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ABSTRACT

We present a novel framework for one-class classification and anomaly detec-
tion. The core idea is to learn a mapping to transform the unknown distribution
of training (normal) data to a known distribution that is supposed to be differ-
ent from the transformed distribution of unknown abnormal data. Crucially, the
target distribution of training data should be sufficiently simple, compact, and in-
formative. The simplicity is to ensure that we can sample from the distribution
easily, the compactness is to ensure that the decision boundary between normal
data and abnormal data is clear and reliable, and the informativeness is to ensure
that the transformed data preserve the important information of the original data.
Therefore, we propose to use truncated Gaussian, uniform in hyperball, uniform
on hypersphere, or uniform between hyperspheres, as the target distribution. We
then minimize the distance between the transformed data distribution and the tar-
get distribution while keeping the reconstruction error for the original data small
enough. Our model is simple and easy to train especially compared with those
based on generative models. Comparative studies on a few benchmark datasets
verify the effectiveness of our method in comparison to baselines.

1 INTRODUCTION

Anomaly detection (AD) aims to distinguish normal data and abnormal data using a model trained
on only normal data without using any information of abnormal data (Chandola et al., 2009; Pang
et al., 2021; Ruff et al., 2021). AD is useful in numerous real problems such as intrusion detection
for video surveillance, fraud detection in finance, and fault detection for sensors. Many AD methods
have been proposed in the past decades (Schölkopf et al., 1999; 2001; Tax & Duin, 2004; Liu et al.,
2008). For instance, Schölkopf et al. (2001) proposed the one-class support vector machine (OC-
SVM) that finds, in a high-dimensional kernel feature space, a hyperplane yielding a large distance
between the normal training data and the origin. Tax & Duin (2004) presented the support vector
data description (SVDD), which obtains a spherically shaped boundary (with minimum volume)
around the normal training data to identify abnormal samples. There are also many deep learning
based AD methods (Erfani et al., 2016; Ruff et al., 2018; Golan & El-Yaniv, 2018; Hendrycks et al.,
2018; Abati et al., 2019; Pidhorskyi et al., 2018; Zong et al., 2018; Wang et al., 2019; Liznerski
et al., 2020; Qiu et al., 2021; Raghuram et al., 2021; Wang et al., 2021).

Deep learning based AD methods may be organized into three categories. The first category is based
on compression and reconstruction. These methods usually use autoencoder (Hinton & Salakhutdi-
nov, 2006; Kingma & Welling, 2013) to learn a low-dimensional representation to reconstruct the
high-dimensional data (Vincent et al., 2008; Wang et al., 2021). It is expected that the learned au-
toencoder on the normal training data has a much higher reconstruction error on unknown abnormal
data than on normal data. The second category is based on the combination of classical one-class
classification (Tax & Duin, 2004; Golan & El-Yaniv, 2018) and deep learning (Ruff et al., 2018;
2019; 2020; Perera & Patel, 2019; Bhattacharya et al., 2021; Shenkar & Wolf, 2022; Chen et al.,
2022). For instance, Ruff et al. (2018) proposed a method called deep one-class SVDD. The main
idea is to use deep learning to construct a minimum-radius hypersphere to include all the training
data, while the unknown abnormal data are expected to fall outside. The last category is based on
generative learning or adversarial learning (Malhotra et al., 2016; Deecke et al., 2018; Pidhorskyi
et al., 2018; Nguyen et al., 2019; Perera et al., 2019; Goyal et al., 2020; Raghuram et al., 2021;
Yan et al., 2021). For example, Perera et al. (2019) proposed to use the generative adversarial net-
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work (GAN) (Goodfellow et al., 2014) with constrained latent representation to detect anomalies
for image data. Goyal et al. (2020) presented a method called deep robust one-class classification
(DROCC). The method aims to find a low-dimensional manifold to accommodate the normal data
via an adversarial optimization approach.

Although deep learning AD methods have shown promising performance on various datasets, they
still have limitations. For instance, the one-class classification methods such as Deep SVDD (Ruff
et al., 2018) only ensure that the normal data could be included by a hypersphere but cannot guar-
antee that the normal data are distributed evenly in the hypersphere, which may lead to large empty
regions in the hypersphere and hence yield incorrect decision boundary. The adversarial learning
methods such as (Nguyen et al., 2019; Perera et al., 2019; Goyal et al., 2020) may suffer from high
computational cost and instability in optimization.

In this work, we present a restricted generative projection framework for one-class classification and
anomaly detection. The model of the framework is efficient to train and able to provide reliable
decision boundaries for precise anomaly detection. Our main idea is to train a deep neural network
to convert the distribution of normal training data to a target distribution that is simple, compact, and
informative, which will provide a reliable decision boundary to identify abnormal data from normal
data. There are many choices for the target distribution, such as truncated Gaussian and uniform on
hypersphere. Our contributions are three-fold.

• We present a novel framework for one-class classification and anomaly detection. It aims
to transform the data distribution to some target distributions that are easy to be violated by
unknown abnormal data.

• We present a few simple, compact, and informative target distributions and propose to min-
imize the distances between the converted data distribution and these target distributions
via minimizing the maximum mean discrepancy.

• We conduct extensive experiments to compare the performance of different target distribu-
tions and compare our method with state-of-the-art competitors. The numerical results on
five benchmark datasets verify the effectiveness of our methods.

2 METHODOLOGY

Suppose we have a set of m-dimensional training data X = {x1,x2, . . . ,xn} drawn from an un-
known bounded distribution Dx and any samples drawn from Dx are normal data. We want to train
a model M on X to determine whether a test data xnew is drawn from Dx or not. One may con-
sider to estimate the density function (denoted by px) of Dx using some techniques such as kernel
density estimation (Rosenblatt, 1956). Suppose the estimation p̂x is good enough, then one can
determine whether xnew is normal or not according to the value of p̂x(xnew): if p̂x(xnew) is zero or
close to zero, xnew is an abnormal data point; otherwise, xnew is a normal data point 1. However, the
dimensionality of the data is often high and hence it is very difficult to obtain a good estimation p̂x.

We propose to learn a mapping T : Rm → Rd to transform the unknown bounded distribution Dx

to a known distribution Dz while there still exists a mapping T ′ : Rd → Rm that can recover Dx

from Dz approximately. Let pz be the density function of Dz. Then we can determine whether xnew
is normal or not according to the value of pz(T (xnew)). To be more precisely, we want to solve the
following problem

minimize
T , T ′

M (T (Dx),Dz) + λM (T ′(T (Dx)),Dx) , (1)

whereM(·, ·) denotes some distance metric between two distributions and λ is a trade-off parameter
for the two terms. Note that if λ = 0, T may convert any distribution to Dz and lose the ability
of distinguishing normal data and abnormal data. Based on the universal approximation theorems
(Pinkus, 1999; Lu et al., 2017) and substantial success of neural networks, we use deep neural
networks (DNN) to model T and T ′ respectively. Let fθ and gϕ be two DNNs with parameters θ
and ϕ respectively. We solve the following problem

1Here we assume that the distributions of normal data and abnormal data do not overlap. Otherwise, it is
difficult to determine whether a single point is normal or not.
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minimize
θ, ϕ

M
(
Dfθ(x),Dz

)
+ λM

(
Dgϕ(fθ(x)),Dx

)
, (2)

where fθ and gϕ serve as encoder and decoder respectively. However, problem (2) is intractable
because Dx is unknown and Dfθ(x), Dgϕ(fθ(x)) cannot be computed analytically. Note that the
samples of Dx and Dgϕ(fθ(x)) are given and paired. Then the second term in the objective of (2)
can be replaced by sample reconstruction error such as 1

n

∑n
i=1 ∥xi − gϕ(fθ(xi))∥2. On the other

hand, we can also sample from Dfθ(x) and Dz easily but their samples are not paired. Hence, the
metric M in the first term of the objective of (2) should be able to measure the distance between
two distributions using their finite samples. To this end, we propose to use the kernel maximum
mean discrepancy (MMD) (Gretton et al., 2012) to measure the distance between Dfθ(x) and Dz. In
statistics, MMD is often used for Two-Sample test and its principle is to find a function that assumes
different expectations on two different distributions:

MMD[F , p, q] = sup
∥f∥H≤1

(Ep[f(x)]− Eq[f(y)]) , (3)

where p, q are probability distributions, F is a class of functions f : X → R and H denotes a
reproducing kernel Hilbert space. Its empirical estimate can be given by

MMD2[F , X, Y ] =
1

m(m− 1)

m∑
i=1

m∑
j ̸=i

k(xi,xj) +
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

k(yi,yj)

− 2

mn

m∑
i=1

n∑
j=1

k(xi,yj),

(4)

where X = {x1, . . . ,xm} and Y = {y1, . . . ,yn} are samples consisting of i.i.d observations drawn
from p and q, respectively. k(·, ·) denotes a kernel function, e.g., k(x,y) = exp(−γ∥x − y∥2), a
Gaussian kernel.

Based on the above analysis, we reformulate (2) as

minimize
θ, ϕ

MMD2(Zθ,ZT ) +
λ

n

n∑
i=1

∥xi − gϕ(fθ(xi))∥2, (5)

where Zθ = {fθ(x1), fθ(x2), . . . , fθ(xn)} and ZT = {zi : zi ∼ Dz, i = 1, . . . , n}. The first
term of the objective function in (5) makes fθ learn the mapping T from data distribution Dx to
target distribution Dz and the second term ensures that fθ can preserve the main information of
observations provided that λ is sufficiently large. Figure 1 shows the paradigm of our method.
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Figure 1: The training stage of Restricted Generative Projection.

Now we introduce four examples of simple and compact Dz for (5). The four distributions are
Gaussian in Hypersphere (GiHS), Uniform in Hypersphere (UiHS), Uniform between Hyperspheres
(UbHS), and Uniform on Hypersphere (UoHS). Their 2-dimensional examples are visualized in
Figure 2.
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(a) (b) (c) (d)

Figure 2: Samples (in orange) from 2-D target (bounded) distributions. Plots (a), (b), (c), (d) denote
GiHS, UiHS, UbHS, UoHS respectively.

GiHS (Figure 2.a) is actually a truncated Gaussian. Suppose we want to draw n samples from
GiHS. A simple approach is drawing (1+ρ)n samples from a standard d-dimensional Gaussian and
discarding the ρn samples with larger ℓ2 norms. The maximum ℓ2 norm of the remaining n points
is the radius of the hypersphere. One may also use inverse transform method (Marsaglia, 1963). We
have the following proposition (a simple proof can be found in the appendix).
Proposition 2.1. Suppose z1, z2, . . . , zn are sampled from N (0, Id) independently. Then for any
r >

√
d/2, the following inequality holds

P (∥zj∥ ≥ r) ≤ exp

(
−
r2 +

√
d(2r2 − d)

2

)
, j = 1, . . . , n. (6)

In the proposition, using union bound, we have

P
(

max
1≤j≤n

∥zj∥ ≤ r

)
≥ 1− n exp

(
−
r2 +

√
d(2r2 − d)

2

)
. (7)

It means a hypersphere of radius r can include all the n samples with probability at least 1 − nρ,
where ρ = exp(−(r2 +

√
d(2r2 − d))/2). On the other hand, according to (6), if we sample n/ρ

samples from N (0, Id), the expected number of samples falling into a hypersphere of radius r is at
least n. Thus, suppose we sample n′ samples and remove the n′ − n samples with larger ℓ2 norms,
the expected radius of the smallest hypersphere encasing the remaining n samples is at most r0,
where r0 is the solution of the function log(n′/n) = r2 +

√
d(2r2 − d))/2 w.r.t r.

UiHS (Figure 2.b) is a hyperball in which all the samples are distributed uniformly. To sample from
UiHS, we first need to sample from U(−1, 1)d. Then we discard all the data points outsides the
radius-1 hyperball centered at the origin. The following proposition shows some probability result
of sampling from a d-dimensional uniform distribution.
Proposition 2.2. Suppose z1, z2, . . . , zn are sampled from U(−1, 1)d independently. Then for any
r > 0, the following inequality holds

P (∥zj∥ ≥ r) ≤ 4d

5(3r2 − d)2
, j = 1, . . . , n. (8)

Using union bound for (8), we obtain

P
(

max
1≤j≤n

∥zj∥ ≤ r

)
≥ 1− 4dn

5(3r2 − d)2
. (9)

It means a hypersphere of radius r can include all the n samples with probability at least 1 − nρ,
where ρ = 0.8d−1(3r2 − d)2. On the other hand, (8) indicates that if we draw n/ρ samples from
U(−1, 1)d, the expected number of samples falling into a hypersphere of radius r is at least n.
Actually, sampling from UiHS is closely related to the Curse of Dimensionality and we need to
sample a large number of points from U(−1, 1)d if d is large because only a small volume of the
hypercube is inside the hyperball. To be more precisely, letting Vhypercube be the volume of a
hypercube with length 2r and Vhyperball be the volume of a hyperball with radius r, we have

Vhyperball

Vhypercube
=

πd/2

d2d−1Γ(d/2)
≜ η, (10)
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where Γ is the gamma function. Therefore, we need to draw n/η samples from U(−1, 1)d to ensure
that the expected number of samples included in the hyperball is n, where η is small if d is large.

UbHS (Figure 2.c) can be obtained via UiHS. We first sample from UiHS and then remove all
samples included by a smaller hypersphere. Since the volume ratio of two hyperballs with radius r1
and r2 is ( r1r2 )

d, we need to draw n/(1− (r2/r1)
d) samples from UiHS to ensure that the expected

number of samples between the two hyperspheres is n.

UoHS (Figure 2.d) can be easily obtained via sampling from N (0, Id). Specifically, for every zi
drawn from N (0, Id), we normalize it as zi ← rzi/∥zi∥, where r is the predefined radius of the
hypersphere.

In testing stage, we only use the trained f∗
θ to calculate anomaly scores. For a given test sample

xnew, we define anomaly score s for each target distribution by

s(xnew) =

{ |∥f∗
θ (xnew)∥2 − r|, for UoHS

∥f∗
θ (xnew)∥2, for GiHB or UiHS

(∥f∗
θ (xnew)∥2 − r1) · (∥f∗

θ (xnew)∥2 − r2), for UbHS
(11)

We call our method Restricted Generative Projection (RGP), which has four variants, denoted by
RGP-GiHS, RGP-UiHS, RGP-UbHS, and RGP-UoHS respectively, though any target bounded
distribution applies.

3 CONNECTION WITH PREVIOUS WORK

Our method has a connection with the variational autoencoder (VAE) (Kingma & Welling, 2013).
Both methods are autoencoders. The latent distribution in VAE is often Gaussian and not bounded
while the latent distribution in our method is more general and bounded. The optimizations of VAE
and our method are also different: VAE involves KL-divergence while our method involves MMD.

Our method is closely related to Deep SVDD (Ruff et al., 2018). Both our method and Deep SVDD
aim to project the normal training data into some space such that a decision boundary between
normal data and unknown abnormal data can be found easily. Deep SVDD minimizes the sum of
the squared distances between the projected data and a predefined center to find a hypersphere to
include the normal training data, which cannot ensure that the data in the hypersphere are evenly
distributed or close to Gaussian and hence may lead to an ineffective decision boundary.

Compared with the autoencoder based anomaly detection method NAE (Yoon et al., 2021) that uses
reconstruction error to normalize autoencoder, our method pays more attention to learning a mapping
that can transform the unknown data distribution into a simple and compact target distribution.

Similar to our method, Perera et al. (2019) also considered bounded latent distribution in autoen-
coder for anomaly detection. They proposed to train a denoising autoencoder with a hyper-cube
(multi-dimensional uniform) supported latent space, via adversarial training. Obviously, the latent
distribution and optimization of our method are different from theirs. In addition, the latent distri-
butions of our method are more compact than the multi-dimensional uniform latent distribution of
their method.

4 EXPERIMENTS

4.1 DATASETS AND BASELINES

In this section, we compare the proposed method with several state-of-the-art anomaly detection
methods on three tabular datasets and two widely used image datasets for one-class classification.
The datasets are detailed as follows.

• Abalone (Dua, 2017) is a dataset of physical measurements of abalone to predict the age.
It contains 1,920 instances with 8 attributes.

• Arrhythmia (Rayana, 2016) is an ECG dataset. It was used to identify arrhythmic samples
in five classes and contains 452 instances with 279 attributes.
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• Thyroid (Rayana, 2016) is a hypothyroid disease dataset that contains 3,772 instances with
6 attributes.

• Fashion-MNIST (Xiao et al., 2017) contains 70,000 grey-scale images with 10 classes.

• CIFAR-10 (Krizhevsky et al., 2009) is a widely-used benchmark for image anomaly de-
tection. It contains 60,000 color images with 10 classes.

We compare our method with three classic shallow models, four deep autoencoder based methods,
three deep generative model based methods, and some latest anomaly detection methods.

• Classic shallow models: local outlier factor(LOF) (Breunig et al., 2000), one-class support
vector machine(OC-SVM) (Schölkopf et al., 2001), isolation forest (IF) (Liu et al., 2008).

• Deep autoencoder based methods: denoising auto-encoder (DAE) (Vincent et al., 2008),
DCAE (Seeböck et al., 2016), E2E-AE and DAGMM (Zong et al., 2018), DCN (Caron
et al., 2018).

• Deep generative model based methods: AnoGAN(Schlegl et al., 2017), ADGAN(Deecke
et al., 2018), OCGAN (Perera et al., 2019),

• Some latest anomaly detection methods: DeepSVDD(Ruff et al., 2018), GOAD
(Bergman & Hoshen, 2020), DROCC (Goyal et al., 2020), HRN (Hu et al., 2020), SCADN
(Yan et al., 2021), NeuTraL AD (Qiu et al., 2021), GOCC (Shenkar & Wolf, 2022).

4.2 IMPLEMENTATION DETAILS AND EVALUATION METRICS

In this section, we introduce the implementation details of the proposed method RGP and describe
experimental settings for image and tabular datasets. Note that all the compared methods do not
utilize any pre-trained feature extractors.

For the three tabular datasets (Abalone, Arrhythmia, and Thyroid), in our method, fθ, gϕ are both
MLPs. We follow the dataset preparation of (Zong et al., 2018) to preprocess the three tabular
datasets for one-class classification task. The hyper-parameter λ is set to 1.0 for the three datasets.
For the two image datasets (Fashion-MNIST and CIFAR-10), in our method, fθ, gϕ are both CNNs.
Since both image datasets contain 10 different classes, we conduct 10 independent one-class clas-
sification tasks on both datasets. In each task on CIFAR-10, there are 5,000 training samples and
10,000 testing samples. In each task on Fashion-MNIST, there are 6,000 training samples and 10,000
testing samples. The hyper-parameter λ is chosen from {0.05, 0.2, 0.1, 1.0} and varies for different
classes.

In our method, regarding the restricted target distributions GiHS, we first generate a large number
(denoted by N ) of samples from Gaussian or uniform, sort the samples according to their ℓ2 norms,
and set r to be the pN -th smallest ℓ2 norm, where p = 0.9. In each iteration (mini-batch) of
the optimization, we resample ZT according to r. The sampling for UiHS and UbHS are similar
to GiHS and hence omitted here for simplicity. For UoHS, we draw samples from Gaussian and
normalize them to have unit ℓ2 norm, then they lie on a unit hypersphere uniformly. The procedure
is repeated in each iteration (mini-batch) of the optimization. We use Adam (Kingma & Ba, 2014) as
the optimizer in our method. For Fashion-MNIST, CIFAR-10, and Arrhythmia, the learning rate is
set to 0.0001. For Abalone and Thyroid, the learning rate is set to 0.001. The details of our network
settings are provided in the supplementary material. All experiments were run on AMD EPYC CPU
with 64 cores and with NVIDIA Tesla A100 GPU, CUDA 11.6.

To evaluate the performance of all methods, we follow the previous works such as (Ruff et al., 2018)
and (Zong et al., 2018) to use AUC (Area Under the ROC curve) for image datasets and F1-score
for tabular datasets.

4.3 RESULTS ON IMAGE DATASETS

Table 1 and Table 2 compare RGP under four different settings with classic shallow methods, deep
autoencoder based methods, generative model based methods, and some latest state-of-the-art meth-
ods. We have the following observations.
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• Firstly, in contrast to classic shallow methods such as OC-SVM(Schölkopf et al., 2001)
and IF (Liu et al., 2008), our RGP has significantly higher AUC scores on all classes of
CIFAR-10 and most classes of Fashion-MNIST. An interesting phenomenon is that most
deep learning based methods including ours have inferior performance compared to IF (Liu
et al., 2008) on class ’Sandal’ of Fashion-MNIST.

• Our methods outperformed the deep autoencoder based methods and generative model
based methods in most cases and have competitive performance compared to the state-
of-the-art in all cases.

• RGP has superior performance on most classes of Fashion-MNIST and CIFAR-10 datasets
under the setting of UoHS(uniform distribution on hypersphere). Furthermore, our four
settings have relatively close performance on Fashion-MNIST. On CIFAR-10, UoHS out-
performed other settings consistently.

Table 1: Average AUC(%) of one-class anomaly detection on Fashion-MNIST. For the competitive
methods we only report their mean performance due to the space limit, while we further report the
standard deviation for the proposed methods. * denotes we run the official released code to obtain
the results, and the best two results are marked in bold.

Normal Class T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle-
boot

OC-SVM (Schölkopf et al., 2001) 86.10 93.90 85.60 85.90 84.60 81.30 78.60 97.60 79.50 97.80
IF (Liu et al., 2008) 91.00 97.80 87.20 93.20 90.50 93.00 80.20 98.20 88.70 95.40
DAE (Vincent et al., 2008) 86.70 97.80 80.80 91.40 86.50 92.10 73.80 97.70 78.20 96.30
DAGMM (Zong et al., 2018) 42.10 55.10 50.40 57.00 26.90 70.50 48.30 83.50 49.90 34.00
ADGAN (Deecke et al., 2018) 89.90 81.90 87.60 91.20 86.50 89.60 74.30 97.20 89.00 97.10
OCGAN (Perera et al., 2019) 85.50 93.40 85.00 88.10 85.80 88.50 77.50 93.90 82.70 97.80
DeepSVDD (Ruff et al., 2018) 79.10 94.00 83.00 82.90 87.00 80.30 74.90 94.20 79.10 93.20
DROCC∗ (Goyalet al., 2020) 88.32 97.94 87.31 87.89 86.53 91.80 77.64 95.37 81.35 94.75
HRN (Hu et al., 2020) 92.70 98.50 88.50 93.10 92.10 91.30 79.80 99.00 94.60 98.80

RGP-GiHS (Ours) 93.37
(0.70)

97.37
(0.20)

89.03
(0.02)

92.63
(0.31)

92.41
(0.11)

87.37
(2.38)

79.42
(0.86)

98.09
(0.54)

91.36
(0.16)

96.86
(0.03)

RGP-UiHS (Ours) 90.49
(0.09)

97.19
(0.29)

90.88
(0.18)

91.26
(0.72)

91.26
(0.10)

89.37
(0.12)

79.97
(0.15)

97.57
(0.06)

92.02
(1.11)

97.82
(0.36)

RGP-UbHS (Ours) 91.10
(0.28)

97.20
(0.15)

89.90
(0.21)

92.29
(0.15)

91.35
(0.31)

82.33
(5.27)

78.59
(1.53)

96.98
(0.62)

91.23
(1.02)

96.55
(1.12)

RGP-UoHS (Ours) 92.84
(0.41)

97.23
(0.15)

89.99
(0.32)

93.25
(0.35)

90.73
(0.40)

85.09
(1.15)

80.02
(1.05)

98.54
(0.18)

91.14
(0.26)

97.99
(0.29)

Table 2: Average AUC(%) of one-class anomaly detection on CIFAR-10. For the competitive meth-
ods we only report their mean performance due to the space limit, while we further report the stan-
dard deviation for the proposed method. * denotes we run the official released code to obtain the
results, and the best two results are marked in bold.

Normal Class Airplane Auto-
mobile Bird Cat Deer Dog Frog Horse Ship Trunk

OC-SVM (Schölkopf et al., 2001) 61.10 63.80 50.00 55.90 66.00 62.40 74.70 62.60 74.90 75.90
IF (Liu et al., 2008) 66.10 43.70 64.30 50.50 74.30 52.30 70.70 53.00 69.10 53.20
DCAE (Seeböck et al., 2016) 59.10 57.40 48.90 58.40 54.00 62.20 51.20 58.60 76.80 67.30
DAE (Vincent et al., 2008) 41.10 47.80 61.60 56.20 72.80 51.30 68.80 49.70 48.70 37.80
DAGMM (Zong et al., 2018) 41.40 57.10 53.80 51.20 52.20 49.30 64.90 55.30 51.90 54.20
AnoGAN-(Schlegl et al., 2017) 67.10 54.70 52.90 54.50 65.10 60.30 58.50 62.50 75.80 66.50
ADGAN (Deecke et al., 2018) 63.20 52.90 58.00 60.60 60.70 65.90 61.10 63.00 74.40 64.20
OCGAN (Perera et al., 2019) 75.70 53.10 64.00 62.00 72.30 62.00 72.30 57.50 82.00 55.40
DeepSVDD (Ruff et al., 2018) 61.70 65.90 50.80 59.10 60.90 65.70 67.70 67.30 75.90 73.10
DROCC∗ (Goyalet al., 2020) 80.10 73.41 68.78 63.36 70.81 65.01 68.83 71.13 63.81 75.49
HRN (Hu et al., 2020) 77.30 69.90 60.60 64.40 71.50 67.40 77.40 64.90 82.50 77.30

RGP-GiHS (Ours) 71.88
(0.24)

63.69
(0.65)

57.06
(0.36)

59.12
(1.86)

67.73
(1.69)

61.29
(1.19)

74.52
(0.60)

63.61
(0.82)

76.40
(0.41)

73.36
(0.58)

RGP-UiHS (Ours) 69.83
(0.47)

64.17
(1.17)

63.69
(2.03)

59.55
(1.49)

67.41
(0.90)

67.90
(1.06)

77.34
(0.98)

64.01
(1.13)

78.73
(0.11)

75.08
(1.36)

RGP-UbHS (Ours) 66.96
(4.14)

66.27
(0.75)

61.00
(0.09)

57.34
(2.25)

68.47
(1.23)

67.29
(0.06)

76.33
(0.74)

63.87
(0.02)

77.13
(0.29)

72.63
(0.12)

RGP-UoHS (Ours) 79.30
(0.50)

68.05
(0.02)

62.93
(0.96)

64.64
(0.05)

73.85
(0.09)

68.32
(0.20)

80.08
(0.32)

66.29
(0.19)

82.23
(0.21)

77.56
(0.74)

4.4 RESULTS ON TABULAR DATASETS

In Table 3, we report the F1-scores of our methods in comparison to ten baselines on Arrhythmia,
Thyroid, and Abalone. Our four methods significantly outperform all baseline methods in all cases.
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Particularly, RGP-UoHS has 18.73%, 8.70%, and 16.96% improvements on the three datasets in
terms of F1-score compared to the runner-up, respectively. Compared with the performance im-
provement of RGPs on Fashion-MNIST and CIFAR-10, RGPs on the three tabular datasets are more
significant.

In addition to the quantitative results, we choose Thyroid (with 6 attributes) as an example and
transform the data distribution to 2-dimensional target distributions, which are visualized in Figure 3.
We see that RGPs are effective to transform the data distribution to the restricted target distributions.
Therefore, RGPs can learn clear boundaries for normal data and hence have satisfactory performance
in anomaly detection.

Table 3: Average F1-Scores(%) with standard deviation on three tabular datasets.* denotes we run
the official released code of NeuTral AD to obtain the result of Abalone, and the results of Arrhyth-
mia and Thyroid are from the original paper (Qiu et al., 2021). The best two results are marked in
bold.

Methods Abalone Arrhythmia Thyroid

OC-SVM (Schölkopf et al., 2001) 48.00 ± 0.00 46.00 ±0.00 39.00 ±1.00
LOF (Breunig et al., 2000) 33.00 ±1.00 51.00 ±1.00 54.00 ±1.00
DCN (Caron et al., 2018) 40.00 ±1.00 38.00 ±3.00 33.00 ±3.00
E2E-AE (Zong et al., 2018) 33.00 ±3.00 45.00 ±3.00 13.00 ±4.00
DAGMM (Zong et al., 2018) 20.00 ±3.00 49.00 ±3.00 49.00 ±4.00
DeepSVDD (Ruff et al., 2018) 62.00 ±1.00 54.00 ±1.00 73.00 ±0.00
GoAD (Bergman & Hoshen, 2020) 61.00 ±2.00 51.00 ±2.00 72.00 ±1.00
DROCC (Goyal et al., 2020) 68.00 ± 2.00 69.00 ± 2.00 78.00 ± 3.00
NeuTral AD∗ (Qiuet al., 2021) 62.07 ± 2.81 60.30 ± 1.10 76.80 ± 1.90
GOCC (Shenkar & Wolf, 2022) - 61.80 ± 1.80 76.80 ± 1.20

RGP-GiHS (Ours) 84.79 ± 0.36 78.63 ± 0.55 92.60 ± 0.37
RGP-UiHS (Ours) 84.79 ± 0.65 76.98± 0.72 91.83 ± 0.39
RGP-UbHS (Ours) 83.79 ± 0.81 74.22 ± 0.78 89.53 ± 0.00
RGP-UoHS (Ours) 86.73 ± 1.10 77.70 ± 0.40 94.96 ± 0.28

(a)

(d)(b)

(c)

Figure 3: Visualization of mapping data distribution to 2-dimensional target distribution on Thyroid
datasets. Plots (a), (b), (c), (d) refer to GiHS, UiHS, UbHS, UoHS, respectively. The blue points,
orange points, green points, red points denote samples from target distribution, samples from train-
ing data, normal samples from testing set and abnormal samples from testing set, respectively.

4.5 ABLATION STUDY

There is one hyperparameter in our method, namely λ in problem (5). Now we show the influence
of λ on the performance of our method. Figure 4 shows F1-scores of our methods with λ varying

8
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from 0 to 100, on the three tabular datasets. Too small or too large λ can lower the performance of
RGP. When λ is very tiny, the reconstruction term of (5) makes less impact on the training target
and fθ can easily transform the training data to the target distribution but ignores the importance of
original data distribution (see Figure 5). On the other hand, when λ is very large, the MMD term
of optimization objective becomes trivial for the whole training target and fθ under the constraint
of reconstruction term more concentrates on the original data distribution yet can not learn a good
mapping from data distribution to target distribution. Figure 5 illustrates the influence of hyper-
parameter λ on training set of Thyroid dataset. It can be clearly observed that fθ transform training
data to target distribution better with the decrease of the λ.

(a)

(a) (d)(b) (c)

Figure 4: The ablation study of hyper-parameter λ on testing set of three tabular datasets under four
different restrictions. Plots (a), (b), (c), (d) correspond to GiHS, UiHS, UbHS, UoHB, respectively.
λ is chosen from {0, 0.1, 0.5, 1, 5, 10, 100}

λ = 0.01λ = 0.1 λ = 0.001

λ = 0.01λ = 0.1 λ = 0.001 λ = 0.01λ = 0.1 λ = 0.001

λ = 0.01λ = 0.1 λ = 0.001

(a)

(d)(b)

(c)

Figure 5: The ablation study of hyper-parameter λ on training set of Thyroid dataset under four
different restrictions. Plots (a), (b), (c), (d) correspond to GiHS, UiHS, UbHS, UoHS, respectively.

5 CONCLUSION

We have presented a novel and simple framework for one-class classification and anomaly detection.
Our method RGP aims to convert the data distribution to a simple, compact and informative target
distribution that can be easily violated by abnormal data. We presented four target distributions and
the numerical results showed that uniform on hypersphere is more effective than other distributions
in anomaly detection. The reason is that the uniform on hypersphere is much more compact than
other distributions and hence provides smaller room for abnormal data points to fall into.
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A MORE NUMERICAL RESULTS

In addition to the results of Tables, we here report the average AUC of all classes in Figure 6. We see
that on Fashion-MNIST, our methods have competitive performance as IF and HRN. On CIFAR-10,
our RGP-UoHS outperformed all other methods.
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Figure 6: The Average AUC(%) score of Fashion-MNIST and CIFAR-10 on all classes.

We also conduct one-class anomaly detection on MNIST, and report experimental results in Table
4.

Table 4: Average AUC(%) of one-class anomaly detection on MNIST.
Normal Class 0 1 2 3 4 5 6 7 8 9 Avg

OC-SVM (Schölkopf et al., 2001) 98.60 99.50 82.50 88.10 94.90 77.10 96.50 93.70 88.90 93.10 91.28
IF (Liu et al., 2008) 98.00 97.30 88.60 89.90 92.70 85.50 95.60 92.00 89.90 93.50 92.29
DCAE (Seeböck et al., 2016) 97.60 98.30 85.40 86.70 86.50 78.20 94.60 92.30 86.50 90.40 89.64
ANOGAN (Deecke et al., 2018) 96.60 99.20 85.00 88.70 89.40 88.30 94.70 93.50 84.90 92.40 91.27
Deep SVDD (Ruff et al., 2018) 98.00 99.70 91.70 91.90 94.90 88.50 98.30 94.60 93.90 96.50 94.79

RGP-UoHS (Ours) 99.50
(0.07)

98.90
(0.27)

94.81
(0.59)

94.89
(0.28)

95.55
(0.32)

92.05
(1.75)

97.41
(0.14)

96.39
(0.21)

90.95
(0.35)

96.25
(0.24) 95.66

In addition to comparison of evaluation metrics, we also measure the time cost of different types of
anomaly detection methods on training phase with GUP acceleration or not. We run the experiments
of one-class classification on MNIST, Fashion-MNIST, CIFAT10 and report the time cost in Table
5, 6, 7. Table 5 compares training time of Deep SVDD (Ruff et al., 2018), DROCC (Goyal et al.,
2020), OCGAN (Perera et al., 2019), RGP on MNIST with the same batch size and training epochs,
and without GPU acceleration. Table 6 and Table 7 show the training time of Deep SVDD (Ruff
et al., 2018), DROCC (Goyal et al., 2020), RGP on Fashion-MNIST, CIFAR10 with accelerating
of NVIDIA RTX2080 GPU(1x). Table 6 and Table 7 indicate that the three methods have the same
magnitude on time cost with GPU acceleration and our method has a few advantage on both Fashion-
MNIST and CIFAR10 when ensuring the convergence of model. The training hyperparameters of
Deep SVDD (Ruff et al., 2018) and DROCC (Goyal et al., 2020) in table 6 and table 7 are both from
the official settings and listed in Table 8. We do not obtain the time cost of OCGAN (Perera et al.,
2019) with GPU acceleration since the official code occurs system error when using GPU.
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Table 5: Training time(seconds) of one-class anomaly detection on MNIST without GPU accelera-
tion.

Normal Class 0 1 2 3 4 5 6 7 8 9 Avg

Deep SVDD (Ruff et al., 2018) 1137.16 1254.45 1083.28 1160.93 1076.51 1021.4 1113.29 1152.54 1109.05 1097.22 1120.58
OCGAN (Perera et al., 2019) 18050.79 20400.09 17851.42 18579.87 17737.39 16850.2 17748.48 19853.55 17759.54 17751.16 18258.24
DROCC (Goyal et al., 2020) 21269.80 21134.64 22020.75 21157.20 22269.17 21159.76 21270.14 21014.52 20953.55 21346.44 21359.59

RGP-GiHS (Ours) 13665.78 15108.69 13227.82 12009.33 11697.65 11334.88 11883.15 12769.74 13086.94 11644.02 12642.80
RGP-UiHS (Ours) 14986.82 16898.84 12177.22 12136.23 12322.76 11029.81 12345.14 11726.78 11858.33 12115.39 12759.73
RGP-UbHS (Ours) 11766.71 13301.99 12132.35 12261.36 11678.36 10826.82 13657.7 15064.35 13863.64 14083.29 12863.65
RGP-UoHS (Ours) 14020.14 16666.39 14028.68 15276.65 13153.98 12812.56 14189.72 15797.74 13891.94 14330.59 14416.83

Table 6: Training time(seconds) of one-class anomaly detection on Fashion-MNIST with GPU ac-
celeration.

Normal Class T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle-
boot Avg

Deep SVDD (Ruff et al., 2018) 563.46 561.48 566.92 561.12 565.27 557.55 563.02 559.02 564.22 560.34 562.24
DROCC (Goyal et al., 2020) 510.17 507.88 507.76 506.62 504.71 503.79 503.99 502.18 505.85 504.14 505.70

RGP-GiHS (Ours) 499.40 499.77 499.53 499.10 498.65 500.20 498.58 499.98 500.78 496.23 499.22
RGP-UiHS (Ours) 500.79 500.16 500.32 499.70 499.91 499.66 499.33 500.39 499.68 499.55 499.94
RGP-UbHS (Ours) 499.64 499.69 499.95 500.08 499.66 499.35 500.11 499.7 500.59 500.39 499.91
RGP-UoHS (Ours) 484.26 487.74 490.22 489.46 486.55 485.00 484.80 484.79 485.71 485.45 486.39

Table 7: Training time(seconds) of one-class anomaly detection on CIFAR10 with GPU accelera-
tion.

Normal Class Airplane Auto-
mobile Bird Cat Deer Dog Frog Horse Ship Trunk Avg

Deep SVDD (Ruff et al., 2018) 943.97 946.16 941.57 932.88 944.01 943.51 942.04 942.93 941.69 941.69 942.04
DROCC (Goyal et al., 2020) 970.90 976.35 974.08 971.07 971.99 972.03 971.09 974.67 971.60 972.54 972.63

RGP-GiHS (Ours) 747.48 748.08 747.83 748.57 748.34 747.33 747.33 746.74 747.48 746.03 747.52
RGP-UiHS (Ours) 746.95 747.17 747.51 746.31 747.72 747.80 747.58 747.78 747.80 747.36 747.39
RGP-UbHS (Ours) 746.12 746.11 745.21 747.21 746.97 746.08 745.06 746.01 746.49 745.45 746.07
RGP-UoHS (Ours) 713.25 712.59 712.70 712.61 712.97 712.86 712.59 713.02 712.72 712.77 712.80

Table 8: Training settings of one-class anomaly detection on Fashion-MNIST, CIFAR10 and
MNIST.

Methods Dataset batch size training

Deep SVDD (Ruff et al., 2018) MNIST 200 100(epochs)
DROCC (Goyal et al., 2020) MNIST 200 100(epochs)
OCGAN (Perera et al., 2019) MNIST 200 100(epochs)
RGP-GiHS (Ours) MNIST 200 100(epochs)
RGP-UiHS (Ours) MNIST 200 100(epochs)
RGP-UbHS (Ours) MNIST 200 100(epochs)
RGP-UoHS (Ours) MNIST 200 100(epochs)

Deep SVDD (Ruff et al., 2018) Fashion-MNIST 50 150(epochs)
DROCC (Goyal et al., 2020) Fashion-MNIST 256 100(epochs)
RGP-GiHS (Ours) Fashion-MNIST 200 100(epochs)
RGP-UiHS (Ours) Fashion-MNIST 200 100(epochs)
RGP-UbHS (Ours) Fashion-MNIST 200 100(epochs)
RGP-UoHS (Ours) Fashion-MNIST 200 100(epochs)

Deep SVDD (Ruff et al., 2018) CIFAR10 50 150(epochs)
DROCC (Goyal et al., 2020) CIFAR10 256 100(epochs)
RGP-GiHS (Ours) CIFAR10 200 200(epochs)
RGP-UiHS (Ours) CIFAR10 200 200(epochs)
RGP-UbHS (Ours) CIFAR10 200 200(epochs)
RGP-UoHS (Ours) CIFAR10 200 200(epochs)

B PROOF FOR PROPOSITION 2.1

Proof. Letting z1, z2, . . . , zd be i.i.d Gaussian variables with mean 0 and variance 1. According
to Lemma 1 of (Laurent & Massart, 2000) (in which letting a1 = · · · = aD = 1), the following
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inequality holds for any t

P

(
d∑

i=1

z2i ≥ d+ 2
√
dt+ 2t

)
≤ exp(−t). (12)

Letting z = (z1, z2, . . . , zd)
⊤ and r2 = d+ 2

√
dt+ 2t, we have

P (∥z∥ ≥ r) ≤ exp

(
−
r2 +

√
d(2r2 − d)

2

)
, (13)

where d < 2r2. This finished the proof.

C PROOF FOR PROPOSITION 2.2

Proof. Letting z1, z2, . . . , zd be i.i.d variables of U(−1, 1). Then E(zi) = 1
3 and Var(zi) = 4

45 ,
i = 1, 2, . . . , n. Using Chebyshev’s Inequality, for any t > 0, we obtain

P

(∣∣∣∣∣
d∑

i=1

z2i −
d

3

∣∣∣∣∣ ≥ t

)
≤ 4d

45t2
. (14)

It follows that

P

(
d∑

i=1

z2i ≥
d

3
+ t

)
≤ 4d

45t2
. (15)

Letting r2 = d
3 + t, we have

P (∥zi∥ ≥ r) ≤ 4d

5(3r2 − d)2
, j = 1, 2, . . . , n. (16)

Note that one may obtain tighter tail bound than (16).
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D DETAILED NEURAL NETWORKS ARCHITECTURE

For the two image datasets (Fashion-MNIST and CIFAR-10), in our method, fθ, gϕ are both CNNs.
The detailed neural network architecture is showed in Table 9.

fθ in channels=1, mid dim=128, if Fashion-MNIST; in channels=3, mid dim=1024, if CIFAR-10.
Basic-Block(in channels, out channels=64)
Basic-Block(in channels=64, out channels=128)
Basic-Block(in channels=128, out channels=256)
Basic-Block(in channels=256, out channels=512), AveragePool2d
Linear(mid dim, bias=False)
gϕ
Basic-Block(in channels, out channels=512)
Upsample(scale factor=2, mode=’nearest’)
Basic-Block(in channels=512, out channels=256)
Upsample(scale factor=2, mode=’nearest’)
Basic-Block(in channels=256, out channels=128)
Upsample(scale factor=2, mode=’nearest’)
Basic-Block(in channels=128, out channels=64)
Basic-Block(in channels=64, out channels=32)
Conv2d(in channels=32, out channels=16, kernel size=3, padding=1, bias=False)
BatchNorm2d(16), LeakyReLU
Conv2d(in channels=32, out channels=in channels, kernel size=3, padding=1, bias=False)
Basic-Block(in channels, out channels)
Conv2d(in channels, out channels, kernel size=3, padding=1, bias=False)
BatchNorm2d(out channels), LeakyReLU
Conv2d(out channels, out channels, kernel size=3, padding=1, bias=False)
BatchNorm2d(out channels)

Table 9: Architecture of the CNN-based neural network for CIFAR-10 and Fashion-MNIST.

For the three tabular datasets (Abalone, Arrhythmia, Thyroid), in our method, fθ, gϕ are both MLPs.
The detailed neural network architecture is showed in Table 10

fθ gϕ
Linear(input dim, 64, bias=False), LeakyReLU Linear(128, input dim, bias=False)
Linear(64, 128, bias=False)

Table 10: Architecture of the MLP-based neural network for tabular dataset.
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