
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REINFORCED ADAPTIVE ROUTING FOR MIXTURE-OF-
EXPERT MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

With the rapid development of large language models (LLMs), the mixture-of-
experts (MoE) architecture attracts increasing attention due to its advantages in
scaling capacity and enhancing performance. However, MoE requires activating
multiple experts during training and inference, which introduces substantial com-
putational and memory overhead. This makes acceleration essential in resource-
constrained or latency-sensitive settings. Existing adaptive expert selection ap-
proaches often rely on heuristics or single-source supervision, lacking a unified
formulation that simultaneously captures accuracy, balanced utilization, and ef-
ficiency. To address this, we propose a reinforcement learning–based adaptive
routing approach that integrates a policy network into the standard MoE frame-
work and optimizes expert selection end-to-end with a multi-objective reward.
Experiments on benchmark datasets demonstrate that our approach substantially
improves training efficiency while maintaining accuracy and promoting more bal-
anced expert utilization.1

1 INTRODUCTION

As large language models (LLMs) evolve, researchers continually devise architectural enhancements
to elevate model capabilities (Naveed et al., 2023; Webb et al., 2023; Egressy & Stühmer, 2025).
Among these, the mixture-of-experts (MoE) architecture (Shazeer et al., 2017), which performs
routing computations across specialized experts, stands out for expanding LLMs’ capacity and de-
livering strong performance in a wide range of tasks (Riquelme et al., 2021; Fedus et al., 2022;
Lin et al., 2024; Do et al., 2025; Zhou et al., 2025). However, during both training and inference,
MoE still activates numerous experts per token, resulting in substantial computational and memory
overhead (Rajbhandari et al., 2022). In resource-constrained or latency-sensitive environments, this
bottleneck critically limits the practicality and deployment viability of MoE. Therefore, it is essen-
tial to optimize the computational cost of MoE models while preserving model performance (Zhou
et al., 2022; Huang et al., 2023; Liu et al., 2024; He et al., 2024; Sun et al., 2025).

Existing studies generally perform adaptive expert selection guided by task context or token diffi-
culty to dynamically allocate computational resources for efficient training and inference of MoE-
based LLMs. Most approaches typically follow two main directions: width-based and depth-based
adaptation (Lepikhin et al., 2020; Rajbhandari et al., 2022; Raposo et al., 2024; Huang et al., 2024b;
Aghdam et al., 2024; Jin et al., 2024). In the width dimension, efforts focus on enabling the router
to dynamically determine the number of experts to activate for each token (Huang et al., 2024b;
Aghdam et al., 2024; Jin et al., 2024). Conversely, depth-based approaches save computation by
skipping certain Transformer layers and directly forwarding inputs to deeper layers (Lepikhin et al.,
2020; Rajbhandari et al., 2022; Raposo et al., 2024). In practice, many approaches integrate both
strategies. For example, the mixture-of-depths (MoD) framework (Raposo et al., 2024) selects which
experts to activate and which layers to skip. Other studies introduce specialized “null experts” as
placeholders in the original MoE pool; selecting these experts effectively skips computation or re-
duces the number of active experts (Zeng et al., 2024; Jin et al., 2024). However, most existing
approaches rely solely on downstream task performance as their supervisory signal to train the ex-
pert selection mechanism. It is hard for the single-source supervision to finely control the number
of experts activated per layer, potentially increasing computational cost without delivering notable

1Code will be released in the final version of the paper.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: The overall architecture of our approach. The bottom-left presents the MoE module with
the policy networks to predict the number of activated experts. The top-left presents the output text,
the predicted expert number at different layers for various tokens, and the exact activated experts
that process the tokens. The top-right presents the process to compute the rewards for assessing the
quality of the output text, the number of active experts, and the selected experts. The outputs are
ranked based on the reward to construct the preference data to optimize the LLM with DPO.

performance gains. Therefore, it is necessary to introduce additional constraint variables to guide
expert selection, allowing the model to allocate resources more efficiently while maintaining accu-
racy (Muzio et al., 2024; Qiu et al., 2025). For example, an intuitive supervisory signal is to use
a predefined expert activation ratio to constrain the actual number of activated experts. Addition-
ally, it is generally expected to have a uniform activation distribution across experts to prevent a
few experts from shouldering excessive computation. As these auxiliary signals are challenging to
integrate through conventional supervised learning, we consider employing reinforcement learning
(RL) to incorporate and optimize these constraints.

In this paper, we propose an RL-based dynamic routing approach to enhance training and infer-
ence efficiency in MoE models. Specifically, we integrate a policy network into the standard MoE
framework to predict the number of experts to activate at each layer. Based on the policy network’s
prediction, we select the top-scoring experts to process each token. We then feed the activated
experts’ identities and counts, along with the model’s final output, into a reward function for evalu-
ation. The reward function scores from three perspectives: output accuracy, diversity of activation
distribution, and alignment of activation count with the predefined target. We generate preference
data by ranking different outcomes based on the rewards. We train the router and the policy net-
work using a direct preference optimization (DPO) (Rafailov et al., 2023) strategy. We evaluate our
approach on a wide range of benchmark datasets, and the results and analyses show that it reduces
computation and improves runtime efficiency without sacrificing model performance.

In summary, the main contributions of this paper are summarized as follows:

• We propose a reinforcement learning–based adaptive routing framework for mixture-of-experts
(MoE) models, which dynamically predicts the number of activated experts per layer and token.
This design enables flexible expert scheduling instead of relying on a fixed hyperparameter.

• We introduce a reward function that jointly considers accuracy, diversity, and efficiency. This
unified formulation not only balances performance and computational cost but also alleviates the
common problem of expert imbalance in MoE training.

• Extensive experiments on multiple LLM benchmarks demonstrate that our approach consistently
reduces the number of activated experts and improves runtime efficiency, while maintaining or
even slightly improving accuracy compared to strong MoE baselines.

2 THE APPROACH

We propose a reinforcement learning-based dynamic routing approach for adaptive expert schedul-
ing within the standard MoE framework. Our model architecture is illustrated in Figure 1, where a

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

policy network is embedded within the base MoE module. The policy network predicts the number
of experts to activate at each layer, guiding the router to select the top-K experts for each token’s
computation. Additionally, we design a reward computation module that evaluates the model’s final
outputs, per-layer expert counts, and expert selection strategy to generate reward signals. Based on
these reward signals, we construct a preference dataset and employ direct preference optimization
(DPO) Rafailov et al. (2023) to jointly optimize the router and policy network. In the following
texts, we firstly present the preliminaries of the MoE-based Transformer, next illustrate the integra-
tion of the MoE and policy network, then present the reward computation approach, and finally the
RL optimization process of our approach.

2.1 PRELIMINARY

In a standard Transformer, each self-attention layer is followed by a fully connected feed-forward
network. In the MoE Transformer, this feed-forward module is replaced by a module composed of a
router and multiple experts. Assume the input hidden matrix at layer l is H(l) ∈ RT×d, where T is
the sequence length and d is the hidden dimension. For the t-th token representation h

(l)
t , the router

computes gating probabilities using the parameter matrix W
(l)
r ∈ Rd×E by

p
(l)
t = softmax

(
h
(l)
t W(l)

r

)
(1)

where p(l)
t ∈ RE denotes the probability distribution over the E experts (the probability for the e-th

expert is p
(l)
t,e). The router selects the top k experts with the highest probabilities, forming the set

S(l)
t , based on the hyperparameter k. The MoE module then aggregates the selected experts’ outputs

by a weighted sum to produce a new hidden representation h̃
(l)
t through

h̃
(l)
t =

∑
e∈S(l)

t

p
(l)
t,e Expert

(l)
e

(
h
(l)
t

)
. (2)

where Expert(l)e (·) denotes the feed-forward mapping function of the e-th expert in layer l. After
MoE computation, the resulting h̃

(l)
t undergoes a linear projection with residual connection and

is passed to the next layer. Apart from replacing the feed-forward stage with the MoE module,
the architecture remains the same as the standard Transformer, including LayerNorm and multi-
head self-attention. At the last layer, the model projects the hidden representation to a prediction
distribution to produce the predicted token ŷt.

2.2 MOE WITH POLICY NETWORKS

In standard MoE, the number of experts activated at each layer is controlled by the hyperparameter
k, preventing dynamic adjustment based on input. This fixed strategy leads to over-computation for
simple inputs and insufficient resources for challenging inputs. To address this issue, we introduce a
policy network to predict the number of experts to activate for each layer and token. Specifically, the
policy network is a two-layer fully connected neural network taking the current token’s hidden rep-
resentation h

(l)
t ∈ Rd as input. The network produces u(l)

t ∈ RKmax+1, where the i-th component
scores activating (i−1) experts and Kmax caps the maximum activation. This process is formulated
as

u
(l)
t = W

(l)
2 σ
(
W

(l)
1 h

(l)
t + b

(l)
1

)
+ b

(l)
2 (3)

where W
(l)
1 ∈ Rh×d and W

(l)
2 ∈ R(E+1)×h are weight matrices, b(l)

1 ∈ Rh and b
(l)
2 ∈ RE+1

are bias vectors, and σ is the ReLU activation function. Subsequently, we apply softmax to convert
u
(l)
t into a probability distribution, where the i-th value denotes the probability of activating (i− 1)

experts. Afterwards, we predict the expert count k(l)t accordingly, and the count determines the
number of experts the router activates for the t-th token at layer l. Finally, our approach follows the
standard computation process in MoE to aggregate the selected experts’ outputs.

2.3 MODEL OPTIMIZATION WITH RL

To optimize the dynamic routing strategy, we employ an RL objective that improves prediction ac-
curacy while dynamically adjusting the number of experts activated at each layer. Since the reward

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

function plays an essential role in RL, in the following texts, we firstly present the process to com-
pute the reward and then illustrate the entire RL process.

Reward Computation Given an input X with ground truth Y∗, the LLM with our MoE produces
a prediction Ŷ = ŷ1 · · · ŷT . We record the activated expert count k(l)t and the selected expert set S(l)

t
for each token t at each layer l. We define three reward functions to assess output accuracy, activation
diversity, and computational efficiency, which are defined as Racc, Rdiv, and Reff , respectively. The
details of the rewards are illustrated as follows.

The accuracy reward Racc measures consistency between the model prediction and the ground truth
using cross-entropy, and is computed by

Racc = −Cross-Entropy
(
Ŷ,Y∗) (4)

In general, a lower cross-entropy score indicates a better semantic alignment between the generated
output and the ground truth.

The diversity reward is designed to prevent a few experts from shouldering all computations. Specif-
ically, we compute the Kullback-Leibler (KL) divergence between the actual activation distribution
q(l) and the ideal uniform distribution ue at each layer, then average these divergences across layers
by

Rdiv = − 1

L

L∑
l=1

KL
(
q(l) ∥u

)
(5)

Herein, the average activation probability of expert e at layer l (denoted as q(l)
e , i.e., the probability

for the expert e in q(l)) is computed by

q(l)
e =

1

T

T∑
t=1

I
[
e ∈ S(l)

t

]
k
(l)
t

(6)

where I[e ∈ S(l)
t ] is an indicator function equal to 1 if expert e is selected for token t at layer l, and

0 otherwise.

The efficiency reward encourages the average activated expert count k̄ to match the target κE, where
E is the total number of experts, κ ∈ (0, 1) is the desired activation ratio (e.g., κ = 0.1 means
activating 10% of experts) and k̄ is computed by

k̄ =
1

T · L

L∑
l=1

T∑
t=1

k
(l)
t (7)

Thus, the efficiency reward Reff is computed by

Reff = κE − k̄ (8)

where the reward is positive when k̄ < κE and negative otherwise:

The overall reward R is a weighted sum to balance all three objectives:

R = λaccRacc + λdivRdiv + λeffReff (9)

where λacc, λdiv, λeff ≥ 0 are the hyperparameter weights for the accuracy, diversity, and efficiency
rewards, respectively.

RL Optimization For RL optimization, for each input X , we firstly generate N candidate outputs
{Ŷ(n)}Nn=1, each associated with expert counts {k(l,n)t } and expert sets {S(l,n)

t }. Then, we score
all candidate outputs with a reward function and rank them accordingly. We mark the top-ranked
candidate as the accept sample and the lowest-ranked as the reject sample. Based on accept–reject
pairs, we build a preference dataset. Afterwards, we train the policy network and router using direct
preference optimization (DPO) Rafailov et al. (2023) to maximize the relative probability of the
accepted samples and minimize that of the rejected samples. This optimization process achieves
end-to-end joint optimization of LLM output generation and expert routing.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: The statistics of the datasets used in pretraining and fine-tuning different models, where the
number of examples and tokens are reported.

Stage Dataset # Examples # Tokens
Pre-training Wikitext-103 1.8M 101M

Fine-tuning Stanford Alpaca 52K 3.0M

Table 2: The summarization of our settings, where the model variants and the model initialization
strategies are presented. The “✓” in Table (b) means that the parameters of the particular module
are initialized by pre-trained LLMs, whereas “×” means the parameters are randomly initialized.

(a) Model variants
Model Architecture Training Data
MoE-base Standard MoE Pre-training
Ours-PT Ours Pre-training
Ours–SFT Ours Fine-tuning
Ours-PT–SFT Ours Fine-tuning

(b) Initialization strategies for the models

Strategy Transformer MoE
Dense-partial ✓ ×
Dense-full ✓ ✓
MoE-full ✓ ✓

3 EXPERIMENT SETTINGS

3.1 DATASETS

To evaluate our approach in both pretraining and fine-tuning phases, we prepare three datasets span-
ning large-scale language modeling and instruction following. In the pretraining phase, we use Wiki-
text (Merity et al., 2016)2 with high-quality Wikipedia articles. For the fine-tuning phase, we employ
the Stanford Alpaca dataset (Wang et al., 2022)3 with instruction-response pairs. Table 1 summa-
rizes the statistics of the data used for the experiments. For evaluation, we use three widely adopted
benchmarks, namely, MMLU (Hendrycks et al., 2021)4, BIG-Bench (Srivastava et al., 2023)5, and
GSM8K (Cobbe et al., 2021)6 to assess model performance on knowledge-intensive reasoning and
problem-solving tasks. Specifically, MMLU is a multiple-choice benchmark covering 57 academic
subjects across STEM, humanities, and social sciences. BIG-Bench is a large-scale collection of
diverse and challenging tasks designed to probe broad capabilities of LLMs. We only use the multi-
choice part of BIG-Bench to evaluate different models. GSM8K is a math word problem dataset that
requires step-by-step reasoning to solve grade-school arithmetic problems. We use the multi-choice
version of the GSM8K in experiments.

3.2 SETTINGS

In practice, large-scale MoE models are usually trained and applied in both pretraining and fine-
tuning stages. Therefore, we evaluate our approach across these stages to assess whether it is able
to consistently work under different conditions. Specifically, in the experiments, we compare four
model variants that are illustrated as follows.

2https://huggingface.co/datasets/Salesforce/wikitext
3https://huggingface.co/datasets/tatsu-lab/alpaca
4https://huggingface.co/datasets/cais/mmlu
5https://huggingface.co/datasets/google/bigbench
6https://huggingface.co/datasets/guipenedo/gsm8k-mc

5

https://huggingface.co/datasets/Salesforce/wikitext
https://huggingface.co/datasets/tatsu-lab/alpaca
https://huggingface.co/datasets/cais/mmlu
https://huggingface.co/datasets/google/bigbench
https://huggingface.co/datasets/guipenedo/gsm8k-mc


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 3: The prompt used to instruct the models to perform multi-choice evaluation on different
benchmark datasets. The placeholders for the question and the answer candidates are represented in
brackets (in this example, there are four answer candidates). We use the same prompt for all models
under different settings in the experiments.

[Question]
A. [answer candidate A]
B. [answer candidate B]
C. [answer candidate C]
D. [answer candidate D]
Among A, B, C, and D, the answer to the question is

• MoE-base: the model is obtained by pretraining a standard MoE-based LLM without using our
approach on the pretraining corpora.

• Ours-PT: the model incorporates our adaptive routing approach into the MoE-base model and is
pretrained on the same data.

• Ours–SFT: the model fine-tunes the MoE-base model on the fine-tuning dataset using our ap-
proach.

• Ours-PT–SFT: the model is obtained by first pretraining and then fine-tuning on the supervised
data with our approach.

For the models, we examine three initialization strategies to analyze the impact of different model
initialization approaches.

• Dense-partial: in this setting, the backbone model (i.e., the LLM) is initialized from a pretrained
dense LLM, and the MoE modules remain randomly initialized.

• Dense-full: we initialize the backbone model from a pretrained dense LLM. In particular, for
each expert, we copy the feed-forward weights from the corresponding fully connected layer of
the dense LLM as the initial value. To prevent all experts from being identical, we inject indepen-
dent small-magnitude Gaussian random noise and perturbations into each expert’s weights. This
preserves the initialization quality of the dense model while encouraging diversity across experts.

• MoE-full: in this setting, we use a pretrained MoE LLM as the backbone model.

The settings of different models and initialization strategies are summarized in Table 2.

3.3 IMPLEMENTATION DETAILS

In the main experiments, we run multiple LLMs to evaluate our approach under different initializa-
tion strategies. For the dense-partial and dense-full settings, we employ Qwen-3 0.6B (Yang et al.,
2025)7 and LLaMA-3.2 1B (Grattafiori et al., 2024)8 pretrained dense LLMs as the backbone ini-
tializations. Specifically, under Qwen-3 0.6B, the model consists of 28 Transformer layers, a hidden
dimension of 1,024. For LLaMA-3.2 1B, the model is configured with 16 Transformer layers, a
hidden dimension of 2048. For models initialized with Qwen-3 0.6B or LLaMA-3.2 1B, we use 16
experts per layer, and a default activation count of k = 4. In addition, for the MoE-full initialization,
we used the OLMoE-1B-7B-0125 (Muennighoff et al., 2024)9 model as the MoE-base model. In
this setting, we use the default architecture of the OLMoE-1B-7B-0125, which has 16 Transformer
layers, a hidden dimension of 2048, 64 experts per layer, and a default activation count of 8. The
hyper-parameter κ to control the target number of the activation expert is set to 0.7, and the values
of λacc, λdiv , and λeff are all set to 1 for equal contributions of different rewards. In the pretraining
phase, MoE-base and Ours-PT models are trained with a learning rate of 1e-4 and a batch size of
32. In the fine-tuning phase, Ours-SFT and Ours-PT-SFT models are trained with a learning rate
of 2e-5 and a batch size of 16. For evaluation, we design a prompt illustrated in Table 3 to instruct

7https://huggingface.co/Qwen/Qwen3-0.6B
8https://huggingface.co/meta-llama/Llama-3.2-1B
9https://huggingface.co/allenai/OLMoE-1B-7B-0125

6

https://huggingface.co/Qwen/Qwen3-0.6B
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/allenai/OLMoE-1B-7B-0125


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 4: Overall performance (i.e., accuracy) comparison of models with different settings (using
different model variants, initialization strategies, and different pre-trained LLMs). “Avg.” is the av-
erage performance on MMLU, BIG-Bench, and GSM8K. “Act. Ratio” indicates the ratio of average
activated experts relative to the default setting.

Model Init Strategy MMLU BIG-Bench GSM8K Avg. Act. Ratio

(a) Qwen-3 0.6B

MoE-base Dense-partial 39.1 30.0 29.6 34.6 1.0
Ours-PT Dense-partial 39.7 29.5 29.9 34.6 0.7
Ours-SFT Dense-partial 40.0 30.5 30.5 35.3 0.7
Ours-PT-SFT Dense-partial 40.1 31.3 30.4 33.9 0.7

MoE-base Dense-full 39.4 31.0 29.9 33.4 1.0
Ours-PT Dense-full 39.6 31.3 29.7 33.5 0.7
Ours-SFT Dense-full 40.1 31.7 30.7 34.2 0.7
Ours-PT-SFT Dense-full 40.2 32.0 30.9 34.4 0.7

(b) LLaMA-3.2 1B

MoE-base Dense-partial 36.4 27.2 28.4 30.7 1.0
Ours-PT Dense-partial 36.6 27.3 28.5 30.8 0.7
Ours-SFT Dense-partial 36.7 27.5 28.9 31.0 0.7
Ours-PT-SFT Dense-partial 36.9 27.8 29.3 31.3 0.7

MoE-base Dense-full 36.6 27.4 28.5 30.8 1.0
Ours-PT Dense-full 36.8 27.5 28.7 31.0 0.7
Ours-SFT Dense-full 37.0 27.7 28.7 31.1 0.7
Ours-PT-SFT Dense-full 37.1 27.9 28.9 31.3 0.7

(c) OLMoE-1B-7B-0125

MoE-base MoE-full 40.2 32.3 30.2 34.2 1.0
Ours-PT MoE-full 40.4 32.5 30.1 34.3 0.7
Ours-SFT MoE-full 40.7 32.8 30.6 34.7 0.7
Ours-PT-SFT MoE-full 41.0 33.0 30.8 34.9 0.7

the model to perform the multi-choice tasks on MMLU, BIG-Bench, and GSM8K. We compute the
probabilities of predicting the answer candidates and regard the one with the highest probability as
the model output. Following the evaluation convention of existing studies on the datasets, we report
the accuracy of the models. We also report the ratio of the actual average activated expert count to
the default activation count to quantify computational efficiency gains.

4 RESULTS AND ANALYSIS

4.1 OVERALL RESULTS

The performance of models with different initialization strategies and model variants is presented
in Table 4, where different pre-trained LLMs are used. There are the following observations. First,
compared to the MoE-base model, our approach under pretraining (PT), fine-tuning (SFT), and
combined (PT-SFT) consistently achieves nearly the same or even better performance while sub-
stantially reducing the activation ratio. This indicates that our approach improves computational
efficiency (in terms of the average number of activated experts) while maintaining model accuracy.
Second, our approach remains consistently effective across different initialization strategies, includ-
ing Dense-partial, Dense-full, and MoE-full. This demonstrates the robustness of our approach and
its adaptability to models with different initialization qualities. Third, when comparing dense ini-
tialization strategies, we observe that Dense-full consistently outperforms Dense-partial. This trend
is validated on models with Qwen-3.0 0.6B or LLaMA-3.2 1B backbones, showing that Dense-full
initialization better leverages pretrained parameters. Fourth, under the MoE-full initialization, the
model achieves overall stronger performance compared to other settings. This is because MoE-
full directly uses a pretrained MoE model as the backbone, fully exploiting the benefits of sparse
activation.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: Ablation study of different rewards, where OLMoE-1B-7B-0125 is used. “Full” refers to
our full approach with all three rewards.

MMLU BIG-Bench GSM8K Avg. Act. Ratio
Full (Ours) 41.0 33.0 30.8 34.9 0.7

w/o Racc 24.4 24.8 23.6 24.3 0.7
w/o Rdiv 40.5 32.6 30.5 34.5 0.7
w/o Reff 40.7 32.8 30.6 34.7 1.0

4.2 ABLATION STUDY ON REWARDS

To investigate the contribution of different rewards to model performance, we conduct an ablation
study. In each run, one reward component (Racc, Rdiv, Reff) is removed, and the results are reported
in Table 5 based on the OLMoE backbone. We obtain several key observations. First, removing the
accuracy reward Racc leads to a severe drop in prediction accuracy, with performance nearly reduced
to random guessing. Second, removing the diversity reward Rdiv causes highly imbalanced expert
usage, where a few experts dominate the computation, resulting in a moderate performance drop
compared to the full model. Finally, removing the efficiency reward Reff prevents the model from
reducing the average number of activated experts, thereby losing its computational efficiency gains.
These results demonstrate that the three rewards are complementary in routing optimization, jointly
ensuring accuracy, balanced expert utilization, and efficiency.

4.3 VISUALIZATION

To better and more intuitively understand why our approach is effective, we conduct several vi-
sualizations in Figure 2. These include both the training process and the final expert activation
distribution. For the training process, we visualize the loss curves and the number of activated ex-
perts over training steps in Figure 2(a) and (b), respectively. For the final model, we inspect the
detailed activation distribution across all experts and layers in Figure 2(c). The details are illustrated
as follows.

Figure 2(a) shows the training loss versus steps (in thousands) of MoE-base and Ours-PT-SFT. We
observe that our approach (i.e., Ours-PT-SFT) converges faster than the baseline MoE-base, while
the two models eventually reach similar loss values. This indicates that our adaptive routing im-
proves optimization efficiency without sacrificing final accuracy. In practice, this faster convergence
reflects that our approach reduces ineffective computation and emphasizes more informative gradi-
ents in early stages, which directly accelerates the optimization process.

Figure 2(b) illustrates the average number of activated experts in Our-PT-SFT over training steps.
We observe that the number gradually decreases from the initial setting and eventually stabilizes
near the target range (approximately five to six experts). This shows that the efficiency reward in
our method successfully guides the model toward a compact activation budget. Importantly, the
stabilization indicates that the model learns to maintain an effective balance: using fewer experts
overall but still preserving accuracy and diversity of computation.

Figure 2(c) presents the heatmap of expert activations across all layers and experts in the final model
(16 Transformer layers with 64 experts). The activations are distributed fairly evenly among experts,
and no individual expert dominates or becomes overloaded. This demonstrates that the decrease in
total activation is not achieved by repeatedly relying on a few specific experts. Instead, the model
consistently selects relevant experts depending on the input, ensuring balanced utilization. Such
balanced usage prevents overfitting of individual experts and improves robustness and generalization
of the model.

5 RELATED WORK

MoE is a framework that distributes computational load across specialized subnetworks (i.e., “ex-
perts”) via a gating mechanism (Shazeer et al., 2017). It achieves state-of-the-art performance on
many downstream tasks and becomes the mainstream architecture choice for many LLMs (Artetxe
et al., 2021; Shen et al., 2023; Yang et al., 2025; Meta, 2025). However, MoE models still face two

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: Visualization of our approach under the MoE-full initialization with OLMoE-1B-7B-0125
model. Figure (a) shows the training loss versus steps (in thousands), where our approach (Ours-PT-
SFT) converges faster than the MoE-base while both models reach a similar final loss. Figure (b)
illustrates the average activated experts vs steps (in thousands) under MoE-full initialization. Our
approach (Ours-PT-SFT) shows a decreasing trend that stabilizes near the target, indicating effective
control of activation budget. Figure (c) presents the expert activation heatmap across layers and
experts (OLMoE-1B-7B-0125 has 16 Transformer layers with 64 experts), where the heatmap at
each cell indicates the average chance of activating a particular expert at a particular layer.

key challenges: load imbalance (where a small subset of experts dominate activations) and static
routing (which fixes the number of experts per token) (Zhou et al., 2022; Huang et al., 2024a; Wang
et al., 2024; Zhang et al., 2025; Omi et al., 2025). To address the imbalance, Lepikhin et al. (2020)
introduce an auxiliary loss to enforce uniform expert utilization, Fedus et al. (2022) propose expert
capacity control to limit the number of tokens assigned to each expert. For dynamic expert selection,
Raposo et al. (2024) extend MoE with a layer-skipping mechanism (Deep Mixture), allowing tokens
to bypass layers deemed unnecessary based on complexity. Early approaches focus on content-aware
gating: (Jin et al., 2024) use token difficulty estimates (derived from confidence scores) to adjust the
count of expert activations, allocating more resources to harder inputs. Meanwhile, (Huang et al.,
2024b) propose perceptual routing, where a lightweight classifier predicts token complexity and
determines how many experts to activate. These approaches require separate training for difficulty
estimation. Recent work directly integrates learnable routing strategies into the model. For example,
(Jin et al., 2024) introduces “empty experts” as computational shortcuts; routers learn to select these
placeholders for simple tokens, reducing the count of active experts. At the same time, (Zeng et al.,
2024) proposes adaptive MoE (AdaMoE), where each layer’s router dynamically adjusts expert acti-
vations based on the input’s similarity to precomputed expert centroids. Although these approaches
improve efficiency, they lack explicit mechanisms to balance performance and resource constraints,
often requiring manual tuning of activation thresholds. For multi-objective optimization, Muzio
et al. (2024) employ reinforcement learning (RL) to train routers to maximize accuracy while re-
specting latency budgets. Their approach treats expert selection as a sequential decision process,
where rewards link to task performance and inference speed. Our work builds on these RL-based
frameworks but introduces explicit diversity constraints and preference-based optimization to ad-
dress expert imbalance and stabilize training. In the context of model efficiency, (Ong et al., 2024)
uses preference data to train routers that balance accuracy and latency. Our approach differs by in-
corporating multi-faceted rewards (accuracy, diversity, efficiency) into preference signals, achieving
joint optimization of task performance and resource allocation.

6 CONCLUSION

In this paper, we propose a reinforcement learning–based adaptive expert routing approach that im-
proves the training and inference efficiency of MoE models while maintaining predictive accuracy.
Specifically, we integrate a policy network into the standard MoE framework to predict the number
of experts activated per token at each layer. We further design a multi-objective reward that bal-
ances accuracy, diversity, and efficiency, and optimize the system end-to-end using direct preference
optimization. We validate our approach on multiple LLM benchmarks, showing that it achieves
speedups and achieve even better performance, and demonstrates more balanced expert utilization
and better applicability under resource-constrained settings.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Maryam Akhavan Aghdam, Hongpeng Jin, and Yanzhao Wu. Da-moe: Towards dynamic expert
allocation for mixture-of-experts models. arXiv preprint arXiv:2409.06669, 2024.

Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Victo-
ria Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, et al. Efficient large scale language
modeling with mixtures of experts. arXiv preprint arXiv:2112.10684, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Giang Do, Hung Le, and Truyen Tran. Simsmoe: Toward efficient training mixture of experts via
solving representational collapse. In Findings of the Association for Computational Linguistics:
NAACL 2025, pp. 2012–2025, 2025.

Beni Egressy and Jan Stühmer. Set-llm: A permutation-invariant llm. arXiv preprint
arXiv:2505.15433, 2025.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Xin He, Shunkang Zhang, Yuxin Wang, Haiyan Yin, Zihao Zeng, Shaohuai Shi, Zhenheng Tang,
Xiaowen Chu, Ivor Tsang, and Ong Yew Soon. Expertflow: Optimized expert activation and token
allocation for efficient mixture-of-experts inference. arXiv preprint arXiv:2410.17954, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021.

Haiyang Huang, Newsha Ardalani, Anna Sun, Liu Ke, Hsien-Hsin S Lee, Anjali Sridhar, Shruti
Bhosale, Carole-Jean Wu, and Benjamin Lee. Towards moe deployment: Mitigating inefficiencies
in mixture-of-expert (moe) inference. arXiv preprint arXiv:2303.06182, 2023.

Haiyang Huang, Newsha Ardalani, Anna Sun, Liu Ke, Shruti Bhosale, Hsien-Hsin Lee, Carole-Jean
Wu, and Benjamin Lee. Toward efficient inference for mixture of experts. Advances in Neural
Information Processing Systems, 37:84033–84059, 2024a.

Quzhe Huang, Zhenwei An, Nan Zhuang, Mingxu Tao, Chen Zhang, Yang Jin, Kun Xu, Liwei Chen,
Songfang Huang, and Yansong Feng. Harder tasks need more experts: Dynamic routing in moe
models. arXiv preprint arXiv:2403.07652, 2024b.

Peng Jin, Bo Zhu, Li Yuan, and Shuicheng Yan. Moe++: Accelerating mixture-of-experts methods
with zero-computation experts. arXiv preprint arXiv:2410.07348, 2024.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Jinfa Huang, Junwu Zhang, Yatian
Pang, Munan Ning, et al. Moe-llava: Mixture of experts for large vision-language models. arXiv
preprint arXiv:2401.15947, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

AI Meta. The llama 4 herd: The beginning of a new era of natively multimodal ai innovation.
https://ai. meta. com/blog/llama-4-multimodal-intelligence/, checked on, 4(7):2025, 2025.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Wei-
jia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts
language models. arXiv preprint arXiv:2409.02060, 2024.

Alexandre Muzio, Alex Sun, and Churan He. Seer-moe: Sparse expert efficiency through regular-
ization for mixture-of-experts. arXiv preprint arXiv:2404.05089, 2024.

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
models. ACM Transactions on Intelligent Systems and Technology, 2023.

Nabil Omi, Siddhartha Sen, and Ali Farhadi. Load balancing mixture of experts with similarity
preserving routers. arXiv preprint arXiv:2506.14038, 2025.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez,
M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data. arXiv
preprint arXiv:2406.18665, 2024.

Zihan Qiu, Zeyu Huang, Bo Zheng, Kaiyue Wen, Zekun Wang, Rui Men, Ivan Titov, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. Demons in the detail: On implementing load balancing loss for
training specialized mixture-of-expert models. arXiv preprint arXiv:2501.11873, 2025.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale. Proceedings of Machine Learning Re-
search, 162:18332–18346, 2022.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and
Adam Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based lan-
guage models. arXiv preprint arXiv:2404.02258, 2024.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583–8595, 2021.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Sheng Shen, Le Hou, Yanqi Zhou, Nan Du, Shayne Longpre, Jason Wei, Hyung Won Chung, Bar-
ret Zoph, William Fedus, Xinyun Chen, et al. Mixture-of-experts meets instruction tuning: A
winning combination for large language models. arXiv preprint arXiv:2305.14705, 2023.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adri Garriga-Alonso, et al. Beyond the imita-
tion game: Quantifying and extrapolating the capabilities of language models. Transactions on
machine learning research, 2023.

Qi Sun, Edoardo Cetin, and Yujin Tang. Transformer-squared: Self-adaptive llms. arXiv preprint
arXiv:2501.06252, 2025.

Wei Wang, Zhiquan Lai, Shengwei Li, Weijie Liu, Keshi Ge, Ao Shen, Huayou Su, and Dongsheng
Li. Pro-prophet: A systematic load balancing method for efficient parallel training of large-scale
moe models. arXiv preprint arXiv:2411.10003, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Taylor Webb, Shanka Subhra Mondal, and Ida Momennejad. Improving planning with large lan-
guage models: A modular agentic architecture. arXiv preprint arXiv:2310.00194, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Zihao Zeng, Yibo Miao, Hongcheng Gao, Hao Zhang, and Zhijie Deng. Adamoe: Token-
adaptive routing with null experts for mixture-of-experts language models. arXiv preprint
arXiv:2406.13233, 2024.

Mohan Zhang, Pingzhi Li, Jie Peng, Mufan Qiu, and Tianlong Chen. Advancing moe efficiency:
A collaboration-constrained routing (c2r) strategy for better expert parallelism design. arXiv
preprint arXiv:2504.01337, 2025.

Hanzhi Zhou, Erik Hornberger, Pengsheng Guo, Xiyou Zhou, Saiwen Wang, Xin Wang, Yifei He,
Xuankai Chang, Rene Rauch, Louis D’hauwe, et al. Apple intelligence foundation language
models: Tech report 2025. arXiv preprint arXiv:2507.13575, 2025.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103–7114, 2022.

THEORETICAL FOUNDATIONS OF OUR APPROACH

We further analyze the theoretical foundations of the proposed approach, which are illustrated from
the perspectives of optimal policy existence and information theory.

We begin with a global constrained optimization problem, whose objective is to balance prediction
accuracy with computational cost. Let kt = (k

(1)
t , . . . , k

(L)
t ) denote the activation counts of experts

for token t across L layers, and let Lt(kt) denote the expected cross-entropy loss under this config-
uration. Therefore, the optimization problem is formulated as a combinatorial optimization with a
global budget constraint:

min
{kt}T

t=1

T∑
t=1

Lt(kt) s.t.
1

TL

L∑
l=1

T∑
t=1

k
(l)
t ≤ κE (10)

where T is the number of tokens, L is the number of layers, E is the total number of experts, and
κ ∈ (0, 1) is the target activation ratio. This problem is essentially a combinatorial optimization
with a global constraint, which is generally intractable to solve directly. A common approach to
such problems is to apply Lagrangian relaxation, which converts the constraint into a penalty term.
By introducing a multiplier λ ≥ 0, the objective is reformulated as

L
(
{kt}, λ

)
=

T∑
t=1

Lt(kt) + λ

(
1

TL

L∑
l=1

T∑
t=1

k
(l)
t − κE

)
TL (11)

=

T∑
t=1

Lt(kt) + λ

L∑
l=1

T∑
t=1

k
(l)
t − λκETL (12)

=

T∑
t=1

[
Lt(kt) + λ

L∑
l=1

k
(l)
t

]
− λκETL. (13)

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

In this relaxed form, the additional term λ
∑L

l=1 k
(l)
t penalizes computation cost, while the

“−λκETL” term is a budget adjustment term. Thus, we obtain the dual problem:

g(λ) = inf
{kt}

L
(
{kt}, λ

)
(14)

= −λκETL +

T∑
t=1

inf
kt

{
Lt(kt) + λ

L∑
l=1

k
(l)
t

}
(15)

where g(λ) denotes the dual function, defined as the optimal objective value of the relaxed problem
under a given Lagrange multiplier λ. L({kt}, λ) stands for the Lagrangian function, which consists
of the original loss term and the penalty for computation budget. The operator inf refers to the
infimum, meaning the minimal value over all possible activation configurations {kt}. We see that
for fixed λ, the problem decomposes into independent token-level subproblems:

k∗
t ∈ arg min

kt∈{0,...,Kmax}L

{
Lt(kt) + λ

L∑
l=1

k
(l)
t

}
(16)

where k∗
t represents the optimal activation configuration for token t, determined by balancing its

prediction loss against the activation cost. This decomposition indicates that the global optimization
is approximately reduced to local token-level optimization, which provides the theoretical basis for
our approach. Furthermore, if we assume Lt(kt) is approximately separable across layers, we obtain
a layer-wise structure:

Lt(kt) ≈
L∑

l=1

L
(l)
t

(
k
(l)
t

)
, (17)

k∗
t ∈ argmin

kt

L∑
l=1

{
L
(l)
t

(
k
(l)
t

)
+ λ k

(l)
t

}
. (18)

We then define the marginal improvement, which measures the loss reduction from activating one
more expert

∆L
(l)
t (k) = L

(l)
t (k − 1)− L

(l)
t (k). (19)

In practice, ∆L
(l)
t (k) typically decreases as k increases, reflecting diminishing returns. Therefore,

the optimal allocation follows a threshold rule:

k
(l),∗
t = max

{
k : ∆L

(l)
t (k) ≥ λ

}
. (20)

This derivation shows that the policy network is viewed as a learnable approximation of the threshold
rule, predicting the number of experts to activate given an input representation. In other words, our
approach is essentially a specialization of the above optimization objective.

From an information-theoretic perspective, k(l)t is interpreted as the “computation rate” allocated
to token t at layer l, while the loss L

(l)
t (k) corresponds to a distortion measure. Thus, the global

optimization problem is equivalent to an optimal rate allocation task under a budget constraint:

min
{k(l)

t }

1

T

T∑
t=1

1

L

L∑
l=1

D
(l)
t

(
k
(l)
t

)
s.t.

1

TL

L∑
l=1

T∑
t=1

k
(l)
t ≤ κE (21)

where D
(l)
t (k) denotes the distortion measure, i.e., the prediction error when k experts are activated

for token t at layer l. To solve this, we construct the Lagrangian:

L({k(l)t }, λ) = 1

TL

L∑
l=1

T∑
t=1

D
(l)
t

(
k
(l)
t

)
+ λ

(
1

TL

L∑
l=1

T∑
t=1

k
(l)
t − κE

)
(22)

=
1

TL

L∑
l=1

T∑
t=1

[
D

(l)
t

(
k
(l)
t

)
+ λk

(l)
t

]
− λκE (23)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

The notation L({k(l)t }, λ) refers to the Lagrangian, which consists of all distortion terms plus the
budget penalty. We observe that the optimization decomposes into independent subproblems at each
token and layer:

k
(l),∗
t ∈ arg min

k∈{0,...,Kmax}

{
D

(l)
t (k) + λk

}
(24)

Here k
(l),∗
t denotes the optimal number of experts for token t at layer l under multiplier λ, i.e., the

solution to the subproblem. Furthermore, if D(l)
t (k) is continuously differentiable, an approximate

closed-form solution is obtained by the first-order condition:

∂D
(l)
t (k)

∂k
+ λ = 0 =⇒ k

(l),∗
t is chosen such that the marginal distortion reduction equals λ.

(25)
This corresponds exactly to the classical “water-filling” principle in information theory: the marginal
reduction in distortion is equalized across all sub-channels. In this framework, the optimal alloca-
tion strategy is intuitively understood as assigning more computation resources to tokens with higher
marginal gains and fewer to those with lower marginal gains. Moreover, our reward functions are
also explained in this view: the accuracy reward Racc corresponds to minimizing distortion, the
diversity reward Rdiv corresponds to maximizing allocation entropy, and the efficiency reward Reff

corresponds to rate control under the global budget. Therefore, the combination of the policy net-
work and reward functions is regarded as a learnable approximation of the water-filling principle,
providing theoretical justification from an information-theoretic perspective.

From an information-theoretic perspective, k(l)t is interpreted as the “computation rate” allocated
to token t at layer l, while the loss L

(l)
t (k) corresponds to a distortion measure. Thus, the global

optimization problem is equivalent to an optimal rate allocation task under a budget constraint:

1

TL

L∑
l=1

T∑
t=1

k
(l)
t ≤ κE (26)

Within this framework, the optimal solution requires that the marginal reduction in distortion be
balanced across tokens, which corresponds to the classical “water-filling” allocation rule (Cover,
1999), whose key idea is to achieve global optimality by equalizing marginal gains across differ-
ent channels (or tasks). This principle indicates that under limited computational resources, the
model should dynamically adjust the computation rate allocated to each token at each layer to en-
sure optimal resource utilization, which in turn provides theoretical justification for our approach.
Furthermore, our reward functions also admit natural interpretations from this information-theoretic
perspective: the accuracy reward Racc corresponds to minimizing distortion, the diversity reward
Rdiv is equivalent to maximizing the entropy of the activation distribution to avoid overload, and
the efficiency reward Reff reflects rate control under the global budget constraint. Therefore, in the
information-theoretic sense, our approach is viewed as an instance of optimal rate allocation, where
the policy network together with the designed rewards provides a learnable approximation to this
principle, thereby ensuring the theoretical soundness of the approach.

14


	Introduction
	The Approach
	Preliminary
	MoE with Policy Networks
	Model Optimization with RL

	Experiment Settings
	Datasets
	Settings
	Implementation Details

	Results and Analysis
	Overall Results
	Ablation Study on Rewards
	Visualization

	Related Work
	Conclusion

