from the home screen to
"Saved Posts" tab from Instagram's homepage.
- The screenshot shows the Chrome app info page. I want to go from here to the
"History" section in Chrome's main menu.

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

Now, based on the provided input, assuming you are the user, please generate an
instruction of the operational navigation goal by using the first-person present tense
or imperative sentence:

Prompt For Low-Level Instructions in All Trajectories

You are a GUI agent currently operating on a {os_name} device. Your task is to generate
a concise and clear operational instruction for interacting with the selected UI
element. These instructions should be relevant to the operation and include operated
details such as UI appearance, text content, position, order, file names, or other
relevant content visible in the screenshots. Instructions can involve the appearance,
position, or functional description of the selected element, but it must ensure that
the generated instruction uniquely corresponds to the selected element.

You will be provided with:
1. The first image is a original screenshot from an {application}, which are manually
marked to highlight the selected element.
2. The second image is the results of the operations ```{action}``` executed on the
selected element. If the action is 'terminate', then the second image does not exist.
3. The third image is a sub-image cropped from the original screenshot, focusing on the
selected element, which is highlighted with a red bounding box and arrow for better
visibility.
4. The A11Tree attributes of the selected element: {element_a11tree}.

REMEBER:
- Do NOT directly copying the A11Tree attributes of the selected elements as
instructions.
- Do NOT reference the distinctive red indicator when describing UI elements.

Directly generate the operational instruction which can uniquely correspond to the
selected element and contain all operations. Avoid "highlighted", "red box", "red
circle" and "red point" in your output:

Prompt For Rationales in All Trajectories

You are a GUI agent operating on a {os_name} device. Your task is to analyze the
potential reason behind operations.

You will be provided with:
1. The first image is a original screenshot from an {application}, which are marked to
highlight the selected element.
2. The second image is the results of the operations ```{action}``` executed on the
selected element. If the action is 'terminate', then the second image does not exist.
3. The third image is a sub-image cropped from the original screenshot, focusing on the
selected element for better visibility.
4. The A11Tree attributes of the selected element: {element_a11tree}.
5. The task objective is `{task_objective}` and history trace is `{history}`.

Guidelines:
- Examine the selected UI element and relevant contextual features that support task
completion, considering both the objective and interaction history. {marker} higlighted
in image is manually added to assist in identifying elements and **should not** been
mentioned.
- Provide your reasoning in three sentences, ensuring alignment with the goal and
labeled action, but do not cite the actual action or bounding box as justification, as
these reflect hindsight rather than predictive insight.
- Restrict your analysis to details from the first image only, and avoid referencing
image order.

For example:
The screenshot shows a file dialog with active selection on format dropdown. Changing
the format completes the file configuration sub-task. Next, click 'Save' to confirm the
selection.

Focus only on the thoughts leading up to the event, not what happens after. Do not
refer to visual cues like highlights, red boxes, or circles in your description and
think aloud as you work on this task:

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

Prompt For Instruction Boost

You are a helpful assistant to refine the given user instructions. The refined
instructions should be clear, polite, and structured as a direct request or question,
often including:
- A specific action or configuration change.
- Optional context or reasoning (e.g., "I want to ensure my browsing is private").
- A conversational yet concise tone

Some Examples for reference:
- "Configure the system to show seconds in the taskbar clock."
- "Can you configure VS Code to automatically check for updates on startup?"
- "Could you assist me in cleaning up my computer by removing any tracking data that
Chrome might have stored?"
- "I want to hear something soft and beautiful music when Windows starts up. Can you
set that MP3 file I like as my startup sound?"
- "I don't want to see all these news on the home page of Microsoft Edge. Remove them
in Page settings."

Output Format:
You should provide various styles and the output should be structured as follows:
```
Can you ...;
I want to ...;
I don't want to ...;
...;
```

Input instruction: {task_objective}
Rewrite the provided input instructions, ensuring they are actionable, polite, and
include necessary details. Use ";" to separate different output:

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

(a) Failure Case 1: The red box pointed to by the red arrow is originally an unclickable image element, but it is
set as role=button in the HTML.

(b) Failure Case 2: As indicated by the red arrow, some non-top-level elements and invisible list elements are not
filtered out by the rules.

(c) Success Case 1: Reduce web page dynamics.

(d) Success Case 2: Correctly handle element hierarchy relationships.

Figure 31: Examples of visualizations in web data acquisition. (a) shows website developer uses
element identity attributes incorrectly, (b) illustrates complexity or particularity of the web leads to
problems with hierarchy and visibility analysis, (c) demonstrates we alleviate the dynamic problem of
web pages when playing videos, and (d) presents an example of correctly analyzing each element in a
page. The red box represents clickable elements, the green box represents non-clickable elements,
and the blue box represents illegal elements that have been filtered out.

60

	Introduction
	Related Work
	Cross-Platform Interactive Data Pipeline
	Data Acquisition
	Data Annotation and Statistics

	The Design of Computer Use Agents
	Task Definition
	Agent Models

	Experiments
	Comprehensive Agent Evaluation
	Diagnostic Analysis on Computer Use Agents
	Ablation on Data

	Conclusion
	Appendix
	Large Language Model Usage
	More Results
	Public Data Used in Training
	Action Space
	Error Case Analysis
	The Details of Data Curation
	Data Sources
	GUI Understanding
	Metadata Extraction
	GUI Grounding
	Weak-Semantic Trajectory
	Human-Curated Trajectory
	Annotation Schemes
	More Details of Data Distribution

	Data Visualization
	GUI Understanding
	GUI Grounding
	Weak-Semantic Trajectory
	Human-Curated Trajectory
	Trajectory Annotation

	Lessons from Data Acquisition
	Common Problems
	Windows
	Ubuntu
	MacOS
	Mobile
	Web

	The Details of WebArena-Lite-v2
	Prompt Engineering
	Prompts for Our Agent
	Prompts for Annotations

