
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FAST FRACTIONAL NATURAL GRADIENT DESCENT
USING LEARNABLE SPECTRAL FACTORIZATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Many popular optimization methods can be united through fractional natural gra-
dient descent (FNGD), which pre-conditions the gradient with a fractional power
of the inverse Fisher: RMSprop and Adam(W) estimate a diagonal Fisher matrix
and apply a square root before inversion; other methods like K-FAC and Shampoo
employ matrix-valued Fisher estimates and apply the inverse and inverse square
root, respectively. Recently, the question of how fractional power affects opti-
mization has moved into focus, e.g. offering trade-offs between convergence and
generalization. Gaining deeper insights into this phenomenon would require going
beyond diagonal estimations and using cheap and flexible matrix-valued Fisher
estimators capable of applying any fractional power; however, existing methods are
limited by their expensive matrix fraction computation. To address this, we propose
a Riemannian framework to learn eigen-factorized Fisher estimations on the fly, al-
lowing for the cheap application of arbitrary fractional powers. Our approach does
not require matrix decompositions and, therefore, is stable in half precision. We
show our framework’s efficacy on positive-definite matrix optimization problems
and demonstrate its efficiency and flexibility for training neural nets.

1 INTRODUCTION

Many well-known adaptive methods, like SGD (Robbins & Monro, 1951), RmsProp (Tieleman &
Hinton, 2012) or Adam(W) (Kingma & Ba, 2015; Loshchilov & Hutter, 2017), can be framed as
fractional natural gradient descent (FNGD): Given the neural network (NN) parameters µ, the gradient
g and a curvature estimation S, FNGD applies µ← µ− β1S

−1/pg using a learning rate β1 and
subjecting the curvature approximation to a fractional power 1/p before inversion. S approximates
the Fisher information matrix (Amari, 1998), e.g. through exponential averages of the empirical
Fisher (Kunstner et al., 2019) or the gradient outer product (GOP, Kingma & Ba, 2015; Agarwal et al.,
2019; Lin et al., 2024). FNGD’s matrix fractional power allows interpolating between NGD (Amari,
1998) with p = 1 and SGD as p→∞; RMSprop/Adam(W) use p = 2.

While most adaptive optimization algorithms rely on a square root (p = 2), the fractional power’s
role has recently garnered a lot of attention. Several works question the indispensable role of the
square root and empirically demonstrate the usage of other fractions to trade off convergence and
generalization (Chen et al., 2021), overcome the generalization gap between SGD and adaptive
methods on convolutional neural nets (CNNs) observed by (Wilson et al., 2017), and to successfully
train transformers (Lin et al., 2024). Theoretically, Huh (2020) identify limitations of SGD and NGD
in terms of generalization, convergence, and stability when training deep linear networks. They argue
that FNGD with p ̸∈ {1,∞} can offer the ‘best of both worlds’, i.e. NGD’s convergence speed with
SGD’s generalization.

Applying other fractional powers is straightforward for methods with a diagonal curvature approxima-
tion (e.g. PAdam from Chen et al., 2021) and does not add much computational cost. However, doing
so for methods with non-diagonal preconditioning matrices such as K-FAC (Martens & Grosse, 2015)
or Shampoo (Gupta et al., 2018; Anil et al., 2020; Shi et al., 2023) is computationally and numerically
challenging. This is because computing matrix fractional powers is computationally intensive, and
must usually be done in high precision to avoid numerical instabilities (Anil et al., 2020; Shi et al.,
2023), preventing those methods from using fast, low-precision arithmetic (Micikevicius et al., 2018).
Making the root computation fast and stable in low-precision can further unleash the potential of
non-diagonal fractional methods.
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To catalyze further investigations into the fractional power’s role, it would be desirable to have a
flexible and efficient framework for learning non-diagonal curvature approximations that can (i) apply
arbitrary fractional roots, and (ii) circumvent the numerical instabilities of matrix decompositions.

We address this instability and inefficiency and present an update scheme to directly adapt the spectral
factorization Bdiag(d)B⊤ of the curvature approximation S on the fly, which we term a spectral
parametrization of S. Thanks to this factorization, we can apply any matrix fractional power to S by
elementwise operation on the eigenvalues d. Our approach directly adapts eigenfactors and maintains
the factorization, and a practical version can operate without performing eigendecompositions. This
makes our scheme amenable to running in low precision because we do not use any unstable matrix
decomposition algorithm. However, the spectral factorization introduces several challenges as it
imposes constraints and ambiguities (i.e.B must be orthogonal and d sorted) that need to be dealt
with. These constraints make it more challenging to maintain the factorization on the fly. Our
contributions are:

• We propose an update scheme to learn the spectral factorization Bdiag(d)B⊤ of a curvature
matrix S on the fly and address how to account for the constraints, and resolve the ambigui-
ties, imposed by this parameterization. We then show how to learn Kronecker-factorized

spectral decompositions, i.e.S ≈ (S(K)⊗S(C)) where S(i) = B(i)diag(d(i))B(i)⊤, which
are crucial to scale the approach. The Kronecker factorization introduces new ambiguities,
which we resolve by introducing a scalar α and demanding det(di) = 1 (Section 2).

• Similar to Glasmachers et al. (2010); Lin et al. (2021; 2023), our approach views learning the
curvature approximation as learning the covariance of a Gaussian variational distribution by
performing Riemannian gradient descent on the manifold of dense or Kronecker-factorized
positive-definite matrices. We extend these works by incorporating the new constraints
arising from the spectral decomposition for the Fisher-Rao metric. (Section 3.)

• Empirically, we demonstrate the effectiveness of our approach for a range of applications,
including positive-definite matrix optimization (Pennec et al., 2006; Absil et al., 2009) and
low-precision neural net training.

1.1 BACKGROUND

To train an NN model, we solve an unconstrained optimization problem. The objective function of
the problem is expressed as a finite sum of cost functions with N observations:

minµ ℓ(µ) :=
∑N

i=1 c(f(xi;µ), yi), (1)

where xi and yi are features and a label for the i-th observation, respectively, f(·;µ) is an NN with
learnable weights µ, and c(·, yi) is a cost function such as the cross-entropy function to measure the
difference between the output of the NN and label yi.

We consider adaptive methods to solve this problem, where we estimate a preconditioning matrix
by only using gradient information. For many well-known adaptive methods such as RMRprop
(Tieleman & Hinton, 2012), a square root (i.e., p = 2) is introduced.

RmsProp : S← (1− β2)S+ β2diag(gg
T ), µ← µ− β1S

−1/pg, (2)

where S is a diagonal matrix and g = ∇µℓ is a gradient vector of the objective function. We often
estimate the vector using a mini-batch of observations. Lin et al. (2024) consider a full matrix version
of the root-free RmsProp update scheme (i.e., p = 1) and propose an inverse-free update scheme.
Other works improve the performance of adaptive methods on CNNs using other roots, such as p = 4
in Chen et al. (2021) and p = 1 in Lin et al. (2024).

S← (1− β2)S+ β2H = S+ β2(H− S), µ← µ− β2S
−1/pg, (3)

Non-diagonal adaptive methods, like Shampoo (Gupta et al., 2018), also include a fractional root
(e.g., p = 4) in their update rule.

Shampoo :SC ← (1− β2)SC + β2GGT , SK ← (1− β2)SK + β2G
TG, (4)

µ← µ− β1 (SK ⊗ SC)
−1/p

g ⇐⇒ M←M− β1S
−1/p
C GS

−1/p
K , (5)

where M = Mat(µ) and G = Mat(g) are matrix representations of µ and g, respectively.
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2 FAST FNGD USING LEARNABLE SPECTRAL FACTORIZATIONS

Our goal is to design pre-conditioner update schemes that offer the flexibility to apply arbitrary matrix
roots at a low cost. The starting point is the observation that the pre-conditioner S can be interpreted
as the inverse covariance matrix of a Gaussian variational distribution (Lin et al., 2024), which can be
learned on the fly via the update scheme in Equation (3). However, this parameterization complicates
applying any fractional root to S since the root computation requires matrix decomposition.

Our contribution is to propose an update scheme for a new parameterization S = Bdiag(d)B⊤,
where B is an orthogonal square matrix and d is a vector with positive sorted entries, to learn d and
B. We call this parameterization a spectral parameterization, due to its connection to the spectral
decomposition of symmetric matrices. We empirically and theoretically establish its equivalence
to update rules that directly update S, implying one can enjoy efficient updates while retaining
the behavior of traditional methods. Our spectral parametrization allows us to easily compute any
fractional root S−1/p = Bdiag(d−1/p)B⊤ through elementwise roots on d, instead of matrix roots on
S. We then extend it to Kronecker-factorized matrices, which is crucial for large-scale applications.
Our update schemes are efficient as learning B and d does not involve any matrix decomposition.

In contrast to previous parameterizations, the spectral parameterization introduces new challenges,
such as satisfying the orthogonal constraint on B and handling parametrization ambiguities. We defer
the technicalities how to handle these constraints to Section 3 where we derive the update scheme
from scratch. This is mainly to avoid introducing technical Riemannian optimization concepts needed
that are necessary for our derivation. In the following, our focus will be on presenting and empirically
validating the update scheme, and its connections to existing methods.

2.1 FULL-MATRIX ADAPTIVE SCHEMES THROUGH A FULL GAUSSIAN APPROXIMATION

We first present our update scheme in the context of full-matrix preconditioners. While full-matrix
preconditioners are generally impractical for modern neural networks, this will serve to illustrate
the core ideas which we later apply to structured preconditioners. We obtain the update scheme
with p = 1 by solving a Gaussian problem with mean µ and reparametrized inverse covariance
S = BDiag(d)BT . We will discuss the procedure to obtain the scheme and satisfy the spectral
constraints in Sec. 3.3. Given a learnable spectral parametrization, our update scheme shown in the
leftmost box of Fig. 1 allows us to introduce any fractional p-root further and efficiently compute the
root when updating µ.

We theoretically establish the equivalence of this update to the default scheme as stated in:

Claim 1. Our update scheme in the leftmost box of Fig 1 is equivalent to the scheme in Equation (3)
up to first-order accuracy in β2 when d does not have repeated entries (proof in Appendix C).

Empirical validation of the Full-matrix Update Scheme We empirically evaluate our scheme
on S = BDiag(d)BT for curvature approximation. We compare our scheme to the default training
scheme on S as Sk+1 ← (1 − β)Sk + βgkg

T
k , and the inverse-free scheme (Lin et al., 2024) for

a learnable Cholesky factorization C of S−1 (i.e., S = (CC)−1). We focus on the preconditioner
estimation of S based on a fixed gradient sequence {g1, . . . ,gT } and initialized by the same S0. We
consider two scenarios in this evaluation: (1) fixed-point matching and (2) iterate matching.

Fixed-point matching The ground truth in this setting is a fixed-point solution, S∗ = E[ggT ] = Σ,
to the default update scheme as S∗ = (1 − β)S∗ + βgkg

T
k , where gk is independently

generated from a normal distribution gk ∼ N (0,Σ) at each iteration k. We evaluate an
update scheme in every iteration k by comparing its current estimate denoted by S

(est)
k to

the fixed point. We use a relative Frobenius norm ∥S∗−S
(est)
k ∥F

∥S∗∥F
and the Wasserstein-2 distance

for positive-definite matrices to measure the difference.

Iterate matching The ground truth is a sequence of matrices {S(true)
1 , . . . ,S(true)

T } generated by the
default scheme when applying the scheme to the gradient sequence. We are interested
in matching the iterate that the default scheme generates at every step. We use a relative
Frobenius norm ∥S(true)

k −S(est)
k ∥F

∥S(true)
k ∥F

and the Wasserstein-2 distance to measure the discrepancy
between an update scheme and the default update scheme at every iteration k.
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Full-matrix (S = BDiag(d)BT )
1: Compute gradient g := ∇ℓ(µ)

d← d⊙ exp{β2d
−1 ⊙ [−d+ diag(BTggTB)]}

B← BCayley(β2(Skew(Tril(U))))

2: µ← µ− β1BDiag(d−1/p)BTg

Kronecker ( S = α[B(C)Diag(d(C))(B(C))T ]⊗ [B(K)Diag(d(K))(B(K))T ] )
1: Compute gradient G := Mat(∇ℓ(µ))

m(C) = (d(C))−1 ⊙ [−d(C) + 1
αm

diag(W(C))]

m(K) = (d(K))−1 ⊙ [−d(K) + 1
αn

diag(W(K))]

d(C) ← d(C) ⊙ exp{β2[m
(C) −mean(m(C))]}

d(K) ← d(K) ⊙ exp{β2[m
(K) −mean(m(K))]}

B(C) ← B(C)Cayley( β2
αm

Skew(Tril(U(C))))

B(K) ← B(K)Cayley( β2
αn

Skew(Tril(U(K))))

α← α exp(β2
2
[mean(m(K)) + mean(m(C))])

2: M←M− β1

(
α−1/p

)
(S(C))−1/pG(S(K))−1/p

Figure 1: Adaptive update schemes for full-matrix and Kronecker structured spec-
tral factorization for a finite sum of loss functions. Both update schemes use map
Cayley(N) := (I+N)(I−N)−1 with skew-symmetric N = −N⊤ to output an orthogonal matrix,
map Skew(M) := M−M⊤ to skew-symmetrize an arbitrary square matrix, and map Tril(·) re-
turns a lower-triangular matrix with zero diagonal entries. ⊙ denotes the elementwise prod-
uct. For simplicity, we assume NN weights take a matrix form: M := Mat(µ) ∈ Rn×m. Full-
matrix scheme: matrix Tril(U) is a lower-triangular matrix (i.e., i > j) with the (i, j)-th entry
[U ]ij := −[BTggTB]ij/(di − dj) when di ̸= dj and 0 otherwise. Kronecker-based scheme: This
update scheme uses W(C) := (B(C))TG(S(K))−1GTB(C), and W(K) := (B(K))TGT (S(C))−1GB(K) , where
S(K) := B(K)Diag(d(K))(B(K))T ∈ Rm×m and S(C) := B(C)Diag(d(C))(B(C))T ∈ Rn×n is easy to compute
due to the spectral factorization. For each Kronecker factor S(C), matrix Tril(U(C)) is a lower-
triangular matrix with its (i, j)-th entry [U (C)]ij := −[W (C)]ij/([d

(C)]i − [d(C)]j) if [d(C)]i ̸= [d(C)]j and 0

otherwise, where [d(C)]i denotes the i-th entry of vector d(C). Vector d(C) satisfies the determinant
constraint det(diag(d(C))) = 1 since sum(m(C) −mean(m(C))) = 0 (Sec. 3.2). For low-precision NN train-
ing, we truncate the Cayley and the exponential map.
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Figure 2: Empirical validation of our full-matrix update scheme on estimating a preconditioner
S ∈ R100×100. The first two figures on the left show that our update scheme converges to a fixed-point
solution as fast as the default update scheme in S and the Cholesky-based scheme. The last two
figures illustrate how closely our update scheme matches the iterates generated by the default update
scheme at each iteration. Our update scheme and the Cholesky-based scheme perform similarly for
matching the preconditioner estimates generated by the default scheme.

From Fig. 2, we can see that our update scheme performs similarly to the default update scheme in
the two scenarios. These results demonstrate the empirical equivalence between our scheme and the
default scheme, at least for curvature estimation.

2.2 KRONECKER-STRUCTURED SCHEMES THROUGH A MATRIX GAUSSIAN APPROXIMATION

Using Kronecker-structured preconditioners (Martens & Grosse, 2015; Gupta et al., 2018) is neces-
sary for large models as a full-matrix preconditioner is too large to store. Many Kronecker-based
methods (Zhang et al., 2018; Ren & Goldfarb, 2021; Lin et al., 2023; 2024) are based on a (ma-
trix) Gaussian family with Kronecker-structured inverse covariance S = S(C) ⊗ S(K). However,
many Kronecker-based methods depend on a particular choice of Kronecker factorization because
Kronecker factorization is not unique. As will be discussed in Sec. 3.2, we make the factoriza-
tion unique by imposing a determinant constraint on each factor and introducing a learnable scalar
α. Consequently, we consider this Kronecker structure S = α[S(C) ⊗ S(K)] with constraints
det(S(C)) = det(S(K)) = 1 and α > 0. We then propose a spectral parametrization for each
Kronecker factor while satisfying these constraints. The update scheme is presented in Fig.1.
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Figure 3: Empirical validation of our Kronecker-structured update scheme on estimating a precondi-
tioner S ≈ S(C) ⊗ S(K), where S(C) ∈ R9×9 and S(K) ∈ R11×11. The first two figures on the left
show that our update scheme gives a structural approximation of a fixed-point solution that obtained
by the default full-matrix update scheme. Our scheme converges as fast as Kronecker-structured
baseline methods, including the impractical projection-based method. The last two figures illustrate
how closely our scheme matches the unstructured iterates generated by the default scheme at each
iteration. All update schemes perform similarly due to the structural approximation gap.

Empirical Evaluation of the Kronecker-based Update Scheme Similarly, we evaluate our struc-
tured scheme for curvature approximation. Our goal is to obtain a Kronecker-structured estimation of
S. We compare our scheme to the default unstructured scheme on S: Sk+1 ← (1− β)Sk + βgkg

T
k .

As baselines, we consider the curvature estimation used in the structured Cholesky factorization
(Lin et al., 2024), and an impractical projection-based method (Van Loan & Pitsianis, 1993):
(S

(C)
k+1,S

(K)
k+1)← Proj((1− γ)(S

(C)
k ⊗ S

(K)
k ) + γgkg

T
k ). We use a similar experimental setup and consider

two similar scenarios discussed in Sec. 2.1. Here, we initialized all update schemes by a Kronecker
structured matrix S0 to remove the difference introduced by initialization:

Fixed-point matching The ground truth is an unstructured fixed-point solution, S∗ = E[ggT ] = Σ.
We evaluate a Kronecker-structured scheme in every iteration k by comparing its current
structured estimate to the fixed point. We measure the difference using the same metrics
considered previously.

Iterate matching The ground truth is a sequence of unstructured matrices generated by the default
scheme. Our goal is to match the iterate that the default scheme generates using Kronecker
structured approximations We use the same metrics to measure the difference.

From Fig. 3, we can see that our structural scheme performs as well as structural baselines. Our
approach even performs similarly to the impractical method that requires storing a full matrix and
solving a projection optimization problem at every iteration. This illustrates the effectiveness of our
approach in Kronecker-structured cases.

2.3 CONNECTIONS TO DIAGONAL METHODS

Our update scheme in Fig. 1 also applies in diagonal cases by forcing B to be a diagonal matrix. We
achieve that by changing map Tril(·) to Diag(·) in the update rule. Consequently, B becomes an
identity matrix up to sign changes. Similar to the full matrix case, we can obtain this scheme through
a diagonal Gaussian approximation. When truncating the exponential map, our scheme becomes
the root-free RMSprop (Lin et al., 2024). If applying a fractional p-root, our scheme also recovers
RMSprop (Tieleman & Hinton, 2012) for p = 2 and the fractional diagonal method (Chen et al.,
2021) for p = 4. See Appx. B for the detail.

2.4 NUMERICAL APPROXIMATIONS FOR COST REDUCTION AND LOW-PRECISION TRAINING

Our update scheme can be slow because the Cayley map involves computationally expensive matrix
inversion that requires high-precision floating-point arithmetic to avoid numerical instability. Like
other works (Liu et al., 2021; Li et al., 2020; Qiu et al., 2023), we consider a truncated Cayley map for
NN problems to work with lower precision and reduce cost while maintaining numerical stability. Our
truncation is based on a Neumann series for the matrix inversion (Krishnan et al., 2017; Lorraine et al.,
2020; Qiu et al., 2023). This is possible because we can approximate the matrix inversion in the Cay-
ley map Cayley(βN) = (I+ βN)(I− βN)−1 = (I+ βN)

∏∞
l=0(I+ (βN)2

l

) ≈ (I+ βN)2(I+ (βN)2)(I+ (βN)4)
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based on a convergent Neumann series, when β is small enough so that ∥βN∥ < 1, where β := 1−β̂2

and β̂2 is Adam’s β2, see Appx. B for the detail.

3 LEARNING SPECTRAL FACTORIZATIONS VIA COORDINATE TRANSFORMS

Here, we derive our update schemes for learning a spectral factorization on the fly. Our starting
point is that, according to Lin et al. (2024), a root-free method in (3) is a Riemannian solution to
a Gaussian approximation problem in a particular coordinate. Because Riemannian methods are
invariant under coordinate transformations, our idea is to change coordinates so that the Riemannian
solution becomes a root-free update rule for spectral factorization in new coordinates.

Riemannian Approach for Obtaining Root-free Update Schemes Lin et al. (2024) show that a
root-free adaptive update scheme is a simplified version of Riemannian gradient descent (RGD) (c.f.,
Eq. (7) ) on a Gaussian manifold (Amari, 2016), where µ and S in the root-free scheme become
Gaussian’s mean and inverse covariance, respectively. They consider a Gaussian approximation
problem and use the following procedure to obtain the adaptive update scheme in (3) with p = 1,

Step 1 They first reformulate the original problem in (1) as a Gaussian approximation:

min
µ,S≻0

L(µ,S) := Ew∼q(w;µ,S)[ℓ(w)]−Qq, (6)

where ℓ(·) is the loss function in the original problem, a new symbol w is used to denote the weights
of the NN because they are no longer learnable, q(w;µ,S) is a Gaussian with mean µ and covariance
S−1, and Qq := Ew∼q[− log q(w;µ,S)] = − 1

2 log det(S) is the Gaussian’s differential entropy.

Step 2 They then suggest performing RGD in a parameter space τ := {µ,S} of the Gaussian.

RGD : τ ← τ − β[Fτ ]
−1∇τL, (7)

where Fτ := −Ew∼q[∇2
τ log q(w; τ )] ∈ R(l+l2)×(l+l2) is the Fisher-Rao metric representation in τ and l is

the number of NN weights. The metric is also known as the affine-invariant metric (Pennec et al.,
2006) for positive-definite matrices (Minh & Murino, 2017) when the mean µ is constant.

Step 3 Simplifying the RGD step

RGD :

[
µ
S

]
←

[
µ
S

]
− β

[
S−1 0

0 −2 ∂S
∂S−1

] [
∂µL
∂SL

]
=

[
µ− βS−1∂µL
S+ β(2∂S−1L)

]
≈

[
µ− βS−1g

S+ β(H− S)

]
, (8)

gives rise to the root-free adaptive scheme in (3), where they use (i) the analytical inverse metric

[Fτ ]
−1 =

[
S−1 0

0 −2 ∂S
∂S−1 ,

]
, (ii) Stein’s identities for the Gaussian (Opper & Archambeau, 2009), and

(iii) a valid Hessian approximation (Lin et al., 2024)H = ggT with a delta evaluation at the mean µ:

∂µL
Stein
= Ew∼q[∇wℓ]

delta
≈ ∇µℓ = g, 2∂S−1L Stein

= Ew∼q[∇2
wℓ]− S

delta
≈ ∇2

µℓ− S ≈ H− S. (9)

Challenges of Learning Spectral Parametrizations via RGD Our main idea is to learn a spectral
parameterization/coordinate of S = BDiag(d)BT by solving a reparametrized Gaussian problem in
Eq. 6. We then follow a similar procedure to convert an RGD step in the spectral coordinate into a
root-free update scheme based on the spectral factorization. However, directly performing RGD in
a spectral coordinate is challenging because we have to (1) satisfy parameter constraints, (2) use a
non-singular metric (coordinate representation), and (3) analytically compute the metric inversion.

Conflict between Simplification for RGD and Coordinate Transformation The simplification
step (Step 3) turns a computationally expensive RGD step involving the metric inversion into a
more efficient root-free adaptive update scheme. Without an analytical metric inversion, we cannot
simplify the RGD step and explicitly express it as a root-free update scheme. When changing
coordinates, the metric representation has to be changed accordingly (Lee, 2018) to make RGD
invariant to coordinate transformation. However, the coordinate change of the metric complicates
the simplification. This is because we no longer analytically inverse this high-dimensional Fisher-
Rao metric, which is non-diagonal and singular in some coordinates like a spectral coordinate.
The simplification process is more challenging in Kronecker-factorized cases because additional
redundancy from Kronecker factorization renders the metric (coordinate representation) singular and
complicates the simplification.
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Constraint Satisfaction and Metric Diagonalization via Local Coordinate Transformation
Inspired by general Riemannian (normal) local coordinates (Glasmachers et al., 2010; Lin et al., 2021;
2023) and Fermi coordinates (Manasse & Misner, 1963), we propose using local coordinates to tackle
these challenges. The main idea is to construct local coordinates that handle constraints and facilitate
the analytical metric inversion needed for the simplification. Using a local coordinate transformation
can locally diagonalize the metric at a single evaluation point. Given a global coordinate, such as a
spectral coordinate, we construct a local coordinate and its coordinate transformation map associated
with the global coordinate at every iteration. In our approach, the coordinate and its transformation
map should satisfy these conditions: (1) the map is differentiable and injective. (2) the coordinate
should not have any coordinate constraint, and its origin represents a current iterate in the spectral
coordinate. (3) it is common for the metric evaluated at the origin of the local coordinate to be an
identity matrix (Lin et al., 2023). However, this can be loosened to be diagonal (Glasmachers et al.,
2010) or even block-diagonal as long as the metric is easy to inverse. Our approach follows the
requirements for local coordinate construction (Lin et al., 2023). We propose new local coordinates
for spectral coordinates because the existing local coordinates do not account for spectral constraints.

3.1 HANDLING SPECTRAL PARAMETER CONSTRAINTS AND REDUNDANCIES

Here, we describe our local coordinates and coordinate transformation maps for handling constraints
for spectral factorization. Through a coordinate transformation map, we express the spectral con-
straints using an unconstrained local coordinate. Because a spectral coordinate contains redundancies,
we remove them to simplify the inverse metric computation. This allows us to make the metric
diagonal in our local coordinates.

Handling Constraints via Local Coordinate Transformation A spectral coordinate has parameter
constraints: B is an orthogonal square matrix, and d is a vector with positive entries. We consider
Cayley1 and exponential maps to construct transformation maps, where we introduce a map denoted
by Skew(·) to make its input skew-symmetric as required by the Cayley map. At every iteration k, we
handle the constraints (c.f., Claim (2)) by constructing a local parametrization in (m,M) associated
to the current iteration (dk,Bk) through a local transformation map :

(d(m),B(M) ) = (dk ⊙ exp(m),BkCayley(Skew(Tril(M))) ), (10)

where ⊙ is the elementwise product, (dk,Bk) represents a point evaluated at the k-th iteration. This
transformation map is locally defined because it depends on a current point (dk,Bk) that changes at
every iteration. We use the origin in this local system to represent (dk,Bk). This is possible because
(d(m),B(M))

∣∣
m=0,M=0

becomes (dk,Bk) = (d(0),B(0)) when evaluating this map (10) at the
origin. The origin simplifies the metric computation as many terms arising in the metric vanish.
Claim 2. The map in Eq. (10) is differentiable and injective. We satisfy the parameter constraints in
a spectral coordinate by changing a local coordinate to the spectral coordinate through the map.

Removing Redundancy due to Spectral Factorization A spectral parametrization contains redun-
dancy due to permutation. For simplicity, we assume all entries of d are distinct in the following
discussion and will later address cases when d has repeated values. For example, consider an-
other eigen factorization: S = B̄Diag(d̄)B̄

T , where B̄ := BQ and d̄ are permuted values so that
Diag(d̄) = QTDiag(d)Q. To remove this redundancy, we restrict M to be a lower-triangular
matrix explicitly denoted by Tril(M). In eigendecomposition, d (as a vector of eigenvalues) is
ranked to disallow any permutation. We consider an alternative solution by restricting B because we
can not simultaneously rank and learn d on the fly. Restricting B to remove this redundancy means
B(M1) = B(M2)Q holds only when M1 ≡ M2 in the local coordinate. The lower-triangular
restriction of M removes the redundancy because M1 ≡ M2 as shown in Claim 3. Here, we
assume the lower-triangular restriction, Tril(M), also makes the diagonal entries of its input, M,
zero. Otherwise, M1 and M2 can differ in their diagonal entries because the skew-symmetrization in
the transformation map (Eq. (10)) always ignores these entries.
Claim 3. Given that entries of d are not duplicated, a spectral parameterization obtained through the
map in (10) is unique under permutations when using a lower-triangular restriction.

1We use the Cayley map to construct B, where B is special orthogonal (i.e., det(B) = 1). Although the map
does not represent all special orthogonal matrices, it is widely used in practice (Li et al., 2020; Liu et al., 2021).
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Handling Redundancy due to Repeated Entries of d Recall that eigendecomposition is not
unique when having repeat eigenvalues. Our spectral parametrization is also not unique when d has
duplicated entries. In this case, the Fisher-Rao metric (coordinate representation) is singular. We
allow d to have repeated entries and address the singularity using the Moore–Penrose inversion (van
Oostrum et al., 2023). Computing the Moore–Penrose inversion is easy because we diagonalize the
metric at evaluation points. In practice, we also use this inversion to improve numerical stability if d
has very close entries.

3.2 HANDLING CONSTRAINTS AND REDUNDANCIES FOR KRONECKER STRUCTURES

Now, we propose spectral parametrizations and local coordinates for Kronecker structured matrices.
Kronecker factorization introduces an additional redundancy that makes the exact Fisher-Rao metric
singular and non-block-diagonal in Kronecker structured coordinate. We construct local coordinates
to remove this redundancy and simplify the inverse metric computation. Furthermore, removing this
redundancy makes our update scheme invariant to all equivalent Kronecker factorizations.

Removing Redundancy due to Kronecker Factorization Using a Kronecker structure introduces
redundancy because Kronecker factorization is non-unique. For example, we can reexpress a
structured matrix S = S(C)⊗S(K) in another way: S = γ⊗[S̄(C)⊗S̄(K)

], where S̄(C)
:= γ−1/2S(C),

S̄
(K)

:= γ−1/2S(K), and γ > 0 is a learnable scalar. Without removing this redundancy, learning
the factorization (S(C),S(K)) is not equivalent to learning another factorization (γ, S̄

(C)
, S̄

(K)
)

(i.e., S = S(C) ⊗ S(K) ̸= S̄ = γ ⊗ S̄
(C) ⊗ S̄

(K) ). We eliminate this redundancy by imposing a
determinant constraint on each Kronecker factor and adding an extra scalar α. This leads to a unique
representation: S := α[S(C)⊗S(K)] = ᾱ[γ⊗S̄(C)⊗S̄(K)

] because the constraint det(γ) = 1 makes
the scalar γ constant, where det(S(C)) = det(S(K)) = det(S̄

(C)
) = det(S̄

(K)
) = det(γ) = 1,

α > 0, and ᾱ > 0. Consequently, we propose a spectral parametrization for each Kronecker factor
S(C) = B(C)Diag(d(C))(B(C))T with det(Diag(d(C))) = 1 to satisfy the determinant constraint.

Handling Constraints via Local Coordinate Transformation We construct local coordinates to
handle constraints, including the determinant constraints. For the positive scalar α, we introduce a
local coordinate n and use an exponential map in the coordinate transformation: α(n) = αk exp(n)
at every iteration k. For each Kronecker factor, we drop the factor index for simplicity and construct
a local coordinate (m,M). The coordinate transformation map for each factor

d(m) = dk ⊙ exp(m), B(M) = BkCayley(Skew(Tril(M))), (11)
is similar to the map (c.f., Eq. 10) in full-matrix cases, expect that we require sum(m) = 0 to satisfy
the determinant constraint (i.e., det(Diag(d(m))) = 1), where l is the length of vector dk and the
local coordinate m := [m1, . . . ,ml−1,−

∑l−1
i mi] has only (l − 1) free variables.

3.3 DERIVATION OF ROOT-FREE UPDATE SCHEMES THROUGH GAUSSIAN APPROXIMATIONS

Now, we present a procedure to obtain root-free update schemes for our spectral parametrizations. Our
procedure follows similar steps suggested by Lin et al. (2024) except that we use local coordinates. A
similar procedure can solve positive-definite matrix optimization problems (Pennec et al., 2006).

Procedure for Full-matrix Spectral Parametrizations To derive full-matrix root-free update
schemes, we follow these three steps.
Step 1 We solve a Gaussian problem similar to (6) using a learnable spectral parametrization,
S = BDiag(d)BT , of the inverse covariance:

min
µ,d,B

L(µ,d,B) := Ew∼q(w;µ,d,B)[ℓ(w)]−Qq(µ,d,B), s.t. BBT = BTB = I, d > 0. (12)

Step 2 We construct a local coordinate at each iteration to remove the (spectral) constraints in (12)
when performing RGD. We then take an RGD step without constraints in this local coordinate and
translate the change from the local coordinate to the spectral coordinate.

Step 2.1 Concretely, at iteration k, we create a local coordinate η := (δ,m,M) at the current point
τ k := (µk,dk,Bk) and use this local transformation map

τ (η; τ k) :=

[
µ(δ; τ k)
d(m; τ k)
B(M; τ k)

]
=

 µk +BkDiag(d
−1/2
k )δ

dk ⊙ exp(m)
BkCayley(Skew(Tril(M)))

 , (13)

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

to translate the change from the local coordinate to the spectral coordinate (c.f., Claim 2), where
τ k = (µk,dk,Bk) is considered as a constant in this map, and Tril(M) is used to explicitly enforce
the lower-triangular restriction (c.f., Sec. 3.1).

Step 2.2 We then take an (unconstrained) RGD step in the local coordinate,

RGD : ηnew ← ηcur − β[Fη(ηcur)]
−1∇ηL

∣∣
η:=ηcur

= 0− β[Fη(0)]
−1∇ηL

∣∣
η:=0

, (14)

and translate the change ηnew from the local coordinate

τ k+1 ← τ (ηnew; τ k), (15)

to the eigen coordinate, where the Fisher-Rao metric Fη(ηcur) evaluated at ηcur is diagonal
(c.f., Claim 4) in the local coordinate and the origin ηcur ≡ 0 represents the current point
τ k = τ (ηcur; τ k) ≡ τ (0; τ k) in the spectral coordinate.

Step 3 We obtain the root-free update scheme in Fig. 1 by simplifying this RGD step in (14)-(15), and
making the same approximations in (9). The simplification is easy because the metric Fη(η)

∣∣
η=ηcur

evaluated at the origin in the local coordinate is diagonal. This allows us to simplify the inverse
metric computation in Eq. (14) even when the metric is singular. Moreover, the gradient ∇ηL

∣∣
η=ηcur

required by RGD is easy to compute via the chain rule and has an analytical expression. See Appx. H
for a complete derivation.
Claim 4. Metric Diagonalization: The exact Fisher-Rao metric Fη(ηcur) (for a full Gaussian)
evaluated at the origin ηcur ≡ 0 is diagonal and has a closed-form expression:

Fη(δ,m, vecTril(M))
∣∣
δ=0,m=0,M=0

=

[
Fδδ 0 0
0 Fmm 0
0 0 FMM

]
(16)

where Fδδ = I, Fmm = 1
2I, FMM = Diag(vecTril(C)), vecTril(C) represents the low-triangular

half of C excluding diagonal entries and its (i, j)-th entry is [C]ij = 4( di

dj
+

dj

di
− 2) ≥ 0 and di

denotes the i-th entry of dk. The metric is singular when d has repeated entries (i.e., di = dj for
i ̸= j). Consequently, we can use the Moore-Penrose inversion to inverse the metric (c.f., Sec. 3.1).

Discussion about the Induced Metric for Orthogonal Matrix B Our approach implicitly constructs
a Riemannian metric for the orthogonal matrix B through the coordinate transformation of the Fisher-
Rao metric of a Gaussian. This induced metric for the orthogonal matrix differs from existing metrics
(Tagare, 2011; Li et al., 2020; Kong et al., 2022) in the Riemannian optimization literature. We use
the Fisher-Rao metric because our goal is to learn an orthogonal matrix for spectral factorization.

Procedure for Kronecker-structured Spectral Parametrizations We use a similar procedure to
obtain our update schemes in a structured case. We briefly describe the procedure and highlight the
difference in this case.

Step 1 We solve a Gaussian problem similar to (6) using a Kronecker factorized eigenparametriza-
tion, S = α[B(C)Diag(d(C))

(
B(C)

)T
]⊗ [B(K)Diag(d(K))

(
B(K)

)T
], for the inverse covariance with extra

constraints: det(Diag(d(C))) = det(Diag(d(K))) = 1 and α > 0.

Step 2 We construct a local coordinate at each iteration, perform RGD in the local coordinate, and
translate the change using a transformation map in Eq. (11). See Eq. (35) in the appendix for details.

Step 3 We obtain the root-free update scheme in Fig. 1 by simplifying this RGD step. The simplifi-
cation is straightforward because the metric evaluated at the origin in the local coordinate is block
diagonal (c.f., Claim 5).
Claim 5. Metric Block Diagonalization: The exact Fisher-Rao metric Fη(ηcur) (for a matrix
Gaussian) evaluated at the origin ηcur ≡ 0 is block-diagonal and has a closed-form expression. The
inverse metric also has an analytical form.

4 EXPERIMENTS

We first consider a positive-definite matrix optimization problem to validate our full-matrix update
scheme beyond NN training. We aim to learn a positive-definite matrix S from noisy observations that
can be negative-definite. Therefore, a linear update scheme to update S like the one in Eq. (3) is un-
suitable for the problem because the scheme assumes an observation (e.g., a gradient outer product) is

9
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Figure 4: Experiments demonstrate effectiveness and efficiency of our update schemes. The first
figure on the left shows the performance of our full-matrix update scheme for learning positive-definite
matrices. Our update scheme matches the baselines as our scheme is RGD in local coordinates. The
remaining three figures show the performance of our Kronecker update scheme for training vision
transformers with low precision. To match AdamW’s running time (i.e, PAdamW with p = 2), we can
update our perconditioner at every 10 iterations because we use a truncated Cayley map. Shampoo
has to update its perconditioner at every 100 iterations to match the running time. This is because
Shampoo performs eigendecompision when updating its preconditioner. We use grafting to improve
Shampoo’s performance. Without grafting, Shampoo barely outperforms AdamW and is hard to tune
due to the infrequent update of its preconditioner.

semi-positive-definite. Given that our approach is RGD in local coordinates, we consider the standard
RGD with retraction (Absil et al., 2009) and the Cholesky-based RGD (Lin et al., 2023) as baselines.
We consider the metric nearness problem (Brickell et al., 2008) minW≻0 ℓ(W) := 1

2N

∑N
i=1 ∥WQxi − xi∥22

used in the matrix optimization literature , where Q ∈ Rd×d is a known positive-definite matrix and
only a subset of xi ∈ Rd are observed at each iteration. The ground truth is W∗ = Q−1 and we
measure the difference between an estimate West and the ground truth W∗ using ℓ(West)− ℓ(W∗). We
consider a case for d = 60 and generate Q and xi. As we can see from the leftmost plot in Fig. 4, our
method performs as well as the RGD-based methods. This result shows the potential of our scheme
for positive-definite matrix optimization beyond NN training.

Next, we examine our Kronecker-structured update scheme in low-precision NN training problems.
We use our update scheme to train vision transformers from scratch with half-precision. Training
transformers in half-precision allows us to evaluate the numerical stability of our approach because
matrix methods g can be unstable in low precision. We then show the effectiveness and efficiency of
our approach by comparing our method to strong baselines like AdamW (i.e., PAdamW with p = 2)
and Shampoo. We consider training three vision transformers: ViT (Dosovitskiy, 2020), FocalNet
(Yang et al., 2022), and FlattenViT (Han et al., 2023), on the ImageWoof dataset using mini-batches
with batch size 128. Our method updates its preconditioner at every 10 iterations to match AdmaW’s
runtime because it does not require matrix decomposition and inversion when using a truncated
Cayley map. Shampoo has to update its preconditioner at every 100 iterations to match AdmaW’s
runtime because of eigendecomposition. This also shows the low iteration cost of our method as
our preconditioner can be updated more frequently. We use the state of the art implementation of
Shampoo (Shi et al., 2023). We have to use grafting (Agarwal et al., 2021) to improve Shampoo’s
performance due to the infrequency update of the preconditioner. We use random search (Choi et al.,
2019) to tune all available hyperparameters for each method using 200 runs. From the remaining
plots in Fig. 4, we can see that our method effectively trains transformers with low-precision and
often outperforms these baselines. Moreover, our method is flexible enough to use other fractional
roots. From the second plot on the left in Fig. 4, we can see that other roots such as p = 1 is better
than the square root p = 2. This shows that the potential of using other fractional roots.

5 CONCLUSION

We present a Riemannian approach for learning spectral factorizations on the fly. Our method fixes
the instability and inefficiency of using a matrix fractional root for low-precision NN training and
enables matrix methods to use other fractional roots. An interesting direction is to evaluate our
methods in large-scale settings and investigate the potential benefit of using other fractional roots.
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A PROPERTIES OF THE CAYLEY MAP

Claim 6. The Cayley map Cayley(N) = (I+N)(I−N)−1 is well-defined for skew-symmetric N.
Moreover, this map is injective.

Proof. To show the map is well-defined, we want to show (I−N) is non-singular. Suppose not, we
have det(I−N) = 0. Thus, N has an eigenvalue with 1. By the definition of the eigenvalue, there
exists a non-zero vector x ̸= 0 so that Nx = x. Notice that Given that N is skew-symmetric, we
have

N+NT = 0 (17)
and

0 = xT (N+NT )x = xT (Nx) + (xTNT )x = xTx+ xTx (18)
The above expression implies x = 0, which is a contradiction. Thus, det(I−N) ̸= 0 and (I−N) is
non-singular.

Let Q = Cayley(N). We show that the Cayley is injective if N is skew-symmetric. We first assume
(Q+ I) is non-singular and then we prove it. Given (Q+ I) is non-singular, we have

Q(I−N) = (I+N) ⇐⇒ Q− I = (Q+ I)N ⇐⇒ (Q+ I)−1(Q− I) = N,

This implies the map is injective and its inverse is

N = Cayley−1(Q) := (Q+ I)−1(Q− I) (19)

Now, we show that (Q + I) is non-singular. We use proof by contradiction. If not, there exists a
non-zero vector v (Maddocks, 2021) so that

Qv = −v ⇐⇒ (I+N)(I−N)−1v = −v (20)

⇐⇒ (I−N)−1(I+N)v = −v (21)
⇐⇒ (I+N)v = −(I−N)v (22)
⇐⇒ v = −v, (another contradiction since v ̸= 0) (23)

where we use the following identity in the second step in the above expression.
(I+N)(I−N)−1 = −(−2I+ I−N)(I−N)−1 = 2(I−N)−1 − I (24)

= (I−N)−1(2I− (I−N)) = (I−N)−1(I+N) (25)

B CONNECTION TO DIAGONAL METHODS

Here, we show the connections between our scheme and the RmsProp method. Observe that
eigenvalues are diagonal entries of a diagonal preconditioning matrix (i.e., d = diag(S)). Because
B is now a diagonal and orthogonal matrix, each diagonal entry can only be 1 or -1. Using this
result, we can further simplify our update scheme and recover the RmsProp update rules when using
a first-order truncation of the exponential map.

d← d⊙ exp{β2 d
−1 ⊙ [−d+ diag(BTggTB)]} ≈ d+ β2[−d+ diag(ggT )]}

B← BCayley(
β2

2
Skew(Diag(U))) = BCayley(0) = B

µ← µ− β1 BDiag(d−1/p)BTg = µ− β1 Diag(d−1/p)g, (26)

where diag(BTggTB) = diag(ggT ), BDiag(d−1/p)BT = Diag(d−1/p), and we use a first-order
truncation of the exponential map d ⊙ exp(d−1 ⊙ n) ≈ d ⊙ (1 + d−1 ⊙ n) = d + n. Due to
the skew-symmetrization, Skew(Diag(U)) is always a zero matrix. Thus, according to our update
scheme, B remains unchanged in diagonal cases because Cayley(0) = I.

Our connections rely on a valid Hessian approximation (Lin et al., 2024)H = ggT . This requires
the loss function in Eq. (1) can be expressed as a normalized negative log-likelihood such as the
cross entropy loss. For example, an averaged version of the loss is not normalized, and therefore, the
gradient outer product of the averaged loss is not a valid Hessian approximation.
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C PROOF OF LEMMA 1

We will show that our update scheme in the leftmost box of Fig.1 is equivalent to the root-free update
scheme in (3) up to first-order accuracy given that they use the same gradient g. The proof can
be easily generalized to every iteration by induction, given that both update schemes use the same
sequence of gradients.

Recall that we update the spectral factors using the following rule at iteration k.

dk+1 ← dk ⊙ exp{β2 d
−1
k ⊙ [−dk + diag(BT

kHBk)]}

Bk+1 ← BkCayley(
β2

2
Skew(Tril(U))), (27)

where H = ggT and the (i, j)-th entry of U is [U ]ij := −[BT
kHBk]ij/(di − dj), where d has no

repeated entries by our assumption. We want to show that the above update scheme is equivalent to
the default update scheme up to first-order accuracy.

Sk+1 ← (1− β2)Sk + β2gkg
T
k (28)

Let Qk := BkHBT
k . Recall that the Cayley map is defined as Cayley(N) = (I +N)(I −N)−1.

Using the first-order approximation of (I − N)−1, we have (I − β2N)−1 = I + β2N + O(β2
2).

Thus, we have Bk+1 = BkCayley(
β2

2 Skew(Tril(U)) = Bk(I +
β2

2 N)(I + β2

2 N + O(β2
2)) =

Bk(I + β2N + O(β2
2)), where N := Skew(Tril(U)). Similarly, we have dk+1 = dk ⊙ [1 +

β2d
−1
k ⊙ (−dk + diag(Qk)) +O(β2

2)] = dk + β2wk +O(β2
2) by using the first-order truncation

of the exponential map, where wk := −dk + diag(Qk). Notice that

S̄k+1

=Bk+1Diag(dk+1)B
T
k+1

=Bk

[
(I+ β2N+O(β2

2))Diag(dk + β2wk +O(β2
2))

]
(I+ β2N+O(β2

2))
TBT

k

=Bk

[
Dk + β2NDk + β2Wk +O(β2

2)
]
(I+ β2N+O(β2

2))
TBT

k

=Bk

[
Dk + β2NDk + β2Wk + β2DkN

T +O(β2
2)
]
BT

k

=BkDkB
T
k + β2Bk(NDk +Wk +DkN

T )BT
k +O(β2

2)

=S̄k + β2Bk(NDk +DkN
T )BT

k + β2BkWkB
T
k +O(β2

2), (N is skew-symmetric)

=S̄k + β2Bk(NDk −DkN)BT
k + β2BkWkB

T
k +O(β2

2)

where Dk := Diag(dk) and Wk := Diag(wk)

Observation (1): Since Wk = Diag(−dk +diag(BT
kHBk)) = −Dk +Diag(diag(BT

kHB
T
k )), we

have

BkWkB
T
k = −BkDkB

T
k +BkDdiag(Qk)B

T
k (29)

where Ddiag(Qk) denotes the diagonal part of Qk = BkHBT
k

Observation (2): Since N = Skew(Tril(U)) and [U]ij = −[BT
kHBk]ij/(di−dj) = −[Qk]ij/(di−

dj), we can show that NDk − DkN is indeed a symmetric matrix with zero-diagonal entries.
Moreover, the low-triangular half (i > j) of the matrix is

[NDk −DkN]ij = (dj − di)[U]ij = [Qk]ij . (30)

where dj ̸= di since d has no repeated entries. Thus, we have NDk −DkN = Qk −Ddiag(Qk).
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Using Observations (1) and (2), we have

S̄k+1

=Bk

[
Dk + β2NDk + β2Wk + β2DkN

T +O(β2
2)
]
BT

k

=BkDkB
T
k + β2

[
Bk

(
Qk −Ddiag(Qk)

)
BT

k −BkDkB
T
k +BkDdiag(Qk)B

T
k

]
+O(β2

2)

=(1− β2)BkDkB
T
k + β2Bk

[
Qk

]
BT

k +O(β2
2), (Note: Qk = BT

kHBk)

=(1− β2)S̄k + β2H+O(β2
2),

which is exactly the default update scheme in (3) when dropping the second-order term O(β2
2).

D PROOF OF LEMMA 2

It is easy to see that the map is differentiable. We now show the map is injective. We only need
to show the Cayley(Skew(Tril(M))) is injective. Since we only consider matrix M to have zero
diagonal entries, it is equivalent to showing that the Cayley map is injective, which is true due to
Claim 6.

Recall that the current point (dk,Bk) is in the spectral coordinate. Thus, we have dk > 0 and
Bk is orthogonal. According to the map (10), it is easy to see that d(m) = dk ⊙ exp(m) > 0
because dk > 0. Thus, d(m) satisfies the parameter constraints. Now, we show that B(M) is
also orthogonal. Because Bk is orthogonal, we only need to show that the output of the Cayley
map, Cayley(Skew(Tril(M))), is orthogonal. Let N := Skew(Tril(M)). We know that N is skew-
symmetric. We can verify that the Cayley transform satisfies the orthogonal constraint. Consider the
following expression:(

Cayley(N)
)T

Cayley(N) = (I−N)−T (I+N)T (I+N)(I−N)−1 (31)

= (I−N)−T (I−N)(I+N)(I−N)−1 (32)

= (I−N)−T (I+N)(I−N)(I−N)−1 (33)

= (I−N)−T (I−N)T (I−N)(I−N)−1 = I (34)

where we use the fact that N is skew-symmetric such as NT = −N.

Likewise, we can show Cayley(N)
(
Cayley(N)

)T
= I. Thus, the output of the Cayley map is a

square orthogonal matrix.

E PROOF OF LEMMA 3

Given the transformation map defined in Eq. (10), we want to show that B(M1) = B(M2)Q holds
only when M1 = M2 for a permutation matrix Q. By our definition, M1 and M2 must have zero
diagonal entries.

Recall that B(M) = BkCayley(Skew(Tril(M))) and Cayley(N) = (I + N)(I −N)−1, where
N is skew-symmetric. It is equivalent to show that this expression Cayley(Skew(Tril(M1))) =
Cayley(Skew(Tril(M2)))Q holds only for M1 = M2.

We first show Q = I. Let K1 := Cayley(Skew(Tril(M1))) and K2 := Cayley(Skew(Tril(M2))).
Notice that K1 and K2 are low-triangular due to the definition of the Cayley map. The expression
K1 = K2Q holds only when Q is also a lower-triangular matrix. Because Q is a permutation matrix,
Q must be an identity matrix to be lower-triangular. Thus, K1 = K2. Since the Cayley map is
injective, we have M1 = M2.

F PROOF OF LEMMA 4

To verify this statement, we can analytically compute the Fisher-Rao metric according to its definition.
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G PROOF OF LEMMA 5

In a Kronecker case, we consider this spectral factorization S = α[(B(C)Diag(d(C))(B(C))T ) ⊗
(B(K)Diag(d(K))(B(K))T )]. At iteration k, we create a local coordinate η :=

(δ, n,m(C),M(C),m(K),M(K)) at the current point τ k := (µk, αk,d
(C)
k ,B

(C)
k ,d

(K)
k ,B

(K)
k ) and

use this local transformation map

τ (η; τ k) :=



µ(δ; τ k)
α(n; τ k)

d(C)(m(C); τ k)

B(C)(M(C); τ k)

d(K)(m(K); τ k)

B(K)(M(K); τ k)

 =



µk + (B
(C)
k ⊗B

(K)
k )(Diag(d

(C)
k )⊗Diag(d

(K)
k ))−1/2δ

αk exp(n)

d
(C)
k ⊙ exp(m(C))

B
(C)
k Cayley(Skew(Tril(M(C))))

d
(K)
k ⊙ exp(m(K))

B
(K)
k Cayley(Skew(Tril(M(K))))


,

(35)

where m(C) = [m
(C)
1 ,m

(C)
2 , . . . ,m

(C)
l−1,−

∑l−1
i m

(C)
i ] has l entries but only (l − 1) free variables

since
∑

(m(C)) = 0.

To verify this statement, we can analytically compute the Fisher-Rao metric according to its definition.

Fη(δ, n,Free(m
(C)), vecTril(M(C)),Free(m(K)), vecTril(M(k)))

∣∣
η=0

(36)

=


Fδδ 0 0 0 0 0
0 Fαα 0 0 0 0
0 0 Fm(C)m(C) 0 0 0
0 0 0 FM(C)M(C) 0 0
0 0 0 0 Fm(K)m(K) 0
0 0 0 0 0 FM(K)M(K)

 (37)

where vecTril(C) represents the low-triangular half of C excluding diagonal entries and Free(m)
extracts free variables from m.

We can see that the Fisher-Rao is block diagonal with six blocks.

The first two blocks are Fδδ = I and Fαα = 1
2 . For each Kronecker factor, we have two blocks. For

notation simplicity, we drop the factor index C in Fm(C)m(C) and FM(C)M(C) .

For each Kronecker factor, FMM = Diag(vecTril(W)), vecTril(W) represents the low-triangular
half of W excluding diagonal entries and its (i, j)-th entry is [W ]ij = 4( di

dj
+

dj

di
− 2) ≥ 0 and di

denotes the i-th entry of dk for the factor. The Fmm is non-diagonal but its inverse can be computed

as F−1
mm = 2


l−1
l

1
l . . . 1

l
1
l

l−1
l . . . 1

l
· · . . . ·
1
l

1
l . . . l−1

l

 ∈ R(l−1)×(l−1) for the (l − 1) free variables in m denoted

by Free(m). Furthermore, the natural-gradient w.r.t. m can also be simplified.

H COMPLETE DERIVATION

According to Lemma 4, the Fisher-Rao metric under this local coordinate system is diagonal as

Fη(δ,m, vecTril(M))
∣∣
δ=0,m=0,M=0

=

[
Fδδ 0 0
0 Fmm 0
0 0 FMM

]
(38)

where Fδδ = I, Fmm = 1
2I, FMM = Diag(vecTril(C)), vecTril(C) represents the low-triangular

half of C excluding diagonal entries and its (i, j)-th entry is [C]ij = 4( di

dj
+

dj

di
− 2) ≥ 0 and di

denotes the i-th entry of dk.
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Use the approximation in Eq. (9)

gµ := ∂µL
Stein
= Ew∼q[∇wℓ]

delta
≈ ∇µℓ = g (39)

2gS−1 := 2∂S−1L Stein
= Ew∼q[∇2

wℓ]− S
delta
≈ ∇2

µℓ− S ≈ H− S. (40)

where g := ∇µℓ(µ) is the gradient of ℓ,H := ggT is a Hessian approximation.

The Euclidean gradient w.r.t local coordinate (δ,m,M) are

gδ

∣∣
δ=0

= D
−1/2
k BT

k gµ (41)

gm

∣∣
m=0

= −d−1
k ⊙ diag(BT

k gS−1Bk) (42)

gvecTril(M)

∣∣
M=0

= 4vecTril(BT
k gS−1BkD

−1
k −D−1

k BT
k gS−1Bk) (43)

where Dk := Diag(dk). Recall that we use a gradient outer product H = ggT as a Hessian
approximation in 2gΣ, where 2gS−1 ≈ ggT − S+λI considered in RMSProp, where λI is included
for damping.

The FIM can still be singular when d has repeated entries (i.e., di = dj for i ̸= j) since FMM can
be singular. We can use the Moore-Penrose inverse when computing the inverse. Thanks to this
coordinate system, FMM is indeed a diagonal matrix.

Thus, we can simplify the RGD update as[
δ
m

vecTril(M)

]
←

 0− β1F
−1
µµgδ

0− β2F
−1
mmgm

∣∣
m=0

0− β2F
−1
MMgvecTril(M)

∣∣
M=0

 =

 0− β1Diag(d)−1/2BTgµ

0− 2β2gm

∣∣
m=0

0− β2F
−1
MMgvecTril(M)

∣∣
M=0

 , (44)

where we introduce another learning rate β2 when updating d and B.

Note that when di ̸= dj for i ̸= j, the (i, j)-th entry of the natural gradient w.r.t. M is

[F−1
MMgvecTril(M)

∣∣
M=0

]ij = (BT
k gS−1Bk)ij/(di − dj). (45)

When di = dj , we simply set the corresponding entry to be zero due to the Moore-Penrose inverse.

Finally, we can re-express the above update as:[
µk+1
dk+1

Bk+1

]
←

 µk − β1BkDiag(dk)
−1BT

k gµ

dk ⊙ exp[0 + 2β2d
−1
k ⊙ diag(BT

k gS−1Bk)]
BkCayley(Tril(U)− [Tril(U)]T )

 (46)

where the (i, j) entry of U is Uij = 0− β2(B
T
k gS−1Bk)ij/(di − dj) for i ̸= j and Uij = 0 when

di = dj thanks to the Moore-Penrose inverse.
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