

SCALECUA: SCALING OPEN-SOURCE COMPUTER USE AGENTS WITH CROSS-PLATFORM DATA

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
ABSTRACT

Vision-Language Models (VLMs) have enabled computer use agents (CUAs) that operate GUIs autonomously with great potential. However, developing robust CUAs requires extensive in-domain knowledge about software interfaces and operations. Unlike image–text pairs that are widely available on the Internet, computer-use data, particularly operation trajectories, are rare, costly to collect. Consequently, advancement in this field remains constrained by both data scale and the limited transferability of existing VLMs. In this work, we introduce ScaleCUA, a step toward scaling open-source CUAs. It offers a large-scale dataset spanning six operating systems and 3 task domains, via a closed-loop pipeline uniting automated agents with human experts. Trained on this scaled-up data, ScaleCUA can operate seamlessly across platforms. Specifically, it delivers substantial gains over baselines (+26.6 on WebArena-Lite-v2, +10.7 on ScreenSpot-Pro) and sets new state-of-the-art results (94.4% on MMBench-GUI L1-Hard, 60.6% on OSWorld-G, 47.4% on WebArena-Lite-v2). These findings underscore the power of data-driven scaling for general-purpose cross-platform CUAs. We will release data, models, and code to advance future research.

1 INTRODUCTION

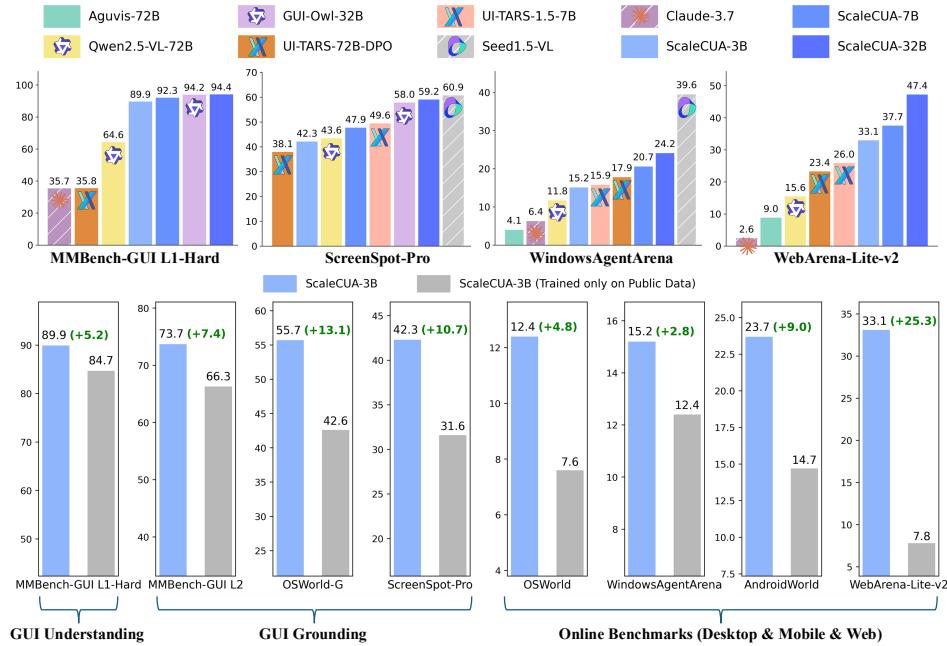


Figure 1: **Performance comparison.** The top row showcases performance overview on GUI-centric benchmarks. The bottom row demonstrates the consistent improvements from our collected data.

054 Humans are able to interact with digital environments through graphical user interfaces (GUIs) to
 055 acquire information and accomplish tasks efficiently. The recent advances in Vision-Language Models
 056 (VLMs), which exhibit powerful capabilities in visual perception and task planning, have made it
 057 increasingly feasible to automate such interactions. Consequently, recent research has increasingly
 058 focused on computer use agents (CUAs), also referred to as GUI agents, aiming to autonomously
 059 operate desktop, mobile, and web platforms by relying exclusively on visual observations.

060 Some works (Qin et al., 2025; Anthropic, 2025; Hong et al., 2025; OpenAI, 2025; Guo et al., 2025;
 061 Hong et al., 2025) demonstrate strong performance on computer use, while they are typically built on
 062 closed-source models or inaccessible proprietary datasets. More fundamentally, effective computer
 063 use requires rich in-domain knowledge of software and operational procedures, which remains a
 064 substantial gap for current foundation models. Unlike image–text pairs that are abundantly available
 065 on the Internet, computer-use data, particularly fine-grained action trajectories, are scarce, costly to
 066 collect, and not naturally archived online. Furthermore, as software, web pages and operating systems
 067 evolve rapidly, existing trajectories face the risk of obsolescence, further limiting their utility. These
 068 challenges result in a significant bottleneck for scaling computer use agents in both data scale and
 069 model generalizability. To tackle these limitations, we make significant efforts on two aspects: (a) **constructing a large-scale, cross-platform and GUI-centric training corpus**, and (b) **developing a family of scalable, versatile foundation models for general-purpose computer use**.

072 We first present a *Cross-Platform Interactive Data Pipeline* composed of two synergistic loops.
 073 The *Agent-Environment Interaction Loop* enables automated agents to interact with diverse GUI
 074 environments, while the *Agent-Human Hybrid Data Acquisition Loop* integrates expert-collected
 075 trajectories to ensure coverage and quality. The pipeline spans six major platforms, including
 076 Windows, macOS, Linux, Android, iOS, and Web, which facilitates the collection of rich screen-state
 077 observations, metadata (e.g., A11y Trees, XLM, DOM structures, etc.), and raw trajectories. In this
 078 pipeline, we design a unified action space, allowing for more consistent and efficient interaction
 079 with diverse real-world environments. Leveraging this infrastructure, we curate and annotate a
 080 comprehensive training dataset with advanced VLMs such as Claude-3.7 for an open computer use
 081 dataset, covering three major task families: (a) *GUI Understanding* with 471K examples covering
 082 regional captioning, OCR, and layout comprehension, etc.; (b) *GUI Grounding* with 17.1M training
 083 samples supporting more accurate UI element localization; and (c) *Task Completion* with over 15K
 084 weak-semantic trajectories and 4K high-level goal-directed trajectories.

085 Building upon this corpus, we train a series of base agent models termed as **ScaleCUA** with Qwen2.5-
 086 VL (Bai et al., 2025). It supports three inference paradigms to offer enhanced flexibility and
 087 compatibility with agent frameworks: (a) a *Grounding Mode*, which focuses on locating UI elements
 088 based on textual descriptions, allowing for integration with more powerful planners, (b) a *Direct
 089 Action Mode*, which enables efficient task completion by directly generating executable actions
 090 without additional intermediate reasoning and (c) a *Reasoned Action Mode*, which enhances task
 091 planning with Chain-of-Thought process before generating the following action. We conduct extensive
 092 quantitative studies to investigate how different data sources, diverse training tasks, agent designs, etc.,
 093 influence agent performance. Our findings highlight the benefits of data augmentation, weak semantic
 094 trajectories, and general reasoning data for enhancing planning capabilities. As previous studies (Xu
 095 et al., 2024; Qin et al., 2025; Anthropic, 2025) also probe into the important research questions with
 096 limited open-sourced training data or under closed conditions with proprietary data, our investigations
 097 aim to provide foundational and unified insights for advancing vision-based computer automation.

098 Our contributions are summarized as follows:

- 1) We curate a cross-platform computer use dataset, collected via an interactive data pipeline that
 099 integrates automated agents with human experts. It covers six major platforms (Windows, macOS,
 100 Linux, Android, iOS, and Web) and three GUI-centric task domains (i.e., understanding, grounding,
 101 and task completion), which provide a robust foundation for studying and training universal CUAs.
- 2) We develop ScaleCUA, a family of robust base agent models that unify perception, reasoning,
 103 and action into a single model. It supports flexible inference paradigms, including grounding, direct
 104 action, and reasoned action, along with a unified action space for seamless cross-platform interaction.
- 3) We conduct a comprehensive evaluation spanning understanding, grounding, and end-to-end task
 106 completion across several platforms. The results not only demonstrate that our agents can achieve
 107 competitive performance but also provide fundamental insights for developing more powerful CUAs.

108

2 RELATED WORK

110 **Vision-Language Models (VLM).** Recent years have witnessed rapid progress in VLMs spanning
 111 proprietary APIs (Team et al., 2023; 2024; Anthropic, 2024a; xAI, 2025; OpenAI, 2023; Hurst et al.,
 112 2024) and open-source models (Wang et al., 2024; Bai et al., 2025; Chen et al., 2024b; Zhu et al.,
 113 2025; Xiaomi, 2025; Team et al., 2025a; MetaAI, 2025), greatly expanding task coverage. Some
 114 VLMs (Team et al., 2025c; Guo et al., 2025; Bai et al., 2025; Xiaomi, 2025; Wang et al., 2025a)
 115 integrate GUI knowledge during pre-training or SFT, thereby gaining explicit computer-use abilities.
 116 Yet, despite strong generalization and planning capabilities, they still rely on proprietary GUI corpora.

117 **Computer Use Agents (CUAs) / GUI Agents.** Advances in general-purpose VLMs (e.g., GPT-4o)
 118 have enabled modular CUAs that decompose decision-making into *planner–grounder* roles (Cheng
 119 et al., 2024; Hong et al., 2024; Lu et al., 2024b; Yu et al., 2025; Wu et al., 2025; Gou et al., 2024;
 120 Zhang et al., 2025b; Wu et al., 2024b; Zhou et al., 2025). A VLM-based planner predicts high-level
 121 operations, while a specialized grounder localizes targets. Enhancements such as incorporating action
 122 histories (Yang et al., 2024) improve contextual grounding, and multi-agent *agentic workflows* (Wu
 123 et al., 2023b; Li et al., 2023; Hong et al., 2023; Wu et al., 2024a; Liu et al., 2025a; Zhao et al.,
 124 2025; Agashe et al., 2025; Chen et al., 2025b) coordinate planning, reflection, and memory. Despite
 125 strong performance, such workflows incur high computational latency and token cost, remaining
 126 bounded by underlying VLM capacity. In contrast, *native agents* (Xu et al., 2024; Wu et al., 2024b;
 127 Sun et al., 2024b; Qin et al., 2025; Luo et al., 2025; Liu et al., 2025b; Sun et al., 2025) integrate
 128 planning and grounding end-to-end, directly predicting low-level executable actions from raw visual
 129 inputs. Systems such as *AGUVIS* (Xu et al., 2024) and *UI-TARS* (Qin et al., 2025) trained on
 130 extensive trajectories show strong reasoning and adaptability. Native agents thus achieve tighter
 131 perception–action alignment while also benefiting modular setups. Our work extends this direction
 132 by training cross-platform base models and open-sourcing all data.

133 **GUI Datasets.** Open-source datasets have accelerated CUA’s development by capturing diverse
 134 interactions and instruction-following behaviors. For *mobile*, *RICO* (Deka et al., 2017) contains 70k+
 135 Android screens, *AITW* (Rawles et al., 2023) offers ~715k demonstrations with 30k commands, and
 136 *AitZ* (Zhang et al., 2024) provides 18,643 screen–action pairs with action–thought annotations. In
 137 the *web* domain, *MiniWoB* (Shi et al., 2017) simulates diverse tasks, *WebShop* (Yao et al., 2022)
 138 collects language-driven e-commerce trajectories, and *Mind2Web* (Deng et al., 2023) scales to 137
 139 websites and 2,350 open-ended tasks. For *desktop*, Xie et al. (2024) synthesizes 4M examples to boost
 140 grounding, and He et al. (2025) adds 312 human-annotated, trajectory-boosted samples. Scalable
 141 data generation includes *OS-Genesis* (Sun et al., 2024b) for mobile/web exploration and *AGUVIS* (Xu
 142 et al., 2024) for multimodal grounding–reasoning corpora. Tutorial-style datasets mitigate scarcity:
 143 *META-GUI* (Sun et al., 2022) introduces dialogue-based annotations; *TongUI* (Zhang et al., 2025a)
 144 offers ~143k trajectories linking instructions to screenshots; and *GUI-World* (Chen et al., 2025a)
 145 records 12k GUI videos for temporal understanding. Nevertheless, coverage and diversity remain
 146 limited, especially for desktop, posing challenges for UI element grounding and multi-step planning.

147

3 CROSS-PLATFORM INTERACTIVE DATA PIPELINE

148 Collecting computer use trajectories is exceptionally costly and inefficient, primarily due to the
 149 dynamic nature of environments and their frequent dependency on task-specific resources. In this
 150 section, we elaborate on the pipeline of data collection and annotation.

151

3.1 DATA ACQUISITION

152 Existing computer-use datasets generally rely on either manual trajectory collection or automated
 153 search-based exploration. While manual collection (Zhang et al., 2024; Rawles et al., 2023; Deng
 154 et al., 2023; Lu et al., 2024a) yields high-quality trajectories, it is costly and difficult to scale.
 155 Automated exploration (Sun et al., 2024b) is more scalable but typically noisy. Neither approach
 156 alone achieves the required balance of quality and diversity for training versatile GUI agents.

157 To address this, we propose a *Cross-Platform Interactive Data Pipeline* that integrates automated
 158 agents with human experts. As shown in Fig. 2, it operates in two synergistic loops. The **Agent–
 159 Environment Interaction Loop** enables agents or humans to interact with multi-platform GUI

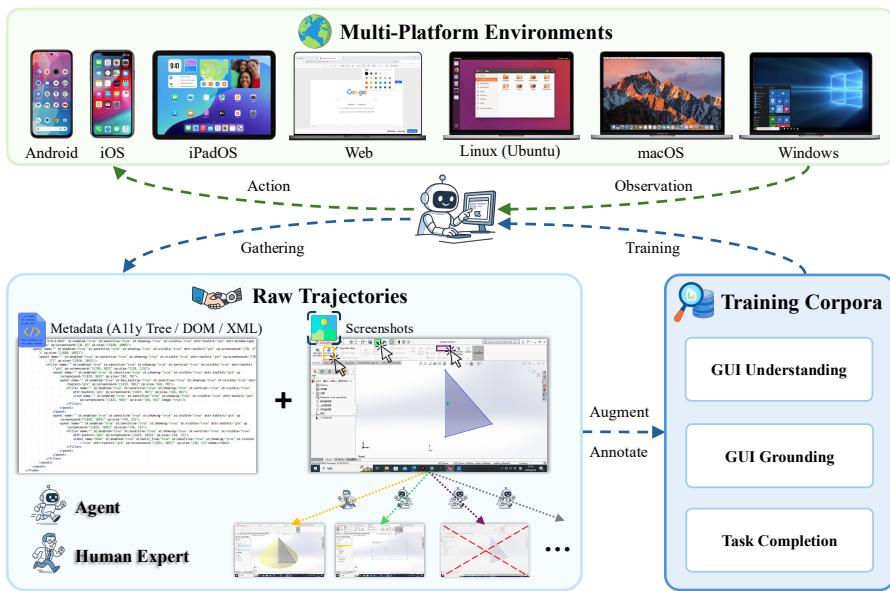


Figure 2: **Cross-platform interactive data pipeline.** Our pipeline consists of two synergistic loops: (1) the **Agent-Environment Interaction Loop**, where agents interact with multi-platform GUI environments via observation and actions; and (2) the **Agent-Human Hybrid Data Acquisition Loop**, where both autonomous agents and human experts contribute to collecting raw trajectories with screenshots and structural metadata. The resulting trajectories are then annotated and processed into several GUI-centric tasks such as understanding, grounding, and task completion.

environments, while the **Agent-Human Hybrid Data Acquisition Loop** merges trajectories from autonomous agents and experts.

Specifically, in the agent-environment interaction loop, we standardize observation acquisition and action execution across Windows, Ubuntu, macOS, Web browsers, Android, and iOS. This unified abstraction supports closed-loop data collection and diverse agent architectures. Platform-specific metadata is extracted from A11y Trees (Desktop), DOM (Web), and XML layout files (Android). When metadata is incomplete or restricted, as in iOS/iPadOS, OmniParser (Yu et al., 2025) estimates UI bounding boxes. In the agent-human hybrid data acquisition loop, human experts and automated agents both share the same interfaces to collect diverse trajectories. For automated agents, we evaluate two exploration strategies: VLM-driven agents (e.g., GPT-4o, Claude-3.7, *etc.*) and rule-driven random-walk agents. The former relied on proprietary VLMs, which often led to significant bias and hallucinations, especially for computer use, and thus was not used as the primary strategy for data collection. The latter performs depth-first exploration, randomly selecting actions from the available action space at each step. Heuristic pruning removes redundant or uninformative branches, broadening GUI coverage. Although these trajectories often lack clear high-level goals, their subsequences still yield valuable supervision for the agent. As both system-derived metadata and vision-based bounding boxes can be noisy, we complement it with expert-curated trajectories. Human experts first create a task list and then collect trajectory data in the environment. In addition, human experts are required to randomly sample and review 20% of the agent-collected trajectories after both collection and annotation to ensure quality. This is what we refer to as hybrid data acquisition. This unified pipeline decouples front-end interfaces from back-end environments, allowing collectors to efficiently switch between platforms and complete domain-specific tasks. These screenshots and metadata are then annotated into GUI-centric tasks such as understanding, grounding, and task completion, forming a robust foundation for training generalizable agents.

3.2 DATA ANNOTATION AND STATISTICS

This dual-loop framework collects extensive screenshots, structural metadata, and raw trajectories across Windows, macOS, Linux, Android, iOS, and Web platforms. Advanced VLMs (e.g., GPT-4o and Claude-3.7) are then used to annotate the corpus into three major task families: **GUI Understand-**

216 Table 1: Datasets comparisons on computer-use datasets in terms of platform coverage, data types
 217 (Understanding, Grounding and Trajectories), and collection methods.

219 220 221 222 223 224 225 226 227 228 229 230	221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269	221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269			221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269		221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269		221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
		221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269							
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269									
Ours		✓	✓	✓	471K	17.1M	19.0K	9.0	Hybrid

ing, GUI Grounding, and Task Completion. At the element and screenshot levels, understanding tasks cover visual description, OCR, layout reasoning, interface captioning, and state transition analysis, while grounding tasks provide point, bounding-box, and action-level supervision to align natural-language instructions with UI regions. Task Completion is composed of a) weak-semantic trajectories derived from rule-driven exploration that supply low-cost navigation patterns, and b) expert-curated demonstrations with realistic, goal-directed signals for reasoning and planning. Augmentation techniques such as element cropping, synthetic resolution scaling, and reasoning-prompt enrichment further diversify the training data. The final corpus spans 471K GUI-understanding examples, over 17.1M grounding annotations, and 19K trajectories averaging 9 steps each. As summarized in Table 1, we believe this dataset enables balanced evaluation of understanding, grounding, and task completion across all platforms. More statistics are shown in the Appendix.

Discussions. By leveraging a dual-loop pipeline, we ensure coverage of low-level element recognition, mid-level grounding, and high-level task planning. Compared with current works (Sun et al., 2024b; Wu et al., 2024b; Zhang et al., 2024; Rawles et al., 2023), we explore more diverse data collection strategies (human experts and automated agents) and cover a broader range of platforms (desktop, mobile, and web). Specifically, for the random-walk agent, we designed a more efficient algorithm through extensive experimentation and iterative improvements, significantly enhancing both data collection efficiency and GUI coverage. With this pipeline, we have collected over 2M raw screenshots across multiple platforms. We acknowledge that this pipeline is conceptually straightforward, but executing it across heterogeneous operating systems and software ecosystems entails substantial non-trivial engineering. Our contributions in the data pipeline are threefold: 1) We propose a robust and scalable data acquisition pipeline that balances automation and expert supervision, along with a set of effective heuristics improving data diversity and quality. 2) We summarize a comprehensive guideline covering platform-specific issues and their resolutions in the Appendix, which significantly improves the purity and efficiency of data collection. 3) We commit to releasing all data, ensuring transparency and reusability for future research. Generally, we emphasize that our work delivers a practically validated, cross-platform solution addressing real-world bottlenecks in scaling computer-use agents. Despite involving many engineering-oriented efforts, we still aim to share these experiences and provide valuable guidance for future developments in this field.

4 THE DESIGN OF COMPUTER USE AGENTS

4.1 TASK DEFINITION

VLMs allow agents to achieve pixel-level perception and interaction on graphical user interfaces. We formulate the interaction between the agent and environment at one time step as follows:

$$a_t = \pi_\theta(task, o_t, h_{}), \quad o_{t+1} = \mathcal{E}(a_t), \quad (1)$$

where π denotes the agent model parameterized by θ , and \mathcal{E} represents the environment, such as virtual machines or Docker containers. The $task$ denotes the task instruction. The observation o

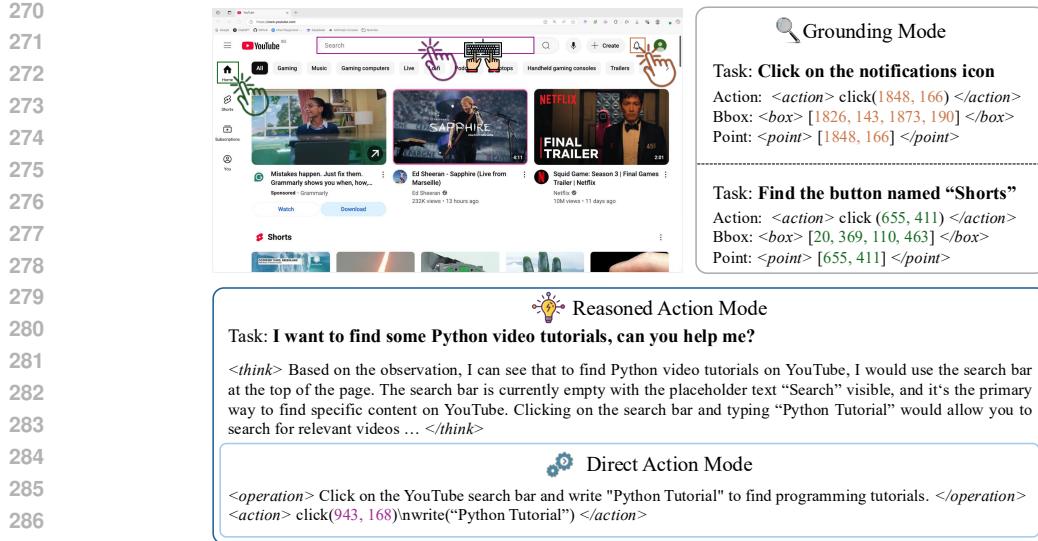


Figure 3: **Three Inference Paradigms in ScaleCUA:** (1) **Grounding Mode**, which focuses on localizing target UI elements; (2) **Direct Action Mode**, where the agent solely generates executable actions based on current observations and instructions; and (3) **Reasoned Action Mode**, where the agent first generates a chain-of-thought rationale before producing structured actions. These modes enable varying levels of functionality for computer use agents to complete tasks.

encompasses elements such as raw screen pixels, accessibility trees, or DOM data. The history $h_{<t} = \{(a_0, o_0), \dots, (a_{t-1}, o_{t-1})\}$ provides context for agent’s decision-making process. Similar to some works (Sun et al., 2024b; Xu et al., 2024), we choose to generate natural language descriptions for (a_i, o_i) as history, as it can save a large amount of inference cost budget. Each action specifies an operation with corresponding arguments, as detailed in Table 14, which is then executed in the environment. In this work, we adopt screenshots as the observation space. This paradigm aligns with human behavior and effectively avoids interference from noisy accessibility Tree and DOM data.

4.2 AGENT MODELS

We build our ScaleCUA family upon Qwen2.5-VL for its strong multimodal understanding and scalability across diverse GUI platforms. As shown in Fig. 3, it supports three inference paradigms. In *Grounding Mode*, the model localizes UI elements via points, boxes, or coordinate-based actions from screenshots and instructions, making it suitable as a modular “grounder” for external planners. In *Direct Action Mode*, the model directly emits low-level instructions and executable actions, enclosed in *<operation>* and *<action>* tags. Given the current screen and interaction history, it enables fast perception-action loops without explicit reasoning. In *Reasoned Action Mode*, it first generates a rationale inside *<think>* tags before producing the action, improving reliability and interpretability on ambiguous or long-horizon tasks with extra latency. This design allows flexible integration with different agentic workflows while maintaining consistent control semantics across platforms.

Action Space. We design a **unified action space** for data collection and environment interaction. Table 14 summarizes our cross-platform action space spanning desktop, mobile, and web. It combines universal operations (*e.g.*, `click`, `write`, *etc.*) with platform-specific actions (*e.g.*, `long_press` and `open_app` for mobile), ensuring consistent behavior modeling and simplifying downstream policy learning. More details appear in Sec. A.4.

Training Recipes. We train three model scales under hardware-aware configurations: ScaleCUA-3B (mini-batch 4, grad-accum 1 on 128 A100 GPUs), ScaleCUA-7B (mini-batch 2, grad-accum 2 on 128 A100 GPUs), and ScaleCUA-32B (mini-batch 2, grad-accum 2 on 128 H200 GPUs). All use a learning rate of 1×10^{-5} and a maximum token length of 40,960. To balance general multimodal knowledge with GUI-specific skills, we vary the ratio of general-purpose data to GUI data: 25% for 3B, 50% for 7B, and 75% for 32B. Empirically, this scaling yields substantial gains on GUI

324 understanding, grounding, and task completion benchmarks, confirming that larger models can absorb
 325 higher proportions of general data without diluting GUI competence.
 326

327 5 EXPERIMENTS

328
 329
Evaluation Setup. We comprehensively evaluate our ScaleCUA across three dimensions: GUI
 330 understanding, GUI grounding, and end-to-end task completion. All evaluations are performed
 331 under pure visual observation to align with real-world usage. For **GUI understanding**, we use
 332 MMBench-GUI L1 (Wang et al., 2025c), which tests fine-grained perception and reasoning about
 333 interface content. For **GUI grounding**, we conduct structured evaluations on ScreenSpot-v2 (Wu
 334 et al., 2024b), ScreenSpot-Pro (Li et al., 2025), and OSWorld-G (Xie et al., 2025), covering cross-
 335 platform localization and domain-specific scenarios. By default, ScreenSpot-Pro is evaluated at 2K
 336 resolution and other benchmarks at 1080p. For **end-to-end task completion**, we test our models
 337 on AndroidControl, OSWorld (Xie et al., 2024), WindowAgentArena (WAA) (Bonatti et al., 2024),
 338 macOSArena (MA) (Wang et al., 2025c), AndroidWorld (AW) (Rawles et al., 2024), and WebArena-
 339 Lite-v2 (WAL-v2). These benchmarks span desktop, mobile, and web settings, with a 50-step budget
 340 applied when not specified, enabling a realistic assessment of platform-specific performance. We
 341 further validate **general vision-language capabilities** on several well-known benchmarks (Yue et al.,
 342 2024; Lu et al., 2023; Liu et al., 2024b; xAI, 2024). In addition, we deploy Qwen2.5VL models with
 343 vLLM (Kwon et al., 2023) to ensure scalable and consistent online evaluation.
 344

345 5.1 COMPREHENSIVE AGENT EVALUATION

346
GUI Understanding. MMBench-GUI L1
 347 (GUI Content Understanding) assesses fine-
 348 grained perception and reasoning across six
 349 platforms following MMBench-GUI protocols.
 350 In Table 2, our ScaleCUA consistently de-
 351 liveries competitive or superior results. Even
 352 the lightweight ScaleCUA-3B attains 89.9%,
 353 surpassing Qwen2.5-VL-72B by +25.3 points.
 354 ScaleCUA-7B further improves to 92.3%, while
 355 ScaleCUA-32B reaches 94.4%. These results
 356 highlight the efficacy of scaling with cross-
 357 platform GUI-specific data, confirming that di-
 358 verse training corpora substantially enhance vi-
 359 sual comprehension across heterogeneous envi-
 360 ronments.
 361

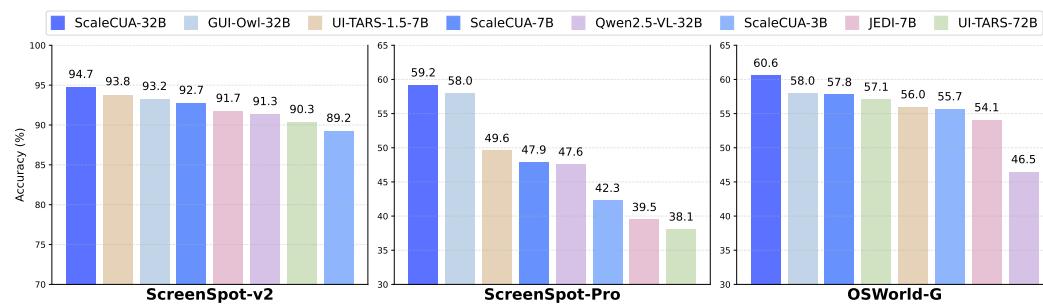
Table 2: Results on MMBench-GUI L1 (GUI Content Understanding) (Wang et al., 2025c).

Model	Easy	Medium	Hard
GPT-4o (2024)	60.2	57.2	53.5
Claude-3.7 (2025)	39.1	38.4	35.7
Qwen2.5-VL-72B (2025)	67.0	67.5	64.6
UI-TARS-72B-DPO (2025)	40.2	41.8	35.8
InternVL3-72B (2025)	79.2	77.9	75.7
GUI-Owl-7B (2025)	84.5	86.9	90.9
GUI-Owl-32B (2025)	92.8	<u>91.7</u>	<u>94.2</u>
ScaleCUA-3B	83.6	85.6	89.9
ScaleCUA-7B	88.4	90.1	92.3
ScaleCUA-32B	<u>92.5</u>	92.5	94.4

362
GUI Grounding. We then evaluate models on GUI grounding, which measures the ability to
 363 localize and associate visual elements with textual or functional references across desktop, mobile,
 364 and web. As shown in Fig. 4, our ScaleCUA consistently achieves state-of-the-art performance
 365 across different benchmarks. On the challenging ScreenSpot-Pro, ScaleCUA-32B again dominates,
 366 achieving 59.2% overall and delivering strong accuracy across diverse domains such as Creative
 367 software, CAD, and office applications. More detailed comparisons are presented in A.2. Overall,
 368 these results demonstrate that scaling with GUI-specific data yields substantial benefits for grounding.
 369 The consistent improvements across GUI grounding benchmarks confirm the effectiveness of our
 370 dual-loop data pipeline in learning robust UI element localization.
 371

372
Task Completion. We evaluate end-to-end task completion on Mobile (AndroidWorld), Ubuntu
 373 (OSWorld), Windows (WindowsAgentArena), macOS (MacOSArena), and Web (WebArena-Lite-v2),
 374 considering both native agents and planner–grounder workflows. The results is shown in Table 3.
 375 First, our native ScaleCUA-32B achieves the strongest Web performance: 44.2% (15 steps budget)
 376 and 47.4% (50 steps), outperforming the best native baseline (UI-TARS-72B-DPO) by +20.8 and
 377 +26.0 points, respectively, and substantially surpassing Qwen2.5-VL-72B. Then, the workflow setting
 378 with GPT-4o as planner and ScaleCUA-7B as the grounder yields 48.3% on AndroidWorld and
 379 28.1% on OSWorld (50 steps), outperforming other strong grounders such as JEDI-7B. Beyond these
 380 highlights, several trends emerge. (i) Scaling from 3B→7B→32B produces monotonic gains on
 381 different platforms, indicating that our cross-platform data and unified action space translate into
 382

378 Table 3: Online evaluation across different platforms. AndroidWorld has its own predefined step
 379 budget. ♦ denotes the unknown step budget and ★ indicates more than 50 steps is used.
 380


381 Method	382 Mobile (AndroidWorld)	383 Ubuntu (OSWorld)		384 Windows (WindowsAgentArena)		385 MacOS (MacOSArena)		386 Web (WebArena-Lite-v2)		
		387 Predefined Steps	388 15 Steps	389 50 Steps	390 15 Steps	391 50 Steps	392 15 Steps	393 50 Steps	394 15 Steps	
<i>Native Agent</i>										
Kimi-VL-A3B (2025b)	—	8.2♦	10.4♦	—	—	—	—	—	—	
Seed1.5-VL (2025)	62.1	36.7★	39.6★	—	—	—	—	—	—	
GLM-4.1V-Thinking (2025)	41.7	14.9★	—	—	—	—	—	—	—	
GLM-4.5V-Thinking (2025)	57.0	35.8★	—	—	—	—	—	—	—	
COMPUTERRL (2025)	—	47.3♦	—	—	—	—	—	—	—	
PC Agent-E (2025)	—	14.9♦	—	—	—	—	—	—	—	
GPT-4o (2024)	21.6	6.8	10.1	5.6	3.5	0.0	1.4	2.0	3.3	
Claude-3.7 (2025)	11.2	7.4	10.3	7.1	6.4	5.7	7.1	2.0	2.6	
Owen2.5-VL-72B (2025)	27.6	9.8	10.6	11.8	9.7	1.4	5.7	15.6	14.4	
InternVL3.5-241B-A28B (2025a)	29.7	11.1	11.6	15.2	18.0	2.9	5.7	11.7	11.7	
Aguvis-72B (2024)	26.1	3.8	4.2	4.1	3.5	0.0	0.0	5.8	9.0	
UI-TARS-7B-SFT (2025)	33.0	17.7	—	—	—	—	—	11.0	13.6	
UI-TARS-1.5-7B (2025)	31.6	22.1	23.9	11.1	15.9	7.1	7.1	20.8	26.0	
UI-TARS-7B-DPO (2025)	46.6	24.2	25.2	11.1	17.9	8.6	8.6	23.4	21.4	
OpenCUA-7B (2025b)	—	24.3	28.1	—	—	—	—	—	—	
OpenCUA-32B (2025b)	—	29.7	34.1	—	—	—	—	—	—	
ScaleCUA-3B	23.7	9.6	12.4	13.1	15.2	0.0	1.4	31.8	33.1	
ScaleCUA-7B	27.2	14.3	15.0	18.0	20.7	4.3	4.3	37.7	37.7	
ScaleCUA-32B	30.6	16.5	17.7	21.4	24.2	7.1	7.1	44.2	47.4	
<i>Agentic Workflow</i>										
395 Planner	396 Grounder	397	398	399	400	401	402	403	404	
Aria-UI (2024)	44.8	15.2♦	—	—	—	—	—	—	—	
OS-Atlas-7B (2024b)	—	14.6♦	—	—	—	—	—	—	—	
UGround-V1-7B (2024)	32.8	13.1	16.1	13.1	20.7	1.4	0.0	23.2	26.5	
GPT-4o	UI-TARS-1.5-7B (2025)	37.9	16.5	19.1	14.5	26.2	1.4	0.0	28.6	28.6
JEDI-3B (2025)	—	22.4	—	29.1	—	—	—	—	—	
JEDI-7B (2025)	—	22.7	25.0	30.2	32.9	—	—	—	—	
ScaleCUA-7B	48.3	22.9	28.1	31.7	36.6	5.7	8.6	28.6	35.1	

403 stronger computer use agents as capacity grows. (ii) The effect of the step budget is consistent: a
 404 majority of the agents, including ScaleCUA, achieve substantial performance improvements under a
 405 50-step limit. (iii) Even employing our proposed data, the planning ability of our model still lags
 406 substantially behind GPT-4o in agentic workflows, and models trained with existing and proprietary
 407 datasets continue to exhibit a considerable performance gap. We must acknowledge that there remains
 408 significant room for improvement and further development.

409 5.2 DIAGNOSTIC ANALYSIS ON COMPUTER USE AGENTS

410 To elucidate the main factors that affect agent performance, we conduct detailed ablations, which
 411 reveal key trade-offs between accuracy, efficiency, and generalization:

412 **Input Resolution:** OSWorld-G uses strictly standardized 1080p frames. When the input resolution is
 413 set at or above 1080p, the performance saturates because the inputs still match the maximum training
 414 resolution, *i.e.*, 1080p. In ScreenSpot-v2, the majority of screenshots are at or below 1080p, yet this
 415 results in negative impacts when the resolution is increased further. By contrast, ScreenSpot-Pro
 416 contains a large proportion of native 4K screenshots. The performance on it benefits from higher
 417 resolutions up to 2K but drops at 4K. Overall, we observe that the impact of resolution on grounding
 418 performance depends largely on the benchmark’s data distribution.

423 424 425 426 427 428 429 430 431 Figure 4: Results on GUI grounding datasets.

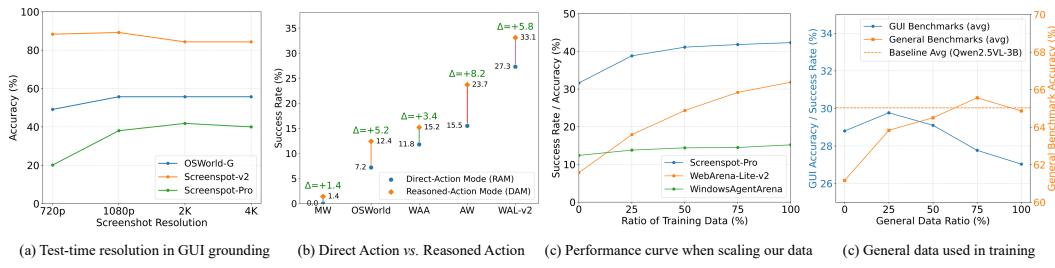


Figure 5: Evaluations across diverse conditions. (a) Accuracy of GUI grounding under different screenshot resolutions. (b) Success rates of Direct Action vs. Reasoned Action Modes, where reasoning consistently improves performance. (c) Training data scaling. (d) Effect of using general data, showing distinct trends between GUI and multimodal benchmarks.

Inference Modes: Fig. 5 (b) compares the two inference modes for computer use agents. Across all benchmarks, reasoned action mode (RAM) yields higher success rates than direct action mode (DAM), with absolute gains ranging from +1.4% to + 8.2%. However, this mode also incurs longer inference time and greater token cost. DAM, in contrast, produces actions directly from the visual-textual context, yielding faster responses but being more prone to cumulative drift in long-horizon tasks. In the Table 3, when ScaleCUA-7B as a grounding model is integrated with GPT-4o under an agentic workflow, it shows higher success on task completion benchmarks than the reasoned action mode (e.g., 28.1% vs. 15.0% on OSWorld, 36.6% vs. 20.7% on WindowsAgentArena, *etc.*). The agentic workflow allows GPT-4o to handle long-context planning while leveraging grounding mode in ScaleCUA, demonstrating complementarity between ScaleCUA and general VLMs. Nevertheless, this paradigm cannot generate actions in an end-to-end manner and brings higher costs even than RAM.

Data Scaling: In Fig. 5 (c), success rates generally improve with more training data. Specifically, WebArena-Lite-v2 shows nearly linear gains, whereas ScreenSpot-Pro reaches strong accuracy with about half the data. For WindowsAgentArena, the observed gains appear smaller primarily because tasks in the online benchmark are more difficult with relatively low baseline scores, where even small improvements are challenging to achieve. These results intuitively reflect the task’s difficulty, and also imply a larger data volume required to achieve the desired performance.

General Multimodal Data: Fig. 5 (d) analyzes the effect of employing general-purpose multimodal data in training. We find a clear divergence: GUI benchmarks suffer a gradual decline in performance as the ratio of general data increases, while general benchmarks improve steadily, peaking around 75%. As the multimodal corpus expands, the model’s general capabilities improve, but GUI-specific knowledge may be diluted. The results indicate that a data-balanced training strategy is crucial for preserving GUI specialization without compromising general reasoning abilities. Since the larger models are able to memorize more knowledge, Since the larger VLMs can memorize more knowledge, it is reasonable to increase the ratio to 50% for the 7B model and further to 75% for the 32B model.

Multi-platform Ablation: Furthermore, the Fig. 6 shows that models trained exclusively on a single domain slightly outperform the cross-domain model on desktop and web benchmarks, whereas the cross-domain model performs better on the mobile benchmark. One plausible reason lies in the inherent differences in aspect ratio and UI layout across platforms. Mobile interfaces typically feature more vertically constrained layouts and standardized components with larger, touch-friendly elements, whereas desktop and web pages provide horizontally richer screens with denser and more variable UI structures. Since web/desktop data can enrich the feature space without fundamentally altering the underlying interaction patterns, the model trained on cross-platform data can thus generalize more effectively to the mobile domain with simpler visual hierarchies. Conversely, models trained on desktop or web data are exposed to information-dense layouts where UI elements may be small, overlapping, or nested within complex DOM structures. Introducing mobile data during multi-domain

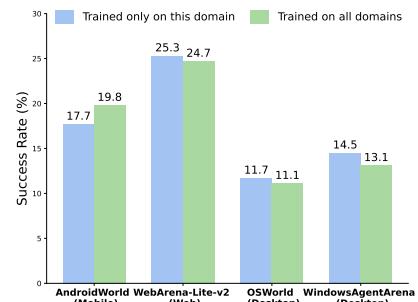


Figure 6: The effects of training on domain-specific data.

486 training can dilute the model’s specialized representations for these fine-grained desktop layouts,
 487 leading to small performance drops in desktop and web benchmarks.
 488

489 Generally, high-resolution inputs and reasoning-based inference enhance grounding and task comple-
 490 tion but incur extra cost. Data scaling remains crucial but benchmark-sensitive, and heterogeneous
 491 data mixtures improve general reasoning at the expense of GUI capabilities. These insights motivate
 492 scalable, cross-platform training pipelines with deliberate data composition to build robust agents.
 493

494 5.3 ABLATION ON DATA

495 Table 4: Ablation studies on data. The maximum steps used in online benchmarks are set to 50.

496 (a) The ablation on data augmentation. We only (b) The ablation on weak semantic trajectories. The public
 497 use GUI-related data in training. datasets used are shown in Table 13.

Model	Training Data	Aug.	SS-Pro
Qwen2.5VL-3B	ours-only	✗	37.8

501 (c) The ablation on coordinate types.

Model	Type	ScreenSpot-Pro
Qwen2.5VL-3B	Norm. Raw	37.9 42.3

Model	Training Data	+ WS	OSWorld	WAL-v2
Qwen2.5VL-3B	public-only	✗	7.6 8.5	8.4 14.3

502 (d) The ablation on the maximum resolution during training.

Model	Res.	SS-Pro	OSWorld-G	OSWorld	AW
Qwen2.5VL-3B	1080P 2K	42.3 45.5	54.3 52.5	12.4 11.2	23.3 13.4

503 In this section, we aim to ablate our data. As shown in Fig. 1, training with our curated training
 504 corpus yields consistent improvements over the baseline trained on public data. In Table 4, we further
 505 highlight the effects of augmentation, weak semantic trajectories, coordinate formats, and resolution.
 506

507 First, the results verify that data augmentation can improve performance by 3.5% on ScreenSpot-Pro.
 508 This confirms that augmentation enhances generalization and robustness by exposing the model to a
 509 wider range of visual conditions. Second, we investigate weak semantic trajectories derived from
 510 rule-based random exploration. Despite lacking explicit high-level goals, these trajectories provide
 511 low-cost supervision of interface navigation. Third, we study the impact of coordinate representations
 512 in grounding. Models trained with raw coordinates outperform those with normalized coordinates.
 513 This indicates that GUI grounding should follow the absolute position used in Qwen2.5VL. Finally,
 514 we ablate the training resolution. Higher resolutions yield trade-offs across benchmarks: while
 515 2K improves grounding on ScreenSpot-Pro (45.5% vs. 42.3%) and preserves OSWorld-G accuracy
 516 (52.5% vs. 54.3%), it slightly reduces agent success rates on OSWorld and AndroidWorld. This
 517 suggests that fine-grained grounding benefits from high-resolution supervision, whereas agentic
 518 benchmarks may suffer from overfitting to pixel-level details. The ablation studies across UI element
 519 grounding and task completion demonstrate that the design of training data is the key to building
 520 scalable and generalizable CUAs.
 521

522 6 CONCLUSION

523 In this work, we curate a large-scale multi-platform dataset with our dual-loop data pipeline that
 524 integrates automated agents and human experts into data construction. The training corpus spans
 525 understanding, element grounding, and task completion. With this dataset, we develop a new family of
 526 CUAs, *i.e.*, **ScaleCUA**, which support flexible inference paradigms for scalable integration with agent
 527 frameworks. Extensive experiments demonstrated the efficacy of our proposed method. Together,
 528 these contributions advance the frontier of computer use agents by bridging vision-language modeling
 529 with practical GUI interaction. We hope that ScaleCUA and its released resources will serve as a
 530 solid foundation for future research in building capable, trustworthy, and deployable CUAs.
 531

532 **Limitations.** Although our framework study multi-platform agents with a scalable data pipeline,
 533 several challenges remain. First, integrating automatic data collection with iterative refinement into a
 534 self-improving loop is still insufficiently explored. Second, we have not employed advanced agentic
 535 techniques such as reflection or reinforcement learning, which are likely to improve long-horizon
 536 control. Third, the current history design is flat and cannot fully capture long-term dependencies.
 537 Despite not exploring these aspects in this work, we believe that releasing the full data, models, and
 538 training configurations lays a solid foundation for future progress in computer-use agents.
 539

540 ETHICS STATEMENT
541

542 Our work complies with the ICLR Code of Ethics. The proposed dataset and models are constructed
543 without collecting any personally identifiable information or sensitive data. All screenshots, metadata,
544 and trajectories are obtained from synthetic or publicly accessible software environments and do
545 not involve real users' private data. When automated agents interact with platforms, they operate
546 within controlled virtualized settings to avoid unintended data capture. Human experts are limited to
547 interface-level information (e.g., UI element labels, bounding boxes, or action descriptions) without
548 exposure to personal content. The released resources (dataset, models, and code) are intended
549 solely for research purposes to advance open and reproducible study of cross-platform computer use
550 agents. We explicitly discourage any misuse of these models in ways that could compromise privacy,
551 security, or fairness. No conflicts of interest or sponsorship bias exist in this work, and all authors
552 adhere to research integrity practices, including transparent documentation of data sources, collection
553 procedures, and evaluation protocols.

554
555 REPRODUCIBILITY STATEMENT
556

557 We have taken extensive measures to ensure reproducibility of our results. This work elaborate on the
558 data acquisition pipeline (Sec. 3), dataset composition and statistics (Table 1 and Fig. 11), unified
559 action space (Table 14), training recipes for different model scales (Sec. 4.2), and comprehensive eval-
560 uation protocols (Sec. 5). Additional implementation details and ablation studies are provided in the
561 Appendix to guide replication of our experiments. We will release the dataset, model checkpoints, and
562 source code to facilitate verification and reproducibility. Together, these resources allow researchers
563 to reproduce our key findings and build upon our work with minimal additional assumptions.

564
565 REFERENCES
566

567 Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s2:
568 A compositional generalist-specialist framework for computer use agents, 2025. URL <https://arxiv.org/abs/2504.00906>.

569 Anthropic. Claude 3.5. Anthropic AI Assistant, September 2024a. URL <https://www.anthropic.com/clause>. Accessed: 2025-06-23.

570 Sonnet Anthropic. Model card addendum: Claude 3.5 haiku and upgraded claude 3.5 sonnet, 2024b.
571 URL <https://api.semanticscholar.org/CorpusID:273639283>.

572 Sonnet Anthropic. Claude 3.7 sonnet system card, 2025. URL <https://www.anthropic.com/news/clause-3-7-sonnet>.

573 Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas Sunkara, Abhinav Rastogi, Jindong Chen, and
574 Blaise Agüera y Arcas. Uibert: Learning generic multimodal representations for UI understanding.
575 In *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence*, 2021.

576 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
577 Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
578 *arXiv preprint arXiv:2308.12966*, 2023.

579 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
580 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
581 2025.

582 Rogerio Bonatti, Dan Zhao, Francesco Bonacci, Dillon Dupont, Sara Abdali, Yinheng Li, Yadong
583 Lu, Justin Wagle, Kazuhito Koishida, Arthur Bucker, et al. Windows agent arena: Evaluating
584 multi-modal os agents at scale. *arXiv preprint arXiv:2409.08264*, 2024.

585 Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Dingyu Zhang, Peng Gao, Shuai Ren,
586 and Hongsheng Li. Amex: Android multi-annotation expo dataset for mobile gui agents. *ArXiv*
587 *preprint*, 2024. URL <https://arxiv.org/abs/2407.17490>.

594 Dongping Chen, Yue Huang, Siyuan Wu, Jingyu Tang, Huichi Zhou, Qihui Zhang, Zhigang He, Yilin
 595 Bai, Chujie Gao, Liuyi Chen, et al. Gui-world: A video benchmark and dataset for multimodal
 596 gui-oriented understanding. In *ICLR*, 2025a.

597 Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu,
 598 Guirong Chen, Yupeng Huo, et al. Guicourse: From general vision language models to versatile
 599 gui agents. *arXiv preprint arXiv:2406.11317*, 2024a.

600 Xuetian Chen, Yinghao Chen, Xinfeng Yuan, Zhuo Peng, Lu Chen, Yuekeng Li, Zhoujia Zhang,
 601 Yingqian Huang, Leyan Huang, Jiaqing Liang, et al. Os-map: How far can computer-using agents
 602 go in breadth and depth? *arXiv preprint arXiv:2507.19132*, 2025b.

603 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 604 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
 605 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer vision
 606 and pattern recognition*, pp. 24185–24198, 2024b.

607 Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong Wu.
 608 Seeclick: Harnessing gui grounding for advanced visual gui agents. *arXiv preprint
 609 arXiv:2401.10935*, 2024.

610 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 611 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
 612 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
 613 *arXiv preprint arXiv:2507.06261*, 2025.

614 Google Deepmind. Introducing gemini 2.0: our new ai model for the agen-
 615 tic era. [https://blog.google/technology/google-deepmind/
 616 google-gemini-ai-update-december-2024/](https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/), 2024.

617 Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hirschman, Daniel Afergan, Yang Li, Jeffrey
 618 Nichols, and Ranjitha Kumar. Rico: A mobile app dataset for building data-driven design
 619 applications. In *Proceedings of the 30th annual ACM symposium on user interface software and
 620 technology*, pp. 845–854, 2017.

621 Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
 622 Mind2web: Towards a generalist agent for the web. *Advances in Neural Information Processing
 623 Systems*, 36:28091–28114, 2023.

624 Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and Yu Su.
 625 Navigating the digital world as humans do: Universal visual grounding for gui agents.
 626 *arXiv preprint arXiv:2410.05243*, 2024.

627 Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,
 628 Jianyu Jiang, Jiawei Wang, et al. Seed1. 5-vl technical report. *arXiv preprint arXiv:2505.07062*,
 629 2025.

630 Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
 631 and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
 632 *arXiv preprint arXiv:2401.13919*, 2024.

633 Yanheng He, Jiahe Jin, and Pengfei Liu. Efficient agent training for computer use, 2025. URL
 634 <https://arxiv.org/abs/2505.13909>.

635 Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
 636 Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
 637 collaborative framework. *arXiv preprint arXiv:2308.00352*, 3(4):6, 2023.

638 Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
 639 Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
 640 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 641 14281–14290, 2024.

648 Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng,
 649 Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning
 650 with scalable reinforcement learning. *arXiv preprint arXiv:2507.01006*, 2025.

651

652 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 653 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 654 *arXiv:2410.21276*, 2024.

655

656 Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem AlShikh,
 657 and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist
 658 autonomous agents for desktop and web. In *European Conference on Computer Vision*, pp.
 161–178. Springer, 2024.

659

660 Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
 661 Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
 662 multimodal agents on realistic visual web tasks. *arXiv preprint arXiv:2401.13649*, 2024.

663

664 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 665 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 666 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating*
 667 *Systems Principles*, 2023.

668

669 Hanyu Lai, Xiao Liu, Yanxiao Zhao, Han Xu, Hanchen Zhang, Bohao Jing, Yanyu Ren, Shuntian
 670 Yao, Yuxiao Dong, and Jie Tang. Computerrl: Scaling end-to-end online reinforcement learning
 for computer use agents. *arXiv preprint arXiv:2508.14040*, 2025.

671

672 Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbulin, and Bernard Ghanem. Camel: Com-
 673 municative agents for “mind” exploration of large language model society. *Advances in Neural*
 674 *Information Processing Systems*, 36:51991–52008, 2023.

675

676 Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
 677 Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use.
 678 *arXiv preprint arXiv:2504.07981*, 2025.

679

680 Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu,
 681 and Oriana Riva. On the effects of data scale on computer control agents, 2024a. URL <https://arxiv.org/abs/2406.03679>.

682

683 Wei Li, William E Bishop, Alice Li, Christopher Rawles, Folawiyo Campbell-Ajala, Divya Tyama-
 684 gundlu, and Oriana Riva. On the effects of data scale on ui control agents. *Advances in Neural*
 685 *Information Processing Systems*, 37:92130–92154, 2024b.

686

687 Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
 688 instructions to mobile UI action sequences. In *Proceedings of the 58th Annual Meeting of the*
 689 *Association for Computational Linguistics*. Association for Computational Linguistics, 2020a.
 690 URL <https://aclanthology.org/2020.acl-main.729>.

691

692 Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. Widget captioning:
 693 Generating natural language description for mobile user interface elements. In *Proceedings of*
 694 *the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*. Asso-
 695 ciation for Computational Linguistics, 2020b. URL <https://aclanthology.org/2020.emnlp-main.443>.

696

697 Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Weixian Lei,
 698 Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui visual
 699 agent, 2024. URL <https://arxiv.org/abs/2411.17465>.

700

701 Huawei Liu, Xi Zhang, Haiyang Xu, Yuyang Wanyan, Junyang Wang, Ming Yan, Ji Zhang, Chunfeng
 702 Yuan, Changsheng Xu, Weiming Hu, and Fei Huang. Pc-agent: A hierarchical multi-agent
 703 collaboration framework for complex task automation on pc. *arXiv preprint arXiv:2502.14282*,
 704 2025a.

702 Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Yifan Xu, Xixuan Song, Shudan Zhang, Hanyu Lai,
 703 Xinyi Liu, Hanlin Zhao, et al. Visualagentbench: Towards large multimodal models as visual
 704 foundation agents. *arXiv preprint arXiv:2408.06327*, 2024a.

705 Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
 706 and Fei Wu. Infigui-r1: Advancing multimodal gui agents from reactive actors to deliberative
 707 reasoners. *arXiv preprint arXiv:2504.14239*, 2025b.

708 Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xu-Cheng Yin,
 709 Cheng-Lin Liu, Lianwen Jin, and Xiang Bai. Ocrbench: on the hidden mystery of ocr in large
 710 multimodal models. *Science China Information Sciences*, 67(12):220102, 2024b.

711 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
 712 Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
 713 of foundation models in visual contexts. *arXiv preprint arXiv:2310.02255*, 2023.

714 Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
 715 Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app gui
 716 navigation on mobile devices. *arXiv preprint arXiv:2406.08451*, 2024a.

717 Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
 718 gui agent, 2024b. URL <https://arxiv.org/abs/2408.00203>.

719 Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Han Xiao, Shuai Ren,
 720 Guanjing Xiong, and Hongsheng Li. Ui-r1: Enhancing efficient action prediction of gui agents by
 721 reinforcement learning. *arXiv preprint arXiv:2503.21620*, 2025.

722 Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1: A generalist r1-style vision-language
 723 action model for gui agents. *arXiv preprint arXiv:2504.10458*, 2025.

724 MetaAI. llama4, 2025. URL <https://ai.meta.com/blog/llama-4-multimodal-intelligence/>. Accessed: 2025-06-23.

725 OpenAI. Gpt-4 technical report. *ArXiv*, abs/2303.08774, 2023. URL <https://api.semanticscholar.org/CorpusID:257532815>.

726 OpenAI. Computer-using agent: Introducing a universal interface for ai to interact with the digital
 727 world, 2025. URL <https://openai.com/index/computer-using-agent>.

728 Yichen Pan, Dehan Kong, Sida Zhou, Cheng Cui, Yifei Leng, Bing Jiang, Hangyu Liu, Yanyi
 729 Shang, Shuyan Zhou, Tongshuang Wu, et al. Webcanvas: Benchmarking web agents in online
 730 environments. *arXiv preprint arXiv:2406.12373*, 2024.

731 Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
 732 Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
 733 agents. *arXiv preprint arXiv:2501.12326*, 2025.

734 Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
 735 droidinthewild: A large-scale dataset for android device control. *Advances in Neural Information
 736 Processing Systems*, 36:59708–59728, 2023.

737 Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth
 738 Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A dynamic
 739 benchmarking environment for autonomous agents. *arXiv preprint arXiv:2405.14573*, 2024.

740 Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits:
 741 An open-domain platform for web-based agents. In Doina Precup and Yee Whye Teh (eds.),
 742 *Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
 743 Australia, 6-11 August 2017*, volume 70 of *Proceedings of Machine Learning Research*, pp. 3135–
 744 3144. PMLR, 2017. URL <http://proceedings.mlr.press/v70/shi17a.html>.

745 Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, Zichen Zhu, and Kai Yu. Meta-gui: Towards
 746 multi-modal conversational agents on mobile gui. *arXiv preprint arXiv:2205.11029*, 2022.

756 Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
 757 Chengcheng Han, Renyu Zhu, Shuai Yuan, et al. A survey of neural code intelligence: Paradigms,
 758 advances and beyond. *arXiv preprint arXiv:2403.14734*, 2024a.

759

760 Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu,
 761 Chengyou Jia, Liheng Chen, Zhoumianze Liu, et al. Os-genesis: Automating gui agent trajectory
 762 construction via reverse task synthesis. *arXiv preprint arXiv:2412.19723*, 2024b.

763 Qiushi Sun, Zhoumianze Liu, Chang Ma, Zichen Ding, Fangzhi Xu, Zhangyue Yin, Haiteng Zhao,
 764 Zhenyu Wu, Kanzhi Cheng, Zhaoyang Liu, et al. Scienceboard: Evaluating multimodal autonomous
 765 agents in realistic scientific workflows. *arXiv preprint arXiv:2505.19897*, 2025.

766

767 Fei Tang, Zhangxuan Gu, Zhengxi Lu, Xuyang Liu, Shuheng Shen, Changhua Meng, Wen Wang,
 768 Wenqi Zhang, Yongliang Shen, Weiming Lu, et al. Gui-g²: Gaussian reward modeling for gui
 769 grounding. *arXiv preprint arXiv:2507.15846*, 2025.

770 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 771 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 772 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

773

774 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
 775 Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
 776 understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.

777 Gemini Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 778 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemini 3 technical
 779 report. *arXiv preprint arXiv:2503.19786*, 2025a.

780 Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin
 781 Zhang, Chenzhuang Du, Chu Wei, Congcong Wang, Dehao Zhang, Dikang Du, Dongliang Wang,
 782 Enming Yuan, Enzhe Lu, Fang Li, Flood Sung, Guangda Wei, Guokun Lai, Han Zhu, Hao Ding,
 783 Hao Hu, Hao Yang, Hao Zhang, Haoning Wu, Haotian Yao, Haoyu Lu, Heng Wang, Hongcheng
 784 Gao, Huabin Zheng, Jiaming Li, Jianlin Su, Jianzhou Wang, Jiaqi Deng, Jiezhong Qiu, Jin Xie,
 785 Jinhong Wang, Jingyuan Liu, Junjie Yan, Kun Ouyang, Liang Chen, Lin Sui, Longhui Yu, Mengfan
 786 Dong, Mengnan Dong, Nuo Xu, Pengyu Cheng, Qizheng Gu, Runjie Zhou, Shaowei Liu, Sihan
 787 Cao, Tao Yu, Tianhui Song, Tongtong Bai, Wei Song, Weiran He, Weixiao Huang, Weixin Xu,
 788 Xiaokun Yuan, Xingcheng Yao, Xingzhe Wu, Xinxing Zu, Xinyu Zhou, Xinyuan Wang, Y. Charles,
 789 Yan Zhong, Yang Li, Yangyang Hu, Yanru Chen, Yejie Wang, Yibo Liu, Yibo Miao, Yidao Qin,
 790 Yimin Chen, Yiping Bao, Yiqin Wang, Yongsheng Kang, Yuanxin Liu, Yulun Du, Yuxin Wu,
 791 Yuzhi Wang, Yuzi Yan, Zaida Zhou, Zhaowei Li, Zhejun Jiang, Zheng Zhang, Zhilin Yang, Zhiqi
 792 Huang, Zihao Huang, Zijia Zhao, and Ziwei Chen. Kimi-VL technical report, 2025b. URL
 793 <https://arxiv.org/abs/2504.07491>.

794 Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin
 795 Zhang, Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. *arXiv preprint arXiv:2504.07491*,
 796 2025c.

797 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 798 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the
 799 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

800

801 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
 802 Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3. 5: Advancing open-source multimodal
 803 models in versatility, reasoning, and efficiency. *arXiv preprint arXiv:2508.18265*, 2025a.

804 Xinyuan Wang, Bowen Wang, Dunjie Lu, Junlin Yang, Tianbao Xie, Junli Wang, Jiaqi Deng, Xiaole
 805 Guo, Yiheng Xu, Chen Henry Wu, Zhennan Shen, Zhuokai Li, Ryan Li, Xiaochuan Li, Junda Chen,
 806 Boyuan Zheng, Peihang Li, Fangyu Lei, Ruisheng Cao, Yeqiao Fu, Dongchan Shin, Martin Shin,
 807 Jiarui Hu, Yuyan Wang, Jixuan Chen, Yuxiao Ye, Danyang Zhang, Dikang Du, Hao Hu, Huarong
 808 Chen, Zaida Zhou, Haotian Yao, Ziwei Chen, Qizheng Gu, Yipu Wang, Heng Wang, Diyi Yang,
 809 Victor Zhong, Flood Sung, Y. Charles, Zhilin Yang, and Tao Yu. Opencua: Open foundations for
 computer-use agents, 2025b. URL <https://arxiv.org/abs/2508.09123>.

810 Xuehui Wang, Zhenyu Wu, JingJing Xie, Zichen Ding, Bowen Yang, Zehao Li, Zhaoyang Liu,
 811 Qingyun Li, Xuan Dong, Zhe Chen, et al. Mmbench-gui: Hierarchical multi-platform evaluation
 812 framework for gui agents. *arXiv preprint arXiv:2507.19478*, 2025c.

813

814 Jason Wu, Siyan Wang, Siman Shen, Yi-Hao Peng, Jeffrey Nichols, and Jeffrey Bigham. Webui: A
 815 dataset for enhancing visual ui understanding with web semantics. *ACM Conference on Human
 816 Factors in Computing Systems (CHI)*, 2023a.

817

818 Qianhui Wu, Kanzhi Cheng, Rui Yang, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu,
 819 Baolin Peng, Bo Qiao, Reuben Tan, et al. Gui-actor: Coordinate-free visual grounding for gui
 820 agents. *arXiv preprint arXiv:2506.03143*, 2025.

821

822 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
 823 Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent
 824 conversation. *arXiv preprint arXiv:2308.08155*, 2023b.

825

826 Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
 827 Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
 828 *arXiv preprint arXiv:2402.07456*, 2024a.

829

830 Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen
 831 Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for generalist gui
 832 agents. *arXiv preprint arXiv:2410.23218*, 2024b.

833

834 xAI. Grok-1.5 vision preview, 2024. URL <https://x.ai/blog/grok-1.5v>.

835

836 xAI. Grok-3, 2025. URL <https://x.ai/blog/grok-3>.

837

838 LLM-Core-Team Xiaomi. Mimo-vl technical report, 2025. URL <https://arxiv.org/abs/2506.03569>.

839

840 Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
 841 Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
 842 for open-ended tasks in real computer environments. *Advances in Neural Information Processing
 843 Systems*, 37:52040–52094, 2024.

844

845 Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
 846 Xinyuan Wang, Yuhui Xu, Zekun Wang, Yiheng Xu, Junli Wang, Doyen Sahoo, Tao Yu, and
 847 Caiming Xiong. Scaling computer-use grounding via user interface decomposition and synthesis,
 848 2025. URL <https://arxiv.org/abs/2505.13227>.

849

850 Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
 851 and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. *arXiv
 852 preprint arXiv:2412.04454*, 2024.

853

854 Tianci Xue, Weijian Qi, Tianneng Shi, Chan Hee Song, Boyu Gou, Dawn Song, Huan Sun, and Yu Su.
 855 An illusion of progress? assessing the current state of web agents. *arXiv preprint arXiv:2504.01382*,
 856 2025.

857

858 Yan Yang, Dongxu Li, Yutong Dai, Yuhao Yang, Ziyang Luo, Zirui Zhao, Zhiyuan Hu, Junzhe
 859 Huang, Amrita Saha, Zeyuan Chen, et al. Gta1: Gui test-time scaling agent. *arXiv preprint
 860 arXiv:2507.05791*, 2025.

861

862 Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-ui:
 863 Visual grounding for gui instructions. *arXiv preprint arXiv:2412.16256*, 2024.

864

865 Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scal-
 866 able real-world web interaction with grounded language agents. In Sanmi Koyejo, S. Mo-
 867 hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural
 868 Information Processing Systems 35: Annual Conference on Neural Information Process-
 869 ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
 870 2022*. URL http://papers.nips.cc/paper_files/paper/2022/hash/82ad13ec01f9fe44c01cb91814fd7b8c-Abstract-Conference.html.

864 Jiabo Ye, Xi Zhang, Haiyang Xu, Haowei Liu, Junyang Wang, Zhaoqing Zhu, Ziwei Zheng, Feiyu
 865 Gao, Junjie Cao, Zhengxi Lu, et al. Mobile-agent-v3: Foundamental agents for gui automation.
 866 *arXiv preprint arXiv:2508.15144*, 2025.

867 Wenwen Yu, Zhibo Yang, Jianqiang Wan, Sibo Song, Jun Tang, Wenqing Cheng, Yuliang Liu, and
 868 Xiang Bai. Omniparser v2: Structured-points-of-thought for unified visual text parsing and its
 869 generality to multimodal large language models. *arXiv preprint arXiv:2502.16161*, 2025.

870 Xinbin Yuan, Jian Zhang, Kaixin Li, Zhuoxuan Cai, Lujian Yao, Jie Chen, Enguang Wang, Qibin Hou,
 871 Jinwei Chen, Peng-Tao Jiang, et al. Enhancing visual grounding for gui agents via self-evolutionary
 872 reinforcement learning. *arXiv preprint arXiv:2505.12370*, 2025.

873 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
 874 Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal under-
 875 standing and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on*
 876 *Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

877 Bofei Zhang, Zirui Shang, Zhi Gao, Wang Zhang, Rui Xie, Xiaojian Ma, Tao Yuan, Xinxiao Wu, Song-
 878 Chun Zhu, and Qing Li. Tongui: Building generalized gui agents by learning from multimodal
 879 web tutorials. *arXiv preprint arXiv:2504.12679*, 2025a.

880 Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu
 881 Tang. Android in the zoo: Chain-of-action-thought for GUI agents. In Yaser Al-Onaizan, Mohit
 882 Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024, Miami, Florida, USA, November 12-16, 2024*, pp. 12016–12031. Association
 883 for Computational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-EMNLP.702. URL
 884 <https://doi.org/10.18653/v1/2024.findings-emnlp.702>.

885 Junlei Zhang, Zichen Ding, Chang Ma, Zijie Chen, Qiushi Sun, Zhenzhong Lan, and Junxian
 886 He. Breaking the data barrier–building gui agents through task generalization. *arXiv preprint*
 887 *arXiv:2504.10127*, 2025b.

888 Di Zhao, Longhui Ma, Siwei Wang, Miao Wang, and Zhao Lv. Cola: A scalable multi-agent
 889 framework for windows ui task automation. *arXiv preprint arXiv:2503.09263*, 2025.

890 Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
 891 Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
 892 autonomous agents. *arXiv preprint arXiv:2307.13854*, 2023.

893 Yuqi Zhou, Sunhao Dai, Shuai Wang, Kaiwen Zhou, Qinglin Jia, and Jun Xu. Gui-g1: Understanding
 894 r1-zero-like training for visual grounding in gui agents. *arXiv preprint arXiv:2505.15810*, 2025.

895 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Yuchen Duan, Hao
 896 Tian, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
 897 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

918 **A APPENDIX**
919920 This section provides supplementary materials that complement the main paper.
921922 **A.1 – Large Language Model Usage:** We make a clarification on large language model usage.
923924 **A.2 – More Results:** We report extended evaluations across multiple benchmarks (MMBench-GUI
925 L2, OSWorld-G, AndroidControl, ScienceBoard, and general multimodal benchmarks), highlighting
926 the scalability and cross-platform generalization of our models.
927928 **A.3 – Public Data Used in Training:** We list the public datasets incorporated into ScaleCUA training,
929 specifying the portion of each source utilized.
930931 **A.4 – Action Space:** We describe the unified action space that abstracts platform-specific operations
932 into a concise yet expressive set of commands, enabling consistent control across desktop, mobile,
933 and web environments.
934935 **A.5 – Error Case Analysis:** We provide representative failure cases on desktop, Android, and web
936 platforms to analyze limitations such as incomplete procedural understanding, insufficient state
937 tracking, and positional reasoning errors.
938939 **A.6 – Details of Data Curation:** We detail the multi-platform GUI data collection process underlying
940 ScaleCUA, including sources, application coverage, and platform diversity, which jointly ensure
941 comprehensive domain knowledge and improved generalization.
942943 **A.7 – Data Visualization:** Consolidates illustrative figures for GUI Understanding, GUI Grounding,
944 Weak-Semantic and Human-Curated Trajectories, and trajectory annotation to aid qualitative
945 inspection.
946947 **A.8 – Lessons from Data Acquisition:** We summarizes common pitfalls and platform-specific notes
948 (Windows, Ubuntu, macOS, Mobile, Web), distilling practical guidance for future collection runs.
949950 **A.9 – The Details of WebArena-Lite-v2:** We clarifies details of the benchmark construction and
951 evaluation protocols (e.g., step budgets, metrics) to ensure fair comparisons .
952953 **A.10 – Prompt Engineering:** We release prompt templates for both agent inference and annotation
954 workflows to facilitate reproducibility and adaptation.
955956 **A.1 LARGE LANGUAGE MODEL USAGE**
957958 In this submission, we utilize LLMs (GPT-5, Gemini, *etc.*) to help us polish paper writing and
959 summarize related works.
960961 **A.2 MORE RESULTS**
962963 To fully demonstrate the potential of ScaleCUA, we provide additional results on several benchmarks.
964965 **On MMBench-GUI L2** (Wang et al., 2025c), which incorporates stratified grounding difficulty across
966 major operating systems, ScaleCUA-32B demonstrates performance comparable to state-of-the-art
967 methods as shown in Table 8. It achieves leading scores in the basic difficulty setting across several
968 platforms including Android (96.4), Web (93.9), Linux (81.2), and macOS (88.1), while maintaining
969 competitive results in the advanced difficulty setting (e.g., Web 76.3, Android 81.7). Furthermore,
970 ScaleCUA-7B and ScaleCUA-3B achieve average scores of 78.2 and 73.7, respectively. They
971 demonstrate particularly robust performance in the basic difficulty setting, especially on Windows,
972 where both models score 78.6, and on iOS, with respective scores of 96.1 and 93.0.
973974 **On OSWorld-G** (Xie et al., 2025) for Ubuntu grounding, ScaleCUA-32B demonstrates impressive
975 results with an overall performance of 60.6 shown in Table 9, which includes strong marks in layout
976 understanding (70.0), element recognition (66.7), and fine-grained manipulation (51.0). All of our
977 models underperform on the Refusal subtask because we deliberately excluded the Refusal-specific
978 training data provided by JEDI (Xie et al., 2025). Incorporating these examples may pose a risk of
979 biasing the model toward emitting an await/refusal state in complex grounding scenarios. Such bias
980 diminishes the agent’s propensity for active exploration within the environment, thereby degenerating
981 its success rate in task completion.
982

972 Table 5: Results on MMBench-GUI L1 (GUI Content Understanding) (Wang et al., 2025c).
973

974 Model	975 Windows	976 MacOS	977 Linux	978 iOS	979 Android	980 Web	981 Overall
Easy Level							
GPT-4o (2024)	62.5	67.9	62.4	58.5	56.4	58.5	60.2
Claude-3.5 (2024a)	41.3	50.0	41.6	42.0	39.0	41.8	41.5
Claude-3.7 (2025)	34.7	49.1	39.4	42.8	37.5	40.8	39.1
Qwen-Max-VL (2023)	69.1	72.5	69.9	70.8	63.1	69.5	68.2
Qwen2.5-VL-72B (2025)	65.9	75.2	73.0	67.2	58.1	72.1	67.0
UI-TARS-72B-DPO (2025)	41.6	28.5	35.2	31.1	52.3	35.3	40.2
InternVL3-72B (2025)	74.7	78.7	79.2	83.6	80.1	81.2	79.2
GUI-Owl-7B (2025)	83.0	84.5	85.6	82.6	83.3	88.1	84.5
GUI-Owl-32B (2025)	93.7	<u>89.3</u>	<u>93.3</u>	95.7	90.5	94.1	92.8
ScaleCUA-3B	86.4	83.5	79.9	85.4	80.3	87.4	83.6
ScaleCUA-7B	89.5	86.9	89.1	86.2	<u>87.0</u>	90.1	88.4
ScaleCUA-32B	<u>93.4</u>	91.7	94.3	<u>93.1</u>	90.5	<u>92.3</u>	<u>92.5</u>
Medium Level							
GPT-4o (2024)	56.3	63.1	59.7	54.1	57.7	55.0	57.2
Claude-3.5 (2024a)	39.3	47.6	46.0	44.6	42.0	34.3	41.3
Claude-3.7 (2025)	39.3	39.2	42.3	39.5	36.1	36.2	38.4
Qwen-Max-VL (2023)	63.4	73.9	66.9	68.0	63.7	64.6	65.4
Qwen2.5-VL-72B (2025)	66.3	72.7	72.6	59.3	66.2	68.2	67.5
UI-TARS-72B-DPO (2025)	38.8	41.6	37.1	41.7	54.7	31.6	41.8
InternVL3-72B (2025)	71.5	78.6	79.9	78.4	81.4	78.7	77.9
GUI-Owl-7B (2025)	88.9	88.1	91.2	84.4	85.3	83.6	86.9
GUI-Owl-32B (2025)	94.1	84.5	<u>95.9</u>	<u>87.8</u>	92.8	88.6	<u>91.7</u>
ScaleCUA-3B	91.8	78.5	88.7	74.8	88.6	79.5	85.6
ScaleCUA-7B	93.6	91.7	93.4	84.3	89.6	85.8	90.1
ScaleCUA-32B	95.1	<u>89.4</u>	96.3	92.2	92.6	<u>87.2</u>	92.5
Hard Level							
GPT-4o (2024)	60.7	60.4	52.4	45.3	50.9	50.8	53.5
Claude-3.5 (2024a)	37.4	42.7	34.1	40.9	37.0	38.1	37.6
Claude-3.7 (2025)	33.0	34.5	32.0	39.2	37.0	38.9	35.7
Qwen-Max-VL (2023)	66.6	67.6	65.8	60.2	58.8	65.3	63.7
Qwen2.5-VL-72B (2025)	70.7	68.9	71.0	57.6	53.9	68.1	64.6
UI-TARS-72B-DPO (2025)	31.5	35.9	24.2	36.3	58.1	19.9	35.8
InternVL3-72B (2025)	75.1	77.4	76.2	70.4	75.7	78.1	75.7
GUI-Owl-7B (2025)	87.8	<u>96.4</u>	94.3	87.8	88.9	94.1	90.9
GUI-Owl-32B (2025)	93.3	95.2	<u>95.9</u>	<u>92.2</u>	95.4	92.7	<u>94.2</u>
ScaleCUA-3B	92.3	89.4	93.8	85.3	88.3	88.6	89.9
ScaleCUA-7B	91.9	91.9	94.9	89.6	92.9	91.4	92.3
ScaleCUA-32B	<u>93.0</u>	96.5	96.4	<u>93.1</u>	<u>94.5</u>	<u>94.0</u>	94.4

1006 On **AndroidControl** (Li et al., 2024b) which is an offline planning benchmark developed for the
1007 Android, all ScaleCUA variants exhibit consistently strong performance demonstrated in Table 10. On
1008 the AndroidControl-Low, ScaleCUA-7B attains the highest task completion rate, whereas ScaleCUA-
1009 32B achieves the most reliable grounding, indicating that the compact model favors execution
1010 efficiency while the larger capacity maximizes perceptual fidelity. As for AndroidControl-High,
1011 ScaleCUA-32B demonstrates the highest success rate while showing the smallest degradation from
1012 Low to High. ScaleCUA-3B and ScaleCUA-7B achieve a favorable trade-off, sustaining solid
1013 performance across both low and high settings. The relatively small variance in type prediction across
1014 sizes suggests that residual failures arise more from long-horizon interaction and error accumulation
1015 than from intent misclassification or localization.

1016 On **ScienceBoard** (Sun et al., 2025), a computer use benchmark designed for scientific professionals,
1017 our models show modest yet meaningful capability as shown in 11. The ScaleCUA-32B outperforms
1018 strong VLMs such as GPT-4o (1.6) while remaining below Qwen2.5-VL-72B (12.9) and Claude-3.7-
1019 Sonnet (10.5). Our model excels in domains demanding factual and visual-text reasoning over those
1020 requiring specialized symbolic workflows.

1021 To evaluate the transfer learning capabilities of ScaleCUA-32B, we augment our training with a
1022 diverse set of multimodal data focusing on coding, math and reasoning. These data, sourced from the
1023 post-training corpus of InternVL3 (Zhu et al., 2025), encompass a range of tasks, including OCR,
1024 mathematics, coding, reasoning-QA, and general multimodal understanding. We then assess performance
1025 on four standard **General Multimodal Benchmarks** shown in Table 12. These benchmarks jointly evaluate skills such as mathematical and commonsense reasoning, text comprehension, and

Table 6: Results on ScreenSpot-v2 (Wu et al., 2024b).

Method	Mobile		Desktop		Web		Avg
	Text	Icon/Widget	Text	Icon/Widget	Text	Icon/Widget	
Proprietary Models							
Operator (2025)	47.3	41.5	90.2	80.3	92.8	84.3	70.5
Claude-3.7-Sonnet (2025)	–	–	–	–	–	–	87.6
Seed-1.5-VL (2025)	–	–	–	–	–	–	95.2
General Open-source Models							
Kimi-VL-A3B-Thinking-2506 (2025b)	–	–	–	–	–	–	91.4
MiMo-VL-7B-RL (2025)	–	–	–	–	–	–	90.5
InternVL3.5-241B-A28B (2025a)	97.9	91.5	97.4	82.9	94.0	89.2	92.9
Qwen2.5-VL-3B (2025)	93.4	73.5	88.1	58.6	88.0	71.4	80.9
Qwen2.5-VL-7B (2025)	97.6	87.2	90.2	74.2	93.2	81.3	88.8
Qwen2.5-VL-32B (2025)	97.9	88.2	98.5	79.3	91.2	86.2	91.3
GUI Specialist							
OS-Atlas-Base-7B (2024b)	95.2	75.8	90.7	63.6	90.6	77.3	84.1
UI-TARS-2B (2025)	95.2	79.1	90.7	68.6	87.2	78.3	84.7
UI-TARS-7B (2025)	96.9	89.1	95.4	85.0	93.6	85.2	91.6
UI-TARS-72B (2025)	94.8	86.3	91.2	87.9	91.5	87.7	90.3
UI-TARS-1.5 (2025)	–	–	–	–	–	–	94.2
GUI-Owl-7B (2025)	99.0	92.4	96.9	85.0	93.6	85.2	92.8
GUI-Owl-32B (2025)	98.6	90.0	97.9	87.8	94.4	86.7	93.2
GUI Grounding Models							
SeeClick (2024)	78.4	50.7	70.1	29.3	55.2	32.5	55.1
OmniParser-v2 (2024b)	95.5	74.6	92.3	60.9	88.0	59.6	80.7
JEDI-3B (2025)	96.6	81.5	96.9	78.6	88.5	83.7	88.6
JEDI-7B (2025)	96.9	87.2	95.9	87.9	94.4	84.2	91.7
GUI-Actor-7B (2025)	97.6	88.2	96.9	85.7	93.2	86.7	92.1
GUI-G ² -7B (2025)	98.3	91.9	95.4	89.3	94.0	87.7	93.3
InfiGUI-G1-3B (2025)	99.3	88.2	94.8	82.9	94.9	80.3	91.1
InfiGUI-G1-7B (2025b)	99.0	91.9	94.3	82.1	97.9	89.2	93.5
GTA1-7B (2025)	99.0	88.6	94.9	89.3	92.3	86.7	92.4
GTA1-32B (2025)	98.6	89.1	96.4	86.4	95.7	88.7	93.2
Ours							
ScaleCUA-3B	94.1	86.3	94.9	79.3	89.7	85.7	89.2
ScaleCUA-7B	97.3	90.5	95.4	87.9	94.0	88.7	92.7
ScaleCUA-32B	98.6	91.9	99.0	90.0	94.4	91.6	94.7

open-domain visual question answering, which are also fundamental for computer-use agents. The “ScaleCUA-3B (25%)” specifies the proportion of this general-purpose data relative to the core GUI data used in training.

Based on Table 12, several consistent trends emerge regarding the interaction between the proportion of general-purpose data and agent performance on general VLM benchmarks. First, incorporating moderate amounts of general-purpose data (e.g., 25–50% relative to GUI-specific data) yields notable gains over the 0% setting, particularly on MathVista and $\text{MMMU}_{\text{valid}}$, suggesting that exposing the agent to broader multimodal reasoning tasks improves its mathematical and cross-domain inference ability. For instance, ScaleCUA-3B rises from 52.8 to 58.7 on MathVista and from 48.8 to 52.4 on MMMU when increasing general data to 50%, while maintaining stable performance on RealWorldQA. Second, the results indicate a saturation effect: pushing the general data ratio to 75% or 100% offers only marginal or inconsistent benefits. Third, scaling model capacity amplifies the positive effect of general data. However, our 7B and 32B models still exhibit a substantial performance gap compared to the baseline on general benchmarks, indicating that the proportion of general-purpose data could be further increased. Such adjustments must also consider their potential impact on the computer-use capability of agent models.

A.3 PUBLIC DATA USED IN TRAINING

Table 13 summarizes the public datasets used for training ScaleCUA. Please note that the reported statistics refer to the portion of each dataset actually utilized in our experiments, rather than the original sizes of the source datasets.

A.4 ACTION SPACE

To enable robust cross-platform control, we define a unified action space that abstracts low-level GUI actions into a concise yet expressive set of semantic commands. As shown in Table 14, this action space is designed to be platform-aware yet semantically consistent, allowing our agents to

Table 7: Results on ScreenSpot-Pro (Li et al., 2025).

Agent Model	Development			Creative			CAD			Scientific			Office			OS			Avg
	Text	Icon	Avg	Text	Icon	Avg	Text	Icon	Avg	Text	Icon	Avg	Text	Icon	Avg	Text	Icon	Avg	
Proprietary Models																			
Claude (2024b)	22.0	3.9	12.6	25.9	3.4	16.8	14.5	3.7	11.9	33.9	15.8	25.8	30.1	16.3	26.9	11.0	4.5	8.1	17.1
Operator (2025)	50.0	19.3	35.1	51.5	23.1	39.6	16.8	14.1	16.1	58.3	24.5	43.7	60.5	28.3	53.0	34.6	30.3	32.7	36.6
General Open-source Models																			
Qwen2-VL-7B (2024)	2.6	0.0	1.3	1.5	0.0	0.9	0.5	0.0	0.4	6.3	0.0	3.5	3.4	1.9	3.0	0.9	0.0	0.5	1.6
CogAgent-18B (2024)	14.9	0.7	8.0	9.6	0.0	5.6	7.1	3.1	6.1	22.2	1.8	13.4	13.0	0.0	10.0	5.6	0.0	3.1	7.7
Qwen2-VL-32 (2025)	38.3	3.4	21.4	40.9	4.9	25.8	22.3	6.3	18.4	44.4	10.0	29.5	48.0	17.0	40.9	33.6	4.5	20.4	25.9
Qwen2.5-VL-7B (2025)	51.9	4.8	29.1	36.9	8.4	24.9	17.8	1.6	13.8	48.6	8.2	31.1	53.7	18.9	45.7	34.6	7.9	22.4	27.6
Qwen2.5-VL-32B (2025)	74.0	21.4	48.5	61.1	13.3	41.1	38.1	15.6	32.6	78.5	29.1	57.1	76.3	37.7	67.4	55.1	27.0	42.3	47.6
GUI Specialist																			
ShowUI-2B (2024)	16.9	1.4	9.4	9.1	0.0	5.3	2.5	0.0	1.9	13.2	7.3	10.6	15.3	7.5	13.5	10.3	2.2	6.6	7.7
OS-Atlas-7B (2024b)	33.1	1.4	17.7	28.8	2.8	17.9	12.2	4.7	10.3	37.5	7.3	24.4	33.9	5.7	27.4	27.1	4.5	16.8	18.9
UI-TARS-2B (2025)	47.4	4.1	26.4	42.9	6.3	27.6	17.8	4.7	14.6	56.9	17.3	39.8	50.3	17.0	42.6	21.5	5.6	14.3	27.7
UI-TARS-7B (2025)	58.4	12.4	36.1	50.0	9.1	32.8	20.8	9.4	18.0	63.9	31.8	50.0	63.3	20.8	53.5	30.8	16.9	24.5	35.7
UI-TARS-72B (2025)	63.0	17.3	40.8	57.1	15.4	39.6	18.8	12.5	17.2	64.6	20.9	45.7	63.3	26.4	54.8	42.1	15.7	30.1	38.1
UI-TARS-1.5-7B (2025)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	49.6
UI-TARS-1.5 (2025)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	61.6
GUI-Owl-7B (2025)	76.6	31.0	54.5	59.6	27.3	46.1	64.5	21.9	54.1	79.1	37.3	61.0	77.4	39.6	68.7	59.8	33.7	47.9	54.9
GUI-Owl-32B (2025)	84.4	39.3	62.5	65.2	18.2	45.5	62.4	28.1	54.0	82.6	39.1	63.8	81.4	39.6	71.8	70.1	36.0	54.6	58.0
GUI Grounding Models																			
SeeClick (2024)	0.6	0.0	0.3	1.0	0.0	0.6	2.5	0.0	1.9	3.5	0.0	2.0	1.1	0.0	0.9	2.8	0.0	1.5	1.1
Aria-UI (2024)	16.2	0.0	8.4	23.7	2.1	14.7	7.6	1.6	6.1	27.1	6.4	18.1	20.3	1.9	16.1	4.7	0.0	2.6	11.3
UGround-V1-7B (2024)	—	—	35.5	—	—	27.8	—	—	13.5	—	—	38.8	—	—	48.8	—	—	26.1	31.1
UGround-V1-72B (2024)	—	—	31.1	—	—	35.8	—	—	13.8	—	—	50.0	—	—	51.3	—	—	25.5	34.5
JEDI-3B (2025)	61.0	13.8	38.1	53.5	8.4	34.6	27.4	9.4	23.0	54.2	18.2	38.6	64.4	32.1	57.0	38.3	9.0	25.0	36.1
JEDI-7B (2025)	42.9	11.0	27.4	50.0	11.9	34.0	38.0	14.1	32.2	72.9	25.5	52.4	75.1	47.2	68.7	33.6	16.9	26.0	39.5
UI-R1-3B (2025)	22.7	4.1	—	27.3	3.5	—	11.2	6.3	—	42.4	11.8	—	32.2	11.3	—	13.1	4.5	—	17.8
InfiGUI-R1-3B (2025b)	51.3	12.4	—	44.9	7.0	—	33.0	14.1	—	58.3	20.0	—	65.5	28.3	—	43.9	12.4	—	35.7
InfiGUI-R1-7B (2025b)	57.4	23.4	—	74.7	24.1	—	64.6	15.4	—	80.6	31.8	—	75.7	39.6	—	57.0	29.2	—	51.9
GUI-G1-3B (2025)	50.7	10.3	31.1	36.6	11.9	26.6	39.6	9.4	32.2	61.8	30.0	48.0	67.2	32.1	59.1	23.5	10.6	16.1	37.1
GUI-G ² -7B (2025)	55.8	12.5	—	68.8	17.2	—	57.1	15.4	—	77.1	24.5	—	74.0	32.7	—	57.9	21.3	—	47.5
Ours																			
ScaleCUA-3B	57.8	18.6	38.8	42.9	16.8	32.0	54.3	28.1	47.9	64.6	35.5	52.0	66.7	37.7	53.9	31.8	16.9	25.0	42.3
ScaleCUA-7B	66.2	20.7	44.1	56.6	20.3	41.3	54.8	21.9	46.7	77.1	24.5	54.3	74.0	45.3	67.4	49.5	18.0	35.2	47.9
ScaleCUA-32B	75.3	35.2	55.8	73.2	30.8	55.4	60.4	39.1	55.2	76.4	46.4	63.4	81.4	49.1	73.9	63.6	41.6	53.6	59.2

operate seamlessly across Desktop (Windows, macOS, Ubuntu), Mobile (Android, iOS), and Web platforms. The action set includes universally supported operations such as `click`, `write`, `wait`, and `terminate`, which are shared across all platforms. It also accommodates platform-specific interactions, including `swipe` and `long_press` for mobile devices, and fine-grained mouse or keyboard controls such as `doubleClick`, `rightClick`, `dragTo`, and `hotkey` for desktop and web interfaces. To handle modern interactive elements, `swipe` operation has also been implemented for Web. By standardizing the operation interface through a shared action space, we simplify training and inference while supporting both generalization and specialization. Each action is defined with explicit arguments (e.g., coordinates, keypresses), enabling precise control and compatibility with structured outputs in grounding, direct-action, and reasoned-action inference modes. This design facilitates modular training, policy transfer, and scalable data annotation, forming a critical foundation for developing universal GUI agents.

Table 8: Performance on the MMBench-GUI L2 (GUI Element Grounding) (Wang et al., 2025c).

Model	Windows		MacOS		Linux		iOS		Android		Web		Avg
	Basic	Adv.											
GPT-4o (2024)	1.5	1.1	8.7	4.3	1.1	1.0	5.1	3.3	2.5	1.4	3.2	2.9	2.9
Claude-3.7 (2025)	1.5	0.7	12.5	7.5	1.1	0.0	13.7	10.6	1.4	1.4	3.2	2.3	4.7
Qwen-Max-VL (2023)	43.9	36.8	58.8	56.1	53.9	30.1	77.4	59.1	79.5	70.1	74.8	58.8	58.0
Aguvis-7B-720P (2024)	37.3	21.7	48.1	33.3	33.5	25.0	67.5	65.2	61.0	51.0	61.6	45.5	45.7
ShowUI-2B (2024)	9.2	4.4	24.1	10.4	25.1	11.7	29.0	19.7	17.4	8.7	22.9	12.7	16.0
OS-Atlas-Base-7B (2024b)	36.9	18.8	44.4	21.7	31.4	13.3	74.8	48.8	69.6	46.8	61.3	35.4	41.4
UGround-V1-7B (2024)	66.8	39.0	71.3	48.6	56.5	31.1	92.7	70.9	93.5	71.0	88.7	64.6	65.7
InterVL3-72B (2025)	70.1	42.6	75.7	52.3	59.2	41.3	93.6	80.6	92.7	78.6	90.7	65.9	72.2
Qwen2.5-VL-72B (2025)	55.7	33.8	49.9	30.1	40.3	20.9	56.1	28.2	55.6	25.4	68.4	45.8	41.8
Qwen2.5-VL-7B (2025)	31.4	16.5	31.3	22.0	21.5	12.2	66.6	55.2	35.1	35.2	40.3	32.5	33.9
UI-TARS-1.5-7B (2025)	68.3	39.0	69.0	44.5	64.4	37.8	88.5	69.4	90.5	69.3	81.0	56.5	64.3
UI-TARS-72B-DPO (2025)	78.6	51.8	80.3	62.7	68.6	51.5	90.8	81.2	93.0	80.0	88.1	68.5	74.3
GUI-Owl-7B (2025)	86.3	61.8	81.7	64.5	74.4	61.7	94.9	83.0	95.8	83.7	93.2	72.7	80.5
GUI-Owl-32B (2025)	85.6	65.1	84.9	67.1	77.0	63.3	95.2	85.5	96.1	87.0	95.5	80.8	83.0
InfiGUI-G1-3B (2025b)	74.2	47.1	78.8	55.2	65.4	41.8	95.2	78.8	92.1	78.0	89.7	64.3	73.4
InfiGUI-G1-7B (2025b)	82.7	61.8	83.8	63.9	72.3	52.0	94.9	89.4	95.2	85.6	93.5	76.3	80.8
ScaleCUA-3B	78.6	46.0	79.4	52.9	73.3	49.0	93.0	73.3	94.1	74.4	92.6	63.6	73.7
ScaleCUA-7B	78.6	54.0	82.3	58.7	74.4	56.6	94.3	81.8	96.1	81.1	92.6	73.1	78.2
ScaleCUA-32B	83.0	62.9	88.1	64.2	81.2	65.8	95.9	84.9	96.4	81.7	93.9	76.3	82.0

Table 9: Performance comparison on OSWorld-G (Xie et al., 2025).

Agent Model	Text Matching	Element Recognition	Layout Understanding	Fine-grained Manipulation	Refusal	Overall
Gemini-2.5-Pro (2025)	59.8	45.5	49.0	33.6	38.9	45.2
Operator (2025)	51.3	42.4	46.6	31.5	0.0	40.6
Seed1.5-VL (2025)	73.9	66.7	69.6	47.0	<u>18.5</u>	62.9
OS-Atlas-7B (2024b)	44.1	29.4	35.2	16.8	7.4	27.7
UGround-V1-7B (2024)	51.3	40.3	43.5	24.8	0.0	36.4
Aguvis-7B (2024)	55.9	41.2	43.9	28.2	0.0	38.7
UI-TARS-7B (2025)	60.2	51.8	54.9	35.6	0.0	47.5
UI-TARS-1.5-7B (2025)	<u>70.1</u>	57.9	59.7	51.7	0.0	56.0
UI-TARS-72B (2025)	69.4	60.6	62.9	45.6	0.0	57.1
Qwen2.5-VL-3B (2025)	41.4	28.8	34.8	13.4	0.0	27.3
Qwen2.5-VL-7B (2025)	45.6	32.7	41.9	18.1	0.0	31.4
Qwen2.5-VL-32B (2025)	63.2	47.3	49.0	36.9	0.0	46.5
InternVL3.5-241B-A28B (2025a)	64.4	58.8	55.3	43.0	0.0	53.2
JEDI-3B (2025)	67.4	53.0	53.8	44.3	7.4	50.9
JEDI-7B (2025)	65.9	55.5	57.7	46.9	7.4	54.1
ScaleCUA-3B	64.8	<u>61.8</u>	64.0	43.6	0.0	55.7
ScaleCUA-7B	67.8	<u>61.8</u>	64.8	<u>49.7</u>	0.0	57.8
ScaleCUA-32B	69.0	66.7	70.0	51.0	0.0	<u>60.6</u>

Table 10: Performance comparison on AndroidControl (Li et al., 2024b).

Agent Model	AndroidControl-Low			AndroidControl-High		
	Type	Grounding	SR	Type	Grounding	SR
Claude (2024b)	74.3	0.0	19.4	63.7	0.0	12.5
GPT-4o (2024)	74.3	0.0	19.4	66.3	0.0	20.8
SeeClick (2024)	93.0	73.4	75.0	82.9	62.9	59.1
InternVL-2-4B (2024b)	90.9	84.1	80.1	84.1	72.7	66.7
Qwen2-VL-7B (2024)	91.9	86.5	82.6	83.8	77.7	69.7
Aria-UI (2024)	–	87.7	67.3	–	43.2	10.2
OS-Atlas-4B (2024b)	91.9	83.8	80.6	84.7	73.8	67.5
OS-Atlas-7B (2024b)	93.6	88.0	85.2	85.2	78.5	71.2
Aguvis-7B (2024)	–	–	80.5	–	–	61.5
Aguvis-72B (2024)	–	–	84.4	–	–	66.4
OS-Genesis-7B (2024b)	91.3	–	74.2	66.2	–	44.5
UI-TARS-2B (2025)	98.1	87.3	89.3	81.2	78.4	68.9
UI-TARS-7B (2025)	<u>98.0</u>	89.3	90.8	83.7	80.5	72.5
UI-TARS-72B (2025)	98.1	89.9	91.3	85.2	81.5	74.7
Qwen2.5-VL-3B (2025)	–	–	90.8	–	–	63.7
Qwen2.5-VL-7B (2025)	–	–	91.4	–	–	60.1
Qwen2.5-VL-32B (2025)	–	–	<u>93.3</u>	–	–	69.6
Qwen2.5-VL-72B (2025)	–	–	93.7	–	–	67.4
InternVL3.5-241B-A28B (2025a)	88.1	93.4	82.1	81.0	81.5	68.2
ScaleCUA-3B	91.4	<u>93.7</u>	84.1	81.4	<u>83.9</u>	70.3
ScaleCUA-7B	93.3	<u>93.1</u>	86.0	<u>86.3</u>	84.3	<u>74.8</u>
ScaleCUA-32B	91.9	94.7	85.7	<u>85.7</u>	87.3	75.9

A.5 ERROR CASE ANALYSIS

We here provide several error cases across different platforms to analyze the limitations of our ScaleCUA.

On desktop platforms, ScaleCUA frequently violates *procedural prerequisites* shown in Fig 7 and Fig 8, such as attempting to compress files without selecting them or changing font styles without highlighting the target text. These issues stem from an incomplete understanding of interface states and sub-task dependencies. Moreover, a significant limitation of ScaleCUA emerges when actions result in silent failures, characterized by a lack of discernible state transition. In such instances, the model tends to persevere on the unsuccessful operation, revealing the absence of a robust error-recovery mechanism. This issue underscores the critical requirement for fine-grained perception

Table 11: Performance comparison on ScienceBoard (Sun et al., 2025).

Model	Algebra	Biochem	GIS	ATP	Astron	Doc	Overall
GPT-4o (2024)	3.2	0.0	0.0	0.0	0.0	<u>6.3</u>	1.6
Claude-3.7-Sonnet (2025)	9.7	37.9	<u>2.9</u>	0.0	6.1	<u>6.3</u>	10.5
Gemini-2.0-Flash (2024)	6.5	3.5	<u>2.9</u>	0.0	0.0	6.1	3.2
Qwen2.5-VL-72B (2025)	22.6	<u>27.6</u>	5.9	0.0	<u>9.1</u>	12.5	12.9
InternVL3-78B (2025)	6.5	3.5	0.0	0.0	0.0	<u>6.3</u>	2.7
UI-TARS-1.5-7B (2025)	<u>12.9</u>	13.8	0.0	0.0	6.1	0.0	5.9
ScaleCUA-3B	6.5	13.8	0.0	0.0	0.0	0.0	3.6
ScaleCUA-7B	3.2	3.4	0.0	0.0	1.8	0.0	1.8
ScaleCUA-32B	9.7	10.3	0.0	0.0	12.1	0.0	5.9

Table 12: Performance on General VLM Benchmarks. ScaleCUA-3B (25%) denotes that, during training, the number of general-purpose data samples was set to 25% of the GUI data samples (e.g., Understanding, Grounding, and Planning).

Model	MathVista _{MINI} (2023)	OCR _{Bench} (2024b)	MMMU _{valid} (2024)	RealWorldQA (2024)
Qwen2.5-VL-3B (2025)	62.3	797 (79.7)	53.1	65.4
ScaleCUA-3B (0%)	52.8	819 (81.9)	48.8	65.2
ScaleCUA-3B (25%)	58.6	823 (82.3)	50.6	65.4
ScaleCUA-3B (50%)	58.7	824 (82.4)	52.4	65.1
ScaleCUA-3B (75%)	59.3	818 (81.8)	55.6	65.2
ScaleCUA-3B (100%)	60.6	806 (80.6)	53.4	63.5
Qwen2.5VL-7B (2025)	68.2	864 (86.4)	58.6	68.5
ScaleCUA-7B (50%)	65.4	852 (85.2)	54.7	69.8
Qwen2.5-VL-32B (2025)	74.7	854 (85.4)	70.0	72.2
ScaleCUA-32B (75%)	69.8	827 (82.7)	61.9	72.3

and a robust understanding of element state to interact with context-dependent UI elements, such as focus and selection.

For the Android platform, there exist precision and positional challenges demonstrated in Fig 9. In the first case, the instruction explicitly requires appending text to the top of a file within a note-taking application (Markor). However, the agent fails to recognize this positional constraint, instead inserting

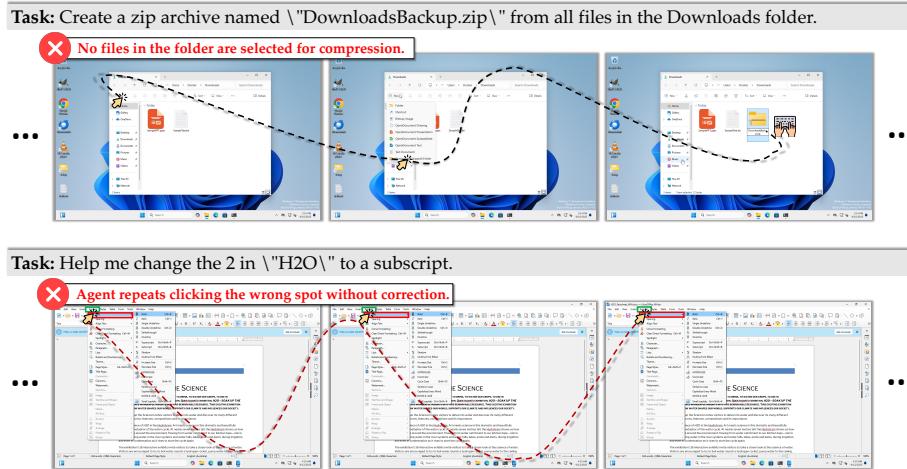


Figure 7: Error cases on the Windows platform. The first case shows ScaleCUA creating an archive without having selected any files, revealing that it sometimes fails to follow the full instruction and only completes a sub-step. The second case shows ScaleCUA persistently repeating the same action until the step limit, when it misses the correct element and the screen remains unchanged.

1242 Table 13: Public data sources used for training our models. The “*” indicates that we count the
 1243 number of samples we use rather than the full size of the original dataset because we have processed
 1244 these datasets and filtered some noisy examples. Some statistics are calculated from Aguvis (2024).
 1245

1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260	1261	1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277	1278	1279	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349	1350	1351	1352	1353	1354	1355	1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366	1367	1368	1369	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381	1382	1383	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	1400	1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420	1421	1422	1423	1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458	1459	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471	1472	1473	1474	1475	1476	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498	1499	1500	1501	1502	1503	1504	1505	1506	1507	1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519	1520	1521	1522	1523	1524	1525	1526	1527	1528	1529	1530	1531	1532	1533	1534	1535	1536	1537	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552	1553	1554	1555	1556	1557	1558	1559	1560	1561	1562	1563	1564	1565	1566	1567	1568	1569	1570	1571	1572	1573	1574	1575	1576	1577	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1588	1589	1590	1591	1592	1593	1594	1595	1596	1597	1598	1599	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615	1616	1617	1618	1619	1620	1621	1622	1623	1624	1625	1626	1627	1628	1629	1630	1631	1632	1633	1634	1635	1636	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651	1652	1653	1654	1655	1656	1657	1658	1659	1660	1661	1662	1663	1664	1665	1666	1667	1668	1669	1670	1671	1672	1673	1674	1675	1676	1677	1678	1679	1680	1681	1682	1683	1684	1685	1686	1687	1688	1689	1690	1691	1692	1693	1694	1695	1696	1697	1698	1699	1700	1701	1702	1703	1704	1705	1706	1707	1708	1709	1710	1711	1712	1713	1714	1715	1716	1717	1718	1719	1720	1721	1722	1723	1724	1725	1726	1727	1728	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742	1743	1744	1745	1746	1747	1748	1749	1750	1751	1752	1753	1754	1755	1756	1757	1758	1759	1760	1761	1762	1763	1764	1765	1766	1767	1768	1769	1770	1771	1772	1773	1774	1775	1776	1777	1778	1779	1780	1781	1782	1783	1784	1785	1786	1787	1788	1789	1790	1791	1792	1793	1794	1795	1796	1797	1798	1799	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810	1811	1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1829	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839	1840	1841	1842	1843	1844	1845	1846	1847	1848	1849	1850	1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895	1896	1897	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917	1918	1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061	2062	2063	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074	2075	2076	2077	2078	2079	2080	2081	2082	2083	2084	2085	2086	2087	2088	2089	2090	2091	2092	2093	2094	2095	2096	2097	2098	2099	2100	2101	2102	2103	2104	2105	2106	2107	2108	2109	2110	2111	2112	2113	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132	2133	2134	2135	2136	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147	2148	2149	2150	2151	2152	2153	2154	2155	2156	2157	2158	2159	2160	2161	2162	2163	2164	2165	2166	2167	2168	2169	2170	2171	2172	2173	2174	2175	2176	2177	2178	2179	2180	2181	2182	2183	2184	2185	2186	2187	2188	2189	2190	2191	2192	2193	2194	2195	2196	2197	2198	2199	2200	2201	2202	2203	2204	2205	2206	2207	2208	2209	2210	2211	2212	2213	2214	2215	2216	2217	2218	2219	2220	2221	2222	2223	2224	2225	2226	2227	2228	2229	2230	2231	2232	2233	2234	2235	2236	2237	2238	2239	2240	2241	2242	2243	2244	2245	2246	2247	2248	2249	2250	2251	2252	2253	2254	2255	2256	2257	2258	2259	2260	2261	2262	2263	2264	2265	2266	2267	2268	2269	2270	2271	2272	2273	2274	2275	2276	2277	2278	2279	2280	2281	2282	2283	2284	2285	2286	2287	2288	2289	2290	2291	2292	2293	2294	2295	2296	2297	2298	2299	2300	2301	2302	2303	2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314	2315	2316	2317	2318	2319	2320	2321	2322	2323	2324	2325	2326	2327	2328	2329	2330	2331	2332	2333	2334	2335	2336	2337	2338	2339	2340	2341	2342	2343	2344	2345	2346	2347	2348	2349	2350	2351	2352	2353	2354	2355	2356	2357	2358	2359	2360	2361	2362	2363	2364	2365	2366	2367	2368	2369	2370	2371	2372	2373	2374	2375	2376	2377	2378	2379	2380	2381	2382	2383	2384	2385	2386	2387	2388	2389	2390	2391	2392	2393	2394	2395	2396	2397	2398	2399	2400	2401	2402	2403	2404	2405	2406	2407	2408	2409	2410	2411	2412	2413	2414	2415	2416	2417	2418	2419	2420	2421	2422	2423	2424	2425	2426	2427	2428	2429	2430	2431	2432	2433	2434	2435	2436	2437	2438	2439	2440	2441	2442	2443	2444	2445	2446	2447	2448	2449	2450	2451	2452	2453	2454	2455	2456	2457	2458	2459	2460	2461	2462	2463	2464	2465	2466	2467	2468	2469	2470	2471	2472	2473	2474	2475	2476	2477	2478	2479	2480	2481	2482	2483	2484	2485	2486	2487	2488

1296
1297

Task: I am currently using an Ubuntu system, and I have wrongly deleted a poster of party night. Could you help me recover it from the Trash?

1298
1299
1300
1301
1302
1303

1304

Task: In the first slide, insert the title "Happy Family" and make the font style "Microsoft JhengHei".

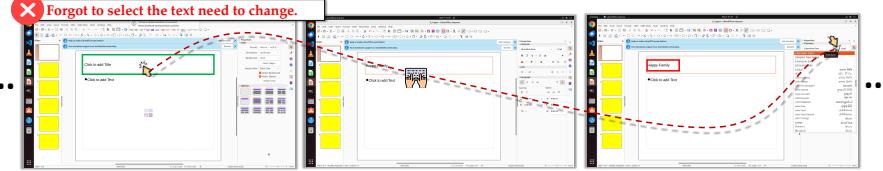

1305
1306
1307
1308
1309
13101311
1312
1313
1314
1315
1316

Figure 8: Error cases on the Ubuntu platform. ScaleCUA repeatedly fails tasks because it does not comprehend procedural prerequisites. The agent attempts to execute a final command without first performing the necessary intermediate step of selecting the target object. For instance, it tries to restore a file without selecting it from the trash or alter a font without highlighting the text. Critically, this operational flaw generates no explicit error message, trapping the agent in a repetitive loop of ineffective actions.

1317

Task: Edit note_SiFbv.txt in Markor. Add to the top of the note Hello, World!

1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328

Task: Take one photo.

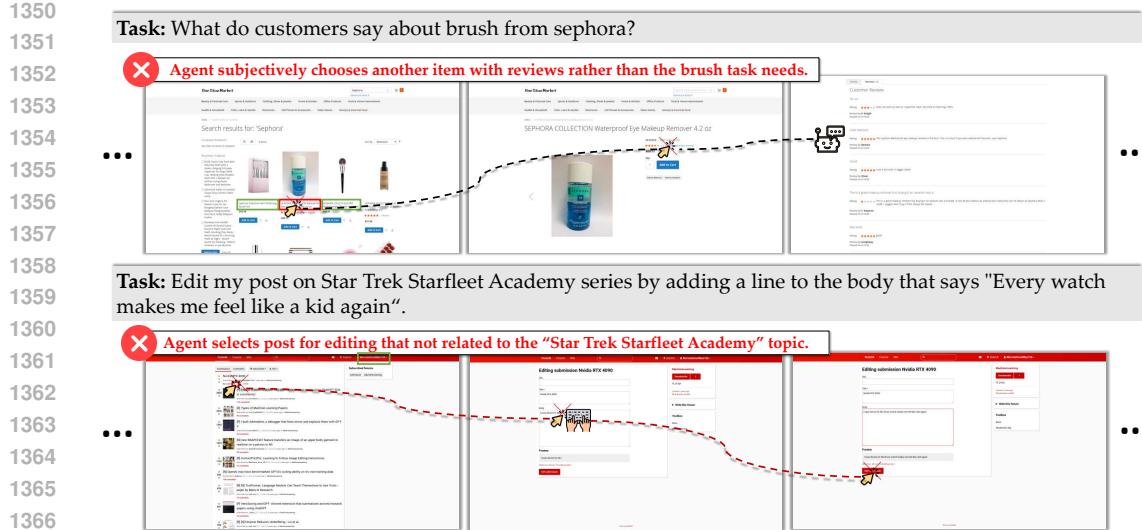

1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339

Figure 9: Error cases on the Android platform. The first case shows an instruction requiring content to be inserted at the top of a document; however, ScaleCUA opens the file and inserts directly at the current cursor location, ignoring the positional prerequisite. The second case shows that when the UI exhibits no obvious state change after an operation, ScaleCUA repeats the same action multiple times, causing tasks such as taking a photo to fail.

1344

1345

leading to unnecessary repetition. These failure modes indicate two key limitations: (1) insufficient grounding of spatial and contextual cues embedded in task descriptions, and (2) inadequate visual state tracking, particularly under conditions where UI feedback is subtle. Addressing these issues may require enhanced visual reasoning modules, memory-based state modeling, or task-guided grounding refinements.

1368 Figure 10: Error cases on the Web platform. The first case shows ScaleCUA made subjective
1369 analytical assumptions, presuming the product necessarily contained reviews, while disregarding
1370 the explicitly specified product category in the task instructions. The second case shows ScaleCUA
1371 struggles with complex tasks in complex initial environments (where numerous posts already exist on
1372 the starting interface). When faced with multifaceted requirements (needing to identify both "my"
1373 posts and posts on a specified topic), it neglected the explicitly stated topic in the instructions, instead
1374 selecting only posts visible in the current observation space that belonged to me.

1375 Empirical analysis of trajectories from web platform reveals that ScaleCUA may struggle with semantic
1376 disambiguation. ScaleCUA often selects visually salient but instruction-inconsistent elements (e.g.,
1377 wrong product category or unrelated post) as presented in Fig 10, revealing a bias toward superficial
1378 cues over explicit constraints like ownership ("my post") or topical relevance ("Starfleet Academy").
1379

1380 To mitigate these issues, three avenues may show promise: (1) **Reflection and State Verification.**
1381 Integrating lightweight screen-change detectors and visual precondition checkers can allow agents
1382 to validate action effects and avoid ineffective loops. (2) **Reinforcement Learning with Recovery**
1383 **Signals.** Reward structures should penalize redundant, non-progressive behaviors and incentivize
1384 predicate satisfaction (e.g., "text selected", "correct tab active") before proceeding. (3) **Memory-**
1385 **Augmented Planning.** By introducing episodic memory to recall past interactions (e.g., whether a
1386 menu opened successfully), the agent can reason across time and avoid retrying failed subgoals.
1387

1388 A.6 THE DETAILS OF DATA CURATION

1389 A.6.1 DATA SOURCES

1390 We systematically collect GUI data across diverse platforms to construct ScaleCUA-Data, including
1391 desktop, mobile, and web environments. As shown in Table. 15, ScaleCUA-Data spans 7 major
1392 operation systems: Windows, Ubuntu, macOS, iOS, iPadOS, Android, and Web. Each platform
1393 features a broad spectrum of frequently used applications designed for productivity, communication,
1394 entertainment, browsing, and utilities.
1395

1396 On desktop platforms, Windows includes both native and third-party applications such as Microsoft
1397 Office Suite, Adobe Creative Cloud, Visual Studio, and system utilities, offering a comprehensive
1398 view of traditional GUI layouts. Ubuntu and macOS incorporate open-source and system software,
1399 including LibreOffice, GIMP, Terminal, Finder, and Safari.
1400

1401 Mobile data is collected from the iOS and Android platforms. The data from the iOS platform
1402 includes system applications such as Settings, Safari, Calendar, and Health, as well as third-party
1403 applications including Weibo, Notability, and Spotify. The Android platform, by virtue of its open
ecosystem, serves as the greatest diversity of data sources, encompassing both system applications

1404

1405

1406

1407

1408

1409

1410

1411

1412

Table 15: The main sources of GUI corpora across different platforms.

1413

Platform	Application
Windows	File Explorer, OS, Chrome, Microsoft Edge, Word, Excel, PowerPoint, LibreOffice Calc, LibreOffice Impress, LibreOffice Writer, Maps, Camera, Calculator, Microsoft Store, Clock, Photos, Outlook, Media Player, VLC Media Player, Calendar, Paint, Paint 3D, QQ Music, KuGou Music, Spotify, Tencent QQ, Visual Studio Code, Dev-C++, Microsoft Solitaire & Casual Game, Pycharm, Android Studio, Vmware Workstation Pro, Vmware Fusion, Adobe Photoshop, Adobe Premiere Pro, Adobe Illustrator, Blender, FL Studio, Unreal Engine, DaVinci Resolve, AutoCAD, SolidWorks, Inventor, Vivado, MATLAB, Origin, Stata, Eviews
Ubuntu	Files, OS, Firefox, Chrome, LibreOffice Calc, LibreOffice Impress, LibreOffice Writer, OneNote, GIMP, Slack, Thunderbird, Visual Studio Code, Zotero
MacOS	Finder, OS, Safari, Chrome, Pages, Numbers, Keynote, Calculator, Maps, Notes, Calendar, Contacts, Reminders, Apple Music, Podcasts, Weather, Stocks, Freeform, Terminal, Clock, Pycharm, Android Studio, App Store, Mail, Visual Studio Code
iOS	Weather, Maps, Find My, Settings, Stocks, Safari, Mail, Calendar, App Store, Home, Camera, Files, Wallet, Contacts, Shortcuts, Clock, Twitter, Weibo, Outlook, Reddit, Instagram, Notes, Keynote, Reminders, Notability, GoodNotes, Rednote, Translate, Calculator, Voice Memos, Shadowrocket, Music, Podcasts, Spotify, iTunes Store, Apple TV, Books, Zhihu, Health
iPadOS	Weather, Settings, Safari, Camera, Goodnotes, Translate, Notes, Freeform, Chrome
Android	Settings, Clock, Desktop Clock, Calendar, Contacts, Files, Camera, LinkedIn, Weibo, Twitter, Tieba, Reddit, Zoom, Gmail, Duolingo, Xueersi, Wikipedia, XuetaoX, edX, Coursera, Skillshare, ZLibrary, To Do, Word, Excel, PowerPoint, OneNote, Taskade, Notion, TickTick, Google Maps, AMap, Tencent Map, Qunar, Trip.com, Ctrip, Qunar, LY.com, Fliggy, Zhixing Train Tickets, Map.me, Booking, Amazon, eBay, Taobao, Alipay, Poizon, VIPShop, 58.com, Beike, Anjuke, Zhuanzhuan, Douyin Mall, Shihuo, Nike, Bilibili, Bilibili CN, QQ Music, himalaya, Classical Music, News, Toutiao, Sohu News, NetEase News, Hupu, Huya, Sohu Video, Pi Music Player, NetEase Cloud Music, KuaiShou, Kugou, WeSing, Douban, Xiaohongshu, Zhihu, Qidian, Xiaohihe, Prime Video, CNN, Quora, Canto, Spotify, Apple Music, YouTube, Fitness, Health, JD Health, Translate, Moji Weather, App Store, Google Chrome, BlueCoins, VPN, Shadowrocket, Surfboard, Speedtest, Meitu, Jianying, Canva, Procreate, Pinterest, GitHub, DeepSeek, Grok
Web	5i5j(sh.5i5j.com), AccuWeather(accuweather.com), adidas China(adidas.com.cn), Adobe(adobe.com), Amazon(amazon.com), American Kennel Club(akc.org), Apple(apple.com), arXiv(arxiv.org), BabyCenter(babycenter.com), Baidu(baidu.com), Baidu Baike(baike.baidu.com), Baidu Tieba(tieba.baidu.com), Beihang University(buaa.edu.cn), Bilibili(bilibili.com), BoardGameGeek(boardgamegeek.com), BoardMix(boardmix.com), Booking.com(booking.com), Budget(budget.com), Cambridge Dictionary(dictionary.cambridge.org), Cars.com(cars.com), CNBlogs(cnblogs.com), CNN(cnn.com), CoinMarketCap(coinmarketcap.com), Coursera(coursera.org), CSDN(csdn.net), Ctrip(ctrip.com), Damai(damai.cn), Dianping(dianping.com), Dior(dior.com), Douban(douban.com), Douyin(douyin.com), Drugs.com(drugs.com), eBay(ebay.com), Britannica(br Britannica.com), ePay(epay.com), Epicurious(epicurious.com), Facebook(facebook.com), Fastly(fastly.com), FedEx(fedex.com), Fliggy(fliggy.com), Food Network(foodnetwork.com), Gaode Maps(gaode.com), Gmail(gmail.com), GitHub(github.com), Google Finance(finance.google.com), Google Maps(map.google.com), Google Scholar(scholar.google.com), GOV.UK(gov.uk), Healthline(healthline.com), Hugging Face(huggingface.co), Hupu(hupu.com), IGN(ign.com), IMDb(imdb.com), Indeed UK(uk.indeed.com), iQiyi(iqiyi.com), JD.com(jd.com), JetBrains(jetbrains.com), KAYAK(kayak.com), Kohl's(kohls.com), Last.fm(last.fm), LeetCode(leetcode.cn), LinkedIn(linkedin.com), Marriott(marriott.com), Microsoft Azure(azure.microsoft.com), Microsoft Office(office.com), ModelScope(modelscope.cn), MSN(msn.com), NBA(nba.com), National Relocation(nationalrelocation.com), NetEase Cloud Music(music.163.com), Newegg(newegg.com), OpenStreetMap(openstreetmap.org), PayPal(paypal.com), PJLab GitLab(gitlab.pjlab.org.cn), QQ(qq.com), QQ Music(y.qq.com), QS China(qschina.cn), Reddit(reddit.com), Redfin(redfin.com), REI(rei.com), Rotten Tomatoes(rottentomatoes.com), Ryanair(ryanair.com), Samsung(samsung.com), Shimo(shimo.im), Sina News(news.sina.com.cn), Skype(skype.com), SpotHero(spothero.com), Stack Overflow(stackoverflow.com), Steam Store(store.steampowered.com), Student.com(student.com), TensorFlow(tensorflow.org), Tencent Docs(docs.qq.com), Tencent Video(v.qq.com), The Weather Channel(weather.com), The Weather Network(theweathernetwork.com), Thumbtack(thumbtack.com), Ticket Center(ticketcenter.com), Trip.com US(us.trip.com), TripAdvisor(tripadvisor.com), UNIQLO China(uniqlo.cn), United Airlines(united.com), University of Cambridge(cam.ac.uk), University of Michigan(umich.edu), Vmall(vmall.com), Virginia DMV(dmv.virginia.gov), WebArena Forum(wa_forum), WebArena GitLab(wa.gitlab), WebArena Shopping(wa.shopping), WebArena CMS(wa.shopping_admin), WebMD(webmd.com), Weibo(weibo.com), Wikipedia(wikipedia.org), WolframAlpha(wolframalpha.com), X(x.com), Xiaohongshu(xiaohongshu.com), Yahoo Finance(finace.yahoo.com), Yahoo Sports(sports.yahoo.com), Yelp(yelp.com), YouTube(youtube.com), Zhihu(zhihu.com), Zhaopin(i.zhaopin.com), Zhaopin Landing Page(landing.zhaopin.com), Zhipin(zhipin.com) and ~ 0.2M URLs selected from TOP-1M URLs(https://tranco-list.eu/)

1450

1451

1452

1453

1454

1455

1456

1457

1458 and a broad array of commercial software from domains such as productivity, e-commerce, social
 1459 media, and multimedia (e.g., WeChat, Taobao, TikTok, and Google Suite).
 1460

1461 For tablet interfaces, our data collection primarily focused on iPadOS, encompassing a selection of
 1462 its most frequently utilized system applications.
 1463

1464 As for Web, we collected pages from over 200 frequently accessed websites spanning e-commerce,
 1465 social media, education, government services, travel, and developer tools. These sources encompass
 1466 major websites such as Amazon, YouTube, Reddit, Wikipedia, Coursera, and GitHub, with data
 1467 captured through both static DOM snapshots and dynamic interaction traces.
 1468

1469 The collected dataset constitutes a high-coverage, cross-platform corpus of real-world graphical
 1470 interfaces which endows the model with comprehensive domain knowledge and leads to significantly
 1471 improved generalization.
 1472

1473 A.6.2 GUI UNDERSTANDING

1474 To support the development of general-purpose computer use agents, we construct a large-scale
 1475 corpus for GUI understanding that encompasses both element-level and screenshot-level semantics.
 1476 This corpus is designed to facilitate fine-grained perception and reasoning over static and dynamic
 1477 user interfaces.
 1478

1479 For element-level understanding, we define five task formulations targeting visual appearance, spatial
 1480 layout, textual grounding, and semantic functionality. First, we introduce the *Element Appearance
 1481 Captioning* task, which requires the model to describe visual features (e.g., shape, color, borders) of a
 1482 given GUI component. These attributes often signal affordances and can help distinguish between
 1483 interactive and static elements. Second, we incorporate *Referring OCR*, a referring task where the
 1484 model extracts the textual content within a specified bounding box, enabling alignment between visual
 1485 context and embedded text. Third, to capture spatial organization, the *Element Layout Understanding*
 1486 task asks the model to predict both absolute screen coordinates and relative positions with respect
 1487 to nearby components. Fourth, to understand the operational roles of components, we define the
 1488 *Element Functionality Captioning* task, where the model infers the intended function of a labeled
 1489 element within its surrounding interface. Finally, we propose a *User Intention Prediction* task, where
 1490 the model is asked to infer the user’s likely goal based on contextual clues and ongoing interactions.
 1491

1492 For screenshot-level understanding, we formulate two tasks that promote global comprehension. The
 1493 *Interface Captioning* task prompts the model to generate a high-level textual description summarizing
 1494 the overall structure, visual hierarchy, and content of the interface. This encourages holistic reasoning
 1495 and layout recognition. Complementarily, the *Screen Transition Captioning* task focuses on temporal
 1496 changes by asking the model to describe the differences between two consecutive screenshots. This
 1497 enables the model to understand GUI dynamics, such as state updates, navigation events, or content
 1498 refreshes.
 1499

1500 Together, these tasks define a comprehensive benchmark for GUI understanding. We leverage vision-
 1501 language models to automatically generate annotations for both element-level and screenshot-level
 1502 tasks, using visual context, structural metadata, and interaction histories. This corpus provides the
 1503 foundation for training agents capable of fine-grained perception, robust grounding, and high-level
 1504 reasoning in complex GUI environments.
 1505

1506 A.6.3 METADATA EXTRACTION

1507 **Windows Platform.** To facilitate the automated analysis and interaction with graphical user interfaces
 1508 (GUIs), we design and implement a framework for extracting UI metadata on the Windows operating
 1509 system. The core of this framework leverages the UI Automation (UIA) technology to perform a
 1510 depth-first traversal of an application’s A11y Trees, initiated from the foreground window identified
 1511 via native Win32¹ API calls. Subsequently, the collected raw data undergoes a multi-stage filtering
 1512 and refinement pipeline to ensure its relevance and actionability. This pipeline first performs a
 1513 geometric validity check to filter out improperly sized or off-screen controls, followed by a visibility
 1514 and occlusion analysis to retain only the topmost, unobscured elements. Furthermore, a semantic
 1515 pruning module uses a predefined keyword list (e.g., “close”, “save”) to remove controls that
 1516

¹<https://learn.microsoft.com/en-us/windows/win32/>

1512 might cause task interruption, while a system component exclusion module discards elements
 1513 within standard OS regions like the taskbar based on their absolute coordinates. Each element that
 1514 successfully passes through this pipeline is then abstracted into a structured JSON object. This object
 1515 encapsulates its multi-dimensional attributes, including identity properties (`control_type`, `name`),
 1516 state information (`is_enabled`), spatial coordinates (`bbox`), and descriptive text (`description`,
 1517 `tooltip`). The aggregation of these objects yields a comprehensive metadata representation of the
 1518 UI, establishing the foundation for subsequent automated tasks.

1519 **Ubuntu Platform.** To extract Ubuntu metadata, we process an XML string representation of the
 1520 A11y Trees, leveraging Python’s built-in `xml` library for parsing². The process commences by
 1521 parsing the raw XML data into a tree structure. Following this, we linearize these nodes into
 1522 structural elements. Specifically, for each node in this set, we programmatically extract key attributes,
 1523 including its tag (representing the element’s role), name, class, and description. To capture the
 1524 semantic content robustly, the element’s text is derived either directly from its text content or inferred
 1525 from its value attribute, particularly for input fields. Positional and dimensional data are extracted
 1526 from `screencoord` and `size` attributes, which together define the element’s bounding box. The final
 1527 output is a structured, tab-separated string where each line represents a single UI element. This
 1528 entry is composed of seven fields: (1) `tag` indicating the UI type, (2) `name` for the element’s
 1529 given name, (3) `text` capturing its content or value, (4) `class` specifying its component class, (5)
 1530 `description` for accessibility-related details, (6) `position` as a top-left (x, y) coordinate, and
 1531 (7) `size` as a width and height pair. In essence, this process distills raw, platform-specific A11y
 1532 Trees into a flattened, semantically-annotated dataset, providing a crucial foundation for downstream
 1533 understanding, grounding tasks.

1534 **MacOS Platform.** We extract UI metadata from macOS applications by leveraging the ma-
 1535 cOS Accessibility API, primarily via the `ApplicationServices`³ frameworks. It allows
 1536 structured traversal of the A11y Trees by programmatically accessing on-screen UI windows
 1537 and querying attributes such as `AXPosition`, `AXSize`, `AXRole`, `AXTitle`, `AXValue`, and
 1538 `AXDescription`. To initiate the process, we identify top-level windows from the system window
 1539 list using `CGWindowListCopyWindowInfo`, filter for visible application windows, and create
 1540 `AX` references using `AXUIElementCreateApplication`. A recursive collection strategy is
 1541 then applied, traversing each window’s A11y Trees up to a bounded depth while filtering out off-
 1542 screen or irrelevant elements. To ensure semantic clarity, we enrich metadata by inferring contextual
 1543 labels for interactive elements (e.g., `AXButton`, `AXTextField`) based on their surrounding static
 1544 text, spatial layout, and role. Further, we apply spatial deduplication heuristics to eliminate overlap-
 1545 ping or redundant elements, and merge content-bearing `AXStaticText` regions with their parent
 1546 interactive widgets when appropriate. The final output is a flattened list of UI elements, each anno-
 1547 tated with role, text content, description, and bounding box information. Structurally, each metadata
 1548 entry consists of: (1) `role` indicating UI type (e.g., `AXButton`), (2) `text` and `description`
 1549 capturing semantic content, (3) a `bbox` dictionary with `x`, `y`, `width`, and `height`, and (4) option-
 1550 ally a list of `children` for nested components. This pipeline enables robust and interpretable
 1551 extraction of macOS GUI structures, supporting downstream tasks such as screen annotation, interac-
 1552 tion modeling, and agent behavior learning. Additionally, due to the limited accessibility information
 1553 exposed by some system-level macOS applications or the difficulty in filtering non-visible elements,
 1554 we incorporate `omniparser-v2` as a complementary mechanism to refine and validate extracted
 1555 elements based on screenshot alignment and bounding box overlap.

1556 **Mobile Platform.** For Android, we begin by using `UIAutomator2`⁴ to dump the current app’s
 1557 accessibility hierarchy as XML and parse it into an in-memory `lxml` tree. In a depth-first walk, we
 1558 record each node’s `class`, `resourceID`, `text` and `content description`, and parse its
 1559 `bounds` string (e.g. "`[x1, y1] [x2, y2]`") into integer coordinates to build robust locators and
 1560 raw geometry. During this pass we filter out any control that is off-screen, too small (for example,
 1561 `width < 5 px` or `height < 15 px`), devoid of both text/description and interaction flags (`clickable`,
 1562 `focusable`, `scrollable`, or `long-clickable`), or fully occluded by its parent—leaving
 1563 only truly visible, actionable elements. For each remaining node, we generate a concise label by
 1564 combining up to the first ten words of its text or description with its UI role (e.g. “Button” or
 1565

²<https://docs.python.org/3/library/xml.etree.elementtree.html>

³<https://developer.apple.com/documentation/applicationservices>

⁴<https://uiautomator2.readthedocs.io/en/latest/>

“EditText”) and infer possible actions (click, swipe, long press, write). In a second sweep, we detect exactly which elements support taps, focus moves, scrolling, or long presses, then wrap each into a structured record containing its unique identifier, bounding-box coordinates, a summary of core attributes (ID, text, type, state flags like `enabled` and `visible_to_user`), and the full raw attribute map (package, index, checkable/checked, password, etc.). Finally, we serialize this collection as a flat JSON array or tab-separated lines, producing a complete, coordinate-aware metadata set that underpins precise mobile UI analysis and automated testing. For iOS, we feed the screenshot directly into OmniParser V2 (Yu et al., 2025), which parses the page elements—extracting their type, bounding box, interactivity, content, and so on—and uses this information as metadata.

Web Platform. Our web metadata extraction pipeline employs Selenium WebDriver⁵ with ChromeDriver⁶ to automate web interaction trajectory acquisition using a random walk algorithm. At each step, it leverages browser-native rendering to ensure visual fidelity while capturing the current page’s element metadata, including coordinates, descriptions, types, and special attribute information. The pipeline executes a JavaScript parsing pipeline via Chrome DevTools Protocol (CDP) that implements a comprehensive element classification and filter methodology. Clickable elements are identified through a multi-criteria approach combining semantic **HTML tags** (`<a>`, `<button>`, `<input>`, `<select>`, `<textarea>`, `<option>`, `<video>`), **CSS properties** (`cursor:pointer`, since CSS properties cascade to child elements, we only treat an element as clickable if its parent lacks `cursor:pointer`, ensuring accurate detection of standalone clickable elements), **JavaScript click event listeners**, and **element attributes** (`onclick`, `ondblclick`, `roles` contain `button`, `option`, `tab`); Non-interactive elements are systematically classified as text objects, media objects, or structural panels through DOM hierarchy analysis. All elements undergo rigorous validation including **geometric verification** using `getBoundingClientRect()` to filter occluded components, **visibility validation** through CSS property checks (`display:none`, `visibility:hidden`, `opacity:0`), and **active validation** via `document.elementFromPoint()` center-point sampling to confirm visual prominence and top-layer activity. Finally, we perform a set difference operation with the elements from the last step to filter out the set of new elements for the random walk. Text description metadata aggregation incorporates content from over 12 attributes including `textContent`, `innerText`, `value`, `alt`, `title`, and `aria-label`, normalized through whitespace compression algorithms. The framework implements multiple integrity safeguards including dynamic language detection via `langdetect`⁷, sensitive lexicon pattern matching, and visual anomaly detection with adaptive boundary refinement. Cross-resolution robustness is achieved through randomized viewport initialization spanning device pixel ratios (1.4–2.1) and common resolutions (720p, 1080p, 2K, 4K, 2560×1600), stabilized via CSS viewport normalization techniques. This comprehensive web trajectory metadata extraction pipeline ensures exceptional data integrity, security, diversity, granularity, and accuracy, thereby establishing a robust foundation for instruction construction and model training.

A.6.4 GUI GROUNDING

GUI grounding is a fundamental capability for computer use agents, enabling them to associate the natural language instruction with a corresponding region of interest. Effective grounding determines whether the agent can interact with the correct interface components, directly impacting its ability to complete downstream tasks. In fact, a grounding-only agent can be paired with a general-purpose planner (e.g., GPT-4o (Hurst et al., 2024)) to complete tasks via a modular style.

To support various grounding demands, we construct a multi-format GUI grounding corpus with three distinct supervision targets: point grounding, bounding box grounding, and action grounding. Point grounding requires the model to identify a single pixel-level location, typically the center of a button, icon, or control, that corresponds to a user instruction. Bounding box grounding extends this capability by predicting rectangular regions that encapsulate target elements, which is particularly useful for operations involving region selection, such as dragging or editing. Action grounding combines spatial localization with operational semantics by producing an executable command, such as `click (x=105, y=23)`, that aligns with the intended interaction. As for the annotation, we reuse structured annotations generated during the GUI understanding stage. Specifically, appearance,

⁵<https://www.selenium.dev/>

⁶<https://www.google.cn/chrome>

⁷<https://github.com/Mimino666/langdetect>

1620 spatial, and functional descriptions of each UI element provide rich supervision signals. The center
 1621 point and bounding box coordinates are extracted directly from UI layout metadata or visual parsing
 1622 modules. Action-level grounding pairs these spatial targets with predefined atomic operations based
 1623 on the element’s inferred function. In addition, we explore data augmentation strategies to expand
 1624 the grounding corpus. Specifically, we filter out previously annotated elements from the metadata
 1625 and use prompt templates combined with GPT-4o to generate a larger set of grounding annotations.
 1626 This augmented data is designed to improve the model’s generalization ability across diverse GUI
 1627 layouts and interaction patterns. This annotated corpus serves as a foundation for learning robust
 1628 visual-linguistic alignment and facilitates both direct interaction and integration with high-level task
 1629 planners.

1630

1631 A.6.5 WEAK-SEMANTIC TRAJECTORY

1632 While the trajectories collected by rule-based agents do not correspond to explicit task objectives,
 1633 we incorporate heuristics into the exploration process to encourage transitions into deeper and
 1634 less frequently visited interface states. This results in more diverse and representative interaction
 1635 sequences, which are critical for training agents to generalize across complex GUI structures.

1636

1637 To further exploit the potential of these unsupervised trajectories, we segment long interaction
 1638 sequences into shorter, weakly semantic sub-trajectories. The segmentation is based on screenshot
 1639 similarity: when a current screen is visually similar to a previous one, it often indicates that the agent
 1640 has reached a terminal or redundant interface state with minimal novelty in further interactions. These
 1641 similarity-based boundaries serve as natural points for restarting exploration, thereby improving
 1642 coverage and trajectory diversity.

1643

1644 We refer to the resulting sequences as *weak-semantic trajectories*, as they preserve partial continuity
 1645 and structural coherence without being aligned to manually defined tasks. Despite their lack of strong
 1646 supervision, such trajectories often reflect meaningful UI flows, especially when the agent is biased
 1647 toward newly rendered elements.

1648

1649 We hypothesize that exposure to weak-semantic trajectories can help the agent internalize common
 1650 patterns of GUI interaction and enhance its planning ability. If validated, this approach may offer a
 1651 cost-effective alternative to large-scale manual annotation, accelerating the evolution of more capable
 1652 computer use agents through low-cost, high-coverage exploration.

1653

1654 A.6.6 HUMAN-CURATED TRAJECTORY

1655

1656 In addition to rule-driven exploration, we incorporate human-curated trajectories to address the
 1657 limitations of automatically collected data. While rule-driven agents enable scalable collection, they
 1658 inherently exhibit stochasticity and often fail to uncover certain goal-directed operations, especially for
 1659 tasks requiring deep or context-specific interactions. Moreover, although weak-semantic trajectories
 1660 segmented from raw explorations provide partial structure, their action sequences are not always
 1661 aligned with human reasoning. As a result, they may contain fragmented or noisy behaviors that limit
 1662 their utility for downstream training.

1663

1664 To overcome these limitations, we design a human-in-the-loop protocol for collecting high-quality
 1665 task trajectories. We begin by constructing a seed task set, categorizing applications into common
 1666 use domains such as daily utilities, entertainment, and productivity. For each domain, we identify
 1667 representative applications and select frequently used functions based on user documentation and
 1668 empirical analysis. Annotators are then instructed to convert these functions into clear, goal-oriented
 1669 task descriptions, ensuring linguistic clarity and operational feasibility. Using our unified cross-
 1670 platform recording system, human experts remotely interact with each application environment
 1671 encapsulated within a Docker container. This design provides process isolation, avoids side effects
 1672 such as misoperation. Annotators are able to finish tasks in a natural and fluent manner, producing
 1673 coherent action trajectories that reflect realistic usage patterns across platforms.

1674

1675 These curated trajectories serve as high-quality supervision for training agents with accurate planning
 1676 and execution capabilities. They complement the broader, noisier dataset collected via automation,
 1677 and provide reference paths that guide model alignment with human intent and behavior.

1674
1675

A.6.7 ANNOTATION SCHEMES

1676
1677
1678
1679
1680
1681
1682

In our data acquisition, we collect screenshots along with their metadata, which includes all potentially interactive elements on the page. Since different exploration paths can lead to the same state and common states like the homepage are visited frequently, we employed image feature similarity to deduplicate these screenshots. This yields a unique set of interface screenshots paired with their corresponding metadata. To reduce redundancy and mitigate noise within the metadata, we randomly sample 25 to 40 elements per screenshot. These elements are then semantically filtered using GPT-4o to ensure both efficacy and diversity.

1683
1684
1685
1686
1687
1688
1689
1690
1691
1692

For each retained element, we mark its position on the image using a red box with an arrow. By combining with associated metadata, we prompt GPT-4o to generate appearance and position descriptions, and Claude-3.7-Sonnet (Anthropic, 2025) to generate functional descriptions. These serve as ground truth annotations for our Element Appearance Captioning, Element Layout Understanding, and Element Functionality Captioning, respectively. These descriptions are further used to construct grounding tasks, where the appearance and position descriptions are used for non-action grounding and the function description is used for action-based grounding. To simulate all possible positions of elements and accommodate a wider range of usage scenarios, we perform data augmentation. This includes simulating higher resolutions by stitching two images together, as well as cropping elements and pasting them onto solid-color backgrounds or real-world backgrounds from images captured by the author’s own device.

1693
1694
1695
1696
1697

For each unique interface screenshot, GPT-4o is also used to generate an overall caption. If the image was not the final step of a trajectory, we additionally provided GPT-4o with the subsequent screenshot along the same exploration path to summarize the UI changes and infer the intention. These are used for Screen Transition Captioning and User Intention Prediction tasks.

1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708

For all trajectories, we provide Claude-3.7-Sonnet with the current and next screenshots, as well as a cropped image of the interacted element, to infer both the step-level instruction and the reasoning process. For weakly semantic trajectories that primarily involve navigation across pages, we generate high-level task objectives. To do this, we provide Claude-3.7-Sonnet with the first and last screenshots of the trajectory to synthesize a navigation-related task goal. Considering that different annotators have varying styles of writing instructions and different operational habits, we implement two types of augmentations for trajectories to improve model generalization. The first is instruction augmentation, where we prompt the model to generate task instructions in diverse styles, aiming to cover all possible user scenarios. The second is trajectory augmentation, for which we prompt the model to generate several step-level instructions and the reasoning process based on the trajectory. This can help mitigate the noise introduced by model labeling. All prompts used for annotation are provided in the Appendix A.10.2.

1709
1710
1711

A.6.8 MORE DETAILS OF DATA DISTRIBUTION

1712
1713
1714
1715
1716
1717
1718

In Fig. 11, we visualize the data distribution for each task domain. Fig. 11b provides a hierarchical view of the trajectory composition across platforms and types. By integrating agent-generated and expert-curated signals, we ensure both data diversity and quality. Our ScaleCUA-Data delivers the largest GUI grounding dataset to date, coupled with substantial understanding and planning examples. Its platform coverage and hierarchical task composition form a comprehensive foundation for training robust, cross-platform GUI agents. The performance of ScaleCUA validates the quality of ScaleCUA-Data, and highlights future directions in data-centric agent training.

1719
1720
1721

A.7 DATA VISUALIZATION

1722
1723

A.7.1 GUI UNDERSTANDING

1724
1725
1726
1727

To qualitatively demonstrate our data in GUI understanding tasks, we provide examples that cover both element-level and screenshot-level understanding. At the element level, we have designed five distinct tasks regarding individual GUI elements. Table 17 showcases specific examples of these tasks. At the screenshot level, we focus on the ability to comprehend the entire GUI interface globally and its dynamic changes. Table 18 provides examples for these two tasks.

Table 16: Distribution of examples in our training corpus.

Task Domain	Tasks	#Images	#Examples
Understanding	Element Appearance Captioning, Referring OCR,		
	Element Layout Understand,	355.5K	471.4K
	Element Functionality Captioning,		
	User Intention Prediction,		
	Interface Captioning, Screen Transition Captioning		
Grounding	Bounding Box Point, Action	1.6M	17.1M
Task Planning	Weak Semantics Trajectories	5.5K	15.0K
	Human-Curated Trajectories	29.3K	4.0K
	Enhanced Trajectories	29.3K	48.2K

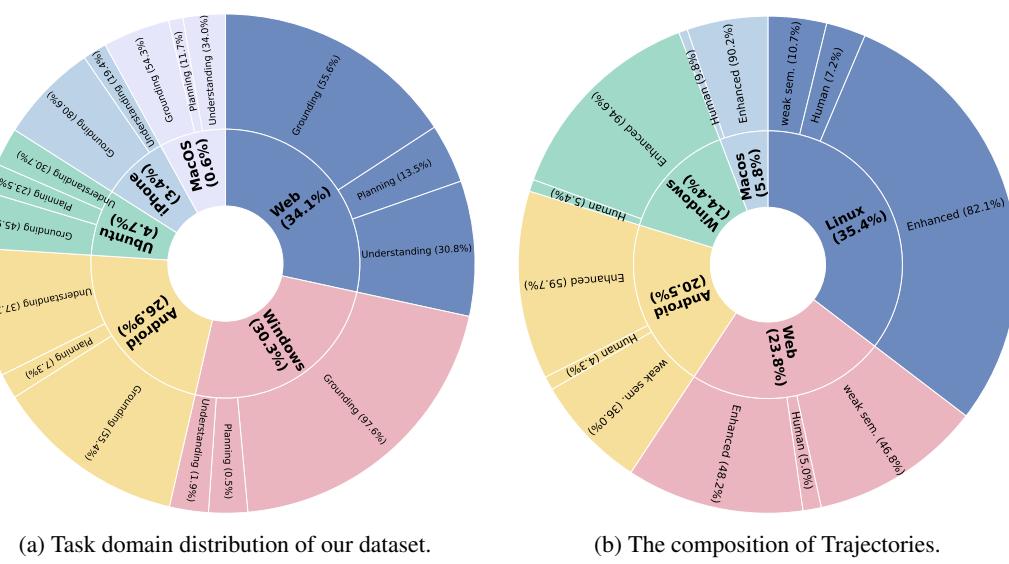
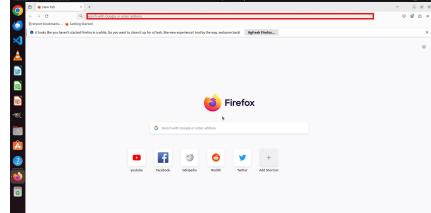
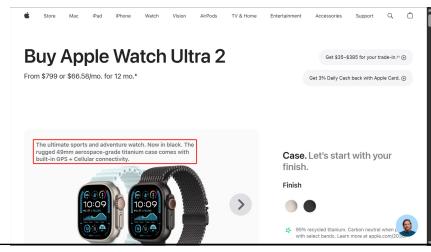
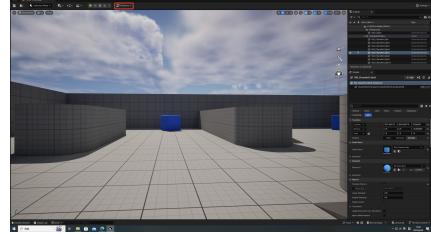
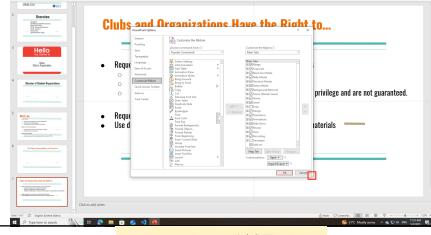
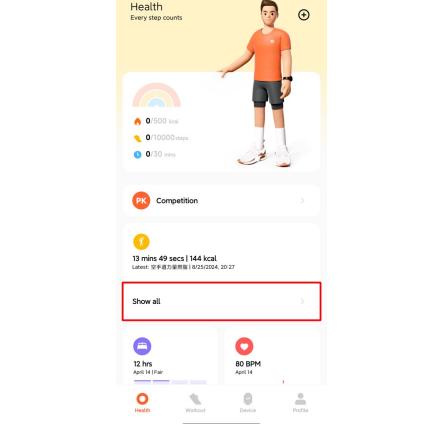


Figure 11: Data distribution of our dataset.

A.7.2 GUI GROUNDING






To enable precise interaction, a model must be able to map natural language instructions to specific elements on an interface. As mentioned in Section 4.2, we support three distinct GUI grounding modes to accommodate a variety of scenarios and Table 19 provides a visual illustration of these three modes.

A.7.3 WEAK-SEMANTIC TRAJECTORY

As mentioned in Sec. A.6.5, the weak-semantic trajectory processing pipeline begins with rule-driven agents performing depth-first exploration across GUI environments. These agents generate extensive interaction sequences by randomly selecting actions from available options at each step, while heuristic pruning eliminates redundant branches to improve efficiency. Although these trajectories lack explicit high-level goals, they provide broad coverage of interface states. To enhance the utility of these unsupervised trajectories, we segment them into coherent sub-sequences based on visual similarity between screenshots.

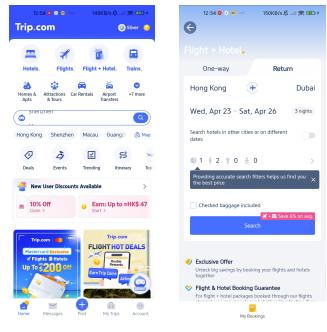

Fig. 12 demonstrates the exploration pattern in desktop environments, while Fig. 13 and 14 show the equivalent processes for mobile and web platforms, respectively. In each case, the random-walk agent generates comprehensive navigation patterns through systematic exploration of the interface.

Table 17: Task visualization for element-level understanding.

Examples of Five Types of Tasks.	
	<p>[Element Appearance Captioning] Q: Please describe the appearance of the element marked in the image. A: A rectangular search bar with a white/light gray background and placeholder text 'Search with Google or enter address' in light gray font. The search bar has smooth, rounded corners and a subtle border. It appears to be empty with no entered text.</p>
	<p>[Referring OCR] Q: Please output the text content correctly responding to this term: <box>[[61, 563, 435, 651]]</box> A: A rectangular search bar with a white/light gray background and placeholder text 'Search with Google or enter address' in light gray font. The search bar has smooth, rounded corners and a subtle border. It appears to be empty with no entered text.</p>
	<p>[Element Layout Understanding] Q: Describe the position of the highlighted elements in the image, such as their location relative to other objects, alignment, and any spatial relationships. A: Located in the top toolbar of the application window, positioned between the interface navigation controls on the left and the viewport controls on the right. It sits approximately in the upper third of the screen, within the main toolbar area.</p>
	<p>[Element Functionality Captioning] Q: Describe the position of the highlighted elements in the image, such as their location relative to other objects, alignment, and any spatial relationships. A: Use the size grip at the corner of the PowerPoint Options window to change its size</p>
	<p>[User Intention Prediction] Q: Analyze the current image and the provided action 'click(x=540, y=1686)', then predict the user's intent based on these inputs. A: The user likely intends to view detailed information or a complete list of their past workout activities, specifically the "Latest: Karate Power Fat Burn" session recorded on 8/25/2024 at 20:27, as the label "Show all" suggests an expansion or summary of historical data.</p>

These weak-semantic trajectories serve as valuable training signals despite their lack of strong task alignment. They expose models to common GUI interaction patterns and state transitions, complementing the more structured but limited human-curated data.

1836
1837
1838 Table 18: Task visualization for screenshot-level understanding.
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851

Examples of Two Types of Tasks.	
	<p>[Interface Captioning]</p> <p>Q: Provide a detailed description in the current image.</p> <p>A: The image shows a weather application interface displaying the forecast for Shanghai. The current temperature is 66°F (about 19°C) with sunny conditions. The interface shows a detailed forecast for Friday, April 4, 2025, with a high of 69°F and a low of 48°F. The hourly forecast indicates temperatures will range from 66°F to 50°F throughout the day, with sunset occurring at 6:14 PM. Wind conditions show a speed of 3 MPH with gusts up to 11 MPH. The interface also displays additional weather information including visibility (14 mi), UV index (7 - High), and a five-day forecast showing temperatures for upcoming days. The air quality map shows green areas indicating good air quality around the user's location.</p>
	<p>[Screen Transition Captioning]</p> <p>Q: Analyze the differences between two consecutive GUI screenshots. Describe the initial state, highlight the changes in the second screenshot.</p> <p>A: In the first screenshot, we see the Trip.com mobile app homepage with various booking options including Hotels, Flights, Flight + Hotel, Trains, and other services. After tapping on Flight + Hotel option, the second screenshot shows the Flight + Hotel booking page where users can input their travel details. The page displays a one-way/return toggle (with 'Return' selected), origin and destination fields set to Hong Kong and Dubai respectively, travel dates (Wed, Apr 23 - Sat, Apr 26 for 3 nights), traveler count settings, and a search button at the bottom.</p>

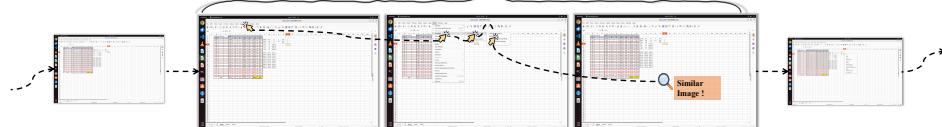
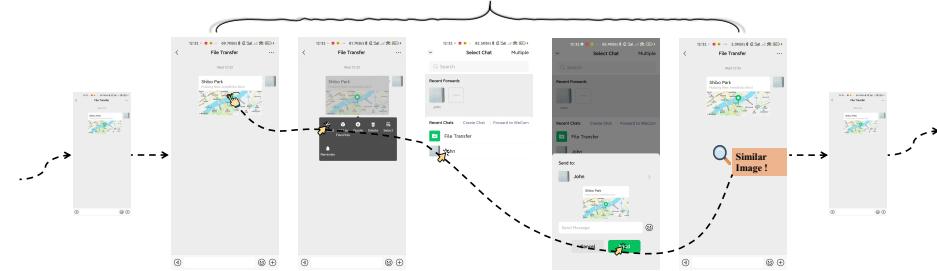
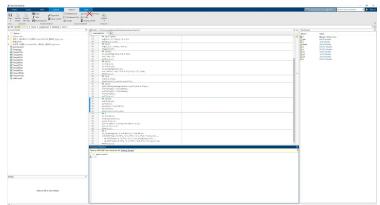



1866
1867
1868 Summarization: I aim to set language to English (USA) then return to my.1869
1870
1871
1872
1873
1874 Figure 12: An example of a weak semantic trajectory on the Ubuntu platform.1875
1876
1877 Summarization: Forward the address from the File Transfer chat in WeChat to John.1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889 Figure 13: An example of a weak semantic trajectory on the Android platform.

Table 19: Task visualization for GUI grounding

Examples of Three Modes.	
	<p>[Point Grounding] Q: Return the point within this UI element: <ref>Preformatted Text button in the EDITOR tab's formatting toolbar that allows users to insert pre-formatted text tags in MATLAB's editor.</ref> A: <ref>Preformatted Text button in the EDITOR tab's formatting toolbar that allows users to insert pre-formatted text tags in MATLAB's editor.</ref><point>[[223, 45]]</point></p>
	<p>[Bbox Grounding] Q: Indicate the location with a bounding box to this UI element: <ref>A white-faced analog clock with black numerals (1-12) and three hands, placed in the upper left corner.</ref> A: <ref>A white-faced analog clock with black numerals (1-12) and three hands, placed in the upper left corner.</ref>>[[97, 69, 218, 227]]<bbox></p>
	<p>[Action Grounding] Q: Click the 'Open' option to open the selected file A: <action>click(x=0.7983, y=0.4967) </action></p>

1920 **Summarization:** Try reading the Advanced volume of On Java Chinese version.

Figure 14: An example of a weak semantic trajectory on the web platform.

A.7.4 HUMAN-CURATED TRAJECTORY

1931 Fig. 15-19 illustrate human-curated trajectories across five platforms: Windows, Ubuntu, macOS,
1932 Android and Web. Each trajectory demonstrates precise human-annotated interactions, rendered as
1933 mouse/gesture traces over consecutive screenshots, forming high-quality demonstrations for data
1934 collection. These trajectories span diverse applications such as Excel, SolidWorks, Gmail, Numbers,
1935 Amap, Twitter/X, and GitHub, showcasing real-world complexity in cross-platform environments.
1936 The visualizations highlight platform-specific GUI logic (e.g., desktop file operations vs. mobile touch
1937 navigation), as well as long-horizon reasoning steps (e.g., multi-page exploration, search-before-edit
1938 workflows).

A.7.5 TRAJECTORY ANNOTATION

1941 Building upon the annotation schemes detailed in Sec. A.6.7, we systematically process tra-
1942 jectory data to generate high-quality training corpora. Our trajectory annotation focuses on
1943 two key aspects: (1) low-level operational instructions generated for each interaction step,
(2) chain-of-thought rationales explaining the decision process. As demonstrated in Ta-

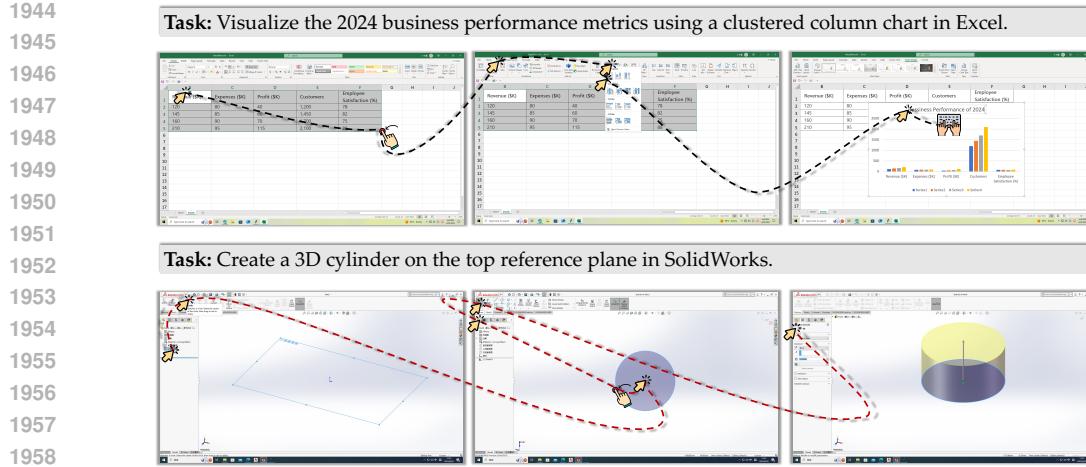


Figure 15: Examples of human-curated trajectories on the Windows platform.

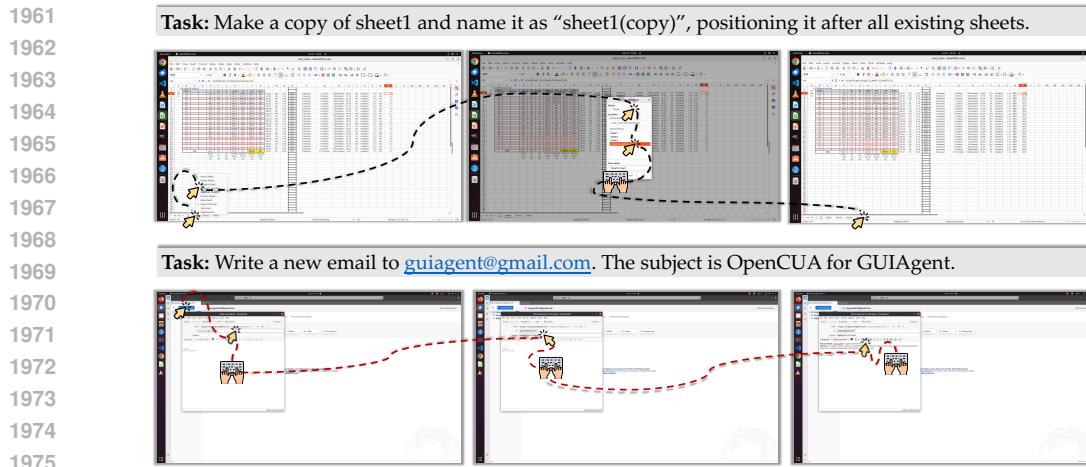


Figure 16: Examples of human-curated trajectories on the Ubuntu platform.

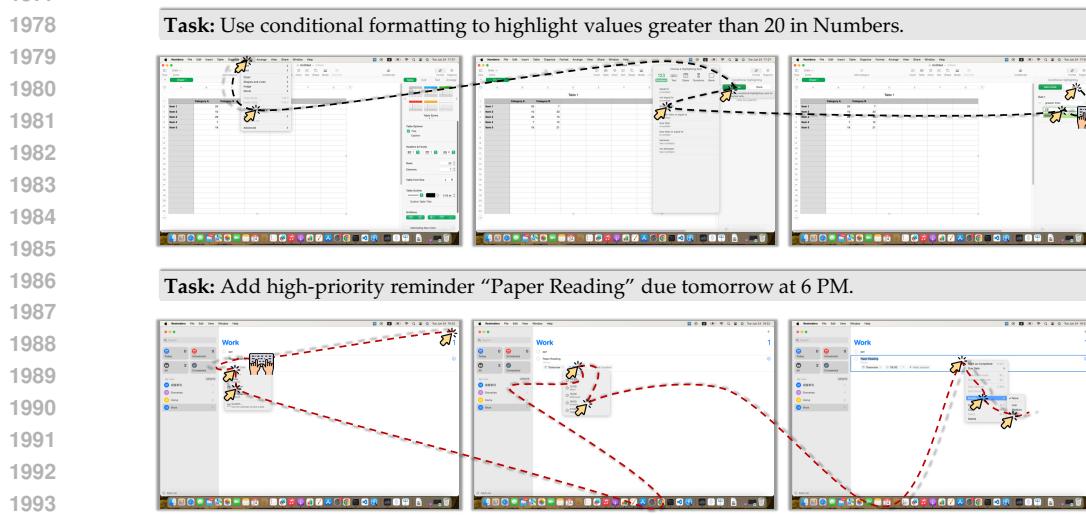
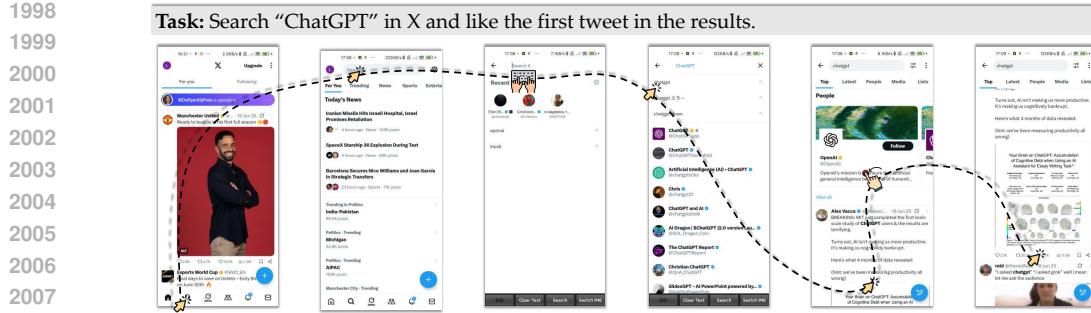



Figure 17: Examples of human-curated trajectories on the macOS platform.

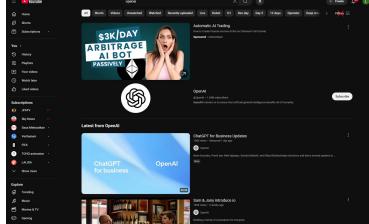
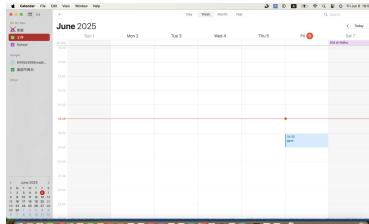
ble 20, these annotations are formally represented using XML tags to distinguish between operational instructions (`<operation>...</operation>`) and their cognitive justification

Task: Search “ChatGPT” in X and like the first tweet in the results.

Task: In Amap, navigate the route from Shanghai Jiao Tong University Xuhui Campus to the Bund.

Task: Check the public list of members of the “google” organization.

Task: Please tell me which games are in the top three of the popular games list.



2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039 (<think>...</think>), which support both direct-action execution and reasoned-action
2040 paradigms.

A.8 LESSONS FROM DATA ACQUISITION

A.8.1 COMMON PROBLEMS

2041
2042
2043
2044
2045 **Adaptive Bounding Box Tightening(ABT).** The heterogeneity across platforms results in significant
2046 discrepancies in UI interaction logic and responsive regions. Therefore, we aim to ensure that the
2047 bounding boxes of UI elements are as close as possible to their central regions, in order to minimize
2048 inconsistencies in actionable areas across different platforms. As illustrated at the top of Fig. 20, these
2049 parsed bounding boxes are aligned with the boundaries of the UI elements; however, their centers,
2050 which serve as the ground truth for click prediction, often reside in empty regions rather than in areas
2051 with meaningful content. This misalignment introduces a detrimental click-whitespace bias during
model training. To mitigate this issue, we propose the Adaptive Bounding Box Tightening (ABT)

Table 20: Visualization of trajectory annotation

Examples of Two Modes.	
	<p>[Reasoned-Action Mode]</p> <p>Q: Please generate the next move according to the UI screenshot, task and previous operations.</p> <p>Task:</p> <p>Search openai and like the first video, sorted by view count and video type.</p> <p>Previous operations:</p> <p>Step 1: Click on the search box at the top of the YouTube page and type "openai"</p> <p>Step 2: Search for OpenAI on YouTube and press Enter to see search results and the OpenAI channel page</p> <p>A: <think></p> <p>The YouTube interface shows a search for "openai" with a filters button visible in the top navigation area. Clicking on the filters option would allow sorting videos by criteria such as view count, which is needed to complete the task of finding the most viewed OpenAI videos. This filtering functionality is essential to organize search results in a way that aligns with the requirement to sort by view count and video type before liking the first video.</p> <p></think></p> <p><operation></p> <p>Click on the "Filters" button at the top right of the YouTube search results to access advanced filtering options for your search.</p> <p></operation></p> <p><action></p> <p>click(x=0.9043, y=0.0788)</p> <p></action></p>
	<p>[Direct-Action Mode]</p> <p>Q: Please generate the next move according to the UI screenshot, task and previous operations.</p> <p>Task:</p> <p>In the Calendar app, show only events in the 'School' calendar.</p> <p>Previous operations:</p> <p>None</p> <p>A: <operation></p> <p>Click on the blue checkbox next to "Family" in the calendar sidebar under "On My Mac" section.</p> <p></operation></p> <p><action></p> <p>click(x=0.0187, y=0.1128)</p> <p></action></p>

algorithm. ABT dynamically refines bounding boxes through iterative, proportional contraction of their lateral boundaries. This contraction is guided by the detection of contiguous uniform-color regions, representing target whitespace, within defined tolerance thresholds. The process terminates when no significant contractible uniform regions remain, yielding substantially tighter bounding boxes where centers align with actual content, as shown in the bottom of Fig. 20. While ABT’s effectiveness is inherently limited by complex backgrounds and gradients, empirical validation confirms its significant value in improving ground truth alignment for interfaces featuring simple solid-color backgrounds. This paradigm remains dominant in modern systems and web design.

Deep Exploration. Modeling GUI platform state transition graphs presents inherent complexity. Random walks, a common approach, suffer from limitations: unpredictable transitions induce pervasive back edges, causing frequent state revisit or trapping in local loops due to insufficient backtracking mechanisms. To address these issues and enable automated deep exploration for acquiring meaningful weakly semantic trajectories, we propose a single-history-frame element filtering algorithm. Specifically, we use a queue to maintain all interactive elements appearing in the last screenshot. At each exploration step during random walk, some of elements are filtered out when their Intersection over Union (IoU) exceeds a predefined threshold and their textual content exactly matches any element in the queue. This guarantees exclusive interaction with elements absent in the preceding state, thereby actively steering exploration toward novel pages. This mechanism proves particularly effective for interfaces with persistent components (e.g., navigation bars, sidebars) or dense icon arrays, as evidenced in Fig. 21 where it achieves significantly broader page coverage and yields non-redundant, semantically valuable trajectories compared to conventional random walks.

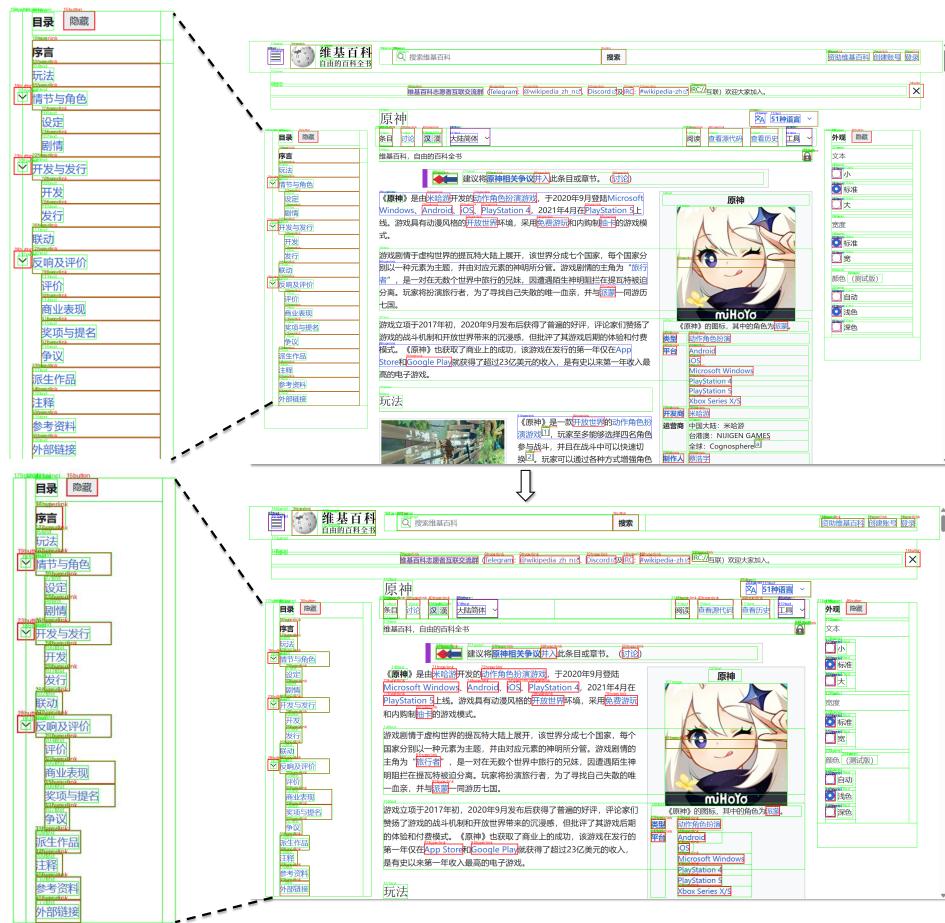


Figure 20: Examples of adaptive bounding box tightening (ABT) algorithm.

A.8.2 WINDOWS

Cross-Framework UI Parsing Challenges and Denoising Strategies. When processing Java-based software like PyCharm and Android Studio, the standard Win32 API exposes significant limitations. As illustrated in Fig. 22, the Win32 API fails to effectively parse their UI structure, resulting in an incomplete A11y Tree. Consequently, we must switch to using the specialized Java Access Bridge (JAB⁸) API. The JAB successfully retrieves the complete A11y Tree (as shown in Fig. 23), thus resolving the issue. This requirement to adapt different APIs for various application frameworks significantly increases the complexity of our data collection efforts. Moreover, the raw A11y Trees

⁸<https://docs.oracle.com/javase/8/docs/technnotes/guides/access/jab/index.html>

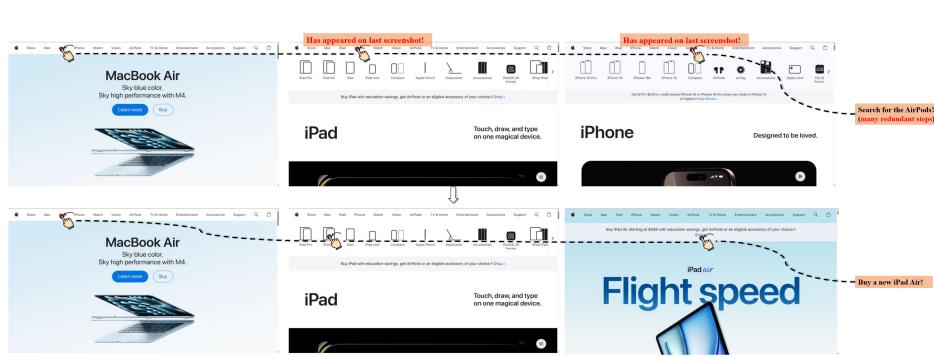


Figure 21: Examples of deep exploration algorithm.

present challenges: they are typically deeply nested, noisy, and the density of functionally relevant UI elements is low. To address these issues and improve data quality, we apply a set of heuristic filters to prune and refine the tree. 24 visualizes this transformation, showing a comparison of the A11y Tree before and after processing. Our filtering strategies exclude elements from background applications and select elements by their screen-to-area ratio, roles (e.g., button, text, hyperlink).

Data Deduplication and Geometric Refinement. Data acquisition in Windows faces several significant data quality challenges. First, minimal UI changes following user interactions lead to high redundancy of UI elements due to nearly identical screen captures. Second, lack of layer information in the A11y Trees results in erroneous inclusion of occluded elements (e.g., dropdown). To overcome these challenges, we implemented a multi-stage refinement pipeline. We first mitigate redundancy with a similarity algorithm that filters images based on the Euclidean distance of their feature vectors. A post-processing filter then identifies occluded elements by detecting solid-color regions within their bounding boxes.

Prioritized Random Walk for Automated UI Exploration. The random walk algorithm is central to our automated data acquisition on the Windows platform. To minimize redundant interactions and enhance element diversity, we have augmented the standard Random Walk with principles from Depth-First Search (DFS). As mentioned in the above common problems, our modified algorithm prioritizes interaction with newly appeared UI elements while concurrently reducing the selection priority of elements that have already been interacted with. If no new elements are detected, or if their count falls below a predefined threshold, the algorithm defaults to interacting with any remaining, previously unvisited elements within the current view’s A11y Trees. Furthermore, we account for scenarios where interactions navigate away from the primary application, such as launching a web browser to view a user manual. In such cases, our algorithm allows for limited interaction within the external application (e.g., the browser) before automatically shifting focus back to continue navigating the initial application.

A.8.3 UBUNTU

This section details the challenges encountered and solutions developed for autonomous agent interaction with the Ubuntu environment. The primary challenges originate from the inherent structure of the accessibility tree (A11y tree), which serves as the main interface for observing and interacting with the application. Our solutions focus on refining the accessibility tree data and optimizing the agent’s interaction strategy to ensure reliable and efficient operation. The successful resolution of these issues is paramount, as a clean, accurate, and efficiently navigable UI representation is the foundation for any effective automated UI-based task.

Denoising in the Accessibility Tree. The raw data provided by the accessibility tree on Ubuntu is often noisy, containing redundant information and occasional inaccuracies that can mislead an autonomous agent. We identified and implemented solutions for three primary issues. First, the A11tree’s hierarchical structure often includes redundant parent elements that do not correspond to distinct interactive components. This is particularly prevalent in applications built with Web, such as Chrome. To address this, we apply a two-stage filtering process. We begin by pruning elements whose roles are typically non-interactive or structural based on type, such as ‘heading’,

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231

2231

2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251

2251
2252
2253
2254

2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

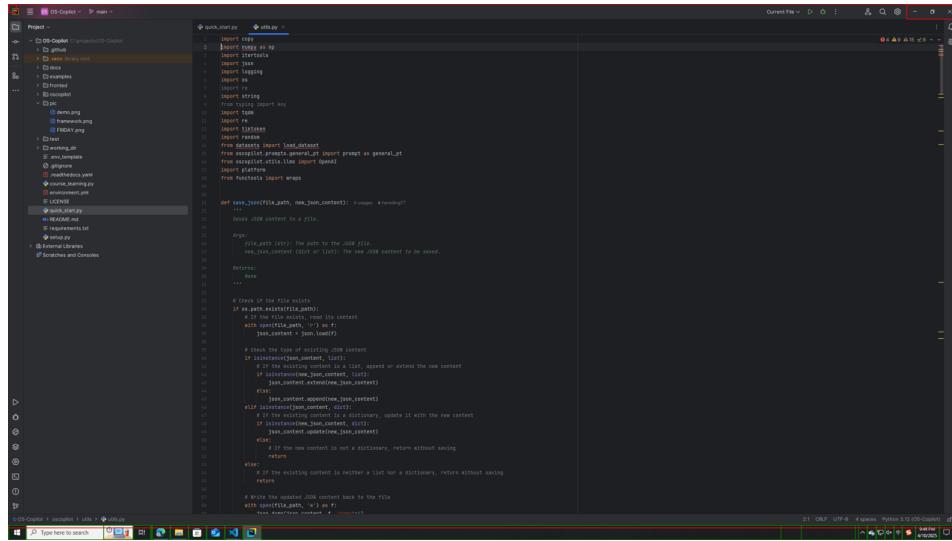


Figure 22: An example of Win32 API failing to parse A11y Trees in PyCharm.

2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251

2251
2252
2253
2254

2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

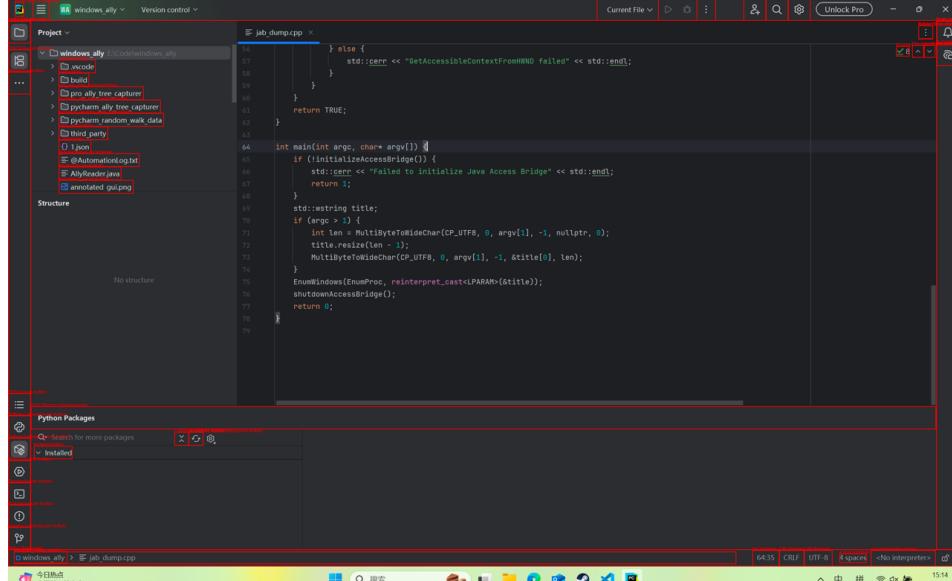
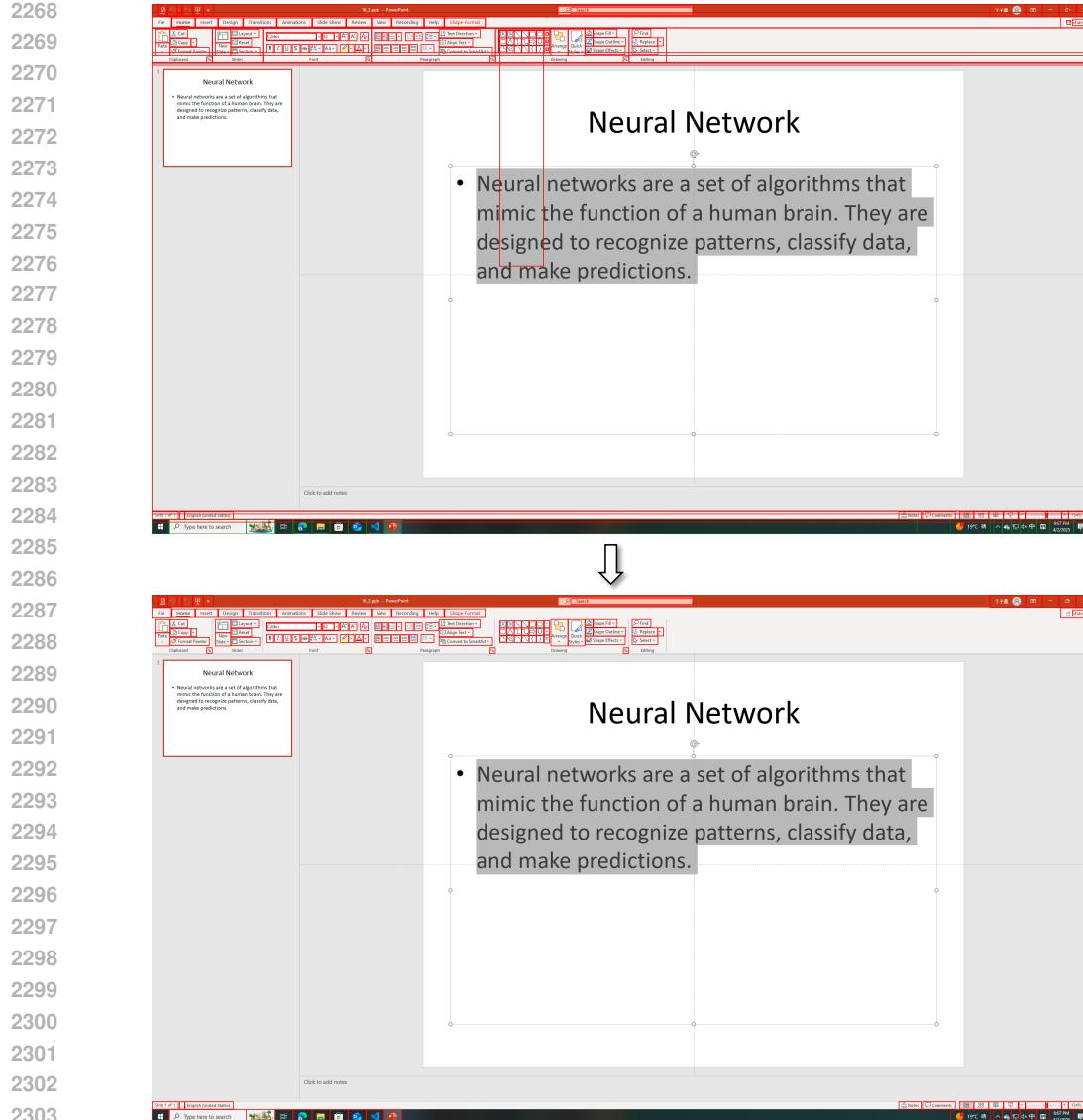



Figure 23: An example of JAB API successfully parsing Allv Trees in PyCharm.

GUI Exploration Optimization via an Improved Random Walk. A pure random walk over all available UI elements is highly inefficient. To improve the agent’s ability to explore an application’s state space, we developed a more intelligent interaction strategy. This strategy is based on filtering the action space and prioritizing the exploration of novel UI states. To reduce the number of futile actions, the agent’s action space is constrained to only include elements that are designated as interactive. We maintain a whitelist of interactive `type`, including ‘button’, ‘box’, ‘menu’, ‘entry’, ‘link’, ‘bar’, and ‘item’. Conversely, elements with non-interactive roles are excluded from the potential action set. These non-interactive roles include ‘heading’, ‘static’, ‘document’, ‘label’, ‘cell’, ‘text’, ‘icon’, ‘paragraph’, and ‘section’. To prevent the agent from becoming trapped in interaction loops within a static UI state, we implemented a state-aware exploration logic. After the agent acts, we only visit newly appeared UI elements. These novel elements are given interaction priority, as they are most likely to lead to a new application state. If the action does not yield any new elements, the agent then selects an action randomly from the set of previously known elements that it has not yet interacted with in the current state. This process continues until all interactive elements have been exhausted. This exploration strategy is vital for efficiency, as it directs the agent towards discovering

new functionalities and application states, thereby maximizing the coverage of the application's features in a limited time and avoiding redundant, non-productive interactions.

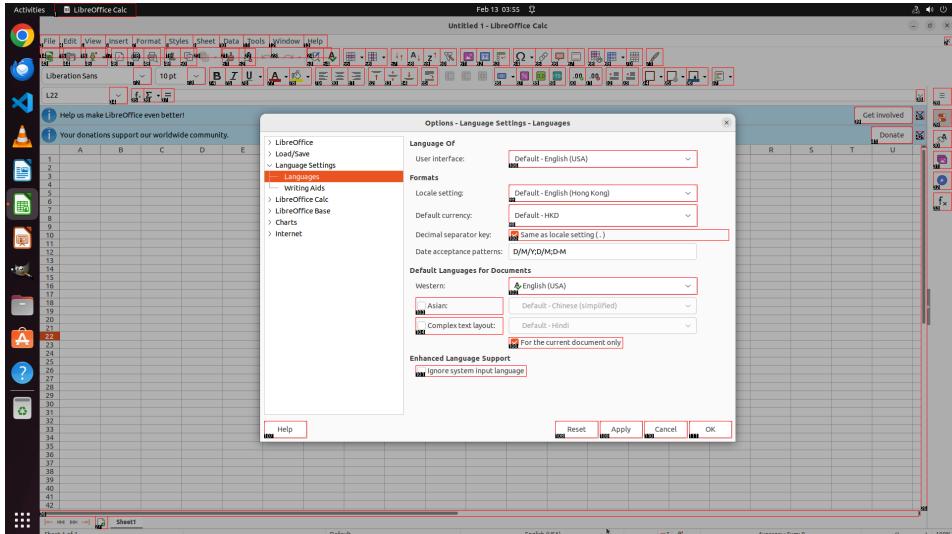
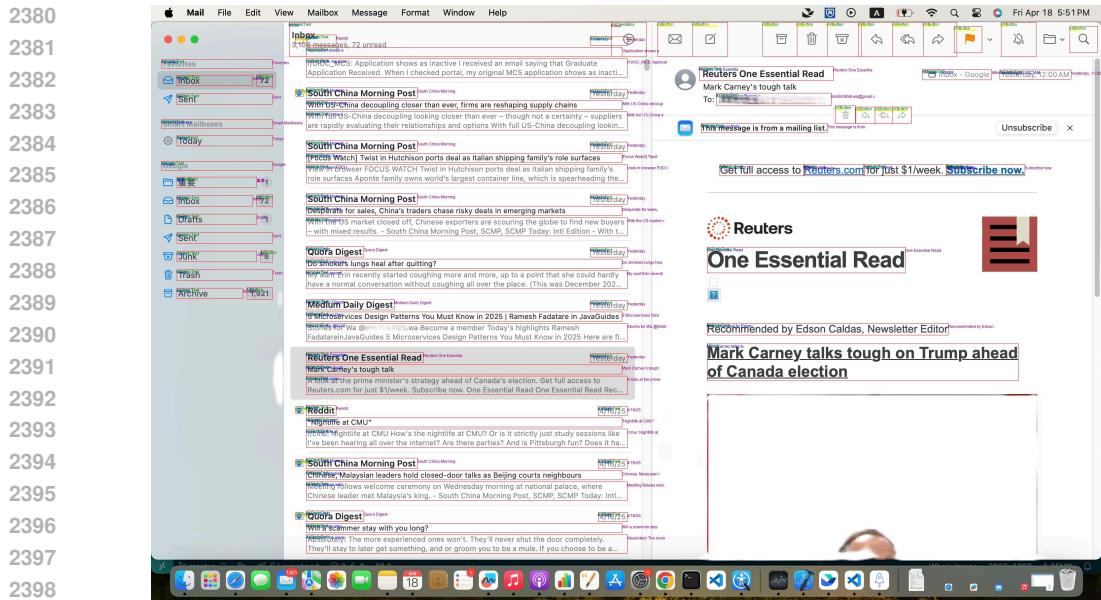
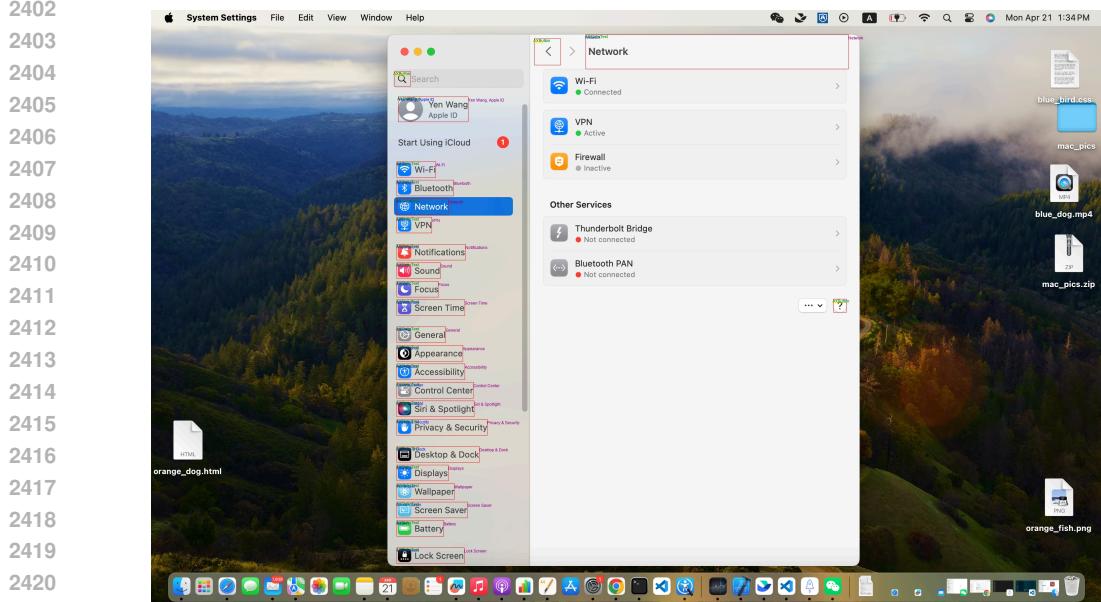


Figure 25: Examples of visual occlusion and invalidity of elements.


Figure 26: Examples of coordinate offset.

A.8.4 MACOS

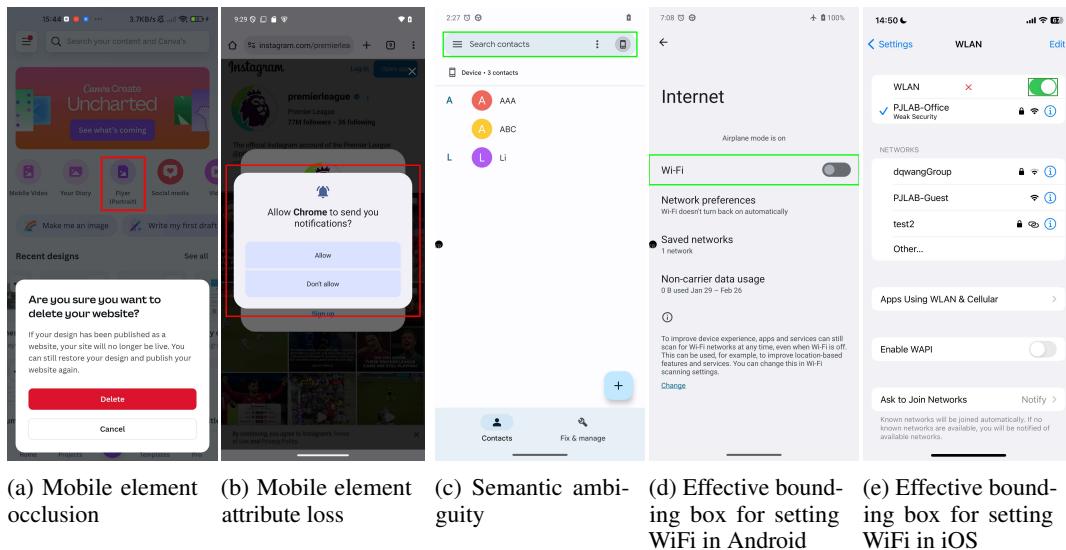

Robust A11y Tree Extraction and Denoising. The macOS pipeline first locates the active top-level window, then exhaustively traverses its accessibility hierarchy. Every bounding box is mapped from logical coordinates to device pixels by multiplying by the screen-scale factor. After flattening the tree, only nodes whose roles are interactive (e.g. AXButton, AXPopUpButton, AXTextField) are retained. Moreover, we would discard boxes with a width or height of 2px or less and remove nodes whose text, description, and value are all empty or punctuation. A role-aware merging process replaces overlapping AXStaticText siblings and their interactive parent with a minimal bounding box. The resulting set contains clean, tightly localised interactive elements. (see Fig. 27).

Hybrid A11y Tree & Omniparser combination for System Panels. Several built-in utilities, most notably *System Settings*, draw controls in private layers that have no corresponding accessibility tree Yu et al. (2025), as shown in Fig. 28. To recover these missing widgets, each screenshot is processed by Omniparser, yielding a set of vision-detected bounding boxes. An element would be

2376 retained when its IoU with any Omniparser box exceeds 0.15 or when it is selected during exploration.
 2377 This combination renders previously invisible elements in the A11y tree, thereby yielding a more
 2378 comprehensive understanding of macOS applications.
 2379

2399 Figure 27: Refined AXTreee overlay on the Mail application: all interactive elements are tightly
 2400 bound after heuristic pruning.
 2401

2421 Figure 28: The failure case in System Settings: the AXTreee omits right-pane controls, illustrating
 2422 the necessity of Omniparser fusion.
 2423


2424 A.8.5 MOBILE

2426 **Occlusion and Invisibility Correction.** Mobile interfaces frequently employ high-level components
 2427 such as dialogs, side drawers, and floating menus. These are rendered at the topmost Z-order, so
 2428 underlying nodes remain in the XML yet can no longer be clicked, producing “ghost” targets (see
 2429 Fig.29a). To improve visibility and hierarchy accuracy at the source, we replace the traditional
 adb shell uiautomator dump with uiautomator2.dump_hierarchy(). The latter

2430 prunes recognisably occluded nodes while generating the XML and, for pages that `adb` fails to
 2431 parse, still returns a complete hierarchy—significantly increasing data coverage. Coupled with the
 2432 random-walk heuristic that “prioritises newly appeared elements,” this greatly reduces mis-clicks
 2433 caused by occlusion. In addition, UIAutomator2 markedly lowers the probability of XML retrieval
 2434 failures, accelerating exploration efficiency.

2435 **Attribute Completion and Correction.** Many commercial apps do not fully propagate accessibility
 2436 traits in their custom views; a typical pattern is a parent node with `clickable=true` while all its
 2437 children are `clickable=false`, leading to the issue shown in Fig.29b. Genuine clickable regions
 2438 are thus ignored. We employ an “inherit-then-suppress” strategy: when a parent is clickable and
 2439 every descendant is marked non-clickable, the clickable flag is inherited downward; if any descendant
 2440 is already declared clickable, inheritance stops to avoid creating false hotspots. Experiments show
 2441 that this method restores the vast majority of missing attributes while maintaining a low false-positive
 2442 rate.

2443 **Semantic and Functional Ambiguities.** Semantic ambiguity arises when an XML bounding box
 2444 is too large and covers multiple sub-controls (for example, the playback button, author area and
 2445 more-options button), making a single node unable to convey precise meaning. In Fig.29c, the green
 2446 box shows one clickable bounding-box region in the XML, but taps in different parts of that region
 2447 may produce different results, creating semantic ambiguity. To address this, we prioritise leaf nodes
 2448 and tighten their bounding boxes; we only retain a parent node when its centre lies outside every
 2449 child’s bounds, thus preserving the overall intent of the composite control. Functional ambiguity
 2450 occurs when the same layout triggers different actions in different software or operating systems. In
 2451 Fig.29d and Fig.29e, for example, both the text and the icon of a switch are tappable in stock Android
 2452 settings, whereas in iOS only the icon responds to taps and the rest of the region is inert. To reduce
 2453 such mispredictions, whenever we detect an “icon + text” sibling pattern we give the icon a higher
 2454 click priority. This approach produces more consistent cross-device behaviour during training and
 2455 testing. By systematically handling overlay occlusion, attribute omissions and both semantic and
 2456 functional ambiguities, we significantly improve the reliability of mobile-side data collection and
 2457 increase the success rate of downstream automation tasks.

2458 Figure 29: Examples of potential challenges in mobile data acquisition:(a) The problem of occluded
 2459 elements being indistinguishable during XML extraction.(b) The potential inaccuracy of extracted
 2460 bounding boxes due to loss of element attributes.(c) The problem of semantic ambiguity caused by
 2461 insufficiently detailed XML extraction.(d, e) Differences in the functionality of similar regions across
 2462 different systems or apps.

A.8.6 WEB

2463 **Addressing Limitations in Automation Tools.** Automation tools like Selenium
 2464 and Playwright suffer from a critical limitation where their `page.screenshot()` function fails

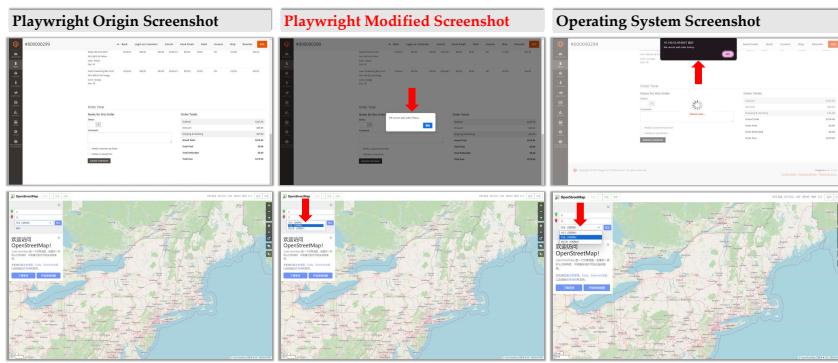


Figure 30: Examples of native browser UI limitations in automation tools.

to capture native browser UI components rendered outside the DOM. This omission disrupts essential visual feedback for sequential decision-making in web agents. We categorize these problematic elements into two classes: predictable UI triggered by deliberate actions (e.g., context menus, tab navigation, forward/back buttons), and unpredictable UI emerging during tasks (browser dialogs and native `select` dropdowns). The inherent invisibility of predictable UI components prevents agents from developing interaction intentions for these features; while our methodological constraint limiting interactions to left-clicks effectively eliminates potential negative impacts from this omission. However, to compensate for the unavoidably reducing behavioral diversity in captured data and ensure comprehensive functional coverage, we conducted extensive web data collection in native desktop environments, enriching our training corpus with full-spectrum browser interaction examples. The unpredictable UI category proves more severe, as evidenced in Fig. 30 (Playwright Origin vs. OS Screenshot), where missing elements prevent task completion and impact evaluation integrity. Our **behavioral simulation solution** addresses this: for `select` elements, JavaScript modifies the `size` attribute to visually expand options within the DOM, with event listeners reverting the state; for dialogs, an interceptor captures properties, dismisses the native instance, and injects a visually identical DOM-based replica with non-functional buttons. The efficacy of this approach is demonstrated in Fig. 30 (Modified Screenshot), which illustrates the successful visual simulation of both UI components. While other potential related issues may exist beyond our current observations, they have not manifested in our evaluation scenarios and thus remain outside the scope of our present investigation.

Metadata Advantages and Parsing Challenges. Web page content, structured through HTML and DOM trees, inherently provides rich metadata advantages over alternative platforms. JavaScript enables precise element positioning and hierarchical analysis that significantly exceeds capabilities in other contexts, enhancing metadata extraction efficiency as illustrated in Fig. 31d. However, the heterogeneity of the web ecosystem—diverse frontend frameworks, inconsistent development practices, and variable standards—prevents comprehensive coverage by data collection algorithms. Two representative challenges emerge: First, as shown in Fig. 31a, developers misapply attributes such as `role=button` to non-interactive images, introducing semantic inconsistencies that cause parsing anomalies. Second, current algorithms exhibit deficiencies in hierarchical analysis and visibility detection, resulting in inadequate filtration of underlying or invisible elements as demonstrated in Fig. 31b. Considering the substantial volume of extractable elements in web environments, we propose that maximizing the recall of valid interactive elements should be the primary objective across platforms. This position advocates for aggressive filtering strategies rather than conservative approaches that might inadvertently retain invalid elements. While this methodology may occasionally exclude some valid elements, the benefits of reducing noise in the dataset significantly outweigh the potential costs of missing a limited number of interactive elements.

It is particularly noteworthy that the technical limitations have not been explicitly addressed in the extant literature on WebAgent papers, despite their profound implications for agent functionality and evaluation methodology. We therefore advocate for increased attention to these considerations in future WebAgent research. Additionally, our analysis reveals that web environments lacking browser UI elements significantly constrain an agent’s exploration capabilities in the absence of compensatory action mechanisms (e.g., returning to a previous page—a trivial operation when using a browser’s back button—may require complex navigation sequences or prove entirely infeasible

within the constrained visual context available). Fortunately, the refined WebArena-Lite benchmark evaluation has been specifically designed to eliminate such problematic scenarios, thereby ensuring methodological integrity and evaluation reliability. Nevertheless, based on our findings, we strongly recommend that future research prioritize the execution of web-based tasks within native desktop environments, which may necessitate the development of new benchmarks and the migration of existing benchmarks.

Temporal Synchronization in Dynamic Page States. The web platform exhibits substantial dynamism, frequently causing temporal discrepancies between page states during element parsing and screenshot capture. The non-instantaneous nature of parsing further compounds this issue by permitting mid-process element state changes. A characteristic scenario involves the auto-hiding behavior of video player control bars, illustrated in Fig. 31c. Current mitigation strategies employ dual measures: Initially awaiting complete page stabilization, followed by proactively triggering state persistence for specific elements—such as maintaining video control visibility through cursor hovering. Nevertheless, managing dynamic content remains a core challenge in web data acquisition.

Leveraging Multi-Source Textual Semantics. Web elements contain rich semantic description layers extending far beyond basic `textContent` compared to other platforms. Functional icons often convey operational semantics through `alt` and `title` attributes, while accessibility-compliant sites provide enhanced descriptions via properties like `aria-label`. Systematically aggregating these multi-source textual features establishes strong semantic associations, furnishing comprehensive contextual grounding for model annotations and effectively suppressing annotation hallucinations.

A.9 THE DETAILS OF WEBARENA-LITE-V2

Current web platform evaluation benchmarks can be categorized into two main types based on the website environment. The first type utilizes real websites for online evaluation, primarily derived from the offline evaluation work Mind2Web (Deng et al., 2023). Examples include Mind2Web-Live (Pan et al., 2024), Online-Mind2Web (Xue et al., 2025), and WebVoyager (He et al., 2024), with UI-TARS (Qin et al., 2025) employing WebVoyager and Online-Mind2Web for web domain evaluation. The second type conducts evaluations on locally deployed websites, pioneered by WebArena (Zhou et al., 2023), which leverages open-source website code and databases (Sun et al., 2024a) to provide highly simulated and interactive local Docker deployment environments for five functionally diverse websites, including GitLab, map services, forums, online shopping, and content management platforms (CMS). WebArena has constructed over 800 web tasks, inspiring derivative evaluation frameworks such as VisualAgentBench (WebArena-Lite) (Liu et al., 2024a) and VisualWebArena (Koh et al., 2024). Furthermore, the evaluation protocols can be classified into two categories: rule-based evaluation exemplified by WebArena (Zhou et al., 2023) and VLM-as-a-Judge evaluation, such as Online-Mind2Web (Xue et al., 2025).

Rationale for Selecting Local Website Environments. We deliberately abandoned evaluation benchmarks based on real websites for several compelling reasons. The primary concern is the temporal instability of online environments—tasks that are currently feasible may become impossible due to website updates, domain changes, or site closures. Despite efforts by frameworks like Mind2Web-Live to maintain and update tasks periodically, such updates inevitably compromise evaluation fairness. Additionally, as noted in (Xu et al., 2024), automated tools frequently encounter anti-automation barriers such as reCAPTCHA verification. Moreover, since most target websites are hosted in the United States, researchers in non-US regions (particularly China) face persistent connectivity issues and access restrictions even with VPN services—different VPN providers often yield inconsistent access results. These factors significantly undermine fair model comparison and hinder the extraction of valuable insights from evaluation results.

WebArena-Lite-v2. Consequently, we focused on the WebArena series, whose locally deployed website environments offer substantial stability and internal accessibility, enabling flexible task construction and evaluation design. Considering that WebArena often includes three or more iterations of the same task template, resulting in repetitive and time-consuming evaluations, we selected the WebArena-Lite subset, which provides 165 high-quality refined tasks. However, our empirical evaluation and manual inspection revealed persistent issues. Therefore, we further refined the benchmark to create **WebArena-Lite-v2**, comprising 154 tasks optimized for both headed browser environments and headless automation tool environments. Recent developments, such as OpenAI’s

2592 Operator, demonstrate a transition from headless environments provided by automation tools toward
 2593 headed desktop browser environments for web agent evaluation. As detailed in A.8.6, both environments
 2594 present distinct advantages and limitations. To facilitate comprehensive ablation studies on
 2595 these different operational modes, WebArena-Lite-v2 ensures that all tasks can be solved through at
 2596 least one viable path using desktop action spaces (without specialized web actions like `go_forward`,
 2597 `go_backward`, `open_url`, or `tab_switch`) in both headed and headless environments. Furthermore,
 2598 all tasks are designed to provide sufficient visual information guidance, eliminating the necessity
 2599 for DOM information and thus making the benchmark suitable for pure vision-based evaluation
 2600 (while remaining compatible with SoM or DOM-enhanced assessment). Finally, we implemented
 2601 comprehensive yet flexible evaluation criteria—comprehensive in accommodating multiple possible
 2602 solutions through the `|OR|` operator where satisfying any one solution is sufficient and flexible in
 2603 employing LLM-based `fuzzy_match` for semantic similarity assessment in tasks involving question
 2604 answering or content completion.

2605 **Discussions between WebArena-Lite and WebArena-Lite-v2.** Our refinements encompass both
 2606 environmental and task improvements. For the evaluation environment, we implemented two
 2607 significant enhancements. First, we addressed the OpenStreetMap website’s limitations, where the
 2608 official Docker environment lacked local database storage for node information, rendering tasks
 2609 like “What is the phone number of Western Pennsylvania Hospital” impossible to complete. We
 2610 resolved this by importing Pennsylvania state PBF data, enabling the completion of such tasks.
 2611 Second, we developed consistent solutions for headless automation environments to overcome the
 2612 observation challenges with select option dropdowns and dialog windows, as illustrated in A.8.6
 2613 with Fig. 30. Regarding task refinement, we eliminated 11 tasks requiring multi-tab interactions,
 2614 resulting in a curated set of 154 tasks. We conducted a comprehensive revision of instructions and
 2615 evaluation functions for all remaining tasks. The instruction refinements encompassed semantic
 2616 clarification, typographical correction, and minimal reconstruction of impracticable directives (e.g.,
 2617 the instruction “Re-post the image of the costume contest in this page to the funny subreddit and
 2618 note “from /f/pics” proved infeasible since headless environments lack image URL extraction
 2619 capabilities). Our evaluation function enhancements incorporated supplementary valid solutions
 2620 (e.g., for the query “What is the zip code of Chatham University?”, we augmented the answer
 2621 from exclusively “15232” to “15232 `|OR|` 15208” after identifying multiple Chatham University
 2622 locations through OpenStreetMap queries) and accommodated semantically equivalent solution
 2623 expressions (e.g., for “Show me products under \$100 in ‘Men Shoes’ category”, we recognized
 2624 both `--SHOPPING--/clothing-shoes-jewelry/men/shoes.html?price=0-100`
 2625 and `--SHOPPING--/clothing-shoes-jewelry.html?cat=145&price=0-100` as
 2626 valid pathways to identical content pages). This methodological approach ensures comprehensive
 2627 answer validation. Additionally, acknowledging language models’ inherent variability in textual
 2628 response generation, we systematically replaced all `exact_match` evaluation criteria within
 2629 the `string_match` classification with more nuanced `must_include`, `must_exclude`, and
 2630 `fuzzy_match` parameters, thereby significantly enhancing evaluation robustness and interpretative
 2631 flexibility. However, WebArenaLite-v2 still employs static evaluation methodologies for certain tasks
 2632 (such as when identifying user’s most recent order, where the Ground Truth is predetermined as
 2633 a specific order number or webpage). Although executing evaluations within a local environment
 2634 has mitigated the impact of this limitation, a critical future direction involves developing evaluation
 2635 protocols that are both dynamic and precise. This advancement necessitates addressing the challenge
 2636 of extracting Ground Truth information from web pages that may not have been accessed by the
 2637 agent during its navigation trajectory. This capability is essential for comprehensive evaluation of
 2638 agent performance across diverse web interaction scenarios.

2638 A.10 PROMPT ENGINEERING

2639 To facilitate reproducibility and offer practical guidance for future research, we include all prompt
 2640 templates utilized throughout our work in this section. These prompts cover a wide range of use
 2641 cases, including data filtering, annotation, and the prompts used in our ScaleCUA. Specifically,
 2642 we detail the instructions employed for GUI understanding, grounding supervision, and trajectory
 2643 annotation, as well as those used to elicit reasoning traces and alternative actions. Each prompt is
 2644 carefully crafted to align with the capabilities of large vision-language models such as GPT-4o and
 2645 Claude-3.7, ensuring high-quality outputs for downstream training. By releasing these prompts, we

2646 aim to enhance transparency and support the development of more robust and interpretable computer
 2647 use agents.
 2648

2649 **A.10.1 PROMPTS FOR OUR AGENT**
 2650

2651 To ensure generalizable and controllable agent behavior, we design a structured system prompt
 2652 template for ScaleCUA that explicitly encodes the available action space. This template serves as the
 2653 foundational context for all three inference paradigms—Grounding Mode, Direct-Action Mode, and
 2654 Reasoned-Action Mode—guiding the model to produce spatially grounded and semantically aligned
 2655 outputs. The system prompt defines the operational semantics of each action type, including spatial
 2656 commands such as `click(x, y)`, `dragTo(x, y)`, and `write(text)`, as well as higher-level
 2657 control tokens like `terminate` and `wait`.
 2658

2659 We envision the system prompt as a modular and extensible interface. In future iterations, we aim
 2660 to decouple the action space definition from the core prompt logic, allowing for a plug-and-play
 2661 architecture that can dynamically adapt to the interaction paradigms of diverse computing platforms.
 2662 This modularity would enable seamless integration of device-specific actions, such as `swipe` for
 2663 mobile interfaces or `hotkey` for desktop environments, while preserving consistency in agent
 2664 behavior. Our design lays the foundation for building a unified prompting framework that can scale
 2665 to arbitrary GUI-based control systems.
 2666

2667 **System Prompt Template For Action Grounding Mode**
 2668

2669 You are an autonomous GUI agent capable of operating on desktops, mobile devices, and
 2670 web browsers. Your primary function is to analyze screen captures and perform
 2671 appropriate UI actions to complete assigned tasks.
 2672
 2673 `## Action Space`
 2674 `def click(`
 2675 `x: float | None = None,`
 2676 `y: float | None = None,`
 2677 `clicks: int = 1,`
 2678 `button: str = "left",`
 2679 `) -> None:`
 2680 `"""Clicks on the screen at the specified coordinates. The 'x' and 'y' parameter`
 2681 `specify where the mouse event occurs. If not provided, the current mouse position`
 2682 `is used. The 'clicks' parameter specifies how many times to click, and the 'button'`
 2683 `parameter specifies which mouse button to use ('left', 'right', or 'middle')."""`
 2684 `pass`
 2685
 2686 `def doubleClick(`
 2687 `x: float | None = None,`
 2688 `y: float | None = None,`
 2689 `button: str = "left",`
 2690 `) -> None:`
 2691 `"""Performs a double click. This is a wrapper function for click(x, y, 2,`
 2692 `'left')."""`
 2693 `pass`
 2694
 2695 `def rightClick(x: float | None = None, y: float | None = None) -> None:`
 2696 `"""Performs a right mouse button click. This is a wrapper function for click(x, y,`
 2697 `1, 'right')."""`
 2698 `pass`
 2699
 2700 `def moveTo(x: float, y: float) -> None:`
 2701 `"""Move the mouse to the specified coordinates."""`
 2702 `pass`
 2703
 2704 `def dragTo(`
 2705 `x: float | None = None, y: float | None = None, button: str = "left"`
 2706 `) -> None:`
 2707 `"""Performs a drag-to action with optional 'x' and 'y' coordinates and button."""`
 2708 `pass`
 2709
 2710 `def swipe(`
 2711 `from_coord: tuple[float, float] | None = None,`

```

2700
2701     to_coord: tuple[float, float] | None = None,
2702     direction: str = "up",
2703     amount: float = 0.5,
2704     ) -> None:
2705         """Performs a swipe action on the screen. The `from_coord` and `to_coord` specify
2706         the starting and ending coordinates of the swipe. If `to_coord` is not provided,
2707         the `direction` and `amount` parameters are used to determine the swipe direction
2708         and distance. The `direction` can be 'up', 'down', 'left', or 'right', and the
2709         `amount` specifies how far to swipe relative to the screen size (0 to 1)."""
2710         pass
2711
2712
2713     def long_press(x: float, y: float, duration: int = 1) -> None:
2714         """Long press on the screen at the specified coordinates. The `duration` specifies
2715         how long to hold the press in seconds."""
2716         pass
2717
2718
2719     ## Input Specification
2720     - Screenshot of the current screen + task description
2721
2722     ## Output Format
2723     <action>
2724     [A set of executable action command]
2725     </action>
2726
2727     ## Note
2728     - Avoid action(s) that would lead to invalid states.
2729     - The generated action(s) must exist within the defined action space.
2730     - The generated action(s) should be enclosed within <action></action> tags.
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

```

System Prompt Template For Direct Action Mode

You are an autonomous GUI agent operating on the **{PLATFORM}** platform(s). Your primary function is to analyze screen captures and perform appropriate UI actions to complete assigned tasks.

```

## Action Space
def click(
    x: float | None = None,
    y: float | None = None,
    clicks: int = 1,
    button: str = "left",
) -> None:
    """Clicks on the screen at the specified coordinates. The `x` and `y` parameter
    specify where the mouse event occurs. If not provided, the current mouse position
    is used. The `clicks` parameter specifies how many times to click, and the `button`
    parameter specifies which mouse button to use ('left', 'right', or 'middle')."""
    pass

def doubleClick(
    x: float | None = None,
    y: float | None = None,
    button: str = "left",
) -> None:
    """Performs a double click. This is a wrapper function for click(x, y, 2,
    'left')."""
    pass

def rightClick(x: float | None = None, y: float | None = None) -> None:
    """Performs a right mouse button click. This is a wrapper function for click(x, y,
    1, 'right')."""
    pass

def scroll(clicks: int, x: float | None = None, y: float | None = None) -> None:
    """Performs a scroll of the mouse scroll wheel at the specified coordinates. The
    `clicks` specifies how many clicks to scroll. The direction of the scroll (vertical
    or horizontal) depends on the underlying operating system. Normally, positive
    values scroll up, and negative values scroll down."""
    pass

```

```

2754
2755     def moveTo(x: float, y: float) -> None:
2756         """Move the mouse to the specified coordinates."""
2757         pass
2758
2759     def dragTo(
2760         x: float | None = None, y: float | None = None, button: str = "left"
2761     ) -> None:
2762         """Performs a drag-to action with optional `x` and `y` coordinates and button."""
2763         pass
2764
2765     def press(keys: str | list[str], presses: int = 1) -> None:
2766         """Performs a keyboard key press down, followed by a release. The function supports
2767         pressing a single key or a list of keys, multiple presses, and customizable
2768         intervals between presses."""
2769         pass
2770
2771     def hotkey(*args: str) -> None:
2772         """Performs key down presses on the arguments passed in order, then performs key
2773         releases in reverse order. This is used to simulate keyboard shortcuts (e.g.,
2774         'Ctrl-Shift-C')."""
2775         pass
2776
2777     def keyDown(key: str) -> None:
2778         """Performs a keyboard key press without the release. This will put that key in a
2779         held down state."""
2780         pass
2781
2782     def keyUp(key: str) -> None:
2783         """Performs a keyboard key release (without the press down beforehand)."""
2784         pass
2785
2786     def write(message: str) -> None:
2787         """Write the specified text."""
2788         pass
2789
2790     def call_user() -> None:
2791         """Call the user."""
2792         pass
2793
2794     def wait(seconds: int = 3) -> None:
2795         """Wait for the change to happen."""
2796         pass
2797
2798     def response(answer: str) -> None:
2799         """Answer a question or provide a response to an user query."""
2800         pass
2801
2802     def terminate(status: str = "success", info: str | None = None) -> None:
2803         """Terminate the current task with a status. The `status` specifies the termination
2804         status ('success', 'failure'), and the `info` can provide additional information
2805         about the termination."""
2806         pass
2807
2808     ## Input Specification
2809     - Screenshot of the current screen + task description + your past interaction history
2810     with UI to finish assigned tasks.
2811
2812     ## Output Format
2813     <operation>
2814     [Next intended operation description]
2815     </operation>
2816     <action>
2817     [A set of executable action commands]
2818     </action>
2819
2820     ## Note
2821     - Avoid action(s) that would lead to invalid states.
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
3999

```

```

2808
2809     - The generated action(s) must exist within the defined action space.
2810     - The generated operation and action(s) should be enclosed within
2811       <operation></operation> and <action></action> tags, respectively.
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

```

System Prompt Template For Reasoned-Action Mode

You are an autonomous GUI agent operating on the **{PLATFORM}** platform. Your primary function is to analyze screen captures and perform appropriate UI actions to complete assigned tasks.

```

## Action Space
def click(
    x: float | None = None,
    y: float | None = None,
    clicks: int = 1,
    button: str = "left",
) -> None:
    """Clicks on the screen at the specified coordinates. The `x` and `y` parameter
    specify where the mouse event occurs. If not provided, the current mouse position
    is used. The `clicks` parameter specifies how many times to click, and the `button`
    parameter specifies which mouse button to use ('left', 'right', or 'middle')."""
    pass

def doubleClick(
    x: float | None = None,
    y: float | None = None,
    button: str = "left",
) -> None:
    """Performs a double click. This is a wrapper function for click(x, y, 2,
    'left')."""
    pass

def rightClick(x: float | None = None, y: float | None = None) -> None:
    """Performs a right mouse button click. This is a wrapper function for click(x, y,
    1, 'right')."""
    pass

def scroll(clicks: int, x: float | None = None, y: float | None = None) -> None:
    """Performs a scroll of the mouse scroll wheel at the specified coordinates. The
    `clicks` specifies how many clicks to scroll. The direction of the scroll (vertical
    or horizontal) depends on the underlying operating system. Normally, positive
    values scroll up, and negative values scroll down."""
    pass

def moveTo(x: float, y: float) -> None:
    """Move the mouse to the specified coordinates."""
    pass

def dragTo(
    x: float | None = None, y: float | None = None, button: str = "left"
) -> None:
    """Performs a drag-to action with optional `x` and `y` coordinates and button."""
    pass

def press(keys: str | list[str], presses: int = 1) -> None:
    """Performs a keyboard key press down, followed by a release. The function
    supports pressing a single key or a list of keys, multiple presses, and
    customizable intervals between presses."""
    pass

def hotkey(*args: str) -> None:
    """Performs key down presses on the arguments passed in order, then performs key
    releases in reverse order. This is used to simulate keyboard shortcuts (e.g.,
    'Ctrl-Shift-C')."""
    pass

def keyDown(key: str) -> None:

```

```

2862
2863     """Performs a keyboard key press without the release. This will put that key in a
2864     held down state."""
2865     pass
2866
2867     def keyUp(key: str) -> None:
2868         """Performs a keyboard key release (without the press down beforehand)."""
2869         pass
2870
2871     def write(message: str) -> None:
2872         """Write the specified text."""
2873         pass
2874
2875     def call_user() -> None:
2876         """Call the user."""
2877         pass
2878
2879     def wait(seconds: int = 3) -> None:
2880         """Wait for the change to happen."""
2881         pass
2882
2883     def response(answer: str) -> None:
2884         """Answer a question or provide a response to an user query."""
2885         pass
2886
2887     def terminate(status: str = "success", info: str | None = None) -> None:
2888         """Terminate the current task with a status. The `status` specifies the termination
2889         status ('success', 'failure'), and the `info` can provide additional information
2890         about the termination."""
2891         pass
2892
2893     ## Input Specification
2894     - Screenshot of the current screen + task description + your past interaction history
2895     with UI to finish assigned tasks.
2896
2897     ## Output Format
2898     ```
2899     <think>
2900     [Your reasoning process here]
2901     </think>
2902     <operation>
2903     [Next intended operation description]
2904     </operation>
2905     <action>
2906     [A set of executable action command]
2907     </action>
2908     ```
2909
2910     ## Note
2911     - Avoid actions that would lead to invalid states.
2912     - The generated action(s) must exist within the defined action space.
2913     - The reasoning process, operation and action(s) in your response should be enclosed
2914     within <think></think>, <operation></operation> and <action></action> tags,
2915     respectively

```

User Prompt Template For Direct-Action Mode and Reasoned-Action Mode

```

2909     Please generate the next move according to the UI screenshot, the task and previous
2910     operations.
2911
2912     Task:
2913     {instruction}
2914
2915     Previous operations:
2916     {history}
2917     ...

```

2916 A.10.2 PROMPTS FOR ANNOTATIONS
2917

2918 To support reproducibility and transparency, we release all annotation-related prompts used in
2919 our data processing pipeline. These prompts cover a wide range of tasks, including trajectory
2920 filtering, GUI understanding, grounding supervision and chain-of-thought generation for goal-directed
2921 demonstrations. Each prompt is carefully designed to elicit accurate and semantically consistent
2922 annotations from large vision-language models such as GPT-4o and Claude-3.7.

2923 Empirically, our prompts have demonstrated strong effectiveness in producing high-quality labels,
2924 which in turn significantly benefit the training of general-purpose computer use agents. By sharing
2925 these templates, we aim to standardize annotation practices in this emerging domain and foster
2926 broader progress in building scalable and open computer use systems. We hope this contributes to
2927 lowering the barrier for future research and accelerating the development of robust, multimodal GUI
2928 agents.

2929

2930 Prompt For Element Appearance, Layout and Functionality
2931

```
2932 You are a GUI analysis agent, and you are currently working with a {os_name} device.  
2933 You will be provided with the following resources:  
2934 1. The first image is a original screenshot from an {application}.  
2935 2. The second image is marked to highlight the selected element.  
2936 3. The AllTree attributes of the selected element: {element_alltree}.  
2937  
2938 Your task is to generate detailed descriptions of this marked element from appearance  
2939 and position. Each description must uniquely identify the element and adhere to the  
2940 following structure:  
2941  
2942 {  
2943     "appearance": "A detailed visual description of the element, including its shape,  
2944     color, size, text content (if any), and any distinguishing features.",  
2945     "position": "A clear description of the element's location on the screen, including  
2946     its relative position to nearby elements (e.g., 'below the search bar', 'to the right  
2947     of the logo'), its order in a sequence (e.g., 'third button in the top navigation  
2948     bar'), and its general area (e.g., 'top-left corner of the window'). Avoid using  
2949     direct coordinates or the red indicator.",  
2950 }  
2951  
2952     ## Guidelines for Generating Descriptions:  
2953     1. **Appearance**:  
2954         - Focus on visual characteristics that uniquely identify the element.  
2955         - Include details such as color, shape, size, text content (if applicable), icons,  
2956         borders, shadows, or patterns.  
2957         - If the element contains text, describe the font style, size, and content briefly.  
2958         - Please avoid using {marker} as part of your description. Because we draw {marker}  
2959         for reference and they does not exist in the original screenshot.  
2960     2. **Position**:  
2961         - Describe the element's location relative to other prominent elements in the UI  
2962         that uniquely identify the element.  
2963         - Specify its general area (e.g., 'top-right corner', 'center of the screen') and  
2964         its order in a group (e.g., 'second icon in the toolbar').  
2965         - Please avoid using {marker} as part of your description. Because we draw {marker}  
2966         for reference and they does not exist in the original screenshot.  
2967         - Avoid vague terms like 'near' or 'close to'. Instead, use precise language such as  
2968         'directly below', 'aligned with', or 'to the left of'.  
2969  
2970     ## Example Output:  
2971 {  
2972     "appearance": "A circular icon with a white background and a magnifying glass symbol  
2973     in black, surrounded by a thin gray border.",  
2974     "position": "Located in the top-right corner of the application window, directly to  
2975     the right of the profile avatar icon.",  
2976 }  
2977  
2978     ## Important Notes:  
2979     - Do not copy or paraphrase the content of the AllTree attributes directly.  
2980     - Please avoid using {marker} as part of your description. Because we draw {marker} for  
2981     reference and they does not exist in the original screenshot.  
2982     - Ensure each description is detailed enough to uniquely identify the element without  
2983     ambiguity.  
2984  
2985     RETURN THE DICTIONARY IN STRICT JSON FORMAT:
```

2970

2971

2972

2973

Prompt For Screen Transition Captioning and User Intention Prediction

You are a GUI agent currently operating on a {os_name} device. You will be provided with:

1. The first image is a screenshot from an {application}, which are marked with {marker} to highlight the selected element.
2. The second image is the results of the operation {action} executed on the selected element.
3. The third image is a sub-image, which is cropped from the screenshot around the selected element and is marked with {marker}.
4. The AllTree attributes of the selected element: {element_alltree}.

2979

2980

Your task is to analyze these two consecutive screenshots and complete the following tasks:

1. **State Transition Explanation**:** Describe the state change caused by the operation. This should include a detailed description of the first screenshot, the action performed on the element, the differences observed in the second screenshot compared to the first, and an explanation of the most likely user action that occurred between the two frames.
2. **User Intention Inference**:** Based on the action performed and the differences between the two screenshots, infer the user's intent. Explain what the user likely aimed to achieve and how the action led to the observed changes in the GUI.

2986

2987

Your response should be formatted as follows:

```
{
  "state-transition": "...",
  "user-intention": "...",
}
```

2990

Example Output:

```
{
  "state-transition": "In the first screenshot, the main dashboard of the Bluecoins app is displayed with a calendar showing February 2025, and the date '3' is highlighted. After tapping on the '3', the second screenshot navigates the app to a detailed calendar view for February 2025, showing tabs like 'CATEGORIES,' 'ACCOUNTS,' 'TRANSACTIONS,' and 'REMINDERS,' with no transactions listed.",
  "user-intention": "The user likely wanted to view detailed transactions and account categories for the selected date.",
}
```

2997

Important Notes:

- Avoid directly copying the AllTree attributes of the element when writing instructions.
- Ensure the instructions are clear, unambiguous, and concise, preferably described in a single sentence.
- Do not reference the distinctive red indicator when describing UI elements.

3002

RETURN THE DICTIONARY IN STRICT JSON FORMAT:

3003

3004

3005

3006

Prompt For Interface Captioning

3007

You are a GUI analysis agent currently working with a {os_name} device. You will receive a full screenshot of an {application}. Your objective is to produce comprehensive descriptions of the screenshot's contents and functionality. These descriptions should thoroughly explain each visible element by covering its visual attributes, spatial arrangement, and purpose within the interface.

Key Requirements for Descriptions:

- **Contextual Details:** Explain the interface's overall structure and the spatial relationships between elements.
- **Visual Characteristics:** colors, shapes, icons, text labels, and other distinguishing visual properties.
- **User Interaction:** Specify how users can interact with each element and the expected results of those interactions.
- **Functional Purpose:** Clarify the screenshot's role within the broader application workflow.

3018

Important Notes:

- Synthesize the attribute information to create natural, user-friendly descriptions.
- Maintain conciseness while ensuring the descriptions are sufficiently detailed to convey the GUI's structure and operation.

PLEASE GENERATE CAPTION:

3022

3023

3024

3025

3026

3027

You are a GUI analysis agent tasked with evaluating a user interface on a {os_name} device. You will be provided with the following resources:

1. The first image is a full screenshot of an {application}, where the area of interest is highlighted with {marker}.
2. The second image is a sub-image, which is cropped from the screenshot around the selected element and is marked with {marker}.

Your objective is to determine whether the marked area resides in the topmost layout and can be directly clicked. Your response must be returned in JSON format, adhering to the structure below:

```
```json
{"answer": "No"}
```


The value of `answer` can only be one of the following:



- `Yes`: Indicates that the marked area is in the topmost view and contains a clickable or valid element that is the focus element of the current interface.
- `No`: Indicates that the marked area is obstructed, intercepted, non-interactive, or otherwise non-clickable due to errors, loading issues, or the absence of a valid interactive element, or the marked area is not the focus element of the current interface.



Here are some conditions that make an area non-clickable:



- The marked area resides in the background and is not the focus element of the current interface.
- The image displays an error or fails to load content properly.
- The marked area corresponds to an empty or blank region with no visible or interactive elements.
- The marked area contains anomalies such as overlapping elements, misplaced components, or other irregularities that hinder proper interaction.
- The marked area located in background and not the focus element of the current interface.



RETURN THE DICTIONARY IN STRICT JSON FORMAT:


```

3049

3050

3051

Prompt For High-Level Objective in Weak-Semantic Trajectories

3052

3053

3054

3055

You are an expert in designing and analyzing GUI navigation tasks, specializing in evaluating a user's interaction trajectory within an {application} on a {os_name} device to deduce their overarching navigation goal.

3056

3057

3058

3059

3060

3061

You will be given the following information:

1. **Initial State Image**: A visual representation of the starting point of the interaction shown in the first image.
2. **Final State Image**: A visual representation of the endpoint of the interaction shown in the second image.
3. **Interaction Trajectory**: A detailed log of each step taken by the user, including the intent behind each action:

```
{history}
```

3062

3063

Your task is to craft a concise summary (1-2 sentences) that describes the navigation journey by focusing on the goal and outcome.

1. **Identifies the user's core objective**:

- Emphasize the transition from the initial state to the final state (implicitly or explicitly).
- Focus on the user's overall intent as inferred from the interaction history and the final state, avoiding overly detailed descriptions of operational steps (e.g., describe the task as "updating preferences" rather than "toggle the switch").

2. **Highlights the functionality of the final state**:

- Briefly describe the primary function of the final state, focusing on what the user can accomplish or access as a result of completing the navigation task.

For example:

3071

3072

3073

3074

3075

3076

3077

- The phone is displaying Amap's app info page. My goal is to access the "My Guide" section on Amap's homepage from here.
- To view Amap's notification permission, I want to move from Amap's homepage to system settings page for Amap.
- Starting from Amap's battery usage settings, I need to reach the "Offline Maps" section in the app's main interface.
- With the aim of saving posts in Instagram, please advance from the home screen to "Saved Posts" tab from Instagram's homepage.
- The screenshot shows the Chrome app info page. I want to go from here to the "History" section in Chrome's main menu.

3078

3079

3080 Now, based on the provided input, assuming you are the user, please generate an
 3081 instruction of the operational navigation goal by using the first-person present tense
 3082 or imperative sentence:

3082

3083

3084 Prompt For Low-Level Instructions in All Trajectories

3085

3086

3087 You are a GUI agent currently operating on a {os_name} device. Your task is to generate
 3088 a concise and clear operational instruction for interacting with the selected UI
 3089 element. These instructions should be relevant to the operation and include operated
 3090 details such as UI appearance, text content, position, order, file names, or other
 3091 relevant content visible in the screenshots. Instructions can involve the appearance,
 3092 position, or functional description of the selected element, but it must ensure that
 3093 the generated instruction uniquely corresponds to the selected element.

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

Prompt For Low-Level Instructions in All Trajectories

You are a GUI agent currently operating on a {os_name} device. Your task is to generate a concise and clear operational instruction for interacting with the selected UI element. These instructions should be relevant to the operation and include operated details such as UI appearance, text content, position, order, file names, or other relevant content visible in the screenshots. Instructions can involve the appearance, position, or functional description of the selected element, but it must ensure that the generated instruction uniquely corresponds to the selected element.

You will be provided with:

1. The first image is a original screenshot from an {application}, which are manually marked to highlight the selected element.
2. The second image is the results of the operations `'{action}'` executed on the selected element. If the action is 'terminate', then the second image does not exist.
3. The third image is a sub-image cropped from the original screenshot, focusing on the selected element, which is highlighted with a red bounding box and arrow for better visibility.
4. The AllTree attributes of the selected element: {element_alltree}.

REMEMBER:

- Do NOT directly copying the AllTree attributes of the selected elements as instructions.
- Do NOT reference the distinctive red indicator when describing UI elements.

Directly generate the operational instruction which can uniquely correspond to the selected element and contain all operations. Avoid "highlighted", "red box", "red circle" and "red point" in your output:

Prompt For Rationales in All Trajectories

You are a GUI agent operating on a {os_name} device. Your task is to analyze the potential reason behind operations.

You will be provided with:

1. The first image is a original screenshot from an {application}, which are marked to highlight the selected element.
2. The second image is the results of the operations `'{action}'` executed on the selected element. If the action is 'terminate', then the second image does not exist.
3. The third image is a sub-image cropped from the original screenshot, focusing on the selected element for better visibility.
4. The AllTree attributes of the selected element: {element_alltree}.
5. The task objective is `'{task_objective}'` and history trace is `'{history}'`.

Guidelines:

- Examine the selected UI element and relevant contextual features that support task completion, considering both the objective and interaction history. {marker} highlighted in image is manually added to assist in identifying elements and **should not** be mentioned.
- Provide your reasoning in three sentences, ensuring alignment with the goal and labeled action, but do not cite the actual action or bounding box as justification, as these reflect hindsight rather than predictive insight.
- Restrict your analysis to details from the first image only, and avoid referencing image order.

For example:

The screenshot shows a file dialog with active selection on format dropdown. Changing the format completes the file configuration sub-task. Next, click 'Save' to confirm the selection.

Focus only on the thoughts leading up to the event, not what happens after. Do not refer to visual cues like highlights, red boxes, or circles in your description and think aloud as you work on this task:

3131

3132
3133

Prompt For Instruction Boost

3134

3135 You are a helpful assistant to refine the given user instructions. The refined
 3136 instructions should be clear, polite, and structured as a direct request or question,
 3137 often including:

- A specific action or configuration change.
- Optional context or reasoning (e.g., "I want to ensure my browsing is private").
- A conversational yet concise tone

3138

3139 ****Some Examples for reference:****

- "Configure the system to show seconds in the taskbar clock."
- "Can you configure VS Code to automatically check for updates on startup?"
- "Could you assist me in cleaning up my computer by removing any tracking data that Chrome might have stored?"
- "I want to hear something soft and beautiful music when Windows starts up. Can you set that MP3 file I like as my startup sound?"
- "I don't want to see all these news on the home page of Microsoft Edge. Remove them in Page settings."

3140

3141 ****Output Format:****

3142 You should provide various styles and the output should be structured as follows:
 3143
 3144

3145
 3146 Can you;
 3147 I want to;
 3148 I don't want to;
 3149 ...;
 3150
 3151

3152 ****Input instruction:** {task_objective}**

3153 Rewrite the provided input instructions, ensuring they are actionable, polite, and
 3154 include necessary details. Use ";" to separate different output:

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

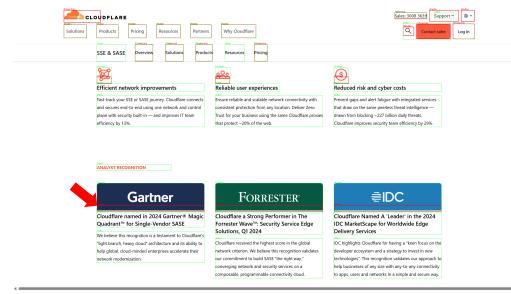
3177

3178

3179

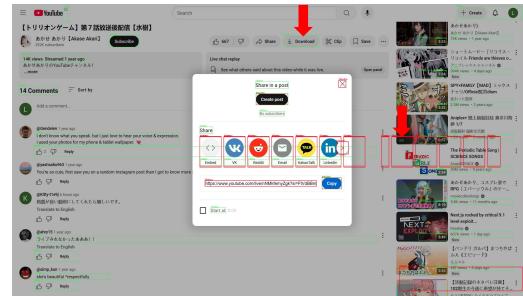
3180

3181


3182

3183

3184


3185

3186

3197 (a) Failure Case 1: The red box pointed to by the red arrow is originally an unclickable image element, but it is
3198 set as `role=button` in the HTML.

3199

3209 (b) Failure Case 2: As indicated by the red arrow, some non-top-level elements and invisible list elements are not
3210 filtered out by the rules.

3211

3222 (c) Success Case 1: Reduce web page dynamics.

3223

3233 (d) Success Case 2: Correctly handle element hierarchy relationships.

3234

3235 Figure 31: Examples of visualizations in web data acquisition. (a) shows website developer uses
3236 element identity attributes incorrectly, (b) illustrates complexity or particularity of the web leads to
3237 problems with hierarchy and visibility analysis, (c) demonstrates we alleviate the dynamic problem of
3238 web pages when playing videos, and (d) presents an example of correctly analyzing each element in a
3239 page. The red box represents clickable elements, the green box represents non-clickable elements,
and the blue box represents illegal elements that have been filtered out.