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ABSTRACT
Graph analytics across various sources yields valuable insights;

however, ensuring privacy becomes increasingly challenging. Fed-

erated analytics offers a promising privacy-preserving framework

for data analytics. Nonetheless, most current methods are geared

towards generic tabular data, limiting their effectiveness in com-

plex graph analytics. In this paper, we first present federated graph
analytics (FGA), a new paradigm that calculates common graph

statistics (i.e., degree distribution, subgraph counting, etc.) across

several distributed subgraphs. A key challenge with FGA is the

limited view each client has of the global graph, making it chal-

lenging for each client to obtain accurate graph statistics. To tackle

this, we propose an FGA framework that supports various graph

analytics while providing a privacy guarantee. We find that the

overlapping information among distributed subgraphs leads to re-

dundant randomization, influencing the utility significantly. To

mitigate this issue, we put forward an improved method based

on private set intersection (PSI) techniques. By perturbing each

item in disjoint subgraphs only once, we reduce the level of added

noise considerably. Extensive experiments conducted on real-world

graphs demonstrate that our improved method outperforms the

baseline by over 70% in most cases.

CCS CONCEPTS
• Security and privacy→ Social aspects of security and pri-
vacy; Human and societal aspects of security and privacy.
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1 INTRODUCTION
Graph data has emerged as a critical resource for modeling and

analyzing big data in various applications, including finance, social

network, and healthcare. As big data develops, processing or ana-

lyzing graph data over multiple parties becomes common. Graph
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analytics at scale provide valuable insights but they pose more

challenges for individual privacy protection.

Federated Analytics (FA) [2, 8, 24], a distributed collaborative

analytic paradigm, is a promising privacy-preserving framework

for extracting insights across multiple parties without revealing

any local information beyond the targeted insights. Over the past

decades, the most prominent application of federated analytics is

Federated Learning (FL) [3, 16, 27]. Despite similarities, FA and FL

are distinct. Most FL works research on training and aggregating

the parameters of a specified machine learning model, while FA

concentrates on gathering basic statistics from a generalized per-

spective. Thus, FL can be viewed as a complex FA statistic on the

distributed data.

In this paper, we introduce Federated Graph Analytics (FGA), a

new computational paradigm for common graph statistics such as

degree distribution, subgraph counting, and give some illustrative

examples in real-world as follows:

Example 1.1. Federated Social Graph Analytics. Consider
that several social platforms (e.g., Facebook, Twitter, LINE, etc.)

with their own subgraphs collaboratively analyze the global social

network, such as degree distribution [17] (i.e., number of edges

connected to a node), subgraph countings (e.g., the number of

triangles, stars, or cliques) [9], etc.

Example 1.2. Federated Financial Graph Analytics. Con-
sider that thousands of financial institutions (e.g., banks) collect

their own local subgraphs for internal analysis [6]. The demands

for graph analytics across distributed subgraphs are increasing. For

example, a risk assessment has to be conducted among different

banks before lending money to an individual or an enterprise.

Example 1.3. Federated Hospital Graph Analytics. Consider
that several hospitals own their private graph about the spread

of certain diseases, for instance, COVID-19. It is necessary that

the health administration in a certain region asks several hospitals

collaborate with each other to detect the spread of COVID-19.

Although privacy-preserving FA models have made considerable

progress, supporting graph statistics presents a greater challenge.

Earlier FA frameworks for tabular data analytics allowed each client

to obtain an intermediate answer based on their own data, which

was then sent to an untrusted mediator. But in FGA, each client has

a limited view of the global graph and requires information from

other clients before obtaining the intermediate answer. For example,

as shown in Figure 1, if the query task 𝑄 is the triangle counting,

each client will return the intermediate answer𝑄𝑖 (𝐺𝑖 ) that is equal
to 0. Here, three edges of the targeted triangle < 2, 3, 4 > are from

three different clients, which makes it difficult for any client to find

any triangle in its local subgraph.

To address the above challenge, we propose a novel FGA frame-

work that supports common graph statistics (i.e., degree distribu-

tion, k-stars, triangle counts, etc.) while providing formal privacy

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: An example of FGA: triangle counting.

guarantee, such as differential privacy protection [7]. To the best of

our knowledge, this is the first work to compute graph statistics via

FGA. The key idea is that the untrusted mediator collects noisy sub-

graphs from distributed clients and aggregates a noisy global graph,

upon which various graph statistics are then executed. During the

collection and aggregation, we use Edge Differential Privacy (Edge

DP) [10, 11, 28, 29] to provide a privacy guarantee for each client’s

sensitive information.

Despite the FGA framework resolving the limited view of the

global graph, overlapping information across multiple clients leads

to excessive noise. To be specific, for every private collection and

aggregation, each client has to randomize each item once. In the

worst case, each item needs to be perturbed by𝑚 times, and the

privacy budget 𝜀 has to be divided by𝑚, namely, 𝜀𝑙 = 𝜀/𝑚, where𝑚

is the number of clients. To address this, we propose an improved

method based on Private Set Intersection (PSI) techniques [5, 22].

We first generate a disjoint set of distributed subgraphs securely

using PSI. Then each silo only randomizes the disjoint subgraph

once using privacy budget 𝜀 instead of 𝜀/𝑚. The utility is improved

significantly since less noise is needed during privacy protection.

The main contributions are as follows:

• We identify the key challenge of federated graph analytics

(FGA): a limited view of the global graph makes it difficult

for each client to execute graph statistics.

• We introduce an FGA framework to support common graph

statistics while providing a formal privacy guarantee.

• We find that overlapping information among different clients

results in much utility loss. We propose an improved ap-

proach based on PSI technology. Each silo only perturbs

each item of its subgraph once, reducing the added noise

significantly.

• We conduct extensive experiments to verify the feasibility

of our proposed algorithms.

The rest of this paper is structured as follows. Section 2 provides

the preliminaries. Section 3 introduces our proposed FGA frame-

work and improved approach. Section 4 presents our experimental

results. Section 5 reviews previous works on federated analytics

and graph analytics, and Section 6 draws a conclusion.

2 PRELIMINARIES
Federated Graph Data. In this paper, we consider undirected

graphs with no additional attributes on nodes or edges within the

context of Federated Graph Analytics (FGA). The FGA scenario

includes𝑚 clients and an untrusted mediator. Each client 𝑆𝑘 owns

a subgraph 𝐺𝑘 = (𝑉𝑘 , 𝐸𝑘 ), where 𝑉 is the set of nodes, 𝐸𝑘 is the

set of edges, and |𝑉 | = 𝑛. Each user 𝑖 in 𝐺𝑘 owns one adjacent

bit vector 𝐵𝑖 = {𝑏𝑖1, 𝑏𝑖2, ..., 𝑏𝑖𝑛}, where 𝑏𝑖 𝑗 = 1 (𝑖, 𝑗 ∈ [1, 𝑛]) if
the edge (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 and 𝑏𝑖 𝑗 = 0 otherwise. The subgraph can

also be represented as 𝐺𝑘 = {𝐵1, ..., 𝐵𝑛}. The global graph that is

aggregated from distributed subgraphs can be represented as 𝐺 =

{𝐺1, ...,𝐺𝑚} or 𝐺 = (𝑉 , 𝐸), where 𝑉 =
⋃𝑚

𝑘=1
𝑉𝑘 and 𝐸 =

⋃𝑚
𝑘=1

𝐸𝑘 .

It is worth noting that each client is mutually independent of others

and there may exist overlaps among different clients, denoted as

𝐺𝑘1 ∩𝐺𝑘2 ≠ ∅, where 𝑘1 ≠ 𝑘2.

Graph Statistics. The untrusted mediator collects graphs pri-

vately from distributed clients and executes common graph statis-

tics𝑄 , such as degree distribution and subgraph counting. The num-

ber of adjacent edges for one node 𝑖 is the node degree 𝑑𝑖 , namely,

𝑑𝑖 =
∑𝑛

𝑗=1 𝑏𝑖 𝑗 , where 𝑛 is the number of users in each client. The

server computes the degree sequence 𝑠𝑒𝑞(𝐺) = {𝑑1, ..., 𝑑𝑛} based
on a noisy graph and the degree distribution 𝑑𝑖𝑠𝑡 (𝐺) can be easily

obtained from 𝑠𝑒𝑞(𝐺) by counting each degree frequency. A trian-

gle is a closed three-path with three edges and three nodes. A 𝑘-star

(i.e., 2-star and 3-star) consists of a central node and 𝑘 neighboring

nodes. The triangle and 𝑘-star countings are used to compute the

number of triangles and 𝑘-stars in a graph, respectively.

Private Set Intersection. Private Set Intersection (PSI) is a

cryptographic paradigm in multi-party computation that allows 𝑛

parties to compute the intersection of their data securely without

revealing any additional information outside the intersection. Al-

though several two-party PSI protocols [4, 18, 20, 21] have been

proposed, multi-party PSI (MPSI) protocols [1, 5, 13, 19] become

more suitable for numerous real-world applications. We give more

details about MPSI technique in Appendix A.

Graph Differential Privacy. In terms of privacy, we use local

differential privacy (LDP) to protect local subgraphs. As a graph

consists of nodes and edges, we have two different definitions when

LDP is applied to graph data: Node-LDP and Edge-LDP. In this

paper, we use Edge-LDP which owns better utility than Node-LDP

and is sufficient to protect subgraphs in FGA. The definitions for

Node-LDP and Edge-LDP are as follows:

Definition 1 (Node-LDP). A random algorithm𝑀 satisfies 𝜀-node

LDP, iff for any 𝑖 ∈ [𝑛], two adjacent bit vectors 𝐵𝑖 and 𝐵′
𝑖
that

differ at most (𝑛 − 1) bits, and any output 𝑦 ∈ 𝑟𝑎𝑛𝑔𝑒 (𝑀),
𝑃𝑟 [𝑀 (𝐵𝑖 ) = 𝑦] ≤ 𝑒𝜀𝑃𝑟 [𝑀 (𝐵′

𝑖
) = 𝑦]

Definition 2 (Edge-LDP). A random algorithm𝑀 satisfies 𝜀-edge

LDP, iff for any 𝑖 ∈ [𝑛], two adjacent bit vectors 𝐵𝑖 and 𝐵′
𝑖
that

differ only in one bit, and any output y ∈ 𝑟𝑎𝑛𝑔𝑒 (𝑀),
𝑃𝑟 [𝑀 (𝐵𝑖 ) = 𝑦] ≤ 𝑒𝜀𝑃𝑟 [𝑀 (𝐵′

𝑖
) = 𝑦]

3 METHODOLOGY
In this section, we present an FGA framework and an improved

method utilizing PSI technology.
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Figure 2: An overview of the FGA framework

3.1 FGA Framework
Initially, we propose an FGA framework for private graph statistics

in federated settings. As depicted in Fig. 2, our framework involves

several distributed clients and an untrusted mediator. Each client

calculates the sensitivity (△) of a given arbitrary graph query func-

tion (𝑄𝑖 ), which sets the upper bound on the level of noise each

client contributes to maintaining privacy. Next, each client perturbs

its local subgraph 𝐺𝑖 according to the input privacy budget 𝜀 and

the sensitivity △. Specifically, given a privacy budget 𝜀𝑙 = 𝜀/𝑚,

every client 𝑘 ∈ [1,𝑚] randomizes each bit in its neighbor list

with flipping probability 𝑞 = 1

1+𝑒𝜀𝑙 using random response (RR)

[9, 29]. Following this, the clients send the noisy subgraph to the

mediator. Ultimately, the mediator aggregates a noisy global graph

and conducts various graph analytics 𝑓 (𝐺 ′).
The main idea of our FGA framework is shown in Alg. 1. It inputs

every client’s subgraph, which is represented as adjacent bit vectors

{𝐵1, ..., 𝐵𝑛} and the privacy budget 𝜀. Each client first computes its

privacy budget, namely, 𝜀𝑙 = 𝜀/𝑚, where𝑚 is the number of clients.

Then clients perturb each bit in adjacent bit vectors with a flipping

probability
1

1+𝑒𝜀𝑙 , and sends noisy subgraphs to the mediator. The

mediator collects and aggregates a noisy global graph and calculates

graph statistics upon it.

Empirical Estimation. Applying RR mechanism to an original

graph 𝐺 can lead to a denser problem. Typically, real-world graphs

adhere to the power-law distribution and tend to be sparse: an

adjacent bit vector contains more 0s than 1s. However, after ran-

domization, the noisy graph 𝐺 ′
becomes significantly denser than

𝐺 : the number of 1s is larger than that of 0s. Here, we employ the

known post-processing technique, empirical estimation [9, 23, 29],

to achieve unbiased estimations of graph statistics as follows:

Proposition 1. Let 𝐺 ′ be a noisy global graph collected from
distributed clients by RR to each adjacent bit vector. Let 𝑑′

𝑖
=
∑𝑛

𝑗=1 𝑏
′
𝑖 𝑗

be a biased estimation of node 𝑖’s degree. Let 𝑡0, 𝑡1, 𝑡2, 𝑡3 be the number
of no-edges, 1-edges, 2-edges, triangles in𝐺 ′, respectively. Let 𝑓𝑑 ′

𝑖
(𝐺 ′)

and 𝑓△ (𝐺 ′) be unbiased estimations of the node degree and triangle
counting, respectively. Then

𝑓𝑑 ′
𝑖
(𝐺 ′) =

∑𝑛
𝑗=1 𝑏

′
𝑖 𝑗

2𝑝 − 1

+ (𝑝 − 1)𝑛
2𝑝 − 1

, 𝑝 =
𝑒𝜀𝑙

𝑒𝜀𝑙 + 1

(1)

𝑓△ (𝐺 ′) = 1

(𝑒𝜀𝑙 − 1)3
(𝑡3 .𝑒3𝜀𝑙 − 𝑡2 .𝑒

2𝜀𝑙 + 𝑡1 .𝑒
𝜀𝑙 − 𝑡0) (2)

Algorithm 1 FGA Framework

Input: Each client’s graph 𝐺𝑘 = {𝐵1, ..., 𝐵𝑛},
Privacy budget 𝜀

Output: Target graph statistic 𝑓

1: Client 𝑆𝑘∈[1,𝑚] : perturb its graph with 𝜀𝑙 = 𝜀/𝑚
2: for each 𝐵𝑖 ∈ 𝐺 , where 𝑖 ∈ [1, 𝑛] do
3: for each 𝑏 𝑗 ∈ 𝐵𝑖 , where 𝑗 ∈ [1, 𝑛], 𝑖 < 𝑗 do
4:

𝑏 𝑗 ′ =
{
𝑏 𝑗 𝑤.𝑝. 𝑒𝜀𝑙

1+𝑒𝜀𝑙
1 − 𝑏 𝑗 𝑤.𝑝. 1

1+𝑒𝜀𝑙
5: end for
6: end for
7: Client 𝑆𝑘∈[1,𝑚] : send noisy graph to mediator

8: Mediator: aggregate noisy graph and computes 𝑓

9: return 𝑓

Algorithm 2 Generate Disjoint Graphs

Input: Distributed local graphs 𝐺 = {𝐺1, ...,𝐺𝑚}
Output: Disjoint local graphs 𝐺 = {𝐺1, ..., ˆ𝐺𝑚}
1: Initialize a set 𝐺 = {𝐺1}
2: for each 𝐺𝑖 ∈ 𝐺 , where 𝑖 ∈ [2,𝑚] do
3: ∩𝐺𝑖=MPSI (𝐺𝑖 , 𝐺)

4: 𝐺𝑖 = 𝐺𝑖 − ∩𝐺𝑖

5: 𝐺 = 𝐺 ∪𝐺𝑖

6: end for
7: return 𝐺

Limitation of FGA framework. It is noteworthy that over-

lapping information may exist among different subgraphs, which

implies that each sensitive item must be perturbed multiple times

(i.e.,𝑚 times). These multiple perturbations influence the utility

significantly. For instance, some users may send money to the

same friends or enterprises through different banks. There exists

some overlapping information among different financial subgraphs.

To protect sensitive information during multiple collections, each

sensitive item has to be randomized by𝑚 times. Accordingly, the

overall privacy budget 𝜀 needs to be divided by𝑚, namely, 𝜀𝑙 = 𝜀/𝑚.

3.2 Improved Method based on PSI
In intuition, if different information of distributed clients is disjoint,

each sensitive information only needs to be randomized once and

the privacy budget will become 𝜀𝑙 = 𝜀. In this subsection, we divide

the local graphs into multiple disjoint sets privately using private

set intersection (PSI). We adopt the SOTA multi-party PSI (MPSI)

protocol [12] to compute the intersection privately among multiple

clients in semi-honest settings.

The MPSI protocol consists of two main phases: conditional zero-

sharing phase and conditional reconstruction phase. Firstly, in the

conditional zero-sharing phase, every client 𝑆𝑖 securely generates

additive sharing of zero for each of its item 𝑔𝑖
𝑘
. Here, for easily

computing PSI among different clients, we use 𝑔𝑘 to represent each

edge in 𝐺𝑖 and the value of 𝑔𝑘 is equal to the sum of source node’s

ID and destination node’s ID. If the other client 𝑆 𝑗 owns 𝑔
𝑖
𝑘
, 𝑆𝑖

will send the share of zero to it; otherwise, a random value will
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be sent. In the second phase, each client performs the conditional

reconstruction. The idea is that if the sum of shares about item 𝑔𝑖
𝑘
is

equal to 0, 𝑔𝑖
𝑘
will be in the intersection; otherwise, the sum is equal

to a random value. The identity privacy of items is guaranteed by

a key building block, namely, the oblivious, programmable PRF

(OPPRF) [12]. We describe more details about MPSI protocol for

graphs in Appendix A.

Based on the MSPI protocol, we propose a method for generating

disjoint graphs, as shown in Alg. 2. To be specific, we initialize a

virtual set 𝐺 that only includes 𝐺1. Next, each client 𝑆𝑖 computes

the intersection ∩𝐺𝑖 between𝐺𝑖 and𝐺 . Then we update this virtual

set𝐺 by computing the union between𝐺 and (𝐺𝑖 −∩𝐺𝑖 ). Finally, it

returns a set of𝑚 disjoint graphs, namely,𝐺 . Each client randomizes

the disjoint graph with the privacy budget 𝜀𝑙 (=𝜀) as illustrated in

FGA framework, and sends a noisy subgraph to the mediator. The

mediator aggregates the noisy global graph and finishes various

graph statistics.

3.3 Privacy and Security Analysis
Theorem 3. Our FGA framework satisfies 𝜀𝑙 -Edge-LDP.

Proof of Theorem 3: Let 𝐵 = {𝑏1, ..., 𝑏𝑛} and 𝐵′ = {𝑏′
1
, ..., 𝑏′𝑛} are

two adjacent vectors that differ in 1 bit. Our randomized algorithm is

denoted as𝑀 and 𝑃𝑟 [𝑏 → 𝑜] denotes the probability that 𝑏 ∈ {0, 1}
becomes 𝑜 ∈ {0, 1} after the random bit flipping. Let 𝑝 = 𝑒𝜀𝑙

𝑒𝜀𝑙 +1 , 𝑞 =

1 − 𝑝. Given any output 𝑂 = (𝑜1, ..., 𝑜𝑛) from𝑀 , we have

𝑃𝑟 [𝑀 (𝐵) = 𝑂]
𝑃𝑟 [𝑀 (𝐵′) = 𝑂)] =

𝑃𝑟 [𝑏1 → 𝑜1] ...𝑃𝑟 [𝑏𝑛 → 𝑜𝑛]
𝑃𝑟 [𝑟 ′

1
→ 𝑜1] ...𝑃𝑟 [𝑏′𝑛 → 𝑜𝑛]

<
𝑝

𝑞
= 𝑒𝜀𝑙

Then according to the parallel composition property and post-

processing property [7, 15], we have

𝑃𝑟 [𝑓 (𝐺) = 𝑄]
𝑃𝑟 [𝑓 (𝐺 ′) = 𝑄] < 𝑒𝜀𝑙

Theorem 4. Our improved method satisfies 𝜀-Edge-LDP.

Theorem 5. Our generation method of disjoint subgraphs is secure
in the semi-honest model, against any number of corrupting, colluding,
semi-honest clients.

4 EXPERIMENTS
On the basis of the proposed algorithms in Section 3, we would like

to answer the following questions in this section:

• For different graph statistics, how much does the improved

method via MPSI outperform the basic FGA framework?

• What is the tradeoff between utility and privacy of our pro-

posed methods?

4.1 Experimental Setup
We use two real-world graph datasets from SNAP [14], Facebook

graph and Wiki graph, to compare our proposed methods, namely,

baseline approach and improved method. The Facebook graph con-

tains 4,039 nodes and 88,234 edges, and Wiki graph owns 7,115

nodes and 103,689 edges. We assume that there are three clients,

and for each client’s subgraph, we randomly sample a subgraph

from each graph dataset with a sampling probability 50%. Then we
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measure the degree sequence, triangle counting, k-star counting (2-

stars and 3-stars). In all experiments, we vary the privacy budget 𝜀

from 0.5 to 3. All of our experimental results are the average values

computed from 3 runs. We use ‘Baseline’, Improved’ to represent

the basic FGA framework and improved method via PSI, respec-

tively. We use the mean squared error (MSE) as a metric to estimate

the utility loss under different privacy budgets 𝜀, as used in [29].

In general, the MSE can be computed as 𝑀𝑆𝐸 (𝑓 (𝐺), 𝑓 (𝐺)′) =
1

𝑛

∑𝑛
𝑖=1 (𝑓 (𝐺)𝑖 − 𝑓 (𝐺)𝑖 ′)2, where 𝑛 is the number of users in a graph.

4.2 Experimental Results
Fig. 3 shows the results of publishing the degree sequence on Face-

book and Wiki graphs. We can find that the improved method

outperforms the baseline approach in all cases. To be specific, the

MSE of improved method is less than that of baseline by up to 90%

on Facebook when 𝜀 = 3. The MSE of the baseline is larger than

that of improved method by over 80% on Wiki when 𝜀 varies from

0.5 to 3. Fig. 4 presents the results of triangle counting on Facebook
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and Wiki graphs. We can observe that the utility loss of the im-

proved method is much less than that of the baseline in all cases.

In particular, the MSE of baseline is larger than that of improved

method by over 90% on Wiki graph in most cases. Fig 5 illustrates

the results of 2-star and 3-star counting on Facebook graph. We can

see that our improved method outperforms the baseline by at least

74.7% on 2-star counting when 𝜀 = 2.5. And the MSE of the baseline

is larger than that of our improved method by up to 97% when 𝜀 =

0.5. Overall, our proposed improved method improves the baseline

approach for common graph statistics. The main reason is that we

make distributed graphs disjoint using PSI techniques, which leads

to only perturbing each item once.

5 RELATEDWORKS
The related works are divided into two parts, including federated

analytics and graph analytics, which are summarized as follows.

Federated Analytics. The term Federated Analytics was first

introduced by Google in 2020 [24], which is explored in support of

federated learning for Google engineers to measure the quality of

federated learning models against real-world data. The work [2]

introduces the notion of Federated Computation that is a means

of working with private data at a rather large scale. It provides

particular emphasis on federated analytics that is broadly under-

stood as the aspects of federated computation. The authors [26]

clarify what federated analytics is and its position in literature,

and then present the motivation, application, and opportunities of

federated analytics. The paper [8] gives a comprehensive survey

about federated analytics. They discuss the unique characteristics

of federated analytics and the differences from federated learning.

Although there are some previous works studying and discussing

the federated analytics recently, they only focus on tabular data

which totally differ from graph data in our work.

Graph Analytics. Some works try to process queries over large

graphs in distributed user devices. The authors [25] introduce

Mycelium for large-scale distributed graph queries with differential

privacy. They address three main technical challenges that include

topology privacy, neighbor data privacy, and scalability. But the

distributed scenario of this paper is different from ours, where each

user device only contains a single individual. The paper [30] de-

fines the notion of graph federation for subgraph matching, where

graph data sources are temporarily federated. But the proposed

framework is too specific for subgraph matching to be useful for

other common graph statistics, i.e., degree distribution, subgraph

counting, etc. There are a number of research works that publish

graph statistics using local differential privacy (LDP), for example,

degree distribution [17], subgraph counting [9–11], etc. They be-

long to a special case of federated graph analytics since each client

just includes a single user.

In our work, we consider a general FGA scenario where each

client owns an independent subgraph and our proposed methods

support various common graph statistics.

6 CONCLUSION
In this work, we have defined a new computational paradigm, Fed-

erated Graph Analytics (FGA), which addresses the problem of

computing graph statistics with a limited view of the global graph

from the perspective of individual clients. We first introduce an FGA

framework that can support various common graph statistics while

providing a formal privacy guarantee. We find that the overlapping

information among clients results in each item being perturbed

many times, reducing the utility of the FGA framework. Next, we

propose an improved method based on PSI techniques that gen-

erates disjoint subgraphs securely. With this approach, each item

needs to be randomized only once, improving the overall utility

significantly. Comprehensive experimental results verify the utility

and privacy achieved by our proposed work.
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Algorithm 3 Multi-Party PSI (MPSI) protocol [12]

Parameters:𝑚 clients 𝑆1, ..., 𝑆𝑚 .

Input: Client 𝑆𝑖 has input 𝐺𝑖 = {𝑔𝑖
1
, ..., 𝑔𝑖𝑡 }

Protocol:

1: For each 𝑖 ∈ [1,𝑚] and each 𝑘 ∈ [1, 𝑡], client 𝑆𝑖 chooses random
values {𝑟 𝑖, 𝑗

𝑘
| 𝑗 ∈ [1,𝑚]} subject to

⊕
𝑗 𝑟

𝑖, 𝑗

𝑘
= 0.

2: For each 𝑖, 𝑗 ∈ [1,𝑚], clients 𝑆𝑖 and 𝑆 𝑗 use an instance of

F 𝐹,𝑡,𝑡
𝑂𝑃𝑃𝑅𝐹

where:

• 𝑆𝑖 is sender with input {(𝑔𝑖
𝑘
, 𝑟
𝑖, 𝑗

𝑘
) |𝑘 ∈ [1, 𝑡]}.

• 𝑆 𝑗 is receiver with input 𝐺 𝑗 .

For 𝑔
𝑗

𝑘
∈ 𝐺 𝑗 , let ˆ𝑟𝑘

𝑖,𝑗
represent the output for 𝑔

𝑗

𝑘
of 𝐹𝑂𝑃𝑃𝑅𝐹

obtained by 𝑆 𝑗 .

3: For all 𝑖 ∈ [1,𝑚] and 𝑘 ∈ [1, 𝑡], client 𝑆𝑖 sets 𝑅𝑖 (𝑥𝑖𝑘 ) = 𝑟
𝑖, 𝑗

𝑘

⊕
⊕

𝑗≠𝑖 ˆ𝑟𝑘
𝑖,𝑗
.

4: For each 𝑖 ∈ [2,𝑚], client 𝑆𝑖 and 𝑆1 use an instance of F 𝐹,𝑡,𝑡
𝑂𝑃𝑃𝑅𝐹

where:

• 𝑆𝑖 is sender with input {(𝑔𝑖
𝑘
, 𝑅𝑖 (𝑥𝑖𝑘 )) |𝑘 ∈ [1, 𝑡]}.

• 𝑆1 is receiver with input 𝐺1.

For 𝑔1
𝑘
∈ 𝐺1, let 𝑦

𝑖
𝑘
represent the output for 𝑔1

𝑘
of 𝐹𝑂𝑃𝑃𝑅𝐹

involving 𝑆𝑖 .

5: Party 𝑆1 announces 𝑔
1

𝑘
∈ 𝐺1 |𝑅1 (𝑔1𝑘 ) =

⊕
𝑖≠1 𝑦

𝑖
𝑘
.

A MPSI PROTOCOL
The main protocol is presented in Alg. 3. It consists of two major

phases. Firstly, in the conditional zero-sharing phase (step 1-3), each

client 𝑆𝑖 acts as a dealer for each of its items𝑔𝑖
𝑘
∈ 𝐺𝑖 , and generates a

random additive sharing of zero:

⊕
𝑗 𝑟

𝑖, 𝑗

𝑘
= 0, 𝑗 ∈ [1,𝑚]. Then each

pair of 𝑆𝑖 and 𝑆 𝑗 invoke an instance of oblivious, programmable

PRF (OPPRF) (Section 3 in [12]), which is the main building block

of MPSI. 𝑆𝑖 is a sender with input {(𝑔𝑖
𝑘
, 𝑟
𝑖, 𝑗

𝑘
) |𝑘 ∈ [1, 𝑡]}, and 𝑆 𝑗 acts

as a receiver with input 𝐺 𝑗 . If an item 𝑔 is shared by all clients,

then all pairs of clients will exchange shares securely, and all shares

generated a single party XOR to zero. Secondly, in the conditional

reconstruction phase (step 4-5), the client 𝑆1 acts as a "dealer" and

determines each item 𝑔 ∈ 𝐺1 whether 𝑔 is in the intersection.

This can also be implemented by an OPPRF. If 𝑔 is indeed in the

intersection, we can obtain 𝑅1 (𝑔) =
⊕

𝑖≠1 𝑦
𝑖
; otherwise it will be a

random value.
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