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Abstract

Multi-label image recognition aims to predict all objects present in an input image.
A common belief is that modeling the correlations between objects is beneficial for
multi-label recognition. However, this belief has been recently challenged as label
correlations may mislead the classifier in testing, due to the possible contextual
bias in training. Accordingly, a few of recent works not only discarded label
correlation modeling, but also advocated to remove contextual information for
multi-label image recognition. This work explicitly explores label correlations for
multi-label image recognition based on a principled causal intervention approach.
With causal intervention, we pursue causal label correlations and suppress spurious
label correlations, as the former tend to convey useful contextual cues while the
later may mislead the classifier. Specifically, we decouple label-specific features
with a Transformer decoder attached to the backbone network, and model the
confounders which may give rise to spurious correlations by clustering spatial
features of all training images. Based on label-specific features and confounders,
we employ a cross-attention module to implement causal intervention, quantifying
the causal correlations from all object categories to each predicted object category.
Finally, we obtain image labels by combining the predictions from decoupled
features and causal label correlations. Extensive experiments clearly validate the
effectiveness of our approach for multi-label image recognition in both common
and cross-dataset settings.

1 Introduction

Multi-label image recognition is a fundamental task in computer vision, aiming to predict all objects
present in an image. It has widespread applications including object detection [6], medical imag-
ing [39], and person re-identification [31]. However, this task is challenging as the combinations of
labels can be tremendous. Modelling label correlations to reduce the search space is believed to be
essential for multi-label image recognition [4].

In the research of multi-label image recognition, an implicit yet common assumption is: the training
and test sets follow independent and identically distributions (i.i.d.), and the label correlations
are consistent. Under this setting, a deep backbone network can implicitly extract context-aware
features that are beneficial for object recognition, and furthermore, explicit label correlation modeling
can explore contextual cues more deeply to improve the recognition accuracy. Technically, graph
structures [4, 12] or attention mechanisms [10, 25] have been successfully employed to model label
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Figure 1: Illustration of the concept and effect of contextual bias in training. It is common that
“Person”, “Dog”, and “Cat” co-occur in training images (we only show one image), while the test
image may only contain “Person” and “Dog”. Excessive reliance on the label co-occurrence in the
training set may lead the recognition model to predict the “Cat” solely based on the presence of
“Person” and “Dog”.

correlations. However, these methods may fall short when there exists contextual bias in the training
set. As illustrated by Fig. 1, “Person”, “Dog”, and “Cat” co-occur frequently in the training set,
but a test image may only contain “Person” and “Dog”. Consequently, due to the learned label
correlations, the multi-label recognition model predicts a high probability of “Cat”, solely based on
the presence of “Person” and “Dog”.

Recently, a few researchers [14, 17] have uncovered the contextual bias issue, and discarded explicit
label correlation modeling. Furthermore, they attempted to alleviate the effects of contextual bias
by decorrelating the feature representations of a category from its co-occurring context [14], or
removing the contextual bias in features with causal mechanisms [17]. Despite improved accuracy,
these methods neglect to model label correlations. In this paper, we ask: is it possible to model
label correlations for multi-label recognition, with the purpose of preserving good and suppressing
bad contextual contents? This work attempts to answer this question, as well as quantifying the
goodness of contexts (corresponding to all pre-defined categories in the dataset) for recognizing a
certain semantic category from the perspective of causal theory [22].

In this paper, we explore label correlations with a principled causal intervention approach for multi-
label image recognition. Causal intervention aims to measure the causal effect from one cause
variable to another effect variable, by “physically” putting the effect variable at any context to remove
the effects of confounders in current image. Our key motivation lies on the realization that the causal
label correlations (in the probability-raising sense [22]) are stable in both training and testing, even
when contextual bias does exist in the training set. We pursue causal correlations (e.g., from “Person”
to “Clothes”) to mine contextual cues for recognition, while suppressing spurious correlations (e.g.,
from “Person” to “Cat”) which are associated by confounders (e.g., the overall scene) and may
mislead the classifier in testing.

We design an end-to-end framework that carefully integrates causal intervention into multi-label
recognition. Specifically, we decouple label-specific features with a Transformer decoder attached
to the backbone network, and model the confounders (imaginary contextual contents) by clustering
spatial features of all training images. Based on label-specific features and confounders, we employ a
cross-attention module to implement causal intervention for all pre-defined categories, quantifying
the causal label correlations from all object categories to each predicted object category. Finally, we
combine the predictions from decoupled features and causal correlations for multi-label prediction.

In summary, our main contributions are as follows:

• We propose a conceptually simple, yet effective label correlation modeling approach based
on causal intervention to tackle the issue of contextual bias for multi-label image recognition.
It allows us to capture causal label correlations (good contextual contents) to improve
recognition accuracy, while suppressing the effects of spurious correlations (possible bad
contextual contents) that may mislead the classifier.

• We conduct comprehensive experiments with contextual bias to evaluate the effectiveness
of the proposed method for multi-label image recognition. Under both common and cross-
dataset settings, our method consistently demonstrates advantages over existing methods.

2 Related Work

Correlation modeling for multi-label image recognition. Modeling label correlations is crucial for
multi-label image recognition. Early approaches achieved this by embedding label correlations using

2



P(Y)
P(Y|do(X=person))

P
er

ce
nt

 (
%

)

0

5

10

15

20

25

30

35

Category
tennis racket skis playingfield clothes frisbee umbrella pavementwall-concrete cup furniture-other bottle door-stuff metal dog plastic book wood leaves cat bird

Figure 2: Illustration of causal label correlations and spurious correlations revealed by causal
intervention, in a probability-raising sense that if P (Y |do(X)) > P (Y ), then a causal correlation
exists from X (“Person”) to Y (categories in this figure).

Recurrent Neural Networks (RNNs) [32, 21], but the performance is affected by the order in which
the labels are predicted. To overcome the sequential issue, researchers attempted to capture label
correlations with graph structures, enabling simultaneous prediction of the label sets [4, 28, 12, 25].

Besides graph structures, several other approaches have been developed to establish label correlations.
DER [5] employs metric learning to pull related label-specific features closer and push unrelated
label features apart. C-Tran [15] introduces a label mask training approach for general multi-label
image classification, indirectly constructing label correlations by predicting masked labels. Q2L [19]
employs Transformers to decompose label features and utilizes self-attention mechanisms to establish
label correlations. SST [7] employs Transformers to simultaneously capture both spatial and semantic
label correlations.

From a broader view of context modeling, label correlation modeling, arguably, can be understood as a
strategy to enhance label-specific contextual cues. However, contextual information is a double-edged
sword, and may mislead the classifier in presence of contextual bias in training.
Contextual bias and debiasing. While visual context is widely believed to be beneficial for object
recognition, recent works show that contextual bias may hurt multi-label image recognition [14, 17].
Such bias happens when an object category frequently co-occurs with some other object categories.
Strongly relying on context may mislead the classifier, when typical contextual patterns around an
object are absent or an object are absent from its typical context.

Due to the contextual bias issue, some recent works have discarded label correlation modeling
for multi-label image recognition, since the contextual priors encoded by learnt label correlations
may mislead recognition. Furthermore, these works developed contextual debiasing techniques, by
decorrelating feature representations of a category from its co-occurring context [14], or removing
contextual bias in features with causal mechanisms [17]. We argue that these methods may discard
useful contextual cues, leading to inferior accuracy for common objects in common contexts.

Causal intervention in vision. Causal intervention measures the causal relationship between two
random variables, by removing the confounders that may associate them [22]. Recently, causal
intervention has gained attention in the field of computer vision [17, 26, 33, 34, 27, 36, 37], with
expectations to address the contextual bias or long-tailed distribution issues. For instance, VC-
RCNN [33] employs causal intervention and proxy tasks to extract unbiased visual features, which
can benefit downstream tasks like Image Captioning, Visual Question Answering, and Visual Com-
monsense Reasoning. Tang et al. [26] show that the SGD momentum is essentially a confounder in
long-tailed classification, and propose to remove bad causal effects by intervention. Wang et al. [34]
reveal that traditional attention module is biased in out-of-distribution setting, and propose causal
attention for unbiased visual recognition.

For multi-label image recognition, Liu et al. [17] recently propose to remove the contextual bias in
features with causal intervention. However, this approach does not consider label correlations, and
may discard contextual evidences that are crucial for recognizing obscure instances.

3 Preliminaries and Motivation of Causal Correlations

Causal correlations in probability-raising sense. Humans can easily understand the causal
correlation between the presence of two objects (e.g., “Person” is the cause of “Clothes”). Seeking
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Figure 3: (a): Causal correlation between label X and Y , which is not affected by confounder set C.
(b): Spurious correlation, where the co-occurence of X and Y is caused by confounder set C.

for a calculable formal definition, we follow the statement in [23]: if P (Y |do(X)) > P (Y ), then a
causal correlation exists from X to Y in a probability-raising sense. Here do(X) is the do-operation,
which pursues the causality between the cause X and the effect Y without the confounding effect.

As shown in Fig. 2, our implementation of causal intervention (which will be elaborated later) can
reveal the causal correlations between objects in above probability-raising sense. For example, given
the observation of “Person”, the probabilities of “Clothes” and “Skis” raise. But on the other
hand, although “Cat” often co-occurs with “Person”, with causal intervention the probability of
“Cat” even decreases when observing “Person”.

Why pursuing causal correlations? Understanding this requires delving deep into the implication
of causal intervention. Causal intervention is reminiscent of randomised controlled trials [2]. Based
on the presence of X , causal intervention makes the prediction of Y goes beyond the limitation of the
context of current test image. It measures the probability of Y , by putting Y at randomised context
(which can be simulated by confounder set C) with X . Therefore, if X is the cause of Y , it should
be able to provide contextual cues to raise the probability of Y , regardless of the contents (except X
and Y ) in current test image. If X is not the cause of Y , it will not raise the probability of Y based
on causal intervention, although they might co-occur frequently in the training set.

Formally, Fig. 3 shows a Structural Causal Model [23], where X and Y represent two labels, and
C represents the confounder set. In causal theory, each directed edge denotes a possible causal
relationship between two nodes. Fig. 3 (a) and (b) illustrate two extreme cases: the causal correlation
between label X and Y which is not affected by the confounder C, and the spurious correlation,
where the co-occurrence of X and Y is caused by the confounder set C.

Causal intervention by backdoor adjustment. As “physical” intervention that puts Y at any
context is almost impossible, backdoor adjustment [22] is typically applied for “virtual” intervention:

P (Y |do(X)) =
∑
c

P (Y |X,C = c)P (C = c) , (1)

Here the key idea is to cut off the link from confounder C to cause X , and stratify C into pieces
C = {c}, making C no longer correlated with X , and making X have a fair opportunity to incorporate
every confounder c into the prediction of Y , subject to a prior P (c).

4 Approach

4.1 Overview of Proposed Pipeline

Building upon above analysis, we incorporate causal intervention into explicit label correlation
modeling for multi-label image recognition, designing a pipeline of two complementary branches
(Fig. 4): the branch of decoupled label-specific features, and the branch of causal label correlations.
In particular, the causal correlation branch is built upon decoupled features.

Given an input image, a backbone network (e.g., ResNet-50 [11]) is firstly employed to extract the
spatial feature. Then, a Transformer decoder is leveraged to decouple label-specific features from
the spatial feature. This branch predicts image labels based on objects themselves, rather than the
context or label correlations. To take into account the label correlations yet overcoming the effects
of contextual bias, we construct a causal intervention branch, which explicitly models causal label
correlations, and integrates them into prediction.

Formally, we denote the prediction confidence from the causal intervention branch as ŷcausal, and
the prediction from the decoupled feature branch as ŷdecouple, then the final prediction confidence
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Figure 4: The overall framework of our proposed method.

scores ŷ can be written as:

ŷ = 1/2 · ŷcausal + 1/2 · ŷdecouple ∈ RN , (2)

where N is the number of categories. We utilize standard multi-label recognition loss to train the
model, which can be written as:

L =
∑

ygt log(ŷ) + (1− ygt) log(1− ŷ) , (3)

where ygt = {0, 1}N is ground truth label vector of the input image.

In the following, we will detail the designs of the decoupled feature branch and the causal intervention
branch. We will also present explanations and discussions about causal correlations in context to
facilitate understanding.

4.2 Predicting by Decoupling Label-Specific Features

We firstly decouple label-specific features for input image with two purposes: (i) predicting image
labels based on objects themselves; (ii) preparing for label correlation modeling by causal intervention.

For decoupling label-specific features, common approaches include Class Activation Mapping
(CAM) [40] and Transformer [30]. We employ a Transformer decoder for this purpose. Specifically,
given input image I , we firstly use a CNN backbone to extract spatial feature F :

F = fcnn(I). (4)

Then, we employ a standard Transformer decoder to decouple label-specific features X ∈ RN×D

from F :
X = fdecoder(Q,F ). (5)

Here, Q ∈ RN×D are learnable label embedding as queries, N and D are the number of categories
and dimensionality of spatial features, respectively.

Finally, we obtain the prediction confidence ŷdecouple from decoupled features by:

ŷdecouple = σ(ffc1(Q)) , (6)

where ffc1(·) denotes the fully-connected layer, σ(·) is the sigmoid function. We apply multi-label
loss to this branch for decoupled label-specific feature learning.

4.3 Predicting by Summarizing Causal Label Correlations

With label-specific features, we can construct our intervention branch which explicitly models causal
label correlations for multi-label image recognition.

To estimate the probability of each category Yj on this causal intervention branch, a straightforward
approach is firstly calculating P (Yj |do(Xi)) for each category Xi, and then merging them:

ŷjcausal = fmerge([P (Yj |do(X1), ..., P (Yj |do(XN )]). (7)

One might expect complex modeling of P (Yj |do(Xi)) and fmerge(·) for calculating Eq. 7. In this
work, we introduce a simple yet effective implementation, using one cross-attention layer and one
fully-connected layer.
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Causal intervention based on label-specific features. We hypothesize that whether Xi appears in
the test image should be encoded by its label-specific feature xi. Given label-specific features xi and
yj for label Xi and Yj , and one potential confounder feature c, we model the conditional likelihood
in Eq.1 as:

P (Yj |Xi, C = c) = σ(fyj
(xi, c)) , (8)

where σ(·) is the sigmoid function. fyj (·) calculates the logit for label Yj . Then, causal intervention
can be calculated as:

P (Yj |do(Xi)) = Ec[σ(fyj
(xi, c))] . (9)

Due to the difficulty in directly computing Eq. 9, we apply the Normalized Weighted Geometric
Mean (NWGM) [13] to approximate the above equation:

P (Yj |do(Xi)) = Ec[σ(fyj (xi, c))]

≈ σ(Ec[fyj
(xi, c)])

= σ(
∑
c

fyj (xi, c) · P (c)) . (10)

Here P (c) is the prior of confounder, which can be obtained from data.

Calcualting Eq. 10 requires further modeling of fyj (xi, c). However, instead of hypothesizing a
formulation of fyj

(xi, c) which only intervenes one category Xi for Yj , we describe an efficient
formulation based on cross attention to intervene all categories Xi for Yj in one step. This allows us
to circumvent the calculation of each fyj

(xi, c), making the calculation of Eq. 7 more efficient.

Effective modeling for all fyj
(xi, c) by cross-attention. Formally, following the notation in Eq. 5,

let X = [x1, ..., xN ] ∈ RN×D denote all label-specific features. To implement Eq. 7, we seek for
a model to combine the information of all label-specific features xi and one potential confounder
feature c to predict the logit of label Yj . We employ cross-attention mechanism and fully-connected
layer for this purpose:

Zc = X + c ,

ŷjcausal = fmerge([P (Yj |do(X1), ..., P (Yj |do(XN )])

= fmerge([σ(
∑
c

fyj
(x1, c) · P (c)), ..., σ(

∑
c

fyj
(xN , c) · P (c))])

≈ σ(
∑
c

fyj (X, c) · P (c))

= σ(
∑
c

ffc2(fcross_atten(yj ,Zc,Zc)) · P (c)) , (11)

where Zc is the addition-based combination of all label-specific features X and a confounder feature
c, and ffc2 is a fully-connected layer applied upon the cross-attention feature to obtain the logit.
Algorithm 1 provides the pseudocode of causal intervention process.

Modeling the confounders It remains an open question about cofounder modeling for visual
recognition tasks. In VC R-CNN [33], the authors treated objects as confounders, and extract object-
level features based on bounding box annotations. However, on one hand, there is no bounding box
annotation in the typical setting for multi-label image recognition. On the other hand, we argue that
cofounders for recognizing certain object are often hard to define and enumerate – objects, scene,
and even the texture of the environment are all potential confounders. For example, suppose that an
image contains two objects: “Person” and “Surfboard”, with the scene being the “Beach”. In VC
R-CNN, the “Surfboard” is considered the confounders for the “Person”. However, in our opinion,
the true confounder should the “Beach”, although it does not have an associated image label.

Based on above analysis, to characterize these non-enumerable confounders, high-level spatial
features of training images from pre-trained classification CNN provide a good choice, as semantic
objects/regions are often activated in classification features. By clustering spatial features with
K-means algorithm, we obtain a compact set of prototypes to represent potential confounders like
objects, scenes and textures. We empirically show the effectiveness of this simple approach for
modeling the confounders.
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Algorithm 1 Pseudocode of Causal Intervention in a PyTorch-like style.

# X (NxD): The label -specific features
# C (MxD): Confounders
# P (M): Priors
# N is the number of categories
# D is the dimensionality of spatial features
# M is the number of confounders
Z = X.unsequeeze (1) + C.unsqueeze (0) # NxMxD
y_j = X[j,:]
y_causal_j = 0
for c in range(M):

y_causal_j += fc2(cross_atten(y_j , Z[:,c,:], Z[:,c,:])) * P[c]
y_causal_j = y_causal_j.sigmoid ()

5 Experiments

5.1 Experimental Settings and Implementation Details

Common Setting. The COCO-Stuff [1] and DeepFashion [20] datasets are experimented in com-
mon setting, where the training and test sets are from the same dataset. We strictly adhere to the
evaluation setup employed in [14], and report the performance under two different test distributions:
“Exclusive” denotes virtual co-occurrence where labels appearing simultaneously in the training
set do not co-occur in the test set, and “Co-occur” represents the objects co-occurring in both the
training and test sets. “All” is the average performance of all categories. We report top-3 recall for
DeepFashion and mAP for COCO-Stuff.

Cross-dataset Setting. We consider a more challenging yet practical setting in real-world applica-
tions: the training and test sets are from different datasets, and may suffer from serious contextual
bias issue. We simulate this setting by using MS-COCO [16] for training and NUS-WIDE [8] for
testing, and vice versa. In particular, we select the same categories (14 common classes) from both
the MS-COCO and NUS-WIDE datasets for experiments. We report the mean Average Precision
(mAP) for all categories in this setting.

Implementation Details. To fair comparison with previous methods, we employ ResNet-50 and
ResNet-101 as backbones for the common setting and real-world setting, respectively. We utilize the
ImageNet [9] for model parameter initialization. For the cross-dataset setting, the input images are
randomly cropped to a resolution of 448× 448, while for the common setting, the resolution is set to
224×224. To extract label-specific features, we employ a 2-layer Transformer decoder with 4 attention
heads. For modeling confounders, we first train a baseline model with standard multi-label loss, then
extract spatial features from all the images in the training dataset, and employ K-means algorithm
(default number of clusters is set to 80) to cluster all pixel-level spatial features. The Adam optimizer
is chosen for model optimization, with a weight decay of 2e− 2 and (β1, β2) = (0.9, 0.9999). The
initial learning rate is set to 1e− 4, and we employ a cyclic learning rate policy to train our model
for 80 epochs. All of the experiments are run on a computer with an AMD EPYC 7542 32-Core
processor, 256 GB main memory, and eight GTX-3090 GPUs.

5.2 Comparing to the State-of-the-arts

Common Setting. In Table 1, we report the performance on COCO-Stuff and DeepFashion datasets,
where the baseline is the vanilla Resnet-50 with standard multi-label loss. Comparing with the
baseline, we observed a significant improvement (55.0% v.s. 60.6% on “All” mAP). Furthermore,
our proposed method outperforms all state-of-the-arts on these two benchmarks. For example, it
obtains a +1.5% “Exclusive” and +3.6% “Co-occur” improvements over the feature-split [14] on
COCO-Stuff dataset.

We also observe that previous methods that directly build label correlations based on graph structures
are affected by contextual bias in datasets. For example, ML-GCN [4] and SSGRL [28] both construct
label graphs based on the training set and utilize the graph structure to capture correlations between
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Table 1: Performance comparison in the common setting on the COCO-Stuff and DeepFashion
datasets.

Method COCO-Stuff (mAP) Deepfashion (top-3 recall)
Exclusive Co-occur All Exclusive Co-occur All

Q2L [19] 23.5 67.1 57.2 12.8 26.3 26.1
ADD-GCN [12] 20.6 64.8 55.2 8.2 22.6 23.5

ML-GCN [4] 18.6 67.1 55.1 10.3 23.7 24.0
SSGRL [28] 18.1 66.6 54.9 7.9 22.8 23.1
C-Tran [15] 22.4 65.1 55.4 11.4 24.6 24.8
CCD [17] 23.8 65.3 55.9 11.5 24.2 24.6

TDRG [38] 20.0 64.8 56.2 8.1 22.9 23.6
IDA [18] 25.2 64.9 57.0 11.3 25.1 25.4

CAM-Based [14] 26.4 64.9 – – – –
feature-split [14] 28.8 66.0 – 9.2 20.1 –
Baseline (R50) 21.9 65.5 55.0 11.5 24.1 24.1

Ours 29.7 69.6 60.6 14.6 27.4 28.8

Table 2: mAP Performance comparison in the cross-dataset setting on the MS-COCO and NUS-
WIDE datasets.

Method MS-COCO → NUS-WIDE NUS-WIDE → MS-COCO
ADD-GCN [12] 81.8 77.2

ML-GCN [4] 81.4 77.2
SSGRL [28] 80.2 76.1
C-Tran [15] 80.9 76.9
CCD [17] 81.9 78.3
Q2L [19] 82.1 78.6
IDA [18] 82.3 78.9

CAM-Based [14] 81.0 77.8
feature-split [14] 81.9 78.3
Baseline (R101) 81.1 77.1

Ours 83.2 80.2

labels. These two methods cannot achieve significant improvements over the baseline, and even
exhibit noticeable performance degradation. We speculate that the graph structure constructed from
the training set are not applicable to the test set in presence of contextual bias.

Cross-dataset Setting. Table 2 reports the results on the MS-COCO and NUS-WIDE datasets,
where the baseline is the vanilla Resnet-101 with standard multi-label loss. Similar to the common set-
ting, the performance of previous methods is affected by contextual bias, and our method outperforms
all other state-of-the-art methods. However, compared to the baseline, the performance improvement
of our method is not as significant as in the common setting. We speculate that, apart from contextual
bias in training, the inconsistency in data distribution may also affect the performance. Even so, the
cross-dataset results can indicate robustness and generalization capabilities of our method.

5.3 Ablation Studies

In this section, we conduct ablation studies by using ResNet-50 as backbone on COCO-Stuff Dataset.

5.3.1 Effectiveness of Different Modules

We investigate the impacts of key modules in our framework. Specifically, there are two essential
modules, i.e., decoupling the label feature module (denoted as “Decouple”) and causal intervention
module (denoted as “Causal”). Table 3 shows the mAP performance by progressively integrating the
above two modules. Solely applying “Decouple” on the backbone gives a +1.8% “All” mAP, +0.2%
“Exclusive” mAP and +1.5% “Co-occur” mAP improvement. Directly applying decoupling leads
to improved “Co-occur” performance but fails to enhance “Exclusive” performance. We speculate
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Table 3: The impacts of different modules.

Decouple Causal Exclusive Co-occur All
21.9 65.5 55.0√
22.1 67.0 56.8√ √
29.7 69.6 60.6

Table 4: The impacts of clustering center num-
ber.

Number Exclusive Co-occur All
20 26.9 68.9 59.6
40 26.8 69.3 60.1
60 29.3 69.8 60.2
80 29.7 69.6 60.6

100 29.5 69.4 60.5

Table 5: The impact of backbones for clustering.

Confounder Backbone Exclusive Co-occur All
ResNet-50 29.7 69.6 60.6

ResNet-101 29.6 69.9 60.5
BEIT3-Large 29.4 69.7 60.5

Table 6: The impact of different modeling
approaches for confounders.

Method Exclusive Co-occur All
Random 22.1 66.3 56.1

Early 27.8 69.1 60.1
Label 28.0 69.3 60.3

K-means 29.7 69.6 60.6

that the cross-attention mechanism can capture the long-range dependencies, since it can implicitly
model causal correlations but cannot eliminate spurious co-occurrence correlations. Then, the causal
intervention module, which can remove spurious co-occurrence correlations and capture the causal
correlations, bring another 3.8% “All” mAP. These results show the effectiveness of our approach in
alleviating label correlations bias.

5.3.2 Investigation of Confounders

Modeling confounders is a core step in our approach. In order to investigate the impact of different
confounders, we designed comparative experiments at three aspects, i.e., the number of clustering
centers, different clustering features, and different approaches for modeling confounders.

The number of clustering centers. In order to investigate the influence of the number of clustering
centers, we conducted experiments with different numbers of cluster centers: 20, 40, 60, 80, and 100,
respectively. The experimental results are presented in the Table 4. It can be observed that within
a certain range, increasing the number of cluster centers does not significantly affect performance.
However, a performance decline is noticeable when the number of clusters is reduced to 20. We
speculate that the confounders correspond to many attributes including semantic, color, texture, and
so on. A smaller number of cluster centers can only express very limited attributes, resulting in a
decline in performance.

Different backbones for clustering. By default, we employ ResNet-50 as the backbone to ex-
tract features from all images in the training set on COCO-Stuff, and perform clustering to obtain
confounders. In order to investigate the impact of different clustering features, we utilize distinct
backbones for feature extraction. As shown in Table 5, the confounders obtained from different
backbones have not significant influence on final performance. The role of the confounders is to
identify label causal correlations and does not directly participate in recognition. Therefore, the
features extracted by a weak backbone seems sufficient in identifying causal correlations, and the use
of a strong backbone does not lead to performance improvement.

Different approaches for modeling confounders. In this paper, we utilize clustering centers to
characterize confounders. We compare it with two additional modeling techniques. The experimental
results as shown in the Table 6. “Random” means using random vectors to replace cluster centers
as confounders. “Early” means fusing features from early epochs directly to obtain the confounder,
which is adopted by [17]. “Label” means directly using label-specific features as the confounder.
Our modeling of confounders using K-means yields the best results. “Random” leads to significant
performance degradation (measured by mAP), especially on the “Exclusive” subset. Since, we believe
that confounders should be modeled at semantic level. The “Early” approach relies solely on simple
feature fusion, which fails to effectively differentiate various attributes. The “Label” approach only
employs object semantics as the confounder, leading to the omission of other attributes. By contrast,
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Table 7: Different implementations of Eq. 7.

Method Exclusive Co-occur All
Linear 27.4 69.1 60.0
Ours 29.7 69.6 60.6

our approach incorporates both object-related information and other contextual information, offering
a more expressive set of confounders.

5.3.3 Different Implementations of Eq. 7

We investigate different implementations of Eq. 7. Following [33], we employ a simpler linear
approach and average merge method to model Eq. 7. As shown in Table 7, we can observe that
employing a linear modeling approach yields competitive results, but our method still outperforms it.
We speculate that while linear modeling can implement Eq. 7, our approach utilizes cross-attention,
which possesses the ability to model long-range dependencies, thereby efficiently capturing causal
correlations and suppressing spurious correlations.

6 Conclusions

In this paper, we presented a principled approach to address the contextual bias issue for multi-label
image recognition. Using causal intervention from causal theory, we pursued causal label correlations,
and integrated them into multi-label prediction. We evaluate the effectiveness of our approach with
both quantitative and qualitative assessments. In the future, we will investigate more advanced
structural causal models for better describing the label correlations.
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A Supplemental Material

A.1 Limitations

Despite improved accuracy, our causal intervention-based multi-label image recognition algorithm
still has several limitations. First, we model confounders by clustering the spatial features extracted
from a pre-trained classification CNN. On one hand, this approach is dataset-dependent, and on the
other hand, although our modeled confounders mainly concerne with object-level, texture-level and
scene-level concepts, it is not possible to determine the specific semantics of these concepts, resulting
in limited interpretability. Second, we only integrate the causal intervention technique in causal
theory in our multi-label image recognition pipeline. In the future, we will consider higher-level
causality such as counterfactual reasoning.

A.2 Experiments

A.2.1 Datasets

COCO-Stuff [1] covers 171 classes and contains 82,783 training images and 40,504 testing images.
DeepFashion [20] contains 209,222 training images and 40,000 testing images. Following [14],
for DeepFashion we only consider the 250 most frequent attributes in the training data since other
attributes do not contain sufficient samples.

We also evaluate our method in more challenging cross-dataset setting: training on MS-COCO [16],
but testing on NUS-WIDE [8] dataset. The MS-COCO dataset contains 122,218 images and covers
80 common objects, with an average of 2.9 labels per image. The NUS-WIDE dataset has 269,648
images and 81 concepts, with an average of 2.4 concept labels per image.

A.2.2 Intra-dataset Comparisons on MS-COCO

In our main paper, we present cross-dataset experiments to show the effectiveness of our method for
contextual bias and distribution shift. That is, we train on MS-COCO [16], but test on NUS-WIDE [8];
or train on NUS-WIDE [8], but test on MS-COCO [16]. Here, we also report the accuracy of our
method for general multi-label recognition, by both training and testing on MS-COCO.

As shown in Tab.8, although our approach is designed to solve the contextual bias issue for multi-label
recognition, it can achieve competitive accuracy for general multi-label recognition. In particular, our
method outperform CCD [17] by 0.9 mAP, which also integrates causal mechanisms for contextual
de-biasing, but discards the explicit modeling for label correlations. Combining the cross-dataset
and intra-dataset experimental results, our approach shows advantages over both general multi-label
image recognition algorithms [7, 19] and recent algorithms that explicitly considers contextual
de-biasing [14, 17].

A.2.3 Effect of different backbones.

To investigate the impact of different backbones on performance, we conducted experiments using
ResNet-50, ResNet-101, and BEIT-Large [35] as backbones. The results are shown in Table 9, which
reveal that even with a stronger backbone, our method can still effectively improve performance. For
example, our method with the BEiT-Large backbone achieves a 72.2% mAP, which outperforms the
baseline by 2.9% mAP. This experimental result demonstrates that our method can be generalized to
stronger backbones.

A.2.4 Visualizations

For qualitative verification, we employ Grad-CAM [24] to visualize label-specific features for the
baseline and our proposed method. As shown in Fig. 5, although the baseline can activate relevant
object locations, it also activates the regions with spurious correlations for the target object. In
contrast, our method activates solely at the object’s location. In Fig. 5 (a), besides activating label
“Cell Phone”, the baseline method additionally activates label “Person”, whereas our method
solely activates "cell phone." Regarding negative labels, when an input image lacks a specific label,
the baseline might erroneously infer false labels through other labels due to excessive reliance
on label co-occurrences. Our method mitigates this phenomenon effectively. In Fig. 5, as labels
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Table 8: Comparisons with state-of-the-art on MS-COCO [16], where the models are all trained on
MS-COCO dataset. Here, * means the re-produced results by ourselves.

Methods Resolution mAP
CNN-RNN [32] 224×224 61.2

SRN [41] 224×224 77.1
ResNet-101* [11] 448×448 79.1

SSGRL* [28] 448×448 81.9
DER [5] 448×448 82.8

ADD-GCN* [12] 448×448 82.8
ML-GCN [4] 448×448 83.0
C-Tran* [15] 448×448 83.1
P-GCN [3] 448×448 83.2
MCAR [10] 448×448 83.8

MS-CMA [25] 448×448 83.8
CCD [17] 448×448 84.0
SST [7] 448×448 84.2

TDRG [38] 448×448 84.6
IDA [18] 448×448 84.8
Q2L [19] 448×448 84.9

Ours 448×448 84.9

Table 9: The impacts of different backbones on COCO-Stuff.

Backbone Ours Exclusive Co-occur All

ResNet-50 21.9 65.5 55.0√
29.7 69.6 60.6

ResNet-101 23.7 68.5 58.9√
31.0 70.3 61.4

BEIT3-Large 46.8 80.4 69.3√
56.6 81.2 72.2

“Person”, “Baseball Glove”, and “Baseball Bat” co-occur in the training set, the baseline infers
the presence of “Baseball Bat” through “Person” and “Baseball Glove”, even if it is absent in
the input image. This eventually leads the baseline to incorrectly activate spatial features associated
with the label “Baseball Bat”. In contrast, our method nearly avoids activating such features. The
visualization results further validate our motivation, i.e., our approach effectively removes spurious
co-occurrence correlations and captures the causal correlations.

Input Baseline Ours

(a)
Positive Label:

Cell Phone

(b)
Positive Label:

Dog

(c)
Negative Label:

Baseball Bat

(d)
Negative Label:

Spoon

Input Baseline Ours

Figure 5: Visualization for the spatial feature map of baseline and our proposed method using the
Grad-CAM [24].

A.2.5 t-SNE Visualization of Features

In Fig.6, we show the t-SNE [29] visualization of our confounders and two typical label-specific
features (“Baseball Glove” and “Person”).

Without causal intervention, we observe that “Baseball Glove” and “Person” are mixed with each
other, indicating that they often co-occur in the training set. Furthermore, the confounders are around
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Baseball Glove
Person
Confounder

(a) Baseline

Baseball Glove
Person
Confounder

(b) Ours

Figure 6: t-SNE [29] visualization for confounders and label-specific features of “Baseball Glove”
and “Person”.

label-specific features, since they are obtained by clustering the spatial features of a pre-trained
classification backbone.

With our causal intervention branch, we empirically find that “Baseball Glove” and “Person” are
pulled apart, since they have very weak causal correlations in the probability-raising sense. On the
other hand, the label-specific features are pulled away from the confounders, suggesting that our
causal intervention can remove the influence of confounders for causal representation learning.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Lines 7 to 11 as well as lines 47 to 55 elaborate on the contributions of our
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Due to the page limitations, we provide a detailed analysis of the limitations of
our method in the supplementary materials.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

16



Answer: [Yes]
Justification: All theories presented in our paper are supported by corresponding references
or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 4 and Section 5.1 provide all details to reproduce the main experimental
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will release the code after the paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 5.1 provide all experimental settings and implomentation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The dataset partition and random seed are fixed, thus eliminating the possibility
of error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 5.1 provide the information of computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics, and this paper conforms it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper solely utilizes causal theory to establish causal relationships between
image labels, hence it may not have any societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not have such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: This paper has appropriately referenced the original assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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