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Abstract

Embedding-as-a-Service (EaaS) has emerged001
as a successful business pattern but faces sig-002
nificant challenges related to various forms of003
copyright infringement, particularly, the API004
misuse and model extraction attacks. Various005
studies have proposed backdoor-based water-006
marking schemes to protect the copyright of007
EaaS services. In this paper, we reveal that pre-008
vious watermarking schemes possess semantic-009
independent characteristics and propose the Se-010
mantic Perturbation Attack (SPA). Our theo-011
retical and experimental analysis demonstrate012
that this semantic-independent nature makes013
current watermarking schemes vulnerable to014
adaptive attacks that exploit semantic pertur-015
bations tests to bypass watermark verification.016
Extensive experimental results across multi-017
ple datasets demonstrate that the True Positive018
Rate (TPR) for identifying watermarked sam-019
ples under SPA can reach up to more than 95%,020
rendering watermarks ineffective while main-021
taining the high utility of the embeddings. In022
addition, we discuss current potential defense023
strategies to mitigate SPA. Our code is available024
at https://anonymous.4open.science/r/025
EaaS-Embedding-Watermark-5326.026

1 Introduction027

Embedding-as-a-Service (EaaS) has emerged as a028

successful business pattern, designed to process029

user input text and return numerical vectors. EaaS030

supports different downstream tasks for users (e.g.,031

retrieval (Huang et al., 2020; Ganguly et al., 2015),032

classification (Wang et al., 2018; Akata et al., 2015)033

and recommendation (Okura et al., 2017; Zheng034

et al., 2024)). However, EaaS is highly susceptible035

to various forms of copyright infringement (Liu036

et al., 2022; Deng et al., 2024), especially the API037

misuse and model extraction attacks. As shown in038

Figure 1, after querying the text embeddings, mali-039

cious actors may seek to misuse the API of EaaS040

or potentially train their own models to replicate041
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Figure 1: The EaaS provider converts the query text
from user into embedding, and then applies semantic-
independent watermarking to provide the final water-
marked embedding. The watermark signals injected to
the two semantically opposed texts are identical.

the capabilities of the original models without au- 042

thorization at a lower cost, falsely claiming them 043

as their own proprietary services. 044

Watermarking, as a popular approach of copy- 045

right protection, enables the original EaaS ser- 046

vice providers with a method to trace the source 047

of the infringement and safeguard the legitimate 048

rights. Various works (Peng et al., 2023; Shetty 049

et al., 2024a,b) have proposed backdoor-based wa- 050

termarking schemes for embeddings to protect the 051

copyright of EaaS services. Previous schemes re- 052

turn an embedding containing a watermark signal 053

when a specific trigger token is present in the input 054

text. During copyright infringement, attackers will 055

maintain this special mapping from trigger tokens 056

to watermark signals. Developers can then assert 057

copyright by verifying the watermark signal. 058

We reveal that previous watermarking schemes 059

possess the semantic-independent characteristics, 060

which make them vulnerable to attack. Existing 061

schemes achieve watermark signal injection by lin- 062

early combining the original embedding with the 063

watermark signal to be injected. Thus, the water- 064

mark signal is independent of the input semantics, 065
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meaning that the injected signal remains constant066

regardless of changes in the input text. As shown067

in Figure 1, despite the semantic contrast between068

the texts “Happy day" and “Sad day" with the same069

trigger “day", the watermark signal injected in both070

is identical. Thus, the watermark signal is insensi-071

tive to the semantic perturbations, which contrasts072

with the behavior of original embeddings. There-073

fore, these semantic-independent characteristics074

may lead to traceability by attackers.075

To demonstrate, we introduce a concrete at-076

tack, named Semantic Perturbation Attack (SPA),077

exploiting vulnerability arising from semantic-078

independent nature. SPA employs semantic per-079

turbation tests to identify watermarked embeddings080

and bypass watermark verification. By applying081

multiple semantic perturbations to the input text, it082

detects whether the output embeddings contains a083

constant watermark signal, enabling the evasion of084

backdoor-based watermarks through the removal085

of watermarked samples. To ensure perturbations086

alter only text semantics without affecting water-087

mark signal, a suffix concatenation strategy is pro-088

posed. Comparing to ramdon selecting, we further089

propose a suffixes searching aprroach to maximiz-090

ing perturb text semantics. The perturbed texts091

are then fed into EaaS services, and by analyzing092

components such as PCA components, it becomes093

possible to determine if output embeddings cluster094

tightly around a fixed watermark signal, thereby095

identifying watermarked embeddings.096

The main contributions of this paper are summa-097

rized as following three points:098

• We reveal that current backdoor-based water-099

marking schemes for EaaS exhibit a semantic-100

independent nature and demonstrate how at-101

tackers can exploit this vulnerability.102

• We introduce SPA, an novel attack that ex-103

ploits the identified flaw to effectively circum-104

vent current watermarking schemes for EaaS.105

• Extensive experiments across various datasets106

demonstrate the effectiveness of SPA, achiev-107

ing a TPR of over 95% in identifying water-108

marked embeddings.109

2 Preliminary110

2.1 EaaS Copyright Infringement111

Publicly deployed APIs, particularly in recent EaaS112

services, have been shown vulnerable (Liu et al.,113

2022; Sha et al., 2023). We focus on EaaS ser- 114

vices based on LLMs, defining the victim model 115

as Θv, which provides the EaaS service Sv. The 116

client’s query dataset is denoted as D, with individ- 117

ual text as di. Θv computes the original embedding 118

eoi ⊆ Rdim, where dim is the embedding dimen- 119

sion. To protect EaaS copyright, a watermark is 120

injected into eoi before delivery. Backdoor-based 121

watermarking schemes (Adi et al., 2018; Li et al., 122

2022; Peng et al., 2023) are used to inject a hidden 123

pattern into the model’s output, acting as a water- 124

mark. We denote this scheme as f , producing the 125

final watermarked embedding epi = f(eoi). 126

2.2 EaaS Watermarks 127

EmbMarker (Peng et al., 2023) is the first to pro- 128

pose using backdoor-based watermarking to pro- 129

tect the copyright of EaaS services. It injects the 130

watermark by implanting a backdoor, which the 131

embedding of text containing triggers is linearly 132

added with a predefined watermark vector. It can 133

be defined as 134

epi = Norm
{
(1− λ) · eoi + λ · et

}
, (1) 135

where λ represents the strength of the watermark in- 136

jection and et represents the watermark vector. Em- 137

bMarker (Peng et al., 2023) utilizes the difference 138

of cosine similarity and L2 distance (∆Cos and 139

∆L2) between embedding sets with and without 140

watermark to conduct verification. The embedding 141

set with watermark will be more similar with et. 142

Also it uses the p-value of Kolmogorov-Smirnov 143

(KS) test to compare the distribution of these two 144

value sets. The limitations of a single watermark 145

vector make it vulnerable, prompting WARDEN 146

(Shetty et al., 2024a) to propose a multi-watermark 147

scheme. It can be defined as 148

epi = Norm
{
(1−ΣR

r=1λr)·eoi+ΣR
r=1λr ·etr

}
,

(2) 149

where λr represents the different strengths of wa- 150

termarks and eti represents the different watermark 151

vectors. WET (Shetty et al., 2024b) injects the 152

watermark into all the embeddings without con- 153

sidering the text with triggers, which may have a 154

great impact on the utility of the embeddings. VLP- 155

Marker (Tang et al., 2023) extends the backdoor- 156

based watermarking to multi-modal models. 157

2.3 Attacks on EaaS Watermarks 158

Current attacks on EaaS watermarks generally fall 159

into two categories: watermark elimination attacks 160
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Figure 2: Semantic Perturbation Demonstration in 2D
Space. When the perturbed angle reaches 180◦, this
θ1 < θ2 relationship holds for any watermark vector.

and watermark identification attacks.161

Watermark Elimination Attacks. They aim162

to bypass watermark verification by modifying the163

original embeddings to remove injected watermark164

signals. Typical methods include CSE (Shetty et al.,165

2024a) and PA (Shetty et al., 2024b).166

Watermark Identification Attacks. They aim167

to bypass watermark verification by identifying168

and removing the watermarked embeddings. ESSA169

(Yang et al., 2024) is a representative method.170

Our attack falls under watermark identification171

attacks, bypassing current schemes without altering172

original embeddings. In addition, our attack iden-173

tifies watermarked embeddings in both single and174

multi-watermark scenarios while ESSA struggles175

with multi-watermark schemes. Detailed descrip-176

tion of different attacks is given in Appendix A.177

3 Motivation178

As discussed in Section 2.2, et is independent179

of eoi , showing that the watermark siginal is180

semantic-independent. The watermark signal will181

affect watermarked samples and unwatermarked182

samples differently when faced with semantic per-183

turbations. A key insight is that under semantic184

perturbations, the text with triggers should exhibit185

fewer embedding changes than the text without trig-186

gers due to the semantic-independent component.187

Effective perturbations increase the likeli-188

hood of identifying watermarked embeddings189

as outliers, accompanied by an upper bound-190

ary that guarantees complete identification. For191

a text sample di, its perturbed form d′i yields the192

embedding pair (ei, e′i). Both ei and e′i are high-193

dimensional vectors. To visualize perturbations, we194

utilize a 2D example with a fixed watermark vector195

vect. As illustrated in Figure 2, assume text di con-196

tains triggers, and perturbations preserve the orig-197

inal triggers without introducing new ones. With-198

out injecting vect, the angle between (ei, e
′
i) is θ1.199

And after injecting vect, the angle between ei and 200

e′i changes to θ2. In Figure 2, red vectors represent 201

original ones, transforming to blue vectors after 202

adding vect. Following normalization, the water- 203

marked vector is projected onto the unit circle. The 204

goal of constructing (di, d
′
i) is to ensure θ2 < θ1, 205

clustering watermarked embeddings tightly in vec- 206

tor space. This angle distribution difference can be 207

used to identify suspicious samples. When θ1 is 208

small, achieving θ2 < θ1 requires |vect| to be large 209

and form an angle < 180◦ with ei and e′i. For large 210

θ1, constraints on vect relax. θ1 = 180◦ is the up- 211

per boundary of semantic perturbation (Figure 2). 212

If e′i opposes ei, any vect ensures θ2 < θ1. 213

4 Semantic Perturbation Attack 214

In this section, we offer a detailed explanation of 215

Semantic Perturbation Attack (SPA). The key in- 216

sight of SPA lies in leveraging carefully designed 217

semantic perturbations to amplify the divergence 218

between watermarked and non-watermarked em- 219

beddings in their responses to semantic variations. 220

Since existing watermarking methods are semantic- 221

independent, the watermark signals in watermarked 222

embeddings remain invariant under perturbations, 223

whereas original embeddings exhibit semantically 224

coherent variations. This fundamental discrepancy 225

in variation patterns enables watermark identifica- 226

tion. Thus, SPA is constructed with total three com- 227

ponents: (1) Semantic Perturbation Strategy; (2) 228

Embeddings Tightness Measurement; (3) Thresh- 229

old Selection. These three components collaborate 230

as described by the following equation: 231

Dsc = {dci ∈ Dc | S(dci , G(dci)) < φ}, (3) 232

where G indicates how to guide the semantic per- 233

turbation, S represents the tightness measurement 234

of embeddings before and after perturbation, and 235

φ is the selected threshold for indentifying the wa- 236

termarked samples from the query datasets. The at- 237

tacker queries the victim service using a dataset Dc. 238

And each sample in Dc is defined as dci . Dsc repre- 239

sents the purified dataset after SPA. The overview 240

and workflow of SPA is illustrated in Figure 3. 241

4.1 Threat Model 242

Based on real-world scenarios and previous work 243

(Peng et al., 2023; Shetty et al., 2024a), we define 244

the threat model, including the objective, knowl- 245

edge, and capability of the attacker. Notably, the 246

attacker can only interact with EaaS services in a 247
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Figure 3: The Framework of Semantic Perturbation Attack. Attackers apply the semantic perturbation strategy to
modify the original query dataset. The semantic-independent characteristic enables the selection and deletion of
watermarked embeddings, ultimately resulting in a purified dataset that bypasses watermark verification.

black-box approach, but is capable of leveraging a248

general text corpus Dp for assistance (Shetty et al.,249

2024a). Further details of the threat model can be250

found in Appendix B.251

4.2 Semantic Perturbation Strategy252

To conduct perturbation, many text-modifying tech-253

niques (e.g., synonym replacement) are available.254

However, these techniques are not suitable for EaaS255

scenario which may invalidate the original triggers256

in text. Therefore, we design a method that con-257

catenates text as a suffix to the input text to avoid258

invalidating the original triggers. All perturbations259

use suffix concatenation with d′ci = dci + perb and260

the corresponding embedding e′ci . We first explore261

a naive approach of randomly selecting text from262

the general text corpus as the perturbation suffix.263

However, this naive approach is only effective on264

some datasets. Details are provided in Appendix C.265

Therefore, we further proposed SPA.266

SPA serves as an enhancement to the random267

perturbation approach. To search for optimal per-268

turbation text as suffix, SPA leverages a lightweight269

open-source embedding model Θs locally without270

any training. By encoding (dci , perb) from Θs, em-271

beddings (seci , seperb) are obtained, where perb272

traverses the general text corpus as perturbation273

pool. The top-k perturbations with the lowest simi-274

larity between (seci , seperb) are selected, maximiz-275

ing the semantic gap between dci and perb. After276

obtaining the optimal suffixes through the guidance277

of Θs, constructing (dci , dci+perb) can effectively278

perform semantic perturbation on embeddings from279

Θv to detect the presence of watermarks.280

Algorithm 1 Suffix Direct Search Guidance
1: Input: Perturbation Pool P , Dataset Dc,
2: Standard Model Θs, Hyperparameter k
3: Output: Metric Values Set v
4: Initialize s← ∅(Suffix)
5: Initialize n← |Dc|, m← |P |
6: Set max(s)← 1 {▷ Cosine similarity range: [-1, 1]}
7: for i = 1 to n do
8: for j = 1 to m do
9: Encode: seci ← Θs(dci), seperb ← Θs(perbj)

10: sim← cosine(seci , seperb)
11: if |s| < k then
12: Append perbj to s
13: else if |s| ≥ k and sim < max(s) then
14: Remove max(s) from s
15: Insert perbj into s
16: end if
17: end for
18: Compute aggregate metric: metric← agg(s)
19: Append metric to v
20: end for
21: return v

The core idea stems from two components: (1) 281

Similarity Representing Semantic Gap: For text 282

dci , its embedding eci is the feature representation 283

of dci in a high-dimensional space. In this space, 284

the vector in the opposite direction can be seen 285

as having entirely different features. Lower simi- 286

larity between embeddings corresponds to greater 287

semantic gap. (2) Dual-Model Correlation: Since 288

the embeddings obtained from EaaS services may 289

contain watermarks, SPA employs a lightweight 290

local model Θs to guide semantic perturbations. 291

Both Θs and the victim model Θv fundamentally 292

capture textual features through their respective 293

embeddings. Although their embeddings reside 294

in distinct feature spaces, they exhibit consistent 295

differential properties (the similarity between em- 296
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beddings) in feature representation. This enables297

Θs to effectively guide suffix selection despite ar-298

chitectural differences, as shown in Appendix G.299

SPA obtains the optimal perturbation text via Θs.300

And concatenating the text with obvious semantic301

gap allows for significant perturbation. Θs encodes302

dataset Dc and the perturbation pool only once,303

with linear time complexity of |Dc|+ |perb pool|.304

The complete process is in Algorithm 1. We use305

Sentence-BERT (Reimers and Gurevych, 2019)306

without any training as Θs, which has fewer di-307

mensions than the victim model (384 ↔ 1536) and308

only 22.7M parameters.309

4.3 Embeddings Tightness Measurement310

After applying the strategies mentioned above to311

semantically perturb the input text, we require ef-312

fective metrics to capture the "tightness" or "vari-313

ation patterns" between the original embeddings314

and the perturbed embeddings, in order to indentify315

whether semantic-independent watermark signals316

are present. Our primary evaluation consists of317

three metrics represented as318

Cosinei =
1

k
Σk
j=1

eci · e
j′
ci

|eci | · |e
j′
ci |

,

L2i =
1

k
Σk
j=1|

eci
|eci |

− ej
′
ci

|ej
′
ci |

|,

PCA Scorei = Σ
Dpca

d=1 fpca(e
j′
ci | j = 1, 2, 3, . . . , k)

Dpca : lower dimension,
(4)319

where the three metrics are based on cosine similar-320

ity, L2 distance, and PCA score, representing the321

similarity of the original embeddings and perturbed322

ones. However, text perturbations may rarely in-323

troduce new triggers. Thus, k perturbations are324

conducted for each sample, combining results from325

k trials to mitigate potential impacts.326

Cosine Similarity Metric: Cosine similarity327

measures the cosine of the angle between the em-328
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Figure 5: Threshold Selection.

beddings in the vector space. We use the average 329

of the k trials as one of the evaluation metrics. 330

L2 Distance Metric: L2 distance represents the 331

straight-line distance between two data points in 332

high-dimensional space. We use the average of the 333

k trials as one of the evaluation metrics. 334

PCA Score Metric: We perform k perturba- 335

tions, obtaining eci and k perturbed embeddings: 336

{ej
′
ci | j = 1, 2, . . . , k}. For each sample dci , an 337

embedding set of size k + 1 is obtained. We ap- 338

ply PCA to compute eigenvalues for each principal 339

component. If dci contains triggers, the embed- 340

dings will cluster tightly in high-dimensional space 341

because of the identical watermark signal, resulting 342

in smaller eigenvalues after PCA. Thus, we use the 343

sum of eigenvalues as one of the evaluation met- 344

rics, as shown in Equation 4, where Dpca is the 345

reduced dimension and fpca computes eigenvalues. 346

Reducing embeddings to two dimensions and using 347

eigenvalues as coordinates yields Figure 4. 348

4.4 Threshold Selection 349

After obtaining the metrics of tightness measure- 350

ment, we need to determine a threshold to distin- 351

guish between watermarked and non-watermarked 352

embeddings, as the attacker has no knowledge of 353

the ground truth. The metric distributions will ex- 354

hibit a long-tail phenomenon due to texts with trig- 355

gers. Figure 5 elaborates on the attacker’s perspec- 356

tive. A partially overlapping and imbalanced PCA 357

score distribution may occur. Consequently, we se- 358

lect the saddle point between bimodal distributions 359

as the decision threshold φ for watermark identifi- 360

cation, where the first-order derivative equals zero 361

at this critical point. Samples with metrics below 362

φ are identified as containing watermarks and re- 363

moved from Dc, yielding a purified dataset. The 364

majority of samples with triggers are eliminated. 365

Although some benign data might also be removed, 366

it represents only a small proportion of Dc. 367
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Table 1: Watermark Identification Attack Performance.

Datasets Methods
EmbMarker WARDEN

ACC.(%) ↑ Detection Performance
ACC.(%) ↑ Detection Performance

∆Cos(%) ∆L2 (%) p − value ∆Cos(%) ∆L2 (%) p − value

SST2

Original 91.60 +2.37 −4.74 10−5 91.00 +6.47 −12.94 10−6

+ ESSA 91.00 −0.06 +0.12 10−1 92.60 +5.47 −10.93 10−7

+ Random 91.20 +0.25 −0.51 10−1 91.20 −1.75 +3.01 10−4

+ SPA 91.00 +0.17 −0.33 10−1 90.00 −1.08 +2.16 10−2

AG News

Original 88.80 +1.99 −3.99 10−6 89.00 +5.92 −11.84 10−8

+ ESSA 89.57 +1.14 −2.28 10−2 89.76 +12.79 −25.58 10−11

+ Random 89.00 +0.65 −1.30 10−2 90.20 +2.58 −5.16 10−7

+ SPA 89.80 +0.26 −0.52 10−1 89.00 +0.98 −1.95 10−2

Enron Spam

Original 92.00 +5.99 −11.99 10−7 92.20 +5.19 −10.39 10−8

+ ESSA 92.00 −0.51 +1.03 10−1 92.60 +5.47 −10.93 10−7

+ Random 91.60 +0.11 −0.22 10−1 92.00 +1.56 −3.12 10−4

+ SPA 91.40 +0.49 −0.98 10−1 92.40 +1.25 −2.50 10−2

MIND

Original 70.20 +5.64 −11.28 10−6 71.80 +9.26 −18.52 10−6

+ ESSA 70.10 −0.62 +1.24 10−1 70.18 +4.63 −9.26 10−6

+ Random 70.00 −0.32 +0.66 10−1 69.20 +2.48 −4.96 10−2

+ SPA 70.00 −0.33 +0.66 10−1 70.00 +2.80 −5.61 10−2

5 Experiment368

5.1 Experiment Setup369

We evaluate SPA on EmbMarker (Peng et al., 2023)370

and WARDEN (Shetty et al., 2024a), with text371

classification as downstream tasks and OpenAI’s372

text-embedding-ada-002 as the victim model. Ex-373

periments are conducted on four datasets: SST2374

(Socher et al., 2013), AG News (Zhang et al., 2015),375

Enron Spam (Metsis et al., 2006), and MIND (Wu376

et al., 2020). Due to API costs, we sample subsets377

of each dataset for experiments. Our results are378

the average of multiple experiments. Details of the379

datasets are in Appendix D.380

Baselines. We adopt ESSA (Yang et al., 2024),381

CSE (Shetty et al., 2024a) and PA (Shetty et al.,382

2024b)as baselines, with ESSA as watermark iden-383

tification attack and (CSE, PA) classified as wa-384

termark elimination attacks. We also compare the385

naive approach of random perturbation with SPA.386

Metrics. We employ the AUPRC to quantify387

the cosine similarity, L2 distance, and PCA score.388

A higher AUPRC indicates better performance in389

watermark identification. We also utilize the TPR,390

FPR and Precision to assess the performance of391

watermark identification. The p − value, ∆Cos,392

and ∆L2 are employed to assess the verification393

ability of the watermark. The attack is considered394

successful when the p− value ceases to be statisti-395

cally significant (i.e., reaches 10−1 or 10−2), with396

∆Cos and ∆L2 approaching zero. The utility of397

embeddings is evaluated through the downstream398

tasks accuracy.399

Settings. k perturbations are involved for each400

text, with k = 10 chosen to balance considerations401

of time and cost. The suffix search guidance uses402

the WikiText (Merity et al., 2016) dataset totaling 403

one million entries as the candidate pool. 404

5.2 Main Results 405

5.2.1 Attack Performance 406

We conduct a comprehensive evaluation of SPA 407

and other attack methods, which further highlight 408

the performance and advancement of SPA. 409

Bypass Watermark Verification. In SPA, al- 410

most 95% − 100% of watermarked samples are 411

identified and removed as shown in Table 3. Thus, 412

SPA results in a significant increase in p− value 413

from (10−6, 10−7, 10−8) to (10−1, 10−2), leading 414

to the failure of watermark verification as shown 415

in Table 1. For other attack methods, ESSA 416

and Random Perturbation fails against the multi- 417

watermark scheme WARDEN (Shetty et al., 2024a) 418

with p− value less than 10−4, meaning that they 419

cannot clearly identify the watermarked samples. 420

However, SPA have the ability to indentify the 421

watermarked samples in both single-watermark 422

and multi-watermark scheme, as effectively by- 423

passing different schemes across all four datasets. 424

The Utility of Embeddings. In SPA, attacker 425

will finally remove the suspicious samples from 426

original dataset. Therefore, we conduct experi- 427

ments to test whether the performance of embed- 428

dings for downstream tasks is affected. Table 1 429

demonstrates that after applying SPA, although the 430

dataset size is reduced, the decrease in accuracy on 431

downstream tasks is generally below 1%. More- 432

over, the accuracy on some datasets even slightly 433

improves after SPA. Thus, the utility of embed- 434

dings is basically unaffected, remaining compa- 435

rable to the performance of original dataset. 436
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Table 2: Performance of Combining SPA with Elimination Attack.

Datasets Methods
EmbMarker WARDEN

ACC.(%) ↑ Detection Performance
ACC.(%) ↑ Detection Performance

∆Cos(%) ∆L2 (%) p − value ∆Cos(%) ∆L2 (%) p − value

SST2

Original 91.60 +2.37 −4.74 10−5 91.00 +6.47 −12.94 10−6

+ PA 90.57 +0.27 −0.54 10−1 90.34 +0.12 −0.24 10−1

+ CSE 90.54 +0.65 −1.31 10−2 91.40 +0.05 −0.10 10−1

+ (SPA+CSE) 91.20 +0.20 −0.40 10−1 92.00 −1.02 +2.18 10−2

AG News

Original 88.80 +1.99 −3.99 10−6 89.00 +5.92 −11.84 10−8

+ PA 88.68 +4.27 −8.54 10−7 88.60 +5.80 −11.60 10−11

+ CSE 89.96 +0.35 −0.70 10−2 89.75 +0.93 −1.88 10−1

+ (SPA+CSE) 90.40 +0.36 −0.72 10−1 90.36 +1.06 −2.41 10−2

Enron Spam

Original 92.00 +5.99 −11.99 10−7 92.20 +5.19 −10.39 10−8

+ PA 90.40 −0.25 +0.50 10−1 90.85 +0.02 −0.03 10−1

+ CSE 91.25 +0.40 −0.81 10−1 91.90 +0.94 −1.88 10−1

+ (SPA+CSE) 92.40 +0.57 −1.02 10−1 92.42 +1.32 −2.63 10−2

MIND

Original 70.20 +5.64 −11.28 10−6 71.80 +9.26 −18.52 10−6

+ PA 69.25 +0.22 −0.45 10−1 69.26 +1.33 −2.65 10−1

+ CSE 69.62 +0.93 −1.86 10−2 70.38 −0.02 +0.04 10−1

+ (SPA+CSE) 71.00 −0.44 +0.88 10−1 73.34 +2.20 −4.41 10−2

Table 3: Semantic Perturbation Attack Performance. ‘⋆’ demonstrates the most important metrics.

Datasets Schemes Cos AUPRC L2 AUPRC PCA AUPRC⋆ Deletion Performance
Total Deletion TPR⋆ ↑ FPR ↓ Precision ↑

SST2
EmbMarker 0.8947 0.8888 0.9214 439/5000 95.68% 2.30% 75.63%
WARDEN 0.6190 0.6190 0.9000 437/5000 95.68% 2.26% 75.97%

AG News
EmbMarker 0.5665 0.5398 0.7052 1478/5000 97.65% 19.62% 42.08%
WARDEN 0.3323 0.3323 0.6791 1498/5000 96.86% 20.19% 41.19%

Enron Spam
EmbMarker 0.9284 0.9227 0.9685 572/5000 91.49% 1.26% 90.21%
WARDEN 0.7348 0.7348 0.9530 619/5000 92.91% 2.14% 84.65%

MIND
EmbMarker 1.0 1.0 1.0 152/5000 100% 0% 100%
WARDEN 0.4971 0.4971 0.7957 188/5000 84.21% 1.24% 68.09%

5.2.2 Orthogonal Combination437

SPA serves as an effective identification method438

that can be orthogonally combined with watermark439

elimination attacks to achieve enhanced perfor-440

mance. Thus, SPA can be effectively combined441

with CSE to precisely localize the suspicious em-442

beddings, while CSE’s removal mechanism elim-443

inates the watermark signals from these targeted444

embeddings. SPA+CSE modify only suspicious445

embeddings with TPR almost above 95% instead of446

large-scale modifications to the embeddings, thus447

enhancing the utility of embeddings as shown in448

Table 2. It also demonstrates comparable attack per-449

formance across different schemes, with p-values450

reaching magnitudes of 10−1 or 10−2. Compared451

to standalone SPA, SPA+CSE avoids dataset reduc-452

tion while outperforming standalone CSE in pro-453

viding more precise identification of watermarked454

embeddings, thereby achieving the highest accu-455

racy in downstream tasks.456

5.2.3 Time Overhead457

In SPA, local model encoding process constitutes458

the dominant time cost with the linear time com-459

plexity. Thus, we measured the time required for460

suffix search in SPA. In our settings, searching for461

the top− 10 optimal perturbation suffixes for a sin-462

gle text from the pertrubation pool of size 106 only 463

requires 0.15 seconds on average across all four 464

datasets. Meanwhile, we evaluate the effectiveness 465

of SPA under varying perturbation pool sizes. Even 466

with a pool of size 103, comparable perturbation 467

performance can be achieved. Detailed information 468

of experiment results can be found in Appendix H. 469

5.3 Ablation Study 470

We conducted extensive experiments on SPA from 471

multiple perspectives to validate its effectiveness 472

and capability across various scenarios. For clarity 473

of presentation, we conduct experiments on SST2 474

(Socher et al., 2013) and AG News (Zhang et al., 475

2015) datasets. 476

PCA Score demonstrates superior robustness 477

compared to other metrics. Table 3 shows that 478

the PCA score metric remains stable across dif- 479

ferent schemes. It also shows the performance of 480

watermark identification using the PCA score met- 481

ric, along with a TPR universally exceeding 90%. 482

This is likely because the PCA algorithm extracts 483

and preserves the watermark information in the em- 484

beddings while eliminating redundant information. 485

SPA performance improves as the number 486

of semantic perturbations increases. We eval- 487

uated SPA performance under different numbers 488
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Figure 6: PCA AUPRC and Number of Perturbations.
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Figure 7: PCA AUPRC and Watermark Ratio.

of perturbations using PCA AUPRC as the evalua-489

tion metric. The perturbation suffixes are selected490

following the order determined by suffix search491

guidance. The results shown in Figure 6 indicate492

that, SPA performance increases and stabilizes as493

the number of perturbations grows. This further494

demonstrates the effectiveness of SPA, as it ensures495

that effective suffixes are incorporated among mul-496

tiple candidates.497

SPA remains effective under different water-498

mark ratios. We evaluated SPA’s performance499

under varying watermark ratios, with a fixed num-500

ber of perturbations. Figure 7 shows that even501

with low watermark ratios (low-frequency triggers),502

SPA achieves a PCA AUPRC of 0.3-0.5, despite503

the stealer model failing to learn the watermark504

behavior. Performance improves as the watermark505

ratio increases. However, a high watermark ratio506

will result in excessive watermark injection and507

embedding modification. Nevertheless, the PCA508

AUPRC remains above 0.9, demonstrating SPA’s509

robustness across varying watermark ratios.510

6 Discussion of Mitigation Strategies511

To counter SPA, we explore potential mitigation512

strategies. We suggest a deep learning-based so-513

lution with: (1) a semantic-aware injection model514

that dynamically injects watermarks based on se-515

mantic features, and (2) a verification model. How-516

ever, this approach introduces a critical trade-off:517

when the adaptive watermark is learned by a stealer518

model, verification becomes substantially more 519

challenging. In addition, we attempt to reproduce 520

the adaptive EaaS watermarking schemes (Wang 521

and Cheng, 2024; Wang et al., 2024) in contempo- 522

rary studies. We discovere conclusions consistent 523

with our exploration. We believe that the semantic- 524

aware watermarking paradigm represents a promis- 525

ing direction, yet further investigation into its verifi- 526

cation capability remains essential. Detailed results 527

and analysis are provided in Appendix F. 528

7 Related Work 529

7.1 Model Extraction Attack 530

Model extraction attacks (Orekondy et al., 2019; 531

Sanyal et al., 2022; Chandrasekaran et al., 2020) 532

threaten Deep Neural Networks (DNNs) and cloud 533

services by enabling adversaries to replicate mod- 534

els without internal access. Attackers can query 535

APIs (Kalpesh et al., 2020) or gather physical data 536

(Hu et al., 2020) to train the stolen models. Pub- 537

lic APIs, especially in current EaaS services, are 538

proved to be vulnerable (Liu et al., 2022). 539

7.2 Deep Watermarking 540

Deep watermarking can be classified into white- 541

box, black-box, and box-free approaches based on 542

accessible data during verification (Li et al., 2021). 543

White-box watermarking schemes access model pa- 544

rameters (Yan et al., 2023; Lv et al., 2023; Pegoraro 545

et al., 2024), while black-box schemes rely only 546

on the model output (Leroux et al., 2024; Lv et al., 547

2024). Box-free watermarking schemes exploits 548

inherent output variations without crafted queries 549

(An et al., 2024). In EaaS, watermarking can be 550

regarded as a form of black-box watermarking. 551

8 Conclusion 552

In this paper, we propose SPA, a novel attack on 553

EaaS watermark exploiting the limitation that cur- 554

rent schemes is semantic-independent. SPA con- 555

ducts several semantic perturbations to input text, 556

constructs embedding pairs using the original and 557

perturbed embeddings, measuring the tightness of 558

embeddings and deletes suspicious samples exceed- 559

ing the threshold while preserving service utility. 560

Our extensive experiments demonstrate the effec- 561

tiveness of SPA. We also validate the importance 562

of SPA’s components and explore mitigation strate- 563

gies. Our work emphasizes the critical role of text 564

semantics in EaaS watermarking. 565
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Limitations566

In this paper, we propose SPA, a novel attack which567

exploits the semantic-independent vulnerabilities568

inherent in current EaaS watermarking schemes,569

successfully removing the majority of watermarked570

embeddings. However, an attacker requires a small571

local model for assistance to successfully execute572

SPA. Although such a scenario is realistic, we plan573

to explore attack schemes that do not require assis-574

tant models in our future work. Additionally, after575

each text perturbation, the attacker needs to re-576

access the original EaaS service, which increases577

the API cost of SPA. Furthermore, we note that578

as the number of suffixes increases, the effective-579

ness of SPA becomes more stable, while an insuf-580

ficient number of suffixes may lead to failure of581

SPA, thereby further amplifying concerns regard-582

ing the associated API costs. In future, we believe583

that advanced watermarking schemes will emerge,584

but SPA provides a perspective that emphasizes585

the importance of text semantics in the design of586

EaaS watermarking schemes. We will continue to587

explore how to develop feasible attack and water-588

marking schemes with enhanced robustness.589

Ethics Statement590

We introduce a novel and effective attack target-591

ing EaaS watermarks through the semantic per-592

turbation. Our objective is to underscore the crit-593

ical consideration of text semantics in EaaS wa-594

termark design, thereby enhancing security. We595

believe that the first step toward enhancing secu-596

rity is to expose potential vulnerabilities. All our597

experiments are conducted under control, with no598

attempts made to launch actual attacks on EaaS ser-599

vice providers. We have further explored potential600

mitigation strategies to address SPA.601
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Appendix797

A Overview of Different Attack Methods798

In Appendix A, we provide a comprehensive and799

detailed introduction to various attack methods,800

including CSE, PA, and ESSA.801

• ESSA (Yang et al., 2024) is a kind of water-802

mark identification attack. ESSA appends a803

token to the input text and evaluating whether804

the token functions as a trigger by analyzing805

the divergence between embeddings before806

and after token addition.807

• CSE (Shetty et al., 2024a) is a kind of water-808

mark elimination attack. CSE uses clustering809

to identify embedding pairs, selects potential810

watermarked embeddings by analyzing dis-811

crepancies between a standard model and the812

victim model, and eliminates principal com-813

ponents to erase watermark signals.814

• PA (Shetty et al., 2024b) is a kind of water-815

mark elimination attack. PA employs a lan-816

guage model to rewrite input texts multiple817

times, retaining semantics but potentially los-818

ing trigger tokens. Averaging embeddings819

from these iterations dilutes the watermark820

signals. This attack paradigm modifies origi-821

nal embeddings, inevitably compromising the822

utility of embeddings.823

B Definition of the Threat Model824

In Appendix B, we clearly define the threat model,825

detailing the objective, knowledge, and capability826

of the attacker.827
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Figure 8: Different Approaches of Semantic Perturba-
tions: Length and Semantics. Regardless of whether
watermarked or not, random text preforms better than
random tokens. The injection of the watermark has led
to a significant gap between the curves.

Attacker’s Objective. TThe attacker aims to 828

use embeddings from the victim model Θv without 829

watermark verification. The attacker can then effi- 830

ciently provide a competitive alternative instead of 831

pre-training a new model. 832

Attacker’s Knowledge. The EaaS service oper- 833

ates as a black box. The attacker queries the victim 834

service Sv using a dataset Dc, where each sample 835

is dci . While unaware any information of Θv, the 836

attacker can reasonably access a general text cor- 837

pus Dp and a small local embedding model Θs to 838

design the attack algorithm. 839

Attacker’s Capability. With sufficient budget, 840

the attacker can query Sv to obtain the embedding 841

set Ec for Dc. They can then employ various attack 842

strategies to bypass watermark verification. 843

C Exploration of Perturbations 844

C.1 Exploration of Suffix 845

In Appendix C.1, we provide the detailed explo- 846

ration of semantic perturbation. The text pertur- 847

bation denoted as perb can only be constructed as 848

prefix or suffix. The potential construction space 849

for the suffix can be classified from two perspec- 850

tives: the length of the suffix and its semantics. We 851

use EmbMarker (Peng et al., 2023) as an example. 852

Random tokens without semantics: We first ex- 853

plore a simple construction method by the adding 854

random tokens as the suffix without semantics. 855

Specifically, we tokenize each sentence in a gen- 856

eral text corpus and compile all tokens into a total 857

token vocabulary. We randomly add tokens to the 858

suffix. At this stage, we explore the relationship be- 859

tween suffix length and perturbation performance 860
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before and after the watermark injection, measured861

by (eci , e
′
ci). The results in Figure 8 indicate that862

as the suffix length increases, the embeddings sim-863

ilarity gradually decreases. After the watermark864

injection to (eci , e
′
ci), the rate of decrease signifi-865

cantly slows and remains notably higher than the866

curve without the watermark injection.867

Random text with semantics: We randomly se-868

lected long texts from a general text corpus, tok-869

enize it to obtain a sequence of tokens and sequen-870

tially add each token to the suffix. We explored the871

effects both with and without watermark injection.872

The results are illustrated in Figure 8. It is evident873

that semantic suffix lead to a faster enhancement874

of perturbation performance, with the curve with875

watermark injection also significantly exceeding876

that without injection. Interestingly, for the same877

suffix length, the performance of perturbations us-878

ing text with semantics is generally higher than that879

achieved with random tokens. The finding suggests880

that using the suffix with semantics is more cost-881

effective and produces better results. Therefore, we882

will consistently utilize the semantic suffix during883

the perturbation process.884

Text with & without semantics: For suffix, the885

construction space can be categorized from two886

perspectives: length and semantics. A series of887

experiments demonstrate that using random text888

with semantics is more cost-effective and produces889

better results compared to random tokens without890

semantics. Based on this, we propose a heuristic891

perturbation scheme.892

C.2 Heuristic Perturbation Scheme893
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Figure 9: Cosine similarity metric distribution and KDE
curve of the Enron Spam dataset in Heuristic Perturba-
tion Scheme.

In Appendix C.2, we introduce heuristic seman-894

tic perturbation scheme. Semantic suffixes improve895

perturbation performance at lower costs, making896

suspicious samples easier to detect. Based on this,897

we propose a heuristic perturbation scheme. Fol-898

lowing previous works, we focus on text classi-899

Algorithm 2 Suffix Perturbation Guidance
1: Input: Perturbation Pool P , Dataset Dc

2: Standard Model Θs, Hyperparameter k
3: Output: Metric Values v
4: Initialize s← ∅(Suffix)
5: Initialize n← |Dc|, m← |P |
6: Set max(s)← 1 {▷ Cosine similarity range: [-1, 1]}
7: for i = 1 to n do
8: for j = 1 to m do
9: d′ci ← dci + perbj

10: Encode: seci ← Θs(dci), se
′
ci ← Θs(d

′
ci)

11: sim← cosine(seci , seperb)
12: if |s| < k then
13: Append perbj to s
14: else if |s| ≥ k and sim < max(s) then
15: Remove max(s) from s
16: Insert perbj into s
17: else
18: Skip perbj
19: end if
20: end for
21: Compute aggregate metric: metric← agg(s)
22: Append metric to v
23: end for
24: return v

fication tasks. In the context of text classifica- 900

tion, heuristic perturbation scheme randomly se- 901

lects samples with different labels from original 902

as suffixes, leveraging semantic differences to en- 903

hance the perturbation. We randomly select k sam- 904

ples for perturbation and calculate the average co- 905

sine similarity of k embedding pairs, to reduce 906

the influence of potential triggers in the suffixes. 907

We conducted experiments on four classic datasets: 908

Enron Spam (Metsis et al., 2006), SST2 (Socher 909

et al., 2013), MIND (Wu et al., 2020) and AG News 910

(Zhang et al., 2015). From the perspectives of the 911

attacker and ground truth, the cosine similarity dis- 912

tribution of Enron Spam dataset is shown in Figure 913

9. The distribution results indicate observable dif- 914

ferences for the Enron Spam and MIND datasets, 915

while such differences are less pronounced for the 916

SST2 and AG News datasets. Thus, we need to 917

further explore a more effective approach. 918

C.3 Semantic Perturbation Guidance 919

In Appendix C.3, we introduce another small 920

local model suffix perturbation guidance approach. 921

The results in Figure 9 indicate that the effective- 922

ness of the simple heuristic perturbation scheme 923

needs further improvement. Although the embed- 924

ding spaces of Θv and Θs differ, the variations be- 925

tween (eci , e
′
ci) under the same perturbation show 926

similar patterns across all these spaces. Specifically, 927

we input the text pair (dci , dci+perb) into Θs to ob- 928

tain the corresponding embedding pair (seci , se
′
ci). 929
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Table 4: Training Settings.

Datasets Train Test Class Metrics Schemes Original Subset Epoch Adjustment

SST2 67, 349 → 5, 000 872 → 500 2 ACC.(%)
EmbMarker 93.46% 91.60% 3 → 30

WARDEN 93.46% 92.20% 3 → 50

AG News 120, 000 → 5, 000 7, 600 → 500 4 ACC.(%)
EmbMarker 93.57% 88.80% 3 → 20

WARDEN 93.76% 89.00% 3 → 20

Enron Spam 31, 716 → 5, 000 2, 000 → 500 2 ACC.(%)
EmbMarker 94.85% 92.00% 3 → 20

WARDEN 94.60% 92.20% 3 → 10

MIND 97, 791 → 5, 000 32, 592 → 500 18 ACC.(%)
EmbMarker 77.23% 69.20% 3 → 75

WARDEN 77.18% 71.80% 3 → 75

The perturbation perb traverses through all can-930

didates in the perturbation pool. The top-k perb931

texts that minimize the similarity of (seci , se
′
ci)932

are selected as candidate suffixes. Since the em-933

beddings output by Θs are not watermarked, it is934

feasible to use this small local model to guide the935

perturbations for Θv. We similarly take the aggre-936

gate metric over k perturbed samples for evalua-937

tion. Θs captures the differential features between938

(dci , dci +perb). Such differential features are con-939

sistent across models. However, suffix perturbation940

guidance is less efficient since each text have to tra-941

verse all the candidates in the perturbation pool. It942

results in the time complexity of |Dc| · |perb pool|,943

requiring Θs to encode |Dc| · |perb pool| perturba-944

tion processes. The entire process of the algorithm945

is shown in Algorithm 2.946

D Dataset Introduction947

In Appendix D, we will provide a comprehensive948

description of the specific details of the datasets949

utilized, including their structure, preprocessing950

steps, and relevant statistics. The datasets selected951

for our experiments—SST2 (Socher et al., 2013),952

AG News (Zhang et al., 2015), Enron Spam (Metsis953

et al., 2006), and MIND (Wu et al., 2020)—are954

widely recognized as benchmark datasets in the955

field of Natural Language Processing (NLP). We956

apply the four datasets to the text classification task,957

with a primary focus on investigating the potential958

impact of watermarks on this downstream task.959

• SST2: The SST2 dataset is a collection of960

movie reviews labeled with binary sentiment961

(positive or negative), commonly used for962

training and evaluating models in sentiment963

classification tasks.964

• AG News: The AG News dataset is a col-965

lection of news articles categorized into four966

topics, commonly used for text classification967

and NLP tasks.968

• Enron Spam: The Enron Spam dataset con- 969

sists of the emails collection labeled as ei- 970

ther “spam" or “non-spam" (ham), making it a 971

valuable resource for studying spam filtering, 972

email classification. 973

• MIND: The MIND dataset is a large-scale 974

dataset designed for news recommendation. It 975

can also used for news classification tasks. 976

E Experiment Settings 977

In Appendix E, we will provide a detailed descrip- 978

tion of the training configurations employed in our 979

experiments. Furthermore, we demonstrate that our 980

experimental setup is both rational and effective in 981

conducting various evaluation tests. 982

Table 4 provides detailed information about the 983

datasets used in our study. It also highlights the 984

adjustments made to the number of training epochs 985

in order to ensure performance on the respective 986

subsets of each dataset. Specifically, the small- 987

est dataset contains more than 30,000 data items, 988

while the largest dataset includes over 12,000 data 989

items. For our experiments, we sampled a subset 990

of 5,000 examples from the training set and 500 991

examples from the test set. This sampling strategy 992

was carefully chosen to balance the need for the 993

cost of the experiment with the goal of maintaining 994

representative data coverage. Table 4 indicates that, 995

despite using subsets, the accuracy of downstream 996

tasks has not significantly decreased in different wa- 997

termarking schemes. On certain specific datasets, 998

the accuracy achieved using the subset for train- 999

ing has even shown a slight improvement. This 1000

may be attributed to the inherent randomness in 1001

training process. Since the focus is on a relatively 1002

simple text classification task, the model appears 1003

to perform well even on the subset, maintaining 1004

favorable results. The results of the experiments 1005

demonstrate that conducting tests on these subsets 1006

not only produces valid and meaningful outcomes 1007

but also confirms the practicality. 1008
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Table 5: Semantic Aware Watermarking Performance

Datasets Cos AUPRC L2 AUPRC PCA AUPRC⋆ Deletion Performance Verification
Total Deletion TPR⋆ ↑ FPR ↓ Precision ↑ p− value

SST2 0.5348 0.5296 0.6946 87/5000 20.75% 0.32% 82.76% 10−7 → 10−1

AG News 0.2731 0.2669 0.3295 216/5000 13.97% 2.97% 39.81% 10−9 → 10−1

Enron Spam 0.4133 0.4088 0.5574 133/5000 15.78% 0.99% 66.92% 10−6 → 10−2

MIND 0.9999 0.9999 0.9999 80/5000 52.63% 0% 100% 10−7 → 10−1

Table 6: Reproduction of GuardEmb

Method
Watermark Detection Performance

Recall (%) Accuracy (%) F1 Score (%)
Original 0.00 96.94 N/A

EmbMarker 5.91 8.67 11.14
GuardEmb 0.00 97.63 0.00

F Adaptive Watermark Analysis1009

In Appendix F, we will present experimental re-1010

production results of current adaptive watermark-1011

ing schemes (Wang and Cheng, 2024; Wang et al.,1012

2024) alongside our own extended investigations.1013

GuardEmb (Wang and Cheng, 2024) uses DNNs1014

to enable dynamic watermark injection and veri-1015

fication, ensuring distinct watermark signals for1016

different text embeddings. However, as shown in1017

our reproduction results in Table 6 on SST2 dataset,1018

GuardEmb achieves F1 Score = 0 and Recall = 01019

during watermark verification, indicating that it1020

misclassifies all watermarked embeddings as non-1021

watermarked. Due to the use of mid-frequency1022

trigger tokens, watermarked embeddings constitute1023

an extreme minority class. Consequently, while1024

GuardEmb attains high accuracy (biased by class1025

imbalance), its F1 and Recall metrics collapse to1026

zero. This demonstrates GuardEmb’s failure to sus-1027

tain verifiability against model extraction attacks.1028

ESpeW (Wang et al., 2024) is the same as Em-1029

bMarker (Peng et al., 2023) in the selection of the1030

watermark, only selecting a single watermark vec-1031

tor. During the watermark injection process, ES-1032

peW selects the positions with the top− k smallest1033

absolute values in the text embeddings for water-1034

mark injection, employing a strategy reminiscent1035

of the least significant bit (LSB) approach. At the1036

selected positions, ESpeW applies a linear com-1037

bination scheme similar to EmbMarker, while the1038

watermark verification process remains identical to1039

that of EmbMarker. Consequently, ESpeW quali-1040

fies as an adaptive watermarking scheme, injecting1041

watermark information at positions dynamically1042

determined by the embedding characteristics. How-1043

ever, in practice, ESpeW does not rely on straight- 1044

forward linear combinations. Instead, it overwrites 1045

the values at the chosen positions in the text em- 1046

beddings with the corresponding watermark vector 1047

entries with high probability. This strong pertur- 1048

bation ensures reliable watermark verification, but 1049

it also deviates from the original paper’s method. 1050

This approach is susceptible to statistical analysis 1051

attacks, as the values of watermark vector may ex- 1052

hibit abnormally high frequency in the embeddings, 1053

potentially undermining stealthiness. 1054

We also try to implement an adaptive (semantic- 1055

aware) watermarking scheme and conduct exten- 1056

sive experiments. We implement the adaptive wa- 1057

termarking scheme by training the watermark injec- 1058

tion model and the watermark verification model. 1059

Our experimental results in Table 5 demonstrate 1060

that end-to-end training of both watermark injec- 1061

tion and verification models can significantly en- 1062

hance watermark stealthiness and resistance against 1063

SPA. However, this approach introduces a criti- 1064

cal trade-off: when the watermark is learned by a 1065

stealer model, verification becomes substantially 1066

more challenging. This represents a fundamen- 1067

tal trade-off between watermark stealthiness and 1068

verifiability. As demonstrated in Table 5, our ex- 1069

ploration reveals that when dynamically injecting 1070

watermarks via the watermark injection model, the 1071

stolen model struggles to learn watermarking sig- 1072

nals, resulting in higher p-values than the fixed 1073

watermark during watermark verification. Adap- 1074

tive watermarking approach generates distinct wa- 1075

termark signals for each instance, significantly in- 1076

creasing the difficulty for stolen models to learn 1077

and inherit these patterns compared to fixed water- 1078

mark vectors. Our code is also publicly available 1079

in our repository. 1080

G Differential Properties 1081

In Appendix G, we will demonstrate that text em- 1082

beddings derived from different models exhibit sim- 1083

ilarities in their differential properties. Meanwhile, 1084

we demonstrate that this similarity is preserved in 1085
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Table 7: Spearman Correlation Coefficient of Differential Properties

Comparison Type Architecture Model Size
Spearman Correlation Coefficient

Enron SST2 MIND AG News
(victim, random) – – 0.000 -0.002 0.001 0.009
(victim, local1) paraphrase-MiniLM-L6-v2 80 MB 0.403 0.516 0.537 0.504
(victim, local2) paraphrase-MiniLM-L12-v2 120 MB 0.431 0.557 0.534 0.501
(victim, local3) all-mpnet-base-v2 420 MB 0.484 0.625 0.635 0.668
(victim, local4) sentence-t5-large 640 MB 0.562 0.576 0.638 0.609

Table 8: Perturbation with Different Pool Size

Pool Size
AUPRC Deletion

Cosine L2 PCA TPR Precision
106 0.9982 0.9979 0.9979 0.57 100%
105 0.9666 0.9656 0.9802 0.56 100%
104 0.9536 0.9518 0.9762 0.53 100%
103 0.9767 0.9690 0.9517 0.51 100%

models with different parameters.1086

To systematically validate the consistency of1087

differential properties across different embedding1088

models, we conduct a controlled experiment by1089

randomly sampling 100 text embeddings from four1090

distinct datasets. For each dataset, pairwise cosine1091

similarities between embeddings are calculated to1092

construct a 100× 100 similarity matrix, which is1093

subsequently transformed into a rank matrix by1094

sorting similarity values per embedding. Using the1095

rank matrix derived from OpenAI API embeddings1096

(serving as the victim model in our paper) as the1097

reference benchmark, we calculate the Spearman1098

Correlation Coefficient with: (1) the rank matrix1099

obtained using the local model (such as paraphrase-1100

MiniLM-L6-v2), and (2) the randomly selected1101

rank matrix. The Spearman Correlation Coefficient1102

ranges from [-1, 1], where values closer to 1 indi-1103

cate a stronger positive correlation.1104

As demonstrated in Table 7, our experimental1105

results reveal:1106

• A strong positive correlation between similar-1107

ity gap in embeddings from OpenAI API and1108

those from the local model.1109

• No significant correlation with randomly se-1110

lected embeddings.1111

H Perturbation Pool Size1112

In Appendix H, we will demonstrate that under1113

varying sizes of the text perturbation pool, the per-1114

turbation suffixes selected through guidance from a1115

local small model consistently achieve effective se-1116

mantic perturbation performance. Furthermore, as1117

the pool size decreases, the semantic perturbation 1118

effectiveness exhibits only a marginal decline. 1119

In our experiments, we evaluate the effective- 1120

ness of semantic perturbations under varying per- 1121

turbation pool sizes. Specifically, we randomly 1122

sample 100 watermarked embeddings and 100 non- 1123

watermarked embeddings, conducting experiments 1124

across perturbation pools of sizes 103, 104, 105, 1125

and 106. We randomly sample the pools from 1126

Wikitext-103-raw-v1 (Merity et al., 2016) dataset 1127

to construct the perturbation pool. As shown in 1128

Table 8, the effectiveness of semantic perturbations 1129

exhibits only minimal degradation across different 1130

perturbation pool sizes. Even with a pool size as 1131

small as 1,000 samples, comparable perturbation 1132

performance can be achieved. 1133
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