FAST FRACTIONAL NATURAL GRADIENT DESCENT USING LEARNABLE SPECTRAL FACTORIZATIONS

Anonymous authors

004

010 011

012

013

014

015

016

017

018

019

021

025 026 Paper under double-blind review

ABSTRACT

Many popular optimization methods can be united through fractional natural gradient descent (FNGD), which pre-conditions the gradient with a fractional power of the inverse Fisher: RMSprop and Adam(W) estimate a diagonal Fisher matrix and apply a square root before inversion; other methods like K-FAC and Shampoo employ matrix-valued Fisher estimates and apply the inverse and inverse square root, respectively. Recently, the question of how fractional power affects optimization has moved into focus, e.g. offering trade-offs between convergence and generalization. Gaining deeper insights into this phenomenon would require going beyond diagonal estimations and using cheap and flexible matrix-valued Fisher estimators capable of applying any fractional power; however, existing methods are limited by their expensive matrix fraction computation. To address this, we propose a Riemannian framework to learn eigen-factorized Fisher estimations on the fly, allowing for the cheap application of *arbitrary* fractional powers. Our approach does not require matrix decompositions and, therefore, is stable in half precision. We show our framework's efficacy on positive-definite matrix optimization problems and demonstrate its efficiency and flexibility for training neural nets.

027 1 INTRODUCTION

Many well-known adaptive methods, like SGD (Robbins & Monro, 1951), RmsProp (Tieleman & Hinton, 2012) or Adam(W) (Kingma & Ba, 2015; Loshchilov & Hutter, 2017), can be framed as fractional natural gradient descent (FNGD): Given the neural network (NN) parameters μ , the gradient g and a curvature estimation S, FNGD applies $\mu \leftarrow \mu - \beta_1 S^{-1/p} g$ using a learning rate β_1 and subjecting the curvature approximation to a fractional power 1/p before inversion. S approximates the Fisher information matrix (Amari, 1998), e.g. through exponential averages of the empirical Fisher (Kunstner et al., 2019) or the gradient outer product (GOP, Kingma & Ba, 2015; Agarwal et al., 2019; Lin et al., 2024). FNGD's matrix fractional power allows interpolating between NGD (Amari, 1998) with p = 1 and SGD as $p \rightarrow \infty$; RMSprop/Adam(W) use p = 2.

While most adaptive optimization algorithms rely on a square root (p = 2), the fractional power's role has recently garnered a lot of attention. Several works question the indispensable role of the square root and empirically demonstrate the usage of other fractions to trade off convergence and generalization (Chen et al., 2021), overcome the generalization gap between SGD and adaptive methods on convolutional neural nets (CNNs) observed by (Wilson et al., 2017), and to successfully train transformers (Lin et al., 2024). Theoretically, Huh (2020) identify limitations of SGD and NGD in terms of generalization, convergence, and stability when training deep linear networks. They argue that FNGD with $p \notin \{1, \infty\}$ can offer the 'best of both worlds', i.e. NGD's convergence speed with SGD's generalization.

Applying other fractional powers is straightforward for methods with a diagonal curvature approximation (e.g. PAdam from Chen et al., 2021) and does not add much computational cost. However, doing so for methods with non-diagonal preconditioning matrices such as K-FAC (Martens & Grosse, 2015) or Shampoo (Gupta et al., 2018; Anil et al., 2020; Shi et al., 2023) is computationally and numerically challenging. This is because computing *matrix* fractional powers is computationally intensive, and must usually be done in high precision to avoid numerical instabilities (Anil et al., 2020; Shi et al., 2023), preventing those methods from using fast, low-precision arithmetic (Micikevicius et al., 2018). Making the root computation fast and stable in low-precision can further unleash the potential of non-diagonal fractional methods.

054 To catalyze further investigations into the fractional power's role, it would be desirable to have a 055 flexible and efficient framework for learning non-diagonal curvature approximations that can (i) apply 056 arbitrary fractional roots, and (ii) circumvent the numerical instabilities of matrix decompositions.

We address this instability and inefficiency and present an update scheme to directly adapt the spectral factorization $Bdiag(d)B^{\dagger}$ of the curvature approximation S on the fly, which we term a spectral 059 parametrization of S. Thanks to this factorization, we can apply any matrix fractional power to S by 060 elementwise operation on the eigenvalues d. Our approach directly adapts eigenfactors and maintains 061 the factorization, and a practical version can operate without performing eigendecompositions. This 062 makes our scheme amenable to running in low precision because we do not use any unstable matrix 063 decomposition algorithm. However, the spectral factorization introduces several challenges as it 064 imposes constraints and ambiguities (i.e. B must be orthogonal and d sorted) that need to be dealt with. These constraints make it more challenging to maintain the factorization on the fly. Our 065 contributions are: 066

- 067
- 068

069 070

071

073

075

076

077

078

079

081

087

094 095

101

105 106

107

- We propose an update scheme to learn the spectral factorization \mathbf{B} diag(\mathbf{d}) \mathbf{B}^{\top} of a curvature matrix \mathbf{S} on the fly and address how to account for the constraints, and resolve the ambiguities, imposed by this parameterization. We then show how to learn Kronecker-factorized spectral decompositions, i.e. $\mathbf{S} \approx (\mathbf{S}^{(K)} \otimes \mathbf{S}^{(C)})$ where $\mathbf{S}^{(i)} = \mathbf{B}^{(i)} \operatorname{diag}(\mathbf{d}^{(i)}) \mathbf{B}^{(i)^{\top}}$, which are crucial to scale the approach. The Kronecker factorization introduces new ambiguities, which we resolve by introducing a scalar α and demanding det $(\mathbf{d}_i) = 1$ (Section 2).
- Similar to Glasmachers et al. (2010); Lin et al. (2021; 2023), our approach views learning the curvature approximation as learning the covariance of a Gaussian variational distribution by performing Riemannian gradient descent on the manifold of dense or Kronecker-factorized positive-definite matrices. We extend these works by incorporating the new constraints arising from the spectral decomposition for the Fisher-Rao metric. (Section 3.)
- Empirically, we demonstrate the effectiveness of our approach for a range of applications, including positive-definite matrix optimization (Pennec et al., 2006; Absil et al., 2009) and low-precision neural net training.

082 1.1 BACKGROUND 083

To train an NN model, we solve an unconstrained optimization problem. The objective function of 085 the problem is expressed as a finite sum of cost functions with N observations:

$$\min_{\boldsymbol{\mu}} \ell(\boldsymbol{\mu}) := \sum_{i=1}^{N} c(f(\mathbf{x}_i; \boldsymbol{\mu}), y_i),$$
(1)

where \mathbf{x}_i and y_i are features and a label for the *i*-th observation, respectively, $f(\cdot; \boldsymbol{\mu})$ is an NN with learnable weights μ , and $c(\cdot, y_i)$ is a cost function such as the cross-entropy function to measure the difference between the output of the NN and label y_i .

091 We consider adaptive methods to solve this problem, where we estimate a preconditioning matrix 092 by only using gradient information. For many well-known adaptive methods such as RMRprop 093 (Tieleman & Hinton, 2012), a square root (i.e., p = 2) is introduced.

RmsProp :
$$\mathbf{S} \leftarrow (1 - \beta_2)\mathbf{S} + \beta_2 \operatorname{diag}(\mathbf{g}\mathbf{g}^T), \ \boldsymbol{\mu} \leftarrow \boldsymbol{\mu} - \beta_1 \mathbf{S}^{-1/p} \mathbf{g},$$
 (2)

where S is a diagonal matrix and $\mathbf{g} = \nabla_{\mu} \ell$ is a gradient vector of the objective function. We often 096 estimate the vector using a mini-batch of observations. Lin et al. (2024) consider a full matrix version of the root-free RmsProp update scheme (i.e., p = 1) and propose an inverse-free update scheme. 098 Other works improve the performance of adaptive methods on CNNs using other roots, such as p = 4in Chen et al. (2021) and p = 1 in Lin et al. (2024). 100

$$\mathbf{S} \leftarrow (1 - \beta_2)\mathbf{S} + \beta_2 \mathcal{H} = \mathbf{S} + \beta_2 (\mathcal{H} - \mathbf{S}), \ \boldsymbol{\mu} \leftarrow \boldsymbol{\mu} - \beta_2 \mathbf{S}^{-1/p} \mathbf{g}, \tag{3}$$

102 Non-diagonal adaptive methods, like Shampoo (Gupta et al., 2018), also include a fractional root 103 (e.g., p = 4) in their update rule. 104

Shampoo:
$$\mathbf{S}_C \leftarrow (1 - \beta_2) \mathbf{S}_C + \beta_2 \mathbf{G} \mathbf{G}^T, \ \mathbf{S}_K \leftarrow (1 - \beta_2) \mathbf{S}_K + \beta_2 \mathbf{G}^T \mathbf{G},$$
 (4)

$$\boldsymbol{\mu} \leftarrow \boldsymbol{\mu} - \beta_1 \left(\mathbf{S}_K \otimes \mathbf{S}_C \right)^{-1/p} \mathbf{g} \iff \mathbf{M} \leftarrow \mathbf{M} - \beta_1 \mathbf{S}_C^{-1/p} \mathbf{G} \mathbf{S}_K^{-1/p}, \tag{5}$$

where $\mathbf{M} = \operatorname{Mat}(\boldsymbol{\mu})$ and $\mathbf{G} = \operatorname{Mat}(\mathbf{g})$ are matrix representations of $\boldsymbol{\mu}$ and \mathbf{g} , respectively.

¹⁰⁸ 2 FAST FNGD USING LEARNABLE SPECTRAL FACTORIZATIONS

Our goal is to design pre-conditioner update schemes that offer the flexibility to apply arbitrary matrix roots at a low cost. The starting point is the observation that the pre-conditioner **S** can be interpreted as the inverse covariance matrix of a Gaussian variational distribution (Lin et al., 2024), which can be learned on the fly via the update scheme in Equation (3). However, this parameterization complicates applying any fractional root to **S** since the root computation requires matrix decomposition.

Our contribution is to propose an update scheme for a new parameterization $S = Bdiag(d)B^{\perp}$ 115 where \mathbf{B} is an orthogonal square matrix and \mathbf{d} is a vector with positive sorted entries, to learn \mathbf{d} and 116 B. We call this parameterization a spectral parameterization, due to its connection to the spectral 117 decomposition of symmetric matrices. We empirically and theoretically establish its equivalence 118 to update rules that directly update S, implying one can enjoy efficient updates while retaining 119 the behavior of traditional methods. Our spectral parametrization allows us to easily compute any 120 fractional root $\mathbf{S}^{-1/p} = \mathbf{B}$ diag $(\mathbf{d}^{-1/p})\mathbf{B}^{\top}$ through elementwise roots on \mathbf{d} , instead of matrix roots on 121 **S**. We then extend it to Kronecker-factorized matrices, which is crucial for large-scale applications. 122 Our update schemes are efficient as learning **B** and **d** does not involve any matrix decomposition. 123

In contrast to previous parameterizations, the spectral parameterization introduces new challenges, such as satisfying the orthogonal constraint on **B** and handling parametrization ambiguities. We defer the technicalities how to handle these constraints to Section 3 where we derive the update scheme from scratch. This is mainly to avoid introducing technical Riemannian optimization concepts needed that are necessary for our derivation. In the following, our focus will be on presenting and empirically validating the update scheme, and its connections to existing methods.

- 129 130 131
- 2.1 FULL-MATRIX ADAPTIVE SCHEMES THROUGH A FULL GAUSSIAN APPROXIMATION

132 We first present our update scheme in the context of full-matrix preconditioners. While full-matrix 133 preconditioners are generally impractical for modern neural networks, this will serve to illustrate 134 the core ideas which we later apply to structured preconditioners. We obtain the update scheme with p = 1 by solving a Gaussian problem with mean μ and reparametrized inverse covariance 135 $\mathbf{S} = \mathbf{B} \text{Diag}(\mathbf{d}) \mathbf{B}^T$. We will discuss the procedure to obtain the scheme and satisfy the spectral 136 constraints in Sec. 3.3. Given a learnable spectral parametrization, our update scheme shown in the 137 leftmost box of Fig. 1 allows us to introduce any fractional p-root further and efficiently compute the 138 root when updating μ . 139

¹⁴⁰ We theoretically establish the equivalence of this update to the default scheme as stated in:

141 *Claim* 1. Our update scheme in the leftmost box of Fig 1 is equivalent to the scheme in Equation (3) up to first-order accuracy in β_2 when d does not have repeated entries (proof in Appendix C).

144 Empirical validation of the Full-matrix Update Scheme We empirically evaluate our scheme 145 on $\mathbf{S} = \mathbf{B}\mathrm{Diag}(\mathbf{d})\mathbf{B}^T$ for curvature approximation. We compare our scheme to the default training 146 scheme on \mathbf{S} as $\mathbf{S}_{k+1} \leftarrow (1-\beta)\mathbf{S}_k + \beta \mathbf{g}_k \mathbf{g}_k^T$, and the inverse-free scheme (Lin et al., 2024) for 147 a learnable Cholesky factorization \mathbf{C} of \mathbf{S}^{-1} (i.e., $\mathbf{S} = (\mathbf{C}\mathbf{C})^{-1}$). We focus on the preconditioner 148 estimation of \mathbf{S} based on a fixed gradient sequence $\{\mathbf{g}_1, \dots, \mathbf{g}_T\}$ and initialized by the same \mathbf{S}_0 . We 149 consider two scenarios in this evaluation: (1) fixed-point matching and (2) iterate matching.

Fixed-point matching The ground truth in this setting is a fixed-point solution, $\mathbf{S}_* = E[\mathbf{g}\mathbf{g}^T] = \Sigma$, to the default update scheme as $\mathbf{S}_* = (1 - \beta)\mathbf{S}_* + \beta \mathbf{g}_k \mathbf{g}_k^T$, where \mathbf{g}_k is independently generated from a normal distribution $\mathbf{g}_k \sim \mathcal{N}(\mathbf{0}, \Sigma)$ at each iteration k. We evaluate an update scheme in every iteration k by comparing its current estimate denoted by $\mathbf{S}_k^{(est)}$ to the fixed point. We use a relative Frobenius norm $\frac{\|\mathbf{S}_* - \mathbf{S}_k^{(e)}\|_F}{\|\mathbf{S}_*\|_F}$ and the Wasserstein-2 distance for positive-definite matrices to measure the difference.

Iterate matching The ground truth is a sequence of matrices $\{\mathbf{S}_1^{(true)}, \dots, \mathbf{S}_T^{(true)}\}$ generated by the default scheme when applying the scheme to the gradient sequence. We are interested in matching the iterate that the default scheme generates at every step. We use a relative Frobenius norm $\frac{\|\mathbf{S}_{k}^{(true)} - \mathbf{S}_{k}^{(e)}\|_{F}}{\|\mathbf{S}_{k}^{(true)}\|_{F}}$ and the Wasserstein-2 distance to measure the discrepancy between an update scheme and the default update scheme at every iteration k.

186

187

188

189

190

192

193

194

201

205

162	Full-matrix $(\mathbf{S} = \mathbf{B} \text{Diag}(\mathbf{d}) \mathbf{B}^T)$	$Kronecker\left(\mathbf{s} = \alpha[\mathbf{B}^{(C)}\mathrm{Diag}(\mathbf{d}^{(C)})(\mathbf{B}^{(C)})^{T}] \otimes [\mathbf{B}^{(K)}\mathrm{Diag}(\mathbf{d}^{(K)})(\mathbf{B}^{(K)})^{T}]\right)$
163	1: Compute gradient $\mathbf{g} \coloneqq \nabla \ell(\boldsymbol{\mu})$	1: Compute gradient $\mathbf{G} \coloneqq \operatorname{Mat}(\nabla \ell(\boldsymbol{\mu}))$
164	$\mathbf{d} \leftarrow \mathbf{d} \odot \exp\{\beta_2 \mathbf{d}^{-1} \odot [-\mathbf{d} + \operatorname{diag}(\mathbf{B}^T \mathbf{g} \mathbf{g}^T \mathbf{B})]\}$	$\mathbf{m}^{(C)} = (\mathbf{d}^{(C)})^{-1} \odot [-\mathbf{d}^{(C)} + \frac{1}{\alpha m} \operatorname{diag}(\mathbf{W}^{(C)})]$
165	$\mathbf{B} \leftarrow \mathbf{B} Cayley(\beta_2(Skew(\mathbf{Tril}(\mathbf{U}))))$	$\mathbf{m}^{(K)} = (\mathbf{d}^{(K)})^{-1} \odot [-\mathbf{d}^{(K)} + \frac{1}{\alpha n} \operatorname{diag}(\mathbf{W}^{(K)})]$
166	2: $\boldsymbol{\mu} \leftarrow \boldsymbol{\mu} - \beta_1 \mathbf{B} \mathrm{Diag}(\mathbf{d}^{-1/p}) \mathbf{B}^T \mathbf{g}$	$\mathbf{d}^{(C)} \leftarrow \mathbf{d}^{(C)} \odot \exp\{\beta_2[\mathbf{m}^{(C)} - \operatorname{mean}(\mathbf{m}^{(C)})]\}$
167		$\mathbf{d}^{(K)} \leftarrow \mathbf{d}^{(K)} \odot \exp\{\beta_2[\mathbf{m}^{(K)} - \operatorname{mean}(\mathbf{m}^{(K)})]\}$ $\mathbf{p}^{(C)} \leftarrow \mathbf{p}^{(C)} \operatorname{Contor}(\beta_2 \operatorname{Stear}(\operatorname{Tril}(\mathbf{I}^{(C)})))$
168		$\mathbf{B}^{(K)} \leftarrow \mathbf{B}^{(K)} \text{Cayley}(\frac{\beta_2}{\alpha m} \text{Skew}(\text{Tril}(\mathbf{U}^{(K)})))$
169		$\alpha \leftarrow \alpha \exp(\frac{\beta_2}{2} [\operatorname{mean}(\mathbf{m}^{(K)}) + \operatorname{mean}(\mathbf{m}^{(C)})])$
170		2: $\mathbf{M} \leftarrow \mathbf{M} - \beta_1(\alpha^{-1/p})(\mathbf{S}^{(C)})^{-1/p}\mathbf{G}(\mathbf{S}^{(K)})^{-1/p}$

171 Figure 1: Adaptive update schemes for full-matrix and Kronecker structured spec-172 Both update schemes use map tral factorization for a finite sum of loss functions. 173 $Cayley(N) := (I + N)(I - N)^{-1}$ with skew-symmetric $N = -N^{\top}$ to output an orthogonal matrix, 174 map $Skew(\mathbf{M}) := \mathbf{M} - \mathbf{M}^{\top}$ to skew-symmetrize an arbitrary square matrix, and map $Tril(\cdot)$ returns a lower-triangular matrix with zero diagonal entries. . . denotes the elementwise prod-175 uct. For simplicity, we assume NN weights take a matrix form: $\mathbf{M} := \operatorname{Mat}(\mu) \in \mathbb{R}^{n \times m}$. Full-176 **matrix scheme:** matrix Tril(U) is a lower-triangular matrix (i.e., i > j) with the (i, j)-th entry 177 $[U]_{ij} := -[\mathbf{B}^T \mathbf{g} \mathbf{g}^T \mathbf{B}]_{ij}/(d_i - d_j)$ when $d_i \neq d_j$ and 0 otherwise. Kronecker-based scheme: This 178 update scheme uses $\mathbf{W}^{(C)} := (\mathbf{B}^{(C)})^T \mathbf{G}(\mathbf{S}^{(K)})^{-1} \mathbf{G}^T \mathbf{B}^{(C)}$, and $\mathbf{W}^{(K)} := (\mathbf{B}^{(K)})^T \mathbf{G}^T (\mathbf{S}^{(C)})^{-1} \mathbf{G} \mathbf{B}^{(K)}$, where 179 $\mathbf{S}^{(K)} := \mathbf{B}^{(K)} \text{Diag}(\mathbf{d}^{(K)}) (\mathbf{B}^{(K)})^T \in \mathbb{R}^{m \times m} \text{ and } \mathbf{S}^{(C)} := \mathbf{B}^{(C)} \text{Diag}(\mathbf{d}^{(C)}) (\mathbf{B}^{(C)})^T \in \mathbb{R}^{n \times n} \text{ is easy to compute}$ due to the spectral factorization. For each Kronecker factor $\mathbf{S}^{(C)}$, matrix $\operatorname{Tril}(\mathbf{U}^{(C)})$ is a lower-triangular matrix with its (i, j)-th entry $[U^{(C)}]_{ij} := -[W^{(C)}]_{ij}/([d^{(C)}]_i - [d^{(C)}]_j)$ if $[d^{(C)}]_i \neq [d^{(C)}]_j$ and 0 181 182 otherwise, where $[d^{(C)}]_i$ denotes the *i*-th entry of vector $\mathbf{d}^{(C)}$. Vector $\mathbf{d}^{(C)}$ satisfies the determinant 183 constraint $det(diag(\mathbf{d}^{(C)})) = 1$ since $sum(\mathbf{m}^{(C)} - mean(\mathbf{m}^{(C)})) = 0$ (Sec. 3.2). For low-precision NN training, we truncate the Cayley and the exponential map. 185

Figure 2: Empirical validation of our full-matrix update scheme on estimating a preconditioner S $\in \mathbb{R}^{100 \times 100}$. The first two figures on the left show that our update scheme converges to a fixed-point solution as fast as the default update scheme in S and the Cholesky-based scheme. The last two figures illustrate how closely our update scheme matches the iterates generated by the default update scheme at each iteration. Our update scheme and the Cholesky-based scheme perform similarly for matching the preconditioner estimates generated by the default scheme.

From Fig. 2, we can see that our update scheme performs similarly to the default update scheme in the two scenarios. These results demonstrate the empirical equivalence between our scheme and the default scheme, at least for curvature estimation.

2.2 KRONECKER-STRUCTURED SCHEMES THROUGH A MATRIX GAUSSIAN APPROXIMATION

Using Kronecker-structured preconditioners (Martens & Grosse, 2015; Gupta et al., 2018) is neces-207 sary for large models as a full-matrix preconditioner is too large to store. Many Kronecker-based 208 methods (Zhang et al., 2018; Ren & Goldfarb, 2021; Lin et al., 2023; 2024) are based on a (ma-209 trix) Gaussian family with Kronecker-structured inverse covariance $\mathbf{S} = \mathbf{S}^{(C)} \otimes \mathbf{S}^{(K)}$. However, 210 many Kronecker-based methods depend on a particular choice of Kronecker factorization because 211 Kronecker factorization is not unique. As will be discussed in Sec. 3.2, we make the factoriza-212 tion unique by imposing a determinant constraint on each factor and introducing a learnable scalar 213 α . Consequently, we consider this Kronecker structure $\mathbf{S} = \alpha[\mathbf{S}^{(C)} \otimes \mathbf{S}^{(K)}]$ with constraints 214 $det(\mathbf{S}^{(C)}) = det(\mathbf{S}^{(K)}) = 1$ and $\alpha > 0$. We then propose a spectral parametrization for each 215 Kronecker factor while satisfying these constraints. The update scheme is presented in Fig.1.

Figure 3: Empirical validation of our Kronecker-structured update scheme on estimating a preconditioner $\mathbf{S} \approx \mathbf{S}^{(C)} \otimes \mathbf{S}^{(K)}$, where $\mathbf{S}^{(C)} \in \mathbb{R}^{9 \times 9}$ and $\mathbf{S}^{(K)} \in \mathbb{R}^{11 \times 11}$. The first two figures on the left show that our update scheme gives a structural approximation of a fixed-point solution that obtained by the default full-matrix update scheme. Our scheme converges as fast as Kronecker-structured baseline methods, including the impractical projection-based method. The last two figures illustrate how closely our scheme matches the unstructured iterates generated by the default scheme at each iteration. All update schemes perform similarly due to the structural approximation gap.

232 233

234

235

236

237

238

239

240 241 **Empirical Evaluation of the Kronecker-based Update Scheme** Similarly, we evaluate our structured scheme for curvature approximation. Our goal is to obtain a Kronecker-structured estimation of **S**. We compare our scheme to the default unstructured scheme on **S**: $\mathbf{S}_{k+1} \leftarrow (1-\beta)\mathbf{S}_k + \beta \mathbf{g}_k \mathbf{g}_k^T$. As baselines, we consider the curvature estimation used in the structured Cholesky factorization (Lin et al., 2024), and an impractical projection-based method (Van Loan & Pitsianis, 1993):

(Lin et al., 2024), and an impractical projection-based method (Van Loan & Pitsianis, 1993): $(\mathbf{S}_{k+1}^{(C)}, \mathbf{S}_{k+1}^{(K)}) \leftarrow \operatorname{Proj}((1-\gamma)(\mathbf{S}_{k}^{(C)} \otimes \mathbf{S}_{k}^{(K)}) + \gamma \mathbf{g}_{k} \mathbf{g}_{k}^{T})$. We use a similar experimental setup and consider two similar scenarios discussed in Sec. 2.1. Here, we initialized all update schemes by a Kronecker structured matrix \mathbf{S}_{0} to remove the difference introduced by initialization:

- Fixed-point matching The ground truth is an unstructured fixed-point solution, $S_* = E[gg^T] = \Sigma$. We evaluate a Kronecker-structured scheme in every iteration k by comparing its current structured estimate to the fixed point. We measure the difference using the same metrics considered previously.
- Iterate matching The ground truth is a sequence of unstructured matrices generated by the default
 scheme. Our goal is to match the iterate that the default scheme generates using Kronecker
 structured approximations We use the same metrics to measure the difference.

From Fig. 3, we can see that our structural scheme performs as well as structural baselines. Our approach even performs similarly to the impractical method that requires storing a full matrix and solving a projection optimization problem at every iteration. This illustrates the effectiveness of our approach in Kronecker-structured cases.

254 2.3 CONNECTIONS TO DIAGONAL METHODS

Our update scheme in Fig. 1 also applies in diagonal cases by forcing **B** to be a diagonal matrix. We achieve that by changing map $Tril(\cdot)$ to $Diag(\cdot)$ in the update rule. Consequently, **B** becomes an identity matrix up to sign changes. Similar to the full matrix case, we can obtain this scheme through a diagonal Gaussian approximation. When truncating the exponential map, our scheme becomes the root-free RMSprop (Lin et al., 2024). If applying a fractional *p*-root, our scheme also recovers RMSprop (Tieleman & Hinton, 2012) for p = 2 and the fractional diagonal method (Chen et al., 2021) for p = 4. See Appx. **B** for the detail.

262 263

2.4 NUMERICAL APPROXIMATIONS FOR COST REDUCTION AND LOW-PRECISION TRAINING

Our update scheme can be slow because the Cayley map involves computationally expensive matrix inversion that requires high-precision floating-point arithmetic to avoid numerical instability. Like other works (Liu et al., 2021; Li et al., 2020; Qiu et al., 2023), we consider a truncated Cayley map for NN problems to work with lower precision and reduce cost while maintaining numerical stability. Our truncation is based on a Neumann series for the matrix inversion (Krishnan et al., 2017; Lorraine et al., 2020; Qiu et al., 2023). This is possible because we can approximate the matrix inversion in the Cayley map Cayley(β N) = (I + β N)(I - β N)⁻¹ = (I + β N) $\prod_{l=0}^{\infty}$ (I + (β N)²) \approx (I + β N)²(I + (β N)²)(I + (β N)⁴) based on a convergent Neumann series, when β is small enough so that $\|\beta N\| < 1$, where $\beta := 1 - \hat{\beta}_2$ and $\hat{\beta}_2$ is Adam's β_2 , see Appx. B for the detail.

3 LEARNING SPECTRAL FACTORIZATIONS VIA COORDINATE TRANSFORMS

Here, we derive our update schemes for learning a spectral factorization on the fly. Our starting point is that, according to Lin et al. (2024), a root-free method in (3) is a Riemannian solution to a Gaussian approximation problem in a particular coordinate. Because Riemannian methods are invariant under coordinate transformations, our idea is to change coordinates so that the Riemannian solution becomes a root-free update rule for spectral factorization in new coordinates.

Riemannian Approach for Obtaining Root-free Update Schemes Lin et al. (2024) show that a root-free adaptive update scheme is a simplified version of Riemannian gradient descent (RGD) (c.f., Eq. (7)) on a Gaussian manifold (Amari, 2016), where μ and S in the root-free scheme become Gaussian's mean and inverse covariance, respectively. They consider a Gaussian approximation problem and use the following procedure to obtain the adaptive update scheme in (3) with p = 1,

Step 1 They first reformulate the original problem in (1) as a Gaussian approximation:

$$\min_{\mu,S\succ 0} \mathcal{L}(\boldsymbol{\mu}, \mathbf{S}) := E_{w\sim q(w;\mu,S)}[\ell(\mathbf{w})] - \mathcal{Q}_q,$$
(6)

where $\ell(\cdot)$ is the loss function in the original problem, a new symbol **w** is used to denote the weights of the NN because they are no longer learnable, $q(\mathbf{w}; \boldsymbol{\mu}, \mathbf{S})$ is a Gaussian with mean $\boldsymbol{\mu}$ and covariance \mathbf{S}^{-1} , and $\mathcal{Q}_q := E_{w \sim q}[-\log q(\mathbf{w}; \boldsymbol{\mu}, \mathbf{S})] = -\frac{1}{2}\log \det(\mathbf{S})$ is the Gaussian's differential entropy.

Step 2 They then suggest performing RGD in a parameter space $\tau := {\mu, S}$ of the Gaussian.

$$\operatorname{RGD}: \boldsymbol{\tau} \leftarrow \boldsymbol{\tau} - \beta [\mathbf{F}_{\tau}]^{-1} \nabla_{\tau} \mathcal{L}, \tag{7}$$

where $\mathbf{F}_{\tau} := -E_{w \sim q} [\nabla_{\tau}^2 \log q(\mathbf{w}; \tau)] \in \mathbb{R}^{(l+l^2) \times (l+l^2)}$ is the Fisher-Rao metric representation in τ and l is the number of NN weights. The metric is also known as the affine-invariant metric (Pennec et al., 2006) for positive-definite matrices (Minh & Murino, 2017) when the mean μ is constant.

Step 3 Simplifying the RGD step

298 299 300

301

302

303 304

305 306 307

273

274

275

276

277

278

279

285

286 287 288

289

290

291

292 293

295

296

297

$$\operatorname{RGD}: \begin{bmatrix} \boldsymbol{\mu} \\ \mathbf{S} \end{bmatrix} \leftarrow \begin{bmatrix} \boldsymbol{\mu} \\ \mathbf{S} \end{bmatrix} - \beta \begin{bmatrix} \mathbf{S}^{-1} & \mathbf{0} \\ \mathbf{0} & -2\frac{\partial \mathbf{S}}{\partial \mathbf{S}^{-1}} \end{bmatrix} \begin{bmatrix} \partial_{\mu} \mathcal{L} \\ \partial_{S} \mathcal{L} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\mu} - \beta \mathbf{S}^{-1} \partial_{\mu} \mathcal{L} \\ \mathbf{S} + \beta (2\partial_{S^{-1}} \mathcal{L}) \end{bmatrix} \approx \begin{bmatrix} \boldsymbol{\mu} - \beta \mathbf{S}^{-1} \mathbf{g} \\ \mathbf{S} + \beta (\mathcal{H} - \mathbf{S}) \end{bmatrix}, \quad (8)$$

gives rise to the root-free adaptive scheme in (3), where they use (i) the analytical inverse metric $[\mathbf{F}_{\tau}]^{-1} = \begin{bmatrix} \mathbf{S}^{-1} & \mathbf{0} \\ \mathbf{0} & -2\frac{\partial \mathbf{S}}{\partial \mathbf{S}^{-1}} \end{bmatrix}$, (ii) Stein's identities for the Gaussian (Opper & Archambeau, 2009), and (iii) a valid Hessian approximation (Lin et al., 2024) $\mathcal{H} = \mathbf{gg}^T$ with a delta evaluation at the mean $\boldsymbol{\mu}$:

$$\partial_{\mu} \mathcal{L} \stackrel{\text{Stein}}{=} E_{w \sim q} [\nabla_{w} \ell] \stackrel{\text{delta}}{\approx} \nabla_{\mu} \ell = \mathbf{g}, \quad 2\partial_{S^{-1}} \mathcal{L} \stackrel{\text{Stein}}{=} E_{w \sim q} [\nabla_{w}^{2} \ell] - \mathbf{S} \stackrel{\text{delta}}{\approx} \nabla_{\mu}^{2} \ell - \mathbf{S} \approx \mathcal{H} - \mathbf{S}. \tag{9}$$

Challenges of Learning Spectral Parametrizations via RGD Our main idea is to learn a spectral parameterization/coordinate of $\mathbf{S} = \mathbf{B}\mathrm{Diag}(\mathbf{d})\mathbf{B}^T$ by solving a reparametrized Gaussian problem in Eq. 6. We then follow a similar procedure to convert an RGD step in the spectral coordinate into a root-free update scheme based on the spectral factorization. However, directly performing RGD in a spectral coordinate is challenging because we have to (1) satisfy parameter constraints, (2) use a non-singular metric (coordinate representation), and (3) analytically compute the metric inversion.

314 Conflict between Simplification for RGD and Coordinate Transformation The simplification 315 step (Step 3) turns a computationally expensive RGD step involving the metric inversion into a 316 more efficient root-free adaptive update scheme. Without an analytical metric inversion, we cannot 317 simplify the RGD step and explicitly express it as a root-free update scheme. When changing 318 coordinates, the metric representation has to be changed accordingly (Lee, 2018) to make RGD 319 invariant to coordinate transformation. However, the coordinate change of the metric complicates 320 the simplification. This is because we no longer *analytically* inverse this high-dimensional Fisher-321 Rao metric, which is non-diagonal and singular in some coordinates like a spectral coordinate. The simplification process is more challenging in Kronecker-factorized cases because additional 322 redundancy from Kronecker factorization renders the metric (coordinate representation) singular and 323 complicates the simplification.

324 Constraint Satisfaction and Metric Diagonalization via Local Coordinate Transformation 325 Inspired by general Riemannian (normal) local coordinates (Glasmachers et al., 2010; Lin et al., 2021; 326 2023) and Fermi coordinates (Manasse & Misner, 1963), we propose using local coordinates to tackle 327 these challenges. The main idea is to construct local coordinates that handle constraints and facilitate 328 the analytical metric inversion needed for the simplification. Using a local coordinate transformation can locally diagonalize the metric at a single evaluation point. Given a global coordinate, such as a 329 spectral coordinate, we construct a local coordinate and its coordinate transformation map associated 330 with the global coordinate at every iteration. In our approach, the coordinate and its transformation 331 map should satisfy these conditions: (1) the map is differentiable and injective. (2) the coordinate 332 should not have any coordinate constraint, and its origin represents a current iterate in the spectral 333 coordinate. (3) it is common for the metric evaluated at the origin of the local coordinate to be an 334 identity matrix (Lin et al., 2023). However, this can be loosened to be diagonal (Glasmachers et al., 335 2010) or even block-diagonal as long as the metric is easy to inverse. Our approach follows the 336 requirements for local coordinate construction (Lin et al., 2023). We propose new local coordinates 337 for spectral coordinates because the existing local coordinates do not account for spectral constraints.

338

352 353

339 340

3.1 HANDLING SPECTRAL PARAMETER CONSTRAINTS AND REDUNDANCIES

Here, we describe our local coordinates and coordinate transformation maps for handling constraints
 for spectral factorization. Through a coordinate transformation map, we express the spectral con straints using an unconstrained local coordinate. Because a spectral coordinate contains redundancies,
 we remove them to simplify the inverse metric computation. This allows us to make the metric
 diagonal in our local coordinates.

Handling Constraints via *Local* Coordinate Transformation A spectral coordinate has parameter constraints: **B** is an orthogonal square matrix, and **d** is a vector with positive entries. We consider Cayley¹ and exponential maps to construct transformation maps, where we introduce a map denoted by Skew(·) to make its input skew-symmetric as required by the Cayley map. At every iteration k, we handle the constraints (c.f., Claim (2)) by constructing a local parametrization in (**m**, **M**) associated to the current iteration (\mathbf{d}_k , \mathbf{B}_k) through a local transformation map :

$$(\mathbf{d}(\mathbf{m}), \mathbf{B}(\mathbf{M})) = (\mathbf{d}_k \odot \exp(\mathbf{m}), \mathbf{B}_k \operatorname{Cayley}(\operatorname{Skew}(\operatorname{Tril}(\mathbf{M})))),$$
(10)

where \odot is the elementwise product, $(\mathbf{d}_k, \mathbf{B}_k)$ represents a point evaluated at the *k*-th iteration. This transformation map is *locally* defined because it depends on a current point $(\mathbf{d}_k, \mathbf{B}_k)$ that changes at every iteration. We use the origin in this local system to represent $(\mathbf{d}_k, \mathbf{B}_k)$. This is possible because $(\mathbf{d}(\mathbf{m}), \mathbf{B}(\mathbf{M}))|_{m=0,M=0}$ becomes $(\mathbf{d}_k, \mathbf{B}_k) = (\mathbf{d}(\mathbf{0}), \mathbf{B}(\mathbf{0}))$ when evaluating this map (10) at the origin. The origin simplifies the metric computation as many terms arising in the metric vanish.

Claim 2. The map in Eq. (10) is differentiable and injective. We satisfy the parameter constraints in
 a spectral coordinate by changing a local coordinate to the spectral coordinate through the map.

361 **Removing Redundancy due to Spectral Factorization** A spectral parametrization contains redun-362 dancy due to permutation. For simplicity, we assume all entries of d are distinct in the following 363 discussion and will later address cases when d has repeated values. For example, consider an-364 other eigen factorization: $\mathbf{S} = \bar{\mathbf{B}} Diag(\bar{\mathbf{d}}) \bar{\mathbf{B}}^T$, where $\bar{\mathbf{B}} := \mathbf{B} \mathbf{Q}$ and $\bar{\mathbf{d}}$ are permuted values so that $\text{Diag}(\mathbf{d}) = \mathbf{Q}^T \text{Diag}(\mathbf{d}) \mathbf{Q}$. To remove this redundancy, we restrict **M** to be a *lower-triangular* 366 matrix explicitly denoted by $Tril(\mathbf{M})$. In eigendecomposition, d (as a vector of eigenvalues) is 367 ranked to disallow any permutation. We consider an alternative solution by restricting B because we 368 can not simultaneously rank and learn d on the fly. Restricting B to remove this redundancy means 369 $B(M_1) = B(M_2)Q$ holds only when $M_1 \equiv M_2$ in the local coordinate. The lower-triangular 370 restriction of M removes the redundancy because $M_1 \equiv M_2$ as shown in Claim 3. Here, we 371 assume the lower-triangular restriction, $Tril(\mathbf{M})$, also makes the diagonal entries of its input, \mathbf{M} , 372 zero. Otherwise, M_1 and M_2 can differ in their diagonal entries because the skew-symmetrization in 373 the transformation map (Eq. (10)) always ignores these entries.

Claim 3. Given that entries of d are not duplicated, a spectral parameterization obtained through the
 map in (10) is unique under permutations when using a lower-triangular restriction.

¹We use the Cayley map to construct **B**, where **B** is special orthogonal (i.e., $det(\mathbf{B}) = 1$). Although the map does not represent all special orthogonal matrices, it is widely used in practice (Li et al., 2020; Liu et al., 2021).

Handling Redundancy due to Repeated Entries of d Recall that eigendecomposition is not unique when having repeat eigenvalues. Our spectral parametrization is also not unique when d has duplicated entries. In this case, the Fisher-Rao metric (coordinate representation) is singular. We allow d to have repeated entries and address the singularity using the Moore–Penrose inversion (van Oostrum et al., 2023). Computing the Moore–Penrose inversion is easy because we diagonalize the metric at evaluation points. In practice, we also use this inversion to improve numerical stability if d has very close entries.

385 386 3.2 HANDLING CONSTRAINTS AND REDUNDANCIES FOR KRONECKER STRUCTURES

Now, we propose spectral parametrizations and local coordinates for Kronecker structured matrices.
 Kronecker factorization introduces an additional redundancy that makes the exact Fisher-Rao metric singular and non-block-diagonal in Kronecker structured coordinate. We construct local coordinates to remove this redundancy and simplify the inverse metric computation. Furthermore, removing this redundancy makes our update scheme invariant to all equivalent Kronecker factorizations.

391 Removing Redundancy due to Kronecker Factorization Using a Kronecker structure introduces 392 redundancy because Kronecker factorization is non-unique. For example, we can reexpress a 393 structured matrix $\mathbf{S} = \mathbf{S}^{(C)} \otimes \mathbf{S}^{(K)}$ in another way: $\mathbf{S} = \gamma \otimes [\bar{\mathbf{S}}^{(C)} \otimes \bar{\mathbf{S}}^{(K)}]$, where $\bar{\mathbf{S}}^{(C)} := \gamma^{-1/2} \mathbf{S}^{(C)}$. 394 $\bar{\mathbf{S}}^{(K)} := \gamma^{-1/2} \mathbf{S}^{(K)}$, and $\gamma > 0$ is a learnable scalar. Without removing this redundancy, learning 395 the factorization $(\mathbf{S}^{(C)}, \mathbf{S}^{(K)})$ is not equivalent to learning another factorization $(\gamma, \mathbf{\bar{S}}^{(C)}, \mathbf{\bar{S}}^{(K)})$ 396 (i.e., $\mathbf{S} = \mathbf{S}^{(C)} \otimes \mathbf{S}^{(K)} \neq \bar{\mathbf{S}} = \gamma \otimes \bar{\mathbf{S}}^{(C)} \otimes \bar{\mathbf{S}}^{(K)}$). We eliminate this redundancy by imposing a 397 398 determinant constraint on each Kronecker factor and adding an extra scalar α . This leads to a unique 399 representation: $\mathbf{S} := \alpha [\mathbf{S}^{(C)} \otimes \mathbf{S}^{(K)}] = \bar{\alpha} [\gamma \otimes \bar{\mathbf{S}}^{(C)} \otimes \bar{\mathbf{S}}^{(K)}]$ because the constraint det $(\gamma) = 1$ makes 400 the scalar γ constant, where $\det(\mathbf{S}^{(C)}) = \det(\mathbf{S}^{(K)}) = \det(\bar{\mathbf{S}}^{(C)}) = \det(\bar{\mathbf{S}}^{(K)}) = \det(\gamma) = 1$, 401 $\alpha > 0$, and $\bar{\alpha} > 0$. Consequently, we propose a spectral parametrization for each Kronecker factor 402 $\mathbf{S}^{(C)} = \mathbf{B}^{(C)} \operatorname{Diag}(\mathbf{d}^{(C)}) (\mathbf{B}^{(C)})^T$ with det $(\operatorname{Diag}(\mathbf{d}^{(C)})) = 1$ to satisfy the determinant constraint. 403

404 Handling Constraints via Local Coordinate Transformation We construct local coordinates to 405 handle constraints, including the determinant constraints. For the positive scalar α , we introduce a 406 local coordinate *n* and use an exponential map in the coordinate transformation: $\alpha(n) = \alpha_k \exp(n)$ 407 at every iteration *k*. For each Kronecker factor, we drop the factor index for simplicity and construct 408 a local coordinate (**m**, **M**). The coordinate transformation map for each factor

$$\mathbf{d}(\mathbf{m}) = \mathbf{d}_k \odot \exp(\mathbf{m}), \ \mathbf{B}(\mathbf{M}) = \mathbf{B}_k \operatorname{Cayley}(\operatorname{Skew}(\operatorname{Tril}(\mathbf{M}))), \tag{11}$$

410 is similar to the map (c.f., Eq. 10) in full-matrix cases, expect that we require sum(\mathbf{m}) = 0 to satisfy 411 the determinant constraint (i.e., det(Diag($\mathbf{d}(\mathbf{m})$)) = 1), where *l* is the length of vector \mathbf{d}_k and the 412 local coordinate $\mathbf{m} := [m_1, \dots, m_{l-1}, -\sum_i^{l-1} m_i]$ has only (l-1) free variables.

413 414 3.3 DERIVATION OF ROOT-FREE UPDATE SCHEMES THROUGH GAUSSIAN APPROXIMATIONS

Now, we present a procedure to obtain root-free update schemes for our spectral parametrizations. Our procedure follows similar steps suggested by Lin et al. (2024) except that we use local coordinates. A similar procedure can solve positive-definite matrix optimization problems (Pennec et al., 2006).

418 Procedure for Full-matrix Spectral Parametrizations To derive full-matrix root-free update
 419 schemes, we follow these three steps.

420 Step 1 We solve a Gaussian problem similar to (6) using a learnable spectral parametrization, 421 $\mathbf{S} = \mathbf{B} \text{Diag}(\mathbf{d}) \mathbf{B}^T$, of the inverse covariance:

$$\min_{\mu,d,B} \mathcal{L}(\boldsymbol{\mu}, \mathbf{d}, \mathbf{B}) := E_{w \sim q(w; \mu, d, B)}[\ell(\mathbf{w})] - \mathcal{Q}_{q(\mu, d, B)}, \quad \text{s.t.} \quad \mathbf{B}\mathbf{B}^T = \mathbf{B}^T \mathbf{B} = \mathbf{I}, \, \mathbf{d} > 0.$$
(12)

424
 425
 426
 426
 427
 426
 427
 428
 429
 429
 420
 420
 420
 420
 421
 422
 422
 423
 424
 425
 426
 427
 426
 427
 428
 429
 429
 429
 420
 420
 420
 421
 421
 422
 422
 422
 423
 424
 424
 425
 426
 427
 428
 429
 429
 429
 420
 420
 420
 421
 421
 422
 422
 422
 423
 424
 425
 425
 426
 427
 426
 427
 428
 429
 429
 420
 420
 420
 421
 421
 421
 422
 422
 422
 423
 424
 424
 425
 426
 427
 428
 429
 429
 420
 420
 420
 421
 421
 421
 421
 422
 422
 422
 423
 424
 424
 425
 426
 427
 428
 428
 429
 420
 420
 421
 421
 421
 421
 422
 421
 422
 421
 422
 421
 421
 422
 421
 421
 422
 421

428 Step 2.1 Concretely, at iteration k, we create a local coordinate $\eta := (\delta, \mathbf{m}, \mathbf{M})$ at the current point $\tau_k := (\mu_k, \mathbf{d}_k, \mathbf{B}_k)$ and use this local transformation map

430 431

422 423

$$\boldsymbol{\tau}(\boldsymbol{\eta};\boldsymbol{\tau}_k) := \begin{bmatrix} \boldsymbol{\mu}(\boldsymbol{\delta};\boldsymbol{\tau}_k) \\ \mathbf{d}(\mathbf{m};\boldsymbol{\tau}_k) \\ \mathbf{B}(\mathbf{M};\boldsymbol{\tau}_k) \end{bmatrix} = \begin{bmatrix} \boldsymbol{\mu}_k + \mathbf{B}_k \mathrm{Diag}(\mathbf{d}_k^{-1/2}) \boldsymbol{\delta} \\ \mathbf{d}_k \odot \exp(\mathbf{m}) \\ \mathbf{B}_k \mathrm{Cayley}(\mathrm{Skew}(\mathrm{Tril}(\mathbf{M}))) \end{bmatrix},$$
(13)

to translate the change from the local coordinate to the spectral coordinate (c.f., Claim 2), where $\tau_k = (\mu_k, \mathbf{d}_k, \mathbf{B}_k)$ is considered as a constant in this map, and Tril(**M**) is used to explicitly enforce the lower-triangular restriction (c.f., Sec. 3.1).

Step 2.2 We then take an (unconstrained) RGD step in the local coordinate,

$$\operatorname{RGD}: \boldsymbol{\eta}_{\operatorname{new}} \leftarrow \boldsymbol{\eta}_{\operatorname{cur}} - \beta [\mathbf{F}_{\eta}(\boldsymbol{\eta}_{\operatorname{cur}})]^{-1} \nabla_{\eta} \mathcal{L} \big|_{\eta := \eta_{\operatorname{cur}}} = \mathbf{0} - \beta [\mathbf{F}_{\eta}(\mathbf{0})]^{-1} \nabla_{\eta} \mathcal{L} \big|_{\eta := 0}, \qquad (14)$$

and translate the change η_{new} from the local coordinate

$$\boldsymbol{\tau}_{k+1} \leftarrow \boldsymbol{\tau}(\boldsymbol{\eta}_{\text{new}}; \boldsymbol{\tau}_k),$$
 (15)

to the eigen coordinate, where the Fisher-Rao metric $\mathbf{F}_{\eta}(\boldsymbol{\eta}_{\text{cur}})$ evaluated at $\boldsymbol{\eta}_{\text{cur}}$ is diagonal (c.f., Claim 4) in the local coordinate and the origin $\boldsymbol{\eta}_{\text{cur}} \equiv \mathbf{0}$ represents the current point $\boldsymbol{\tau}_{k} = \boldsymbol{\tau}(\boldsymbol{\eta}_{\text{cur}}; \boldsymbol{\tau}_{k}) \equiv \boldsymbol{\tau}(\mathbf{0}; \boldsymbol{\tau}_{k})$ in the spectral coordinate.

445 **Step 3** We obtain the root-free update scheme in Fig. 1 by simplifying this RGD step in (14)-(15), and 446 making the same approximations in (9). The simplification is easy because the metric $\mathbf{F}_{\eta}(\eta)|_{\eta=\eta_{\text{cur}}}$ 447 evaluated at the origin in the local coordinate is diagonal. This allows us to simplify the inverse 448 metric computation in Eq. (14) even when the metric is singular. Moreover, the gradient $\nabla_{\eta} \mathcal{L}|_{\eta=\eta_{\text{cur}}}$ 449 required by RGD is easy to compute via the chain rule and has an analytical expression. See Appx. H 450 for a complete derivation.

451 *Claim* 4. Metric Diagonalization: The exact Fisher-Rao metric $\mathbf{F}_{\eta}(\boldsymbol{\eta}_{cur})$ (for a full Gaussian) 452 evaluated at the origin $\boldsymbol{\eta}_{cur} \equiv \mathbf{0}$ is diagonal and has a closed-form expression:

435

436 437

438

439 440 441

$$\mathbf{F}_{\eta}(\boldsymbol{\delta}, \mathbf{m}, \operatorname{vecTril}(\mathbf{M}))\big|_{\boldsymbol{\delta}=\mathbf{0}, \mathbf{m}=\mathbf{0}, \mathbf{M}=\mathbf{0}} = \begin{bmatrix} \mathbf{F}_{\delta\delta} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{F}_{mm} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{F}_{MM} \end{bmatrix}$$
(16)

where $\mathbf{F}_{\delta\delta} = \mathbf{I}$, $\mathbf{F}_{mm} = \frac{1}{2}\mathbf{I}$, $\mathbf{F}_{MM} = \text{Diag}(\text{vecTril}(\mathbf{C}))$, $\text{vecTril}(\mathbf{C})$ represents the low-triangular half of **C** excluding diagonal entries and its (i, j)-th entry is $[C]_{ij} = 4(\frac{d_i}{d_j} + \frac{d_j}{d_i} - 2) \ge 0$ and d_i denotes the *i*-th entry of \mathbf{d}_k . The metric is singular when **d** has repeated entries (i.e., $d_i = d_j$ for $i \neq j$). Consequently, we can use the Moore-Penrose inversion to inverse the metric (c.f., Sec. 3.1).

 461 Discussion about the Induced Metric for Orthogonal Matrix B Our approach implicitly constructs 462 a Riemannian metric for the orthogonal matrix B through the coordinate transformation of the Fisher-463 Rao metric of a Gaussian. This induced metric for the orthogonal matrix differs from existing metrics 464 (Tagare, 2011; Li et al., 2020; Kong et al., 2022) in the Riemannian optimization literature. We use 465 the Fisher-Rao metric because our goal is to learn an orthogonal matrix for spectral factorization.

466
 467
 468
 468
 469
 469
 469
 466
 467
 468
 469
 469
 469

470 Step 1 We solve a Gaussian problem similar to (6) using a Kronecker factorized eigenparametriza-471 tion, $\mathbf{S} = \alpha [\mathbf{B}^{(C)} \text{Diag}(\mathbf{d}^{(C)}) (\mathbf{B}^{(C)})^T] \otimes [\mathbf{B}^{(K)} \text{Diag}(\mathbf{d}^{(K)}) (\mathbf{B}^{(K)})^T]$, for the inverse covariance with extra 472 constraints: det(Diag($\mathbf{d}^{(C)}$)) = det(Diag($\mathbf{d}^{(K)}$)) = 1 and $\alpha > 0$.

473 **Step 2** We construct a local coordinate at each iteration, perform RGD in the local coordinate, and 474 translate the change using a transformation map in Eq. (11). See Eq. (35) in the appendix for details.

475 Step 3 We obtain the root-free update scheme in Fig. 1 by simplifying this RGD step. The simplification is straightforward because the metric evaluated at the origin in the local coordinate is block diagonal (c.f., Claim 5).

478 *Claim* 5. Metric Block Diagonalization: The exact Fisher-Rao metric $\mathbf{F}_{\eta}(\eta_{cur})$ (for a matrix 479 Gaussian) evaluated at the origin $\eta_{cur} \equiv \mathbf{0}$ is block-diagonal and has a closed-form expression. The 480 inverse metric also has an analytical form.

482 4 EXPERIMENTS

481

We first consider a positive-definite matrix optimization problem to validate our full-matrix update
 scheme beyond NN training. We aim to learn a positive-definite matrix S from noisy observations that
 can be negative-definite. Therefore, a linear update scheme to update S like the one in Eq. (3) is unsuitable for the problem because the scheme assumes an observation (e.g., a gradient outer product) is

Figure 4: Experiments demonstrate effectiveness and efficiency of our update schemes. The first 496 figure on the left shows the performance of our full-matrix update scheme for learning positive-definite 497 matrices. Our update scheme matches the baselines as our scheme is RGD in local coordinates. The 498 remaining three figures show the performance of our Kronecker update scheme for training vision transformers with low precision. To match AdamW's running time (i.e, PAdamW with p = 2), we can 499 update our perconditioner at every 10 iterations because we use a truncated Cayley map. Shampoo 500 has to update its perconditioner at every 100 iterations to match the running time. This is because 501 Shampoo performs eigendecompision when updating its preconditioner. We use grafting to improve 502 Shampoo's performance. Without grafting, Shampoo barely outperforms AdamW and is hard to tune due to the infrequent update of its preconditioner. 504

505 semi-positive-definite. Given that our approach is RGD in local coordinates, we consider the standard 506 RGD with retraction (Absil et al., 2009) and the Cholesky-based RGD (Lin et al., 2023) as baselines. We consider the metric nearness problem (Brickell et al., 2008) $\min_{W>0} \ell(\mathbf{W}) := \frac{1}{2N} \sum_{i=1}^{N} ||\mathbf{W}\mathbf{Q}\mathbf{x}_i - \mathbf{x}_i||_2^2$ 507 used in the matrix optimization literature, where $\mathbf{Q} \in \mathbb{R}^{d \times d}$ is a known positive-definite matrix and 508 509 only a subset of $\mathbf{x}_i \in \mathbb{R}^d$ are observed at each iteration. The ground truth is $\mathbf{W}_* = \mathbf{Q}^{-1}$ and we measure the difference between an estimate \mathbf{W}_{est} and the ground truth \mathbf{W}_{*} using $\ell(\mathbf{W}_{est}) - \ell(\mathbf{W}_{*})$. We 510 consider a case for d = 60 and generate Q and x_i . As we can see from the leftmost plot in Fig. 4, our 511 method performs as well as the RGD-based methods. This result shows the potential of our scheme 512 for positive-definite matrix optimization beyond NN training. 513

514 Next, we examine our Kronecker-structured update scheme in low-precision NN training problems. 515 We use our update scheme to train vision transformers from scratch with half-precision. Training 516 transformers in half-precision allows us to evaluate the numerical stability of our approach because 517 matrix methods g can be unstable in low precision. We then show the effectiveness and efficiency of our approach by comparing our method to strong baselines like AdamW (i.e., PAdamW with p = 2) 518 and Shampoo. We consider training three vision transformers: ViT (Dosovitskiy, 2020), FocalNet 519 (Yang et al., 2022), and FlattenViT (Han et al., 2023), on the ImageWoof dataset using mini-batches 520 with batch size 128. Our method updates its preconditioner at every 10 iterations to match AdmaW's 521 runtime because it does not require matrix decomposition and inversion when using a truncated 522 Cayley map. Shampoo has to update its preconditioner at every 100 iterations to match AdmaW's 523 runtime because of eigendecomposition. This also shows the low iteration cost of our method as 524 our preconditioner can be updated more frequently. We use the state of the art implementation of 525 Shampoo (Shi et al., 2023). We have to use grafting (Agarwal et al., 2021) to improve Shampoo's 526 performance due to the infrequency update of the preconditioner. We use random search (Choi et al., 527 2019) to tune all available hyperparameters for each method using 200 runs. From the remaining 528 plots in Fig. 4, we can see that our method effectively trains transformers with low-precision and often outperforms these baselines. Moreover, our method is flexible enough to use other fractional 529 roots. From the second plot on the left in Fig. 4, we can see that other roots such as p = 1 is better 530 than the square root p = 2. This shows that the potential of using other fractional roots. 531

532 533 5 CONCLUSION

We present a Riemannian approach for learning spectral factorizations on the fly. Our method fixes
the instability and inefficiency of using a matrix fractional root for low-precision NN training and
enables matrix methods to use other fractional roots. An interesting direction is to evaluate our
methods in large-scale settings and investigate the potential benefit of using other fractional roots.

540 REFERENCES 541

547

576

580

581

582

583

587

- P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds. 542 Princeton University Press, 2009. 543
- 544 Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, and Yi Zhang. Efficient full-matrix adaptive regularization. In International Conference on Machine Learning, 546 pp. 102-110. PMLR, 2019.
- Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren, and Cyril Zhang. Learning rate grafting: 548 Transferability of optimizer tuning. 2021. 549
- 550 Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276, 551 1998. 552
- Shun-ichi Amari. Information geometry and its applications, volume 194. Springer, 2016. 553
- 554 Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order 555 optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020. 556
- Justin Brickell, Inderjit S Dhillon, Suvrit Sra, and Joel A Tropp. The metric nearness problem. SIAM 558 Journal on Matrix Analysis and Applications, 30(1):375–396, 2008.
- 559 Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the 560 generalization gap of adaptive gradient methods in training deep neural networks. In Proceedings 561 of the Twenty-Ninth International Conference on International Joint Conferences on Artificial 562 Intelligence, pp. 3267–3275, 2021. 563
- Dami Choi, Christopher J Shallue, Zachary Nado, Jaehoon Lee, Chris J Maddison, and George E Dahl. On empirical comparisons of optimizers for deep learning. arXiv preprint arXiv:1910.05446, 565 2019. 566
- 567 Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale. 568 arXiv preprint arXiv:2010.11929, 2020. 569
- Tobias Glasmachers, Tom Schaul, Sun Yi, Daan Wierstra, and Jürgen Schmidhuber. Exponential natu-570 ral evolution strategies. In Proceedings of the 12th annual conference on Genetic and evolutionary 571 computation, pp. 393-400, 2010. 572
- 573 Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned Stochastic Tensor 574 Optimization. In Proceedings of the 35th International Conference on Machine Learning, pp. 575 1842-1850, 2018.
- Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song, and Gao Huang. Flatten transformer: Vi-577 sion transformer using focused linear attention. In Proceedings of the IEEE/CVF international 578 conference on computer vision, pp. 5961–5971, 2023. 579
 - Dongsung Huh. Curvature-corrected learning dynamics in deep neural networks. In International Conference on Machine Learning, pp. 4552–4560. PMLR, 2020.
- Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference on Learning Representations, 2015. 584
- 585 Lingkai Kong, Yuqing Wang, and Molei Tao. Momentum stiefel optimizer, with applications to 586 suitably-orthogonal attention, and optimal transport. arXiv preprint arXiv:2205.14173, 2022.
- Shankar Krishnan, Ying Xiao, and Rif A Saurous. Neumann optimizer: A practical optimization 588 algorithm for deep neural networks. arXiv preprint arXiv:1712.03298, 2017. 589

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approx-591 imation for natural gradient descent. Advances in neural information processing systems, 32, 592 2019.

John M Lee. Introduction to Riemannian manifolds, volume 2. Springer, 2018.

604

625

626

- 594 Jun Li, Li Fuxin, and Sinisa Todorovic. Efficient riemannian optimization on the stiefel manifold via 595 the cayley transform. arXiv preprint arXiv:2002.01113, 2020. 596
- Wu Lin, Frank Nielsen, Khan Mohammad Emtiyaz, and Mark Schmidt. Tractable structured natural-597 gradient descent using local parameterizations. In International Conference on Machine Learning, 598 pp. 6680-6691. PMLR, 2021.
- 600 Wu Lin, Valentin Duruisseaux, Melvin Leok, Frank Nielsen, Mohammad Emtiyaz Khan, and 601 Mark Schmidt. Simplifying momentum-based positive-definite submanifold optimization with 602 applications to deep learning. In International Conference on Machine Learning, pp. 21026–21050. 603 PMLR, 2023.
- Wu Lin, Felix Dangel, Runa Eschenhagen, Juhan Bae, Richard E Turner, and Alireza Makhzani. 605 Can we remove the square-root in adaptive gradient methods? a second-order perspective. In 606 International Conference on Machine Learning, 2024. 607
- 608 Weiyang Liu, Rongmei Lin, Zhen Liu, James M Rehg, Liam Paull, Li Xiong, Le Song, and Adrian Weller. Orthogonal over-parameterized training. In Proceedings of the IEEE/CVF Conference on 609 Computer Vision and Pattern Recognition, pp. 7251–7260, 2021. 610
- 611 Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by 612 implicit differentiation. In International conference on artificial intelligence and statistics, pp. 613 1540-1552. PMLR, 2020. 614
- Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint 615 arXiv:1711.05101, 2017. 616
- 617 John Maddocks. Lecture Notes: Mathematical Modelling of DNA. https://lcvmwww.epfl. 618 ch/teaching/modelling_dna/index.php?dir=exercises&file=corr03. 619 pdf, 2021. Accessed: 2024/09/25.
- 620 Fred K Manasse and Charles W Misner. Fermi normal coordinates and some basic concepts in 621 differential geometry. Journal of mathematical physics, 4(6):735–745, 1963. 622
- 623 James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approximate 624 curvature. In International Conference on Machine Learning, pp. 2408–2417, 2015.
- Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision training. ICLR, 2018. 628
- 629 Hà Quang Minh and Vittorio Murino. Covariances in computer vision and machine learning. Synthesis 630 Lectures on Computer Vision, 7(4):1–170, 2017.
- 631 Manfred Opper and Cédric Archambeau. The variational Gaussian approximation revisited. Neural 632 computation, 21(3):786–792, 2009. 633
- 634 Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Riemannian framework for tensor computing. 635 International Journal of computer vision, 66(1):41–66, 2006.
- 636 Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller, 637 and Bernhard Schölkopf. Controlling text-to-image diffusion by orthogonal finetuning. Advances 638 in Neural Information Processing Systems, 36:79320–79362, 2023. 639
- Yi Ren and Donald Goldfarb. Tensor normal training for deep learning models. Advances in Neural 640 Information Processing Systems, 34:26040–26052, 2021. 641
- 642 Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals of Mathemati-643 cal Statistics, 1951. 644
- 645 Hao-Jun Michael Shi, Tsung-Hsien Lee, Shintaro Iwasaki, Jose Gallego-Posada, Zhijing Li, Kaushik Rangadurai, Dheevatsa Mudigere, and Michael Rabbat. A distributed data-parallel pytorch im-646 plementation of the distributed shampoo optimizer for training neural networks at-scale. arXiv 647 preprint arXiv:2309.06497, 2023.

648 640	Hemant D Tagare. Notes on optimization on stiefel manifolds. Yale University, New Haven, 2011.	
650	T Tieleman and G Hinton Rmsprop. Divide the gradient by a running average of its recent	
651	magnitude. Coursera, 2012.	
652		
653	Charles F Van Loan and Nikos Pitsianis. Approximation with Kronecker products. Springer, 1993.	
654	Jesse van Oostrum, Johannes Müller, and Nihat Ay. Invariance properties of the natural gradient in	
000	overparametrised systems. <i>Information geometry</i> , 0(1).51–67, 2025.	
657	Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal	
658	value of adaptive gradient methods in machine learning. Advances in neural information processing	
659	systems, 30, 2017.	
660	Jianwei Yang, Chunyuan Li, Xiyang Dai, and Jianfeng Gao. Focal modulation networks. Advances	
661	in Neural Information Processing Systems, 35:4203–4217, 2022.	
662	Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. Noisy natural gradient as	
663	variational inference. In International Conference on Machine Learning, pp. 5847–5856, 2018.	
664		
665		
666		
667		
660		
670		
671		
672		
673		
674		
675		
676		
677		
678		
679		
680		
681		
682		
683		
004 695		
686		
687		
688		
689		
690		
691		
692		
693		
694		
695		
09b 607		
605		
699		
700		
701		

PROPERTIES OF THE CAYLEY MAP А

Claim 6. The Cayley map $Cayley(\mathbf{N}) = (\mathbf{I} + \mathbf{N})(\mathbf{I} - \mathbf{N})^{-1}$ is well-defined for skew-symmetric N. Moreover, this map is injective.

Proof. To show the map is well-defined, we want to show (I - N) is non-singular. Suppose not, we have $det(\mathbf{I} - \mathbf{N}) = 0$. Thus, **N** has an eigenvalue with 1. By the definition of the eigenvalue, there exists a non-zero vector $\mathbf{x} \neq \mathbf{0}$ so that $\mathbf{N}\mathbf{x} = \mathbf{x}$. Notice that Given that N is skew-symmetric, we have

$$\mathbf{N} + \mathbf{N}^T = \mathbf{0} \tag{17}$$

and

$$0 = \mathbf{x}^{T} (\mathbf{N} + \mathbf{N}^{T}) \mathbf{x} = \mathbf{x}^{T} (\mathbf{N} \mathbf{x}) + (\mathbf{x}^{T} \mathbf{N}^{T}) \mathbf{x} = \mathbf{x}^{T} \mathbf{x} + \mathbf{x}^{T} \mathbf{x}$$
(18)

The above expression implies $\mathbf{x} = \mathbf{0}$, which is a contradiction. Thus, $\det(\mathbf{I} - \mathbf{N}) \neq 0$ and $(\mathbf{I} - \mathbf{N})$ is non-singular.

Let $\mathbf{Q} = \text{Cayley}(\mathbf{N})$. We show that the Cayley is injective if \mathbf{N} is skew-symmetric. We first assume $(\mathbf{Q} + \mathbf{I})$ is non-singular and then we prove it. Given $(\mathbf{Q} + \mathbf{I})$ is non-singular, we have

$$\mathbf{Q}(\mathbf{I} - \mathbf{N}) = (\mathbf{I} + \mathbf{N}) \iff \mathbf{Q} - \mathbf{I} = (\mathbf{Q} + \mathbf{I})\mathbf{N} \iff (\mathbf{Q} + \mathbf{I})^{-1}(\mathbf{Q} - \mathbf{I}) = \mathbf{N}$$

This implies the map is injective and its inverse is

$$\mathbf{N} = \operatorname{Cayley}^{-1}(\mathbf{Q}) := (\mathbf{Q} + \mathbf{I})^{-1}(\mathbf{Q} - \mathbf{I})$$
(19)

Now, we show that $(\mathbf{Q} + \mathbf{I})$ is non-singular. We use proof by contradiction. If not, there exists a non-zero vector \mathbf{v} (Maddocks, 2021) so that

$$\mathbf{Q}\mathbf{v} = -\mathbf{v} \iff (\mathbf{I} + \mathbf{N})(\mathbf{I} - \mathbf{N})^{-1}\mathbf{v} = -\mathbf{v}$$
(20)

$$\iff (\mathbf{I} - \mathbf{N})^{-1} (\mathbf{I} + \mathbf{N}) \mathbf{v} = -\mathbf{v}$$
(21)

$$\iff (\mathbf{I} + \mathbf{N})\mathbf{v} = -(\mathbf{I} - \mathbf{N})\mathbf{v}$$
(22)

$$\iff \mathbf{v} = -\mathbf{v}$$
, (another contradiction since $\mathbf{v} \neq 0$) (23)

where we use the following identity in the second step in the above expression.

$$(\mathbf{I} + \mathbf{N})(\mathbf{I} - \mathbf{N})^{-1} = -(-2\mathbf{I} + \mathbf{I} - \mathbf{N})(\mathbf{I} - \mathbf{N})^{-1} = 2(\mathbf{I} - \mathbf{N})^{-1} - \mathbf{I}$$
 (24)

$$= (\mathbf{I} - \mathbf{N})^{-1} (2\mathbf{I} - (\mathbf{I} - \mathbf{N})) = (\mathbf{I} - \mathbf{N})^{-1} (\mathbf{I} + \mathbf{N})$$
(25)

CONNECTION TO DIAGONAL METHODS B

Here, we show the connections between our scheme and the RmsProp method. Observe that eigenvalues are diagonal entries of a diagonal preconditioning matrix (i.e., $\mathbf{d} = \text{diag}(\mathbf{S})$). Because B is now a diagonal and orthogonal matrix, each diagonal entry can only be 1 or -1. Using this result, we can further simplify our update scheme and recover the RmsProp update rules when using a first-order truncation of the exponential map.

$$\mathbf{d} \leftarrow \mathbf{d} \odot \exp\{\beta_2 \, \mathbf{d}^{-1} \odot [-\mathbf{d} + \operatorname{diag}(\mathbf{B}^T \mathbf{g} \mathbf{g}^T \mathbf{B})]\} \approx \mathbf{d} + \beta_2 [-\mathbf{d} + \operatorname{diag}(\mathbf{g} \mathbf{g}^T)]\}$$
$$\mathbf{B} \leftarrow \mathbf{B} \operatorname{Cayley}(\frac{\beta_2}{2} \operatorname{Skew}(\operatorname{Diag}(\mathbf{U}))) = \mathbf{B} \operatorname{Cayley}(\mathbf{0}) = \mathbf{B}$$
$$\boldsymbol{\mu} \leftarrow \boldsymbol{\mu} - \beta_1 \operatorname{BDiag}(\mathbf{d}^{-1/p}) \mathbf{B}^T \mathbf{g} = \boldsymbol{\mu} - \beta_1 \operatorname{Diag}(\mathbf{d}^{-1/p}) \mathbf{g}, \tag{26}$$

where $\operatorname{diag}(\mathbf{B}^T \mathbf{g} \mathbf{g}^T \mathbf{B}) = \operatorname{diag}(\mathbf{g} \mathbf{g}^T)$, $\mathbf{B}\operatorname{Diag}(\mathbf{d}^{-1/p})\mathbf{B}^T = \operatorname{Diag}(\mathbf{d}^{-1/p})$, and we use a first-order truncation of the exponential map $\mathbf{d} \odot \exp(\mathbf{d}^{-1} \odot \mathbf{n}) \approx \mathbf{d} \odot (\mathbf{1} + \mathbf{d}^{-1} \odot \mathbf{n}) = \mathbf{d} + \mathbf{n}$. Due to the skew-symmetrization, Skew(Diag(U)) is always a zero matrix. Thus, according to our update scheme, **B** remains unchanged in diagonal cases because Cayley(0) = I.

Our connections rely on a valid Hessian approximation (Lin et al., 2024) $\mathcal{H} = \mathbf{g}\mathbf{g}^T$. This requires the loss function in Eq. (1) can be expressed as a *normalized* negative log-likelihood such as the cross entropy loss. For example, an averaged version of the loss is not normalized, and therefore, the gradient outer product of the averaged loss is not a valid Hessian approximation.

С PROOF OF LEMMA 1

We will show that our update scheme in the leftmost box of Fig.1 is equivalent to the root-free update scheme in (3) up to first-order accuracy given that they use the same gradient g. The proof can 760 be easily generalized to every iteration by induction, given that both update schemes use the same sequence of gradients.

Recall that we update the spectral factors using the following rule at iteration k.

 $\mathbf{d}_{k+1} \leftarrow \mathbf{d}_k \odot \exp\{\beta_2 \mathbf{d}_k^{-1} \odot [-\mathbf{d}_k + \operatorname{diag}(\mathbf{B}_k^T \mathcal{H} \mathbf{B}_k)]\}$ $\mathbf{B}_{k+1} \leftarrow \mathbf{B}_k \operatorname{Cayley}(\frac{\beta_2}{2}\operatorname{Skew}(\operatorname{Tril}(\mathbf{U}))),$ (27)

769 where $\mathcal{H} = \mathbf{g}\mathbf{g}^T$ and the (i, j)-th entry of U is $[U]_{ij} := -[\mathbf{B}_k^T \mathcal{H} \mathbf{B}_k]_{ij}/(d_i - d_j)$, where d has no 770 repeated entries by our assumption. We want to show that the above update scheme is equivalent to the default update scheme up to first-order accuracy. 771

$$\mathbf{S}_{k+1} \leftarrow (1 - \beta_2) \mathbf{S}_k + \beta_2 \mathbf{g}_k \mathbf{g}_k^T \tag{28}$$

773 774

782

783

784 785

786

787 788

789 790

791 792

793

794

800 801

807

808 809

772

756

758

759

761

762

763 764

765 766

767 768

775 Let $\mathbf{Q}_k := \mathbf{B}_k \mathcal{H} \mathbf{B}_k^T$. Recall that the Cayley map is defined as $\operatorname{Cayley}(\mathbf{N}) = (\mathbf{I} + \mathbf{N})(\mathbf{I} - \mathbf{N})^{-1}$. 776 Using the first-order approximation of $(\mathbf{I} - \mathbf{N})^{-1}$, we have $(\mathbf{I} - \beta_2 \mathbf{N})^{-1} = \mathbf{I} + \beta_2 \mathbf{N} + O(\beta_2^2)$. Thus, we have $\mathbf{B}_{k+1} = \mathbf{B}_k \text{Cayley}(\frac{\beta_2}{2} \text{Skew}(\text{Tril}(\mathbf{U})) = \mathbf{B}_k(\mathbf{I} + \frac{\beta_2}{2}\mathbf{N})(\mathbf{I} + \frac{\beta_2}{2}\mathbf{N} + O(\beta_2^2)) =$ 777 778 $\mathbf{B}_k(\mathbf{I} + \beta_2 \mathbf{N} + O(\beta_2^2))$, where $\mathbf{N} := \text{Skew}(\text{Tril}(\mathbf{U}))$. Similarly, we have $\mathbf{d}_{k+1} = \mathbf{d}_k \odot [1 + \mathbf{d}_k \odot (1 + \beta_k)]$ 779 $\beta_2 \mathbf{d}_k^{-1} \odot (-\mathbf{d}_k + \operatorname{diag}(\mathbf{Q}_k)) + O(\beta_2^2)] = \mathbf{d}_k + \beta_2 \mathbf{w}_k + O(\beta_2^2)$ by using the first-order truncation of the exponential map, where $\mathbf{w}_k := -\mathbf{d}_k + \operatorname{diag}(\mathbf{Q}_k)$. Notice that 781

 $\bar{\mathbf{S}}_{k\perp 1}$ $= \mathbf{B}_{k+1} \operatorname{Diag}(\mathbf{d}_{k+1}) \mathbf{B}_{k+1}^T$ $= \mathbf{B}_{k} \left[(\mathbf{I} + \beta_{2} \mathbf{N} + O(\beta_{2}^{2})) \operatorname{Diag}(\mathbf{d}_{k} + \beta_{2} \mathbf{w}_{k} + O(\beta_{2}^{2})) \right] (\mathbf{I} + \beta_{2} \mathbf{N} + O(\beta_{2}^{2}))^{T} \mathbf{B}_{k}^{T}$ $= \mathbf{B}_k \left[\mathbf{D}_k + \beta_2 \mathbf{N} \mathbf{D}_k + \beta_2 \mathbf{W}_k + O(\beta_2^2) \right] (\mathbf{I} + \beta_2 \mathbf{N} + O(\beta_2^2))^T \mathbf{B}_k^T$ $= \mathbf{B}_{k} \left[\mathbf{D}_{k} + \beta_{2} \mathbf{N} \mathbf{D}_{k} + \beta_{2} \mathbf{W}_{k} + \beta_{2} \mathbf{D}_{k} \mathbf{N}^{T} + O(\beta_{2}^{2}) \right] \mathbf{B}_{k}^{T}$ $= \mathbf{B}_k \mathbf{D}_k \mathbf{B}_k^T + \beta_2 \mathbf{B}_k (\mathbf{N} \mathbf{D}_k + \mathbf{W}_k + \mathbf{D}_k \mathbf{N}^T) \mathbf{B}_k^T + O(\beta_2^2)$ $= \bar{\mathbf{S}}_k + \beta_2 \mathbf{B}_k (\mathbf{N} \mathbf{D}_k + \mathbf{D}_k \mathbf{N}^T) \mathbf{B}_k^T + \beta_2 \mathbf{B}_k \mathbf{W}_k \mathbf{B}_k^T + O(\beta_2^2)$, (N is skew-symmetric) $= \bar{\mathbf{S}}_{k} + \beta_{2} \mathbf{B}_{k} (\mathbf{N} \mathbf{D}_{k} - \mathbf{D}_{k} \mathbf{N}) \mathbf{B}_{k}^{T} + \beta_{2} \mathbf{B}_{k} \mathbf{W}_{k} \mathbf{B}_{k}^{T} + O(\beta_{2}^{2})$

where $\mathbf{D}_k := \operatorname{Diag}(\mathbf{d}_k)$ and $\mathbf{W}_k := \operatorname{Diag}(\mathbf{w}_k)$ 796

Observation (1): Since $\mathbf{W}_k = \text{Diag}(-\mathbf{d}_k + \text{diag}(\mathbf{B}_k^T \mathcal{H} \mathbf{B}_k)) = -\mathbf{D}_k + \text{Diag}(\text{diag}(\mathbf{B}_k^T \mathcal{H} \mathbf{B}_k^T))$, we 797 798 have 799

$$\mathbf{B}_{k}\mathbf{W}_{k}\mathbf{B}_{k}^{T} = -\mathbf{B}_{k}\mathbf{D}_{k}\mathbf{B}_{k}^{T} + \mathbf{B}_{k}\mathrm{Ddiag}(\mathbf{Q}_{k})\mathbf{B}_{k}^{T}$$
(29)

802 where $Ddiag(\mathbf{Q}_k)$ denotes the diagonal part of $\mathbf{Q}_k = \mathbf{B}_k \mathcal{H} \mathbf{B}_k^T$ 803

Observation (2): Since $\mathbf{N} = \text{Skew}(\text{Tril}(\mathbf{U}))$ and $[\mathbf{U}]_{ij} = -[\mathbf{B}_k^T \mathcal{H} \mathbf{B}_k]_{ij}/(d_i - d_j) = -[\mathbf{Q}_k]_{ij}/(d_i - d_j)$ 804 d_j), we can show that $\mathbf{ND}_k - \mathbf{D}_k \mathbf{N}$ is indeed a symmetric matrix with zero-diagonal entries. 805 Moreover, the low-triangular half (i > j) of the matrix is 806

$$[\mathbf{N}\mathbf{D}_k - \mathbf{D}_k\mathbf{N}]_{ij} = (d_j - d_i)[\mathbf{U}]_{ij} = [\mathbf{Q}_k]_{ij}.$$
(30)

where $d_j \neq d_i$ since d has no repeated entries. Thus, we have $ND_k - D_kN = Q_k - Ddiag(Q_k)$.

Using Observations (1) and (2), we have

$$\begin{split} \bar{\mathbf{S}}_{k+1} \\ = & \mathbf{B}_k \Big[\mathbf{D}_k + \beta_2 \mathbf{N} \mathbf{D}_k + \beta_2 \mathbf{W}_k + \beta_2 \mathbf{D}_k \mathbf{N}^T + O(\beta_2^2) \Big] \mathbf{B}_k^T \\ = & \mathbf{B}_k \mathbf{D}_k \mathbf{B}_k^T + \beta_2 \Big[\mathbf{B}_k \Big(\mathbf{Q}_k - \text{Ddiag}(\mathbf{Q}_k) \Big) \mathbf{B}_k^T - \mathbf{B}_k \mathbf{D}_k \mathbf{B}_k^T + \mathbf{B}_k \text{Ddiag}(\mathbf{Q}_k) \mathbf{B}_k^T \Big] + O(\beta_2^2) \\ = & (1 - \beta_2) \mathbf{B}_k \mathbf{D}_k \mathbf{B}_k^T + \beta_2 \mathbf{B}_k \Big[\mathbf{Q}_k \Big] \mathbf{B}_k^T + O(\beta_2^2), \text{ (Note: } \mathbf{Q}_k = \mathbf{B}_k^T \mathcal{H} \mathbf{B}_k) \\ = & (1 - \beta_2) \bar{\mathbf{S}}_k + \beta_2 \mathcal{H} + O(\beta_2^2), \end{split}$$

which is exactly the default update scheme in (3) when dropping the second-order term $O(\beta_2^2)$.

D PROOF OF LEMMA 2

It is easy to see that the map is differentiable. We now show the map is injective. We only need to show the Cayley(Skew(Tril(M))) is injective. Since we only consider matrix M to have zero diagonal entries, it is equivalent to showing that the Cayley map is injective, which is true due to Claim 6.

Recall that the current point $(\mathbf{d}_k, \mathbf{B}_k)$ is in the spectral coordinate. Thus, we have $\mathbf{d}_k > 0$ and B_k is orthogonal. According to the map (10), it is easy to see that $\mathbf{d}(\mathbf{m}) = \mathbf{d}_k \odot \exp(\mathbf{m}) > 0$ because $\mathbf{d}_k > 0$. Thus, $\mathbf{d}(\mathbf{m})$ satisfies the parameter constraints. Now, we show that $\mathbf{B}(\mathbf{M})$ is also orthogonal. Because \mathbf{B}_k is orthogonal, we only need to show that the output of the Cayley map, Cayley(Skew(Tril(M))), is orthogonal. Let $\mathbf{N} := \operatorname{Skew}(\operatorname{Tril}(\mathbf{M}))$. We know that \mathbf{N} is skewsymmetric. We can verify that the Cayley transform satisfies the orthogonal constraint. Consider the following expression:

$$\left(\operatorname{Cayley}(\mathbf{N})\right)^{T}\operatorname{Cayley}(\mathbf{N}) = (\mathbf{I} - \mathbf{N})^{-T}(\mathbf{I} + \mathbf{N})^{T}(\mathbf{I} + \mathbf{N})(\mathbf{I} - \mathbf{N})^{-1}$$
(31)

$$= (\mathbf{I} - \mathbf{N})^{-T} (\mathbf{I} - \mathbf{N}) (\mathbf{I} + \mathbf{N}) (\mathbf{I} - \mathbf{N})^{-1}$$
(32)

$$= (\mathbf{I} - \mathbf{N})^{-T} (\mathbf{I} + \mathbf{N}) (\mathbf{I} - \mathbf{N}) (\mathbf{I} - \mathbf{N})^{-1}$$
(33)

$$= (\mathbf{I} - \mathbf{N})^{-T} (\mathbf{I} - \mathbf{N})^{T} (\mathbf{I} - \mathbf{N}) (\mathbf{I} - \mathbf{N})^{-1} = \mathbf{I}$$
(34)

where we use the fact that N is skew-symmetric such as $N^T = -N$.

Likewise, we can show $Cayley(\mathbf{N})(Cayley(\mathbf{N}))^T = \mathbf{I}$. Thus, the output of the Cayley map is a square orthogonal matrix.

846 847 848

843

836

837

838

839 840 841

821 822

823 824

E PROOF OF LEMMA 3

649 Given the transformation map defined in Eq. (10), we want to show that $\mathbf{B}(\mathbf{M}_1) = \mathbf{B}(\mathbf{M}_2)\mathbf{Q}$ holds 650 only when $\mathbf{M}_1 = \mathbf{M}_2$ for a permutation matrix \mathbf{Q} . By our definition, \mathbf{M}_1 and \mathbf{M}_2 must have zero 651 diagonal entries.

Recall that $\mathbf{B}(\mathbf{M}) = \mathbf{B}_k$ Cayley(Skew(Tril(\mathbf{M}))) and Cayley(\mathbf{N}) = $(\mathbf{I} + \mathbf{N})(\mathbf{I} - \mathbf{N})^{-1}$, where N is skew-symmetric. It is equivalent to show that this expression Cayley(Skew(Tril(\mathbf{M}_1))) = Cayley(Skew(Tril(\mathbf{M}_2))) \mathbf{Q} holds only for $\mathbf{M}_1 = \mathbf{M}_2$.

We first show $\mathbf{Q} = \mathbf{I}$. Let $\mathbf{K}_1 := \text{Cayley}(\text{Skew}(\text{Tril}(\mathbf{M}_1)))$ and $\mathbf{K}_2 := \text{Cayley}(\text{Skew}(\text{Tril}(\mathbf{M}_2)))$. Notice that \mathbf{K}_1 and \mathbf{K}_2 are low-triangular due to the definition of the Cayley map. The expression $\mathbf{K}_1 = \mathbf{K}_2 \mathbf{Q}$ holds only when \mathbf{Q} is also a lower-triangular matrix. Because \mathbf{Q} is a permutation matrix, \mathbf{Q} must be an identity matrix to be lower-triangular. Thus, $\mathbf{K}_1 = \mathbf{K}_2$. Since the Cayley map is injective, we have $\mathbf{M}_1 = \mathbf{M}_2$.

860 861

F PROOF OF LEMMA 4

862 863

To verify this statement, we can analytically compute the Fisher-Rao metric according to its definition.

PROOF OF LEMMA 5 G

In a Kronecker case, we consider this spectral factorization $\mathbf{S} = \alpha [(\mathbf{B}^{(C)} \text{Diag}(\mathbf{d}^{(C)})(\mathbf{B}^{(C)})^T) \otimes$ $(\mathbf{B}^{(K)}\mathrm{Diag}(\mathbf{d}^{(K)})(\mathbf{B}^{(K)})^T)]$. At iteration k, we create a local coordinate η := $(\boldsymbol{\delta}, n, \mathbf{m}^{(C)}, \mathbf{M}^{(C)}, \mathbf{m}^{(K)}, \mathbf{M}^{(K)})$ at the current point $\boldsymbol{\tau}_k := (\boldsymbol{\mu}_k, \alpha_k, \mathbf{d}_k^{(C)}, \mathbf{B}_k^{(C)}, \mathbf{d}_k^{(K)}, \mathbf{B}_k^{(K)})$ and use this local transformation map

$$\begin{array}{c} \mathbf{871} \\ \mathbf{872} \\ \mathbf{873} \\ \mathbf{873} \\ \mathbf{874} \\ \mathbf{876} \\ \mathbf{876} \\ \mathbf{876} \\ \mathbf{877} \\ \mathbf{877} \\ \mathbf{878} \end{array} \qquad \boldsymbol{\tau}(\boldsymbol{\eta}; \boldsymbol{\tau}_k) \coloneqq \begin{bmatrix} \boldsymbol{\mu}_{(\boldsymbol{\delta}; \boldsymbol{\tau}_k)} \\ \boldsymbol{\alpha}(n; \boldsymbol{\tau}_k) \\ \boldsymbol{\alpha}(n; \boldsymbol{\tau}_k) \\ \mathbf{d}^{(C)}(\mathbf{m}^{(C)}; \boldsymbol{\tau}_k) \\ \mathbf{B}^{(C)}(\mathbf{M}^{(C)}; \boldsymbol{\tau}_k) \\ \mathbf{d}^{(K)}(\mathbf{m}^{(K)}; \boldsymbol{\tau}_k) \\ \mathbf{B}^{(K)}(\mathbf{M}^{(K)}; \boldsymbol{\tau}_k) \end{bmatrix} = \begin{bmatrix} \boldsymbol{\mu}_k + (\mathbf{B}_k^{(C)} \otimes \mathbf{B}_k^{(K)})(\operatorname{Diag}(\mathbf{d}_k^{(C)}) \otimes \operatorname{Diag}(\mathbf{d}_k^{(K)}))^{-1/2} \boldsymbol{\delta} \\ \boldsymbol{\alpha}_k \exp(n) \\ \mathbf{d}_k^{(C)} \odot \exp(\mathbf{m}^{(C)}) \\ \mathbf{B}_k^{(C)} \operatorname{Cayley}(\operatorname{Skew}(\operatorname{Tril}(\mathbf{M}^{(C)}))) \\ \mathbf{d}_k^{(K)} \odot \exp(\mathbf{m}^{(K)}) \\ \mathbf{B}_k^{(K)} \operatorname{Cayley}(\operatorname{Skew}(\operatorname{Tril}(\mathbf{M}^{(K)}))) \\ \mathbf{B}_k^{(K)} \operatorname{Cayley}(\operatorname{Skew}(\operatorname{Tril}(\mathbf{M}^{(K)}))) \end{bmatrix} \end{bmatrix},$$

where $\mathbf{m}^{(C)} = [m_1^{(C)}, m_2^{(C)}, \dots, m_{l-1}^{(C)}, -\sum_i^{l-1} m_i^{(C)}]$ has *l* entries but only (l-1) free variables since $\sum (\mathbf{m}^{(C)}) = 0$.

To verify this statement, we can analytically compute the Fisher-Rao metric according to its definition.

$$\mathbf{F}_{\eta}(\boldsymbol{\delta}, n, \operatorname{Free}(\mathbf{m}^{(C)}), \operatorname{vecTril}(\mathbf{M}^{(C)}), \operatorname{Free}(\mathbf{m}^{(K)}), \operatorname{vecTril}(\mathbf{M}^{(k)}))|_{\boldsymbol{\eta}=\mathbf{0}}$$
(36)
$$= \begin{bmatrix} \mathbf{F}_{\delta\delta} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{F}_{\alpha\alpha} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{F}_{m^{(C)}m^{(C)}} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{F}_{M^{(C)}M^{(C)}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{F}_{m^{(K)}m^{(K)}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{F}_{M^{(K)}M^{(K)}} \end{bmatrix}$$
(37)

where $\operatorname{vecTril}(\mathbf{C})$ represents the low-triangular half of \mathbf{C} excluding diagonal entries and $\operatorname{Free}(\mathbf{m})$ extracts free variables from m.

We can see that the Fisher-Rao is block diagonal with six blocks.

The first two blocks are $\mathbf{F}_{\delta\delta} = \mathbf{I}$ and $\mathbf{F}_{\alpha\alpha} = \frac{1}{2}$. For each Kronecker factor, we have two blocks. For notation simplicity, we drop the factor index \tilde{C} in $\mathbf{F}_{m^{(C)}m^{(C)}}$ and $\mathbf{F}_{M^{(C)}M^{(C)}}$.

For each Kronecker factor, $\mathbf{F}_{MM} = \text{Diag}(\text{vecTril}(\mathbf{W}))$, $\text{vecTril}(\mathbf{W})$ represents the low-triangular half of W excluding diagonal entries and its (i, j)-th entry is $[W]_{ij} = 4(\frac{d_i}{d_i} + \frac{d_j}{d_i} - 2) \ge 0$ and d_i denotes the *i*-th entry of \mathbf{d}_k for the factor. The \mathbf{F}_{mm} is non-diagonal but its inverse can be computed

as $\mathbf{F}_{mm}^{-1} = 2 \begin{bmatrix} \frac{l-1}{l} & \frac{1}{l} & \dots & \frac{1}{l} \\ \frac{1}{l} & \frac{l-1}{l} & \dots & \frac{1}{l} \\ \vdots & \vdots & \dots & \vdots \end{bmatrix} \in \mathbb{R}^{(l-1)\times(l-1)}$ for the (l-1) free variables in \mathbf{m} denoted

by $Free(\mathbf{m})$. Furthermore, the natural-gradient w.r.t. \mathbf{m} can also be simplified.

Η COMPLETE DERIVATION

According to Lemma 4, the Fisher-Rao metric under this local coordinate system is diagonal as

$$\mathbf{F}_{\eta}(\boldsymbol{\delta}, \mathbf{m}, \text{vecTril}(\mathbf{M})) \Big|_{\boldsymbol{\delta}=\mathbf{0}, \mathbf{m}=\mathbf{0}, \mathbf{M}=\mathbf{0}} = \begin{bmatrix} \mathbf{F}_{\delta\delta} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{F}_{mm} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{F}_{MM} \end{bmatrix}$$
(38)

where $\mathbf{F}_{\delta\delta} = \mathbf{I}, \mathbf{F}_{mm} = \frac{1}{2}\mathbf{I}, \mathbf{F}_{MM} = \text{Diag}(\text{vecTril}(\mathbf{C})), \text{vecTril}(\mathbf{C})$ represents the low-triangular half of C excluding diagonal entries and its (i, j)-th entry is $[C]_{ij} = 4(\frac{d_i}{d_i} + \frac{d_j}{d_i} - 2) \ge 0$ and d_i denotes the *i*-th entry of \mathbf{d}_k .

918 Use the approximation in Eq. (9)

$$\mathbf{g}_{\mu} := \partial_{\mu} \mathcal{L} \stackrel{\text{Stein}}{=} E_{w \sim q} [\nabla_{w} \ell] \stackrel{\text{defin}}{\approx} \nabla_{\mu} \ell = \mathbf{g}$$
(39)

$$2\mathbf{g}_{S^{-1}} := 2\partial_{S^{-1}}\mathcal{L} \stackrel{\text{Stein}}{=} E_{w \sim q}[\nabla_w^2 \ell] - \mathbf{S} \stackrel{\text{delta}}{\approx} \nabla_\mu^2 \ell - \mathbf{S} \approx \mathcal{H} - \mathbf{S}.$$
(40)

where $\mathbf{g} := \nabla_{\mu} \ell(\boldsymbol{\mu})$ is the gradient of $\ell, \mathcal{H} := \mathbf{g}\mathbf{g}^T$ is a Hessian approximation.

The Euclidean gradient w.r.t local coordinate $(\delta, \mathbf{m}, \mathbf{M})$ are

$$\mathbf{g}_{\delta}\big|_{\delta=0} = \mathbf{D}_{k}^{-1/2} \mathbf{B}_{k}^{T} \mathbf{g}_{\mu} \tag{41}$$

$$\mathbf{g}_{m}\big|_{m=0} = -\mathbf{d}_{k}^{-1} \odot \operatorname{diag}(\mathbf{B}_{k}^{T} \mathbf{g}_{S^{-1}} \mathbf{B}_{k})$$
(42)

$$\mathbf{g}_{\text{vecTril}(M)}\Big|_{M=0} = 4\text{vecTril}(\mathbf{B}_{k}^{T}\mathbf{g}_{S^{-1}}\mathbf{B}_{k}\mathbf{D}_{k}^{-1} - \mathbf{D}_{k}^{-1}\mathbf{B}_{k}^{T}\mathbf{g}_{S^{-1}}\mathbf{B}_{k})$$
(43)

where $\mathbf{D}_k := \text{Diag}(\mathbf{d}_k)$. Recall that we use a gradient outer product $\mathcal{H} = \mathbf{g}\mathbf{g}^T$ as a Hessian approximation in $2\mathbf{g}_{\Sigma}$, where $2\mathbf{g}_{S^{-1}} \approx \mathbf{g}\mathbf{g}^T - \mathbf{S} + \lambda \mathbf{I}$ considered in RMSProp, where $\lambda \mathbf{I}$ is included for damping.

The FIM can still be singular when d has repeated entries (i.e., $d_i = d_j$ for $i \neq j$) since \mathbf{F}_{MM} can be singular. We can use the Moore-Penrose inverse when computing the inverse. Thanks to this coordinate system, \mathbf{F}_{MM} is indeed a diagonal matrix.

Thus, we can simplify the RGD update as

$$\begin{bmatrix} \boldsymbol{\delta} \\ \mathbf{m} \\ \text{vecTril}(\mathbf{M}) \end{bmatrix} \leftarrow \begin{bmatrix} \mathbf{0} - \beta_1 \mathbf{F}_{m\mu}^{-1} \mathbf{g}_{\delta} \\ \mathbf{0} - \beta_2 \mathbf{F}_{mm}^{-1} \mathbf{g}_m \big|_{m=0} \\ \mathbf{0} - \beta_2 \mathbf{F}_{MM}^{-1} \mathbf{g}_{\text{vecTril}(M)} \big|_{M=0} \end{bmatrix} = \begin{bmatrix} \mathbf{0} - \beta_1 \text{Diag}(\mathbf{d})^{-1/2} \mathbf{B}^T \mathbf{g}_{\mu} \\ \mathbf{0} - 2\beta_2 \mathbf{g}_m \big|_{m=0} \\ \mathbf{0} - \beta_2 \mathbf{F}_{MM}^{-1} \mathbf{g}_{\text{vecTril}(M)} \big|_{M=0} \end{bmatrix}, \quad (44)$$

where we introduce another learning rate β_2 when updating d and B.

Note that when $d_i \neq d_j$ for $i \neq j$, the (i, j)-th entry of the natural gradient w.r.t. M is

$$\left[\mathbf{F}_{MM}^{-1}\mathbf{g}_{\text{vecTril}(M)}\right]_{M=0}_{ij} = (\mathbf{B}_{k}^{T}\mathbf{g}_{S^{-1}}\mathbf{B}_{k})_{ij}/(d_{i}-d_{j}).$$
(45)

When $d_i = d_j$, we simply set the corresponding entry to be zero due to the Moore-Penrose inverse. Finally, we can re-express the above update as:

$$\begin{bmatrix} \boldsymbol{\mu}_{k+1} \\ \mathbf{d}_{k+1} \\ \mathbf{B}_{k+1} \end{bmatrix} \leftarrow \begin{bmatrix} \boldsymbol{\mu}_{k} - \beta_{1} \mathbf{B}_{k} \mathrm{Diag}(\mathbf{d}_{k})^{-1} \mathbf{B}_{k}^{T} \mathbf{g}_{\mu} \\ \mathbf{d}_{k} \odot \exp[0 + 2\beta_{2} \mathbf{d}_{k}^{-1} \odot \mathrm{diag}(\mathbf{B}_{k}^{T} \mathbf{g}_{S^{-1}} \mathbf{B}_{k})] \\ \mathbf{B}_{k} \mathrm{Cayley}(\mathrm{Tril}(\mathbf{U}) - [\mathrm{Tril}(\mathbf{U})]^{T}) \end{bmatrix}$$
(46)

where the (i, j) entry of U is $U_{ij} = 0 - \beta_2 (\mathbf{B}_k^T \mathbf{g}_{S^{-1}} \mathbf{B}_k)_{ij} / (d_i - d_j)$ for $i \neq j$ and $U_{ij} = 0$ when $d_i = d_j$ thanks to the Moore-Penrose inverse.