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ABSTRACT

Exploration in deep reinforcement learning (RL), especially uncertainty-based
exploration, plays a key role in improving sample efficiency and boosting total
reward. Uncertainty-based exploration methods often measure the uncertainty
(variance) of the value function; However, existing exploration strategies either
only consider the uncertain impact of next “one-step” or propagate the uncer-
tainty for all the remaining steps in an episode. Neither approach can explicitly
control the bias-variance trade-off of the value function. In this paper, we pro-
pose Farsighter, an explicit multi-step uncertainty exploration framework in DRL.
Specifically, Farsighter considers the uncertainty of exact k future steps and it can
adaptively adjust k. In practice, we learn Bayesian posterior over Q-function to
approximate uncertainty in each step. In model-free cases, we recursively deploy
Thompson sampling on the learned posterior distribution for k steps and in model-
based cases, we solve a joint optimization problem of higher dimension for a tree-
based model. Our method can work on general tasks with high/low-dimensional
states, discrete/continuous actions, and sparse/dense rewards. Empirical evalu-
ations show that Farsighter outperforms SOTA explorations on a wide range of
Atari games, robotic manipulation tasks, and general RL tasks.

1 INTRODUCTION

While reinforcement learning (RL) has shown great performance in tackling tasks such as
robots Schulman et al.| (2015), Atari games Mnih et al.[| (2015), and AlphaGo [Silver et al.| (2016),
significant barriers remain to applying RL in applications with sparse rewards. Sparse rewards can
rarely provide informative feedback on actions. This problem is particularly challenging when the
reward of an action is only obtained after a long sequence of actions. Recently, exploration strategies
are proposed to tackle the above problems |Yang et al|(2021): 1) Uncertainty-based methods Janz
et al.|(2019) estimate the uncertainty (variance) of Q values via Bayesian posterior and take actions
based on its uncertainty; and 2) Intrinsic-motivation methods |Chentanez et al.| (2005); Houthooft,
et al.[(2016) take the uncertainties of states as intrinsic rewards and use them as exploration bonuses.
However, these one-step uncertainty estimation methods still cannot solve the problem efficiently.
First, none of them works very well on the tasks with sparse rewards, e.g. Skiing. Worse still, these
methods introduce a new uncertainty vanishing issue [Ecoffet et al. (2019): as an agent explores
the environment and becomes familiar with a local area after a number of steps, the uncertainty of
the area diminishes, thus the agent loses its exploration ability and may get stuck in a local area.
Because of those problems, the Q-value estimation is usually biased since the agent cannot explore
the environment enough. To handle the problems, some other uncertainty-based algorithms (e.g.
OB2I|Bai et al.|(2021), WQL Metelli et al.|(2019)) propagate the uncertainty in a long-term manner:
they accumulate uncertainties for all the remaining steps in an episode. In such cases, because the
environments usually contain thousands of steps (e.g. Atari), the uncertainty (variance) estimation
is usually very large. Both the one-step uncertainty and uncertainty propagation methods lack the
ability to explicitly adjust the number of future uncertainty steps and thus it is difficult to use them
to explicitly control the bias-variance(uncertainty) trade-off of the value function.

To address this challenge, in this paper, we propose Farsighter, an explicit multi-step uncertainty
exploration framework in DRL. Existing exploration methods only consider the uncertain impact of
next “one-step” or propagate the uncertainty for all the remaining steps in an episode. In contrast,
Farsighter considers the uncertainty for k future steps and it can explicitly adjust k to consider the
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multi-step impact. First, is beneficial in cases with long-term sparse rewards. The agent learns the
impact of the current action on future k step rewards even if no immediate reward is given. Second,
considering future uncertainties helps escape the local familiar areas, thus alleviating the uncertainty
vanishing issue. Third, the number of k allows the agent to explicitly adjust the number of future
steps and thus balance the bias-variance of Q estimation.

Specifically, Farsighter first learns Bayesian posterior over Q-function/action to approximate uncer-
tainty. In the model-free case, Farsighter estimate multi-step uncertainty using a recursive Gaussian
process while addressing its computational complexity. Farsighter applies in both discrete and con-
tinuous action tasks. For discrete action tasks, we deploy the value-based DDQN |[Van Hasselt et al.
(2016) and use Bayesian linear regression for the last layer of the Q-network to approximate the
Bayesian posterior over Q-function. For continuous action tasks, we build on NAF|Gu et al.[(2016),
and use the Bayesian Neural network to approximate the Bayesian posterior over actions of the Q-
function. This allows us to directly incorporate the uncertainty over the Q-function in each step.
To estimate the “k-step” uncertainty in practice without exponential computational complexity, we
formulate the problem as a recursive Gaussian process, in which we recursively deploy Thompson
sampling on the learned posterior distributions for k steps. In model-based case, we consider the
multi-step uncertainty with a tree-based model. In each step, we sample action instances based on
the posterior and then get next states from the dynamic model. We perform the process for k step
and then solve a joint optimization problem of higher dimension to get each action.

In summary, we make the following contributions:

* We propose Farsighter that allows explicit multi-step exploration that considers the k-step
uncertainty. The Farsighter helps address the issues of long-term sparse rewards and uncer-
tainty vanishing.

* Farsighter works in model-free and model-based cases. In model-free cases, we formulate
the multi-step uncertainty estimation problem as a recursive Gaussian process and approxi-
mate it using recursive Thompson sampling. In model-based cases, we formulate the prob-
lem as a tree-based model and solve a joint optimization problem of higher dimensions.

* We develop Farsighter implementations that apply in both discrete and continuous action
tasks. Moreover, we also develop an adaptive Farsighter to further improve the exploration
performance.

* Empirical results show that the proposed method is scalable and outperforms SOTA on a
wide range of RL tasks with high/low-dimensional states, discrete/continuous actions, and
sparse/dense rewards, including hard-to-explore problems such as high-dimensional Atari
games and continuous control robotic manipulation tasks.

2 RELATED WORK

Uncertainty-based methods usually model the uncertainty via the Bayesian posterior of the value
function. The agent is encouraged to explore the unknown environment with high uncertainty. We
can categorize existing methods to two types: parametric posterior and the non-parametric posterior.

Parametric Posterior based Exploration: Parametric posterior is usually learned by Bayesian
regression in linear MDPs, where the transition and reward functions are assumed to be linear to
state-action features. RLSVI|Osband et al.|(2016b)) performs Bayesian regression in linear MDPs
so that it can sample the value function through Thompson Sampling. BDQN |Azizzadenesheli et al.
(2018) performs Bayesian Linear Regression (BLR) in the last layer of the Q-network. It approx-
imately considers the last-layer Q-network as a linear MDP problem. Successor Uncertainty Janz
et al.| (2019) approximates the posterior through successor features which are linear to the Q value
of the corresponding state-action pairs.

Non-Parametric Posterior based Exploration: Bootstrap-based exploration constructs a non-
parametric posterior based on the bootstrapped value functions. Bootstrapped DQN |Osband et al.
(2016a) maintains several independent Q-estimators and randomly samples one of them at the be-
ginning of each episode, which enables the agent to conduct exploration.

The above methods only consider the uncertainty in next one-step. Moreover, some methods prop-
agate the uncertainty in a long-term manner. They accumulate uncertainties for all the remaining
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steps in an episode. In model-free cases, WQL Metelli et al.| (2019) approximates the parametric
posterior distribution based on Wasserstein barycenters. OB2I Bai et al.| (2021) performs back-
ward induction of bootstrapped-based uncertainty to capture the long-term uncertainty in an whole
episode. In model-based cases, Plan2explore [Sekar et al| (2020) leverages planning to explore by
imagining the consequences of the actions using the current dynamic model. The planning objective
is to maximize expected novelty over all future steps.

3 PRELIMINARIES

3.1 MARKOV DECISION PROCESS (MDP)

A MDP is represented by the tuple (S, A, R, P,~) [Sutton & Barto| (2018)), where S is the set
of states; A is the set of actions; R is the reward function; P is the transition probability func-
tion and « is the reward discount factor. The objective of an MDP is to learn a policy 7 to
maximize the discounted cumulative reward. Given a state s and action a, the Q function is

Q(s,a) = Ern Do gV R(St, at, S141)|50 = 8, a0 = a.

4 FARSIGHTER: MULTI-STEP EXPLORATION

In this section, we introduce Farsighter that performs exploration by considering the uncertainty of
the next “k-step”. In Sec.[d.1] we first motivate why we need the multi-step uncertainty estimation.
In Sec. and we present how to estimate uncertainty with discrete actions and continuous
actions. In Sec.[4.4]and [4.3] we introduce how to perform multi-step exploration in model-free and
model-based cases. In Sec.[4.6] we show how to adaptive choose the number of k.

4.1 MOTIVATION OF MULTI-STEP EXPLORATION

Assume the ground truth of a Q-value is ()4, we define the Bayesian posterior of a Q-estimation as
N(Qe, €), where Q. is the mean value and ¢ is the variance (uncertainty) of the Q-estimation. We
call the distance of |Q, — Q.| as the bias of the Q-estimation.

Empirically, in one-step uncertainty estimation methods (e.g. BDQN), the variance ¢ is usually
small, which leads the agent cannot explore the environment enough. Thus the Q-estimation usually
has high bias. On the other hand, in uncertainty propagation methods (e.g. OB2I), which propa-
gate all the remaining uncertainty in an episode, the Q-estimation is usually less biased, because the
variance € is usually very large and the agent can explore more in the environment. However, large
variance is at the risk of too much unnecessary exploration and thus slow down the learning con-
vergence speed. Thus we need a method that explicitly adjust the uncertainty exploration steps that
balance the bias-variance trade-off. In Sec.[5.1} we empirically show the significance of Farsighter.

4.2 ESTIMATING BAYESIAN UNCERTAINTY WITH DISCRETE ACTIONS

For discrete action cases, we build our algorithm on the DDQN|[Van Hasselt et al.|(2016) and estimate
the uncertainty on Q-function. DDQN architecture consists of a deep neural network where the last
layer is usually a linear MLP function of the state representation and action. Thus, given any state
s and action a, Q(s,a) = ¢g(s)Tw,, where ¢g(s) € R? parameterized by 6 represents state s and
wq € RY is the parameter of the last linear MLP layer on action a.

To estimate the exploration uncertainty, we build Farsighter over DDQN with the Bayesian frame-
work. In the last layer of Q-network Q(s, a), instead of using the linear MLP regression, Farsighter
deploys the Gaussian Bayesian linear regression (BLR) (Rasmussen| (2003)), which results in an
approximated Bayesian posterior on the w, and consequently on the Q-function. The Bayesian pos-
terior w,, is modeled as a Gaussian with {@,, Cov, }, where @, is the posterior mean and Cov,, is
the posterior covariance. Moreover, we leverage the re-parameterization trick to write

Q(s,a) = do(s) wa = dp(s)T (@Wa + /Cova2), (1)

where 2 is a random variable z ~ A/(0, I). Through BLR, the agent efficiently approximates the
distribution over the Q-values and captures the uncertainty over the Q estimates. In the parameters
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updating process, the BLR-based Q-function updates parameters 6 and w,, Cov, separately. The
process is shown in the Algorithm

Update ¢y(s): we update ¢g(s) as the standard DDQN (Eq.[7). We keep the w, as the mean value
of the posterior i, and update 8 using the following loss function:

(Q(Sa a, 07 (Da) -Tr-—= ’YQ(S/a arg max Q(s/a a/a 0, (Da)v Qtarget’ (D(tlarget))2. (2)

Update &,,, Cov,: we update @, and Cov, with fixed ¢g(s). Given a dataset D = {s;, a;,y; } 21,
where y; are target values, we construct |.A| disjoint datasets for each action, D = Uy 4D,, where
D, is a set of tuples (s;, a;,y;) with the action a; = a. Let us construct a matrix &, € RAxDa 5
concatenation of feature column vectors {qﬁ(si)}f’;l, andy, € %P+, a concatenation of target values

in set D,. We then approximate the posterior distribution of w, as follows

1 1+ 1\
Wg = —QCovaq)aya, Cov, = ;‘ba‘ba + ;I , 3)
o

€ €

where I € R¢ is an identity matrix. This is the derivation of the BLR, with zero mean prior and as
o and o2 as the variance of prior and likelihood respectively.

4.3 ESTIMATING BAYESIAN UNCERTAINTY WITH CONTINUOUS ACTIONS

Value-Based methods, like DDQN, suit problems with discrete action spaces. For continuous action
cases, we build our algorithm on the NAF |Gu et al.| (2016)) and estimate the uncertainty on actions.
NAF architecture consists three output streams z(s|60%), L(s|6%), and V (s]6""), as shown in Eq.
Usually, the three sub-networks are functions of a shared state representation network ¢y (s). Thus,
we have 1(s]0%) = u(p(s)|0%), where 6% is the parameter of layers taking state representation ¢(s)
as input and output action a. The network architecture is shown in the Appendix.

Original NAF cannot estimate the uncertainty for actions, in our work, we propose to estimate the
exploration uncertainty for continuous actions using a Bayesian neural network (BNN) [Kononenko
(1989) for the action sub-network p(4(s)|6%). BNN treats the model weights and output action as
variables. Instead of finding a set of optimal estimates, BNN fits the Bayesian posterior distributions
for them. Every weight in 6% is modeled as a Gaussian distribution with a mean and variance. It
directly learns the uncertainties of the actions given a state representation ¢(s). To get action, we
can sample one set of weights from the distribution. To update the parameters, we update parameters
of OV, 0% 0 and 6 separately.

Update 6,67, 0: we update 8,67, 0 with a fixed #%, which is mean value from the Bayesian
posterior. The update rule is same as Eq. replacing arg max Q(s’, a’, 0, @, ) with pu(¢(s")|6%).

Update 6%: to learn the posterior distribution 1(6%|(¢(s), a)), we fix the parameters of (8,6 9)
and update the parameters of ¢ with the Evidence Lower Bound(ELBO) loss | Kononenko| (1989).
Specifically, we approximate the posterior distribution p(6%|(¢(s),a)) with another distribution
[1(0%), which is called a variational distribution. We further minimize the KL divergence between
them Dy p (1(0%)||(0%](¢(s),a))). Based on the variational inference theory Blei et al.| (2017), we

get the ELBO loss:
D ((0%)11(60%)) — Egenp[log p(als, 6)] )

Note that we use BNN for continuous action tasks and BLR for discrete ones. BNN has better
performance but at the cost of high computation complexity. Because the dimension of state repre-
sentation is typically low for continuous action tasks, e.g. robotic manipulation tasks, we consider
it computationally acceptable. On the other hand, as discussed in the appendix, BLR does not in-
crease the computation complexity compared to MLP. It is suitable when the dimension of state
representation is high, and thus we choose it for discrete action tasks.

4.4 EXPLORATION WITH MULTI-STEP UNCERTAINTY IN MODEL-FREE CASES

In Sec.[.2]and [4.3] we show how to estimate the uncertainty. Each step is a Gaussian process with
a posterior on Q-function/actions. For example, in discrete cases, the GP posterior applies on the
wq(Eq. |1)) and consequently on the Q-function. In each step, we can sample an instance from the
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Algorithm 1 Farsigher: Multi-step Exploration

Initialize 0, 6**"9¢, k, Q-variance target ¢, and Va, &,, Cov,, @529, Replay buffer RB = {}

1: for t=0, k, 2k, 3k... do

20 {rF sin} = K- STEP(st,H Da, VC0Ug, v, rF = 0,itr = 0)

3: Store {s¢,as,7%, 51,1} into replay buffer RB

4:  Sample a mini-batch {si,ai, 7, 5,41} from the latest N steps to alleviate off-policyness bias
5 Update the parameters of 6 with Eq.[2, where r = r* s’ = s, and keep @,, Cov, fixed
6:  Every M steps: Update the GP posterior {@,, Cov, } for all actions

7: if Q-variance < €: k+=1; else if Q-variance > ¢: k-=1; Empty Replay buffer.

8:  Every N steps: reset §1979¢" = 0, lor9et =,

9: end for

Algorithm 2 K-STEP( s;, 0, @,, /Cova, v, 7, itr)

Input: s, it the current state; 6, w, and Cov, are parameters of Q-function, ~y is the discounted
factor; r* is the discounted sum of k-step rewards; itr is the number of steps in the k loop.
Output: the discounted sum of k-step rewards * and the last state after k steps.

if itr=k: return r*, s,
Sample z; ~ N(0,I) and then get a deterministic Q(s, a) with Eq.
Take action a; = arg max ¢g(s;)” (Wa + vCovazt)
a
Get next state sy and reward r; by interacting with the environment.

k4 = ko,
return K-STEP( s;,1,60,0,,/Covg, vy, ", itr + 1)

SAANE I A

posterior. To extend the learning process to k-step in model-free cases, we formulate the “k-step”
process as a recursive Gaussian process, which means the Q-function becomes

Q(st,at) = Eron[R(s¢, at, Se41) + YR(St41, Qtg1, Sep2) + - +* amaé(A Q" (St4ks Qttr)|st, arl.
t+k

More specifically, we recursively deploy Thompson sampling on the learned posterior distributions
for k steps to approximate the k-step uncertainty. For discrete action cases, we sample a random
variable z for Eq. [I]in each step and obtain a deterministic Q-function. Given the deterministic
Q-function, we can decide which action maximizes the Q values. For continuous action cases, we
sample a set of weights from the BNN posterior 6% in each step and then directly get maximal action
from the sampled weights. After taking the action, we go to the next state from the environment. As
shown in Algorithm [2] we recursively deploy the process for k steps and get the last state s, and
the discounted sum of k-step rewards ¥, where the k-step uncertainties information is stored.

The pseudocode of the whole learning process for discrete action cases is shown in Algorithm [T}
Instead of store one-step state and action tuple, we get k-step state s; 5, and reward * from Algo-
rlthml For continuous action cases, the workflow is similar to discrete action cases; we provide
the pseudocode in the Appendix. For multi-step updates, we keep the update rule same as one-step
updates as mentioned in Sec. #.2] and [#.3] We only change the way to calculate the target value,

y=r+7Q(s,argmax Q(s',a’,0,w,),0 ¢ utar9et) where r is the discounted sum of k-step
a/

rewards 7Fand s’ is the last state after k steps s;,. Thus, our multi-step uncertainty estimation
would not increase the computation and the memory complexity. Moreover, to alleviate the bias
introduced by off-policyness in multi-step learning, the network is trained using the latest N-step
samples, where N is the target network update period, as suggested in Mnih et al.|(2016). In ad-
dition, since the k-step reward and state are obtained from recursive Thompson sampling and they
contain the uncertainty information of the future k steps, the learned Q function also contains the
uncertainty information, which is represented on the variance of the posterior. The variance helps
us quantify the uncertain impact of the next k-step in turn.
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Figure 1: Illustration of the k-step decision tree with m, actions in each step (discrete case).

4.5 EXPLORATION WITH MULTI-STEP UNCERTAINTY IN MODEL-BASED CASES

In the last section, we introduce how to apply multi-step exploration in model-free cases. Multi-
step exploration can also work if we have the dynamic model of the environment. In the model-
based cases, we learn the dynamic model (transition P(s;y1|st,a:) and reward R(st,at, St41))
using supervise models. In each step, we plan to get an action by considering k-step ‘fantasy’ steps
with the model. For example, to get action a; with state s;, we need virtually consider how the
next k ‘fantasy’ steps (St1, Gt41, St42, Qt12, oy Stk Atk ) perform, where (S¢41, St42, oy St4k)
are getting from the dynamic model and (a¢11, Gty2, ..., Gty k—1, Gz+k ) are getting from maximizing
the Q-function (discrete case) or action sub-network (continuous case).

We assume we can draw action instances from the GP posterior in each step, which is a{7 j =
1,2, ..00. All the a; instances (a{ ,J = 1,2,..00) in each step constitute the one-step GP posterior.
Each a, instance (a'z ,J = 1,2,..00) corresponds to one next state getting from the dynamic model.
This essentially means building a discrete scenario tree (Figure [I)), where each branch in a node
corresponds to a particular fantasized outcome drawn from the posterior.

Solving the k-step problem requires recursive maximization of Q-function to get actions and in-
tegration over k steps. Since each step has different GP posteriors based on different states and
actions, these nested expectations are analytically intractable; we cannot directly calculate the “k-
step” uncertainty distribution. Moreover, the number of instances in the recursive Gaussian process
grows exponentially in k. Considering all the possible roll-outs in k steps is computationally diffi-
cult. Therefore, we must resort to numerical integration. Letting myy1, m¢y2, ..., M1 denote
the number of fantasy samples from the posterior in each step, we have the following approximation.

mMi+1

Z [R(sH_l,aH_{ o 5t-|-j£+l)+---+

Jt+1=1

Q" (s¢,at) =Ermrn[R(S¢, a1, St41) +
mi41

(&)

fyk Mtfk—1
Mtk -

_ max S a 0,04)]|s¢, atl.
Mirh1 . at+k€AQ ( t+k o Ut+k, Yy a)” ts t]

Jt+r=1
Instead of solving above nested optimization problem, we can solve a joint optimization problem of
higher dimension and subsequently extract the optimizer. Thus, we get action a; in each step with
virtually considering next k steps.

mMi41

~ ~ Mjppr Mgy

Aty Q415 -y Qatk = AIgMax. Err[R(st,as, 8¢41) + E R( St+1,at+1 » St42 )
At,0t 41, 0atk Mt1 Jep1=1

7 mMi41 Mit4k—1
Jt1 Mgk -
+ ...+ Py E E amaé(AQ (St+k s Gty 0,00)]|5t, g,
Mit+k—1 * Hl 41 my Jepi=1 Jepn=1 t+k

where a’t:i-l = ag}t,-la.jl = 1a 27 ey TM415 at:i-Q = aifg,jl = 1a 27 B mt+17j2 = 17 27 ey M4 2, and
so on. We show the pseudocode of learning process for model-based cases in the Appendix.

4.6 ADAPTIVE K

Empirically, to learn a good policy as soon as possible, it is desirable to have more exploration at the
beginning stage and then gradually decrease exploration to increase exploitation. As shown above,
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Figure 2: Validation of the effectiveness of multi-step uncertainty.

the amount of uncertainty is represented by the variance of the Bayesian posterior. In principle,
we can set a large initial k to enlarge the exploration at the beginning stage and then set posterior
variance target to confine the exploration and enlarge the exploitation later. Usually, the variance
target are smaller than the variance caused by the large initial k. Based on this intuition, we have
developed an adaptive Farsighter. In the adaptive Farsighter, we initial k£ to be a large number and
set a target to the variance. If the variance is smaller than the target, we increase k, otherwise,
we decrease it. In this manner, the agent can keep exploring the environment without too much
uncertainty. The pseudocode for discrete action cases is shown in the Algorithm [l We show the
affects of different k in Sec.[5.3

5 EXPERIMENTS

In this section, we investigate the following properties of Farsighter: 1) We illustrate the insight
of multi-step uncertainty exploration using a toy example, 2) We compare the performance of Far-
sighter with SOTA, on a large range of RL tasks, including Atari games and continuous control
tasks, and 3) We investigate the effect of a different number of future steps.

5.1 K-STEP UNCERTAINTY VALIDATION

To illustrate the intuition of multi-step uncertainty, we design a toy maze task as shown in Fig. 2a]
The agent (car) starts from the bottom left corner. In each step, the car can go either up, down, left,
or right. The car wants to get the apple (top right corner) and it cannot pass the black wall area. The
bridge is the only way that connects the left and right sides. The reward is 100 if the car reaches the
apple, and -1 otherwise each step.

We further compare the one-step uncertainty exploration (e.g., BDQN), uncertainty propagation
(e.g., OB2I) and k-step uncertainty exploration(Farsighter) under same interaction steps (40k) in the
game. The optimal Q-value @), for the car from the bottom left corner is 75. From Fig. |2;5|, we can
see that the Q-estimation of BDQN is highly biased, as we discussed in Sec.[.1] because the mean
is around 62 which is far from the optimal 75 and the variance is low. On the other hand, the OB2I
Q-estimation is less biased, while the variance of OB2I Q-estimation is very large. In comparison,
the bias of Farsighter is the lowest and the variance is lower than OB2I.

In addition, we show the heatmap of the number of state visited times for BDQN (Fig. ,
OB2I(Fig. [2d), and Farsighter (Fig. [2¢) . For BDQN, fewer visits occur on the right side of the
map and most of the interactions remain on the left side because the car does not cross the bridge
often enough and repeatedly explore the left familiar side (uncertainty vanishing). On the other
hand, it is easier for the car to cross the bridge with OB2I and Farsighter. More visits occur on the
right, which enhances the car reaching to the apple more frequently. However, OB2I performs much
over exploration. The visited times for both sides are similar. In comparison, Farsighter visits more
on the right and frequently reaches the apple. Intuitively, multi-step uncertainty explorations (Far-
sighter and OB2I) consider more exploration for further locations. When the car is at the bridge, it
is easier to find the new locations on the right, which encourages the car to explore more on the right
side. In comparison, the one-step agent (BDQN) takes the left as the local optima area and sticks
to it more often. Thus the Q-estimation is biased since the agent cannot explore the environment
enough. However, the OB2I performs too much exploration, since the variance is high, which leads
to slow converge speed. Farsighter balances the bias-variance trade-off by explicitly adjusting the k.
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Moreover, we also study the changes of posterior variance among these exploration methods. the
beginning variances are low because the networks are randomly initialized. When the learning
starts, the variances increase rapidly to award exploration. After that, the posterior variance in
BDQN gradually decreases because as the agent gathers more samples, the uncertainty is vanishing.
In comparison, in the Farsighter, even the posterior variance decreases as well earlier, it becomes
larger later on (because the agent accesses more states on the right side) and then decreases finally
when the learning is converged. The results show that Farsighter alleviates the uncertainty vanishing
problem because Farsighter learns high uncertainties on the right side by considering future steps.
The OB2I can also help to alleviate the uncertainty vanishing, while it is hard to converge, since the
variance is high.

5.2 EXPLORATION PERFORMANCE

Environments: In model-free cases, we evaluate Farsighter on 49 Atari suite of games including
hard-explored games with sparse rewards (e.g., Montezuma’s Revenge, Gravitar, and Venture) and
games with dense rewards (e.g., Beam Rider, Atlantis, and Freeway); two challenging robot con-
trol tasks (FetchPickAndPlace and HandManipulateBlock) with sparse rewards and a control task
(Walker2D) with dense rewards. In model-based case, we consider two robotic control tasks (Ac-
robot and Walker2D).

Baselines: In model-free case, we compare Farsighter to four baselines in discrete action envi-
ronments: DDQN with e-greedy exploration and BDQN, a parametric posterior based exploration,
which only considers one-step uncertainty. Moreover, to study the effects of multi-step learning, we
also compare Farsighter with ‘k-DDQN’ which uses e-greedy exploration in each step but consid-
ers k steps. We also compare with OB2I, which is the SOTA uncertainty propagation method that
use non-parametric posterior based exploration. Similarly, for continuous control tasks, we select
four baselines: standard one-step NAF with random exploration, multi-step NAF with random ex-
ploration, one-step NAF with Bayesian uncertainty exploration. In model-based case, we compare
Farsigter with three baselines: one-step NAF with Bayesian uncertainty exploration, Farsighter-
episode that considers whole episode uncertainties using dynamic model and Plan2explore [Sekar
et al.| (2020) that explores by imaging all future steps in the dynamic model. To be fair, we keep
the shared parts of the methods to be the same for different exploration methods, e.g. the state
representation layers, and the hyper-parameters.

Performance: In model-free cases, Farsighter outperforms DDQN, BDQN and OB2I in 36 out of
49 Atari games. We show parts of the evaluation results in Fig. [3]and Fig. @] More detailed results
(e.g. game scores for 49 Atari games and model-based resutls) are available in the appendix. We
run each experiment 10 times with different random seeds and show the average performance. The
shaded area is the standard deviation in the Figures.

Figure [3] compares the game scores with the four baselines in Atari Games. We can see Farsighter
achieves higher scores substantially. In the notoriously hard exploration game Montezuma’s Re-
venge, Farsighter achieve positive results, while others achieve zero score. The reason is that we
initial k=150, which accumulates the uncertainty over k timesteps before performing an update. A
higher initial k leads to the agent to explore more in the game and encounter informative state faster.
On the other hand, other methods cannot explore enough in the game and most of the reward feed-
back is zero, thus it is hard to get positive score. In Gravitar and Beam Rider, DDQN and BDQN
show comparable performance. BDQN performs a little better since the agent can explore with
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one-step uncertainty and k-DDQN cannot improve the performance compared with DDQN, which
means k-step learning without uncertainty cannot improve the exploration either. Interestingly, the
OB2I increases faster at early and then degenerates. This is because OB2I performs unnecessary
exploration which may guide a direction that is unrelated to the environment reward. In comparison,
Farsighter performs enough exploration and exploit it efficiently.

Figure |4 shows the performance comparison for continuous robotic tasks. The results show that the
multi-step uncertainty exploration also outperforms one-step uncertainty exploration and random
exploration in continuous action tasks. In the FetchPickAndPlace task, Farsighter achieves almost
100% success rate and it only takes around 100 million steps. The success rate in HandManipulate-
Block is also the best and it takes the least samples for the sample success rate.

Overall, we can conclude that Farsighter is an effective exploration method by considering multi-
step uncertainty and it works on general RL tasks. Moreover, as we discussed in Sec multi-step
uncertainty estimation would not increase the computation and memory complexity compared to
one-step uncertainty estimation. More complexity analyses are provided in the appendix.

5.3 STEP SIZE K

Figure [5] shows the impact of k on the performance in Montezuma’s Revenge. We can see the
performance increases with k initially and then drops, with & = 150 achieving the best score. This
trend exists for other environments although the optimal step size varies. An interesting observation
is that the increased velocity of the scores at the earlier stage is positively proportional to the number
of uncertainty steps. This illustrates the importance, in particular in the early stages, of multi-step
exploration. The number of uncertainty steps, k, is a trade-off between exploitation and exploration.
When k is large, (e.g., k=500), the agent takes more cumulative uncertainty into account, and large
uncertainty forces the agent to explore more about the environment, which could be desirable in the
early stages, but at the risk of too much exploration and thus difficulties in convergence. This might
explain why uncertainty propagation methods (e.g. OB2I, WQL) which accumulate uncertainties for
all the remaining steps in an episode are outperformed by our method. On the contrary, when £ is
small (e.g. k=10), the agent only considers the uncertainty of the next few steps. The uncertainty is
easy to vanish and the agent tends to exploit, which is more desirable in later stages. Thus, Farsighter
can explicitly balance the bias-variance trade-off by adjusting the number of k. As discussed in
Sec.[.6 we can use an adaptive k. From Fig.[5] we can see the adaptive Farsighter achieves the best
result, where the score increases quickly initially and also finishes with the highest value.

6 CONCLUSION

In this paper, we propose Farsighter, to consider the k-step uncertainty impact and we can explicitly
adjust the number of future steps to balance the Q-estimation bias-variance trade-off. Farsighter
helps to alleviate the sparse reward and uncertainty vanishing problem. It outperforms SOTA
on a wide range of RL tasks with high/low-dimensional states, discrete/continuous actions, and
sparse/dense rewards, including hard-to-explore problems such as high-dimensional Atari games
and continuous control robotic manipulation tasks.
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Reproducibility: =~ We provide the code and appendix with more statement and ex-
periment details (e.g. hyper-parameters, network architecture) at the anonymous link:
https://drive.google.com/file/d/1ejQvBgcl1LkW3NcweW82PdwaDAYJEIZc/
view?usp=sharing.
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