
Under review as a conference paper at ICLR 2024

FORWARD GRADIENT TRAINING OF SPIKING NEURAL
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neuromorphic computing with spiking neural networks (SNNs) is promising for
energy-efficient applications. However, the supervised learning of SNNs is chal-
lenging considering biological plausibility and neuromorphic hardware compat-
ibility. Most existing successful methods rely on backpropagation (BP) through
time and across layers for temporal and spatial credit assignments, which is hard to
realize. While some online training methods tackle temporal credit assignment by
eligibility traces, it remains an important problem for error signal propagation with
proper spatial credit assignment. In this work, we propose a new method, forward
gradient training (FGT), for spiking neural networks. FGT only leverages unidi-
rectional forward propagation across layers and direct feedback signals from the
top layer to calculate gradients for spatial credit assignment, and we improve the
large variance of vanilla forward gradients by momentum feedback connections.
FGT avoids layer-by-layer forward-backward calculation of BP with symmetric
weights and separate phases, and has more theoretical guarantee and better per-
formance compared with random feedback methods. When combined with online
training methods, FGT enables forward and online training. This paves solid paths
to on-chip SNN training. Extensive experiments demonstrate the effectiveness and
robustness of FGT with similar performance as BP under both fully connected and
convolutional networks on static and neuromorphic datasets.

1 INTRODUCTION

Brain-inspired neuromorphic computing with biologically plausible spiking neural networks (SNNs)
has gained increasing attention in recent years (Roy et al., 2019). SNNs imitate biological spiking
neurons to transmit spike trains for event-based computation, which enables efficient and parallel
in-memory computation on neuromorphic hardware with low energy consumption (Akopyan et al.,
2015; Davies et al., 2018; Pei et al., 2019; Woźniak et al., 2020; Rao et al., 2022).

However, the supervised training of neuromorphic computing systems is a challenging problem,
especially considering biological plausibility and hardware compatibility. While the problem of
discrete spike-generation procedures can be solved by surrogate gradient or other methods as shown
in recent works (Shrestha & Orchard, 2018; Wu et al., 2018; Neftci et al., 2019), these methods
rely on backpropagation (BP) through time and across layers, which is biologically implausible and
unfriendly for neuromorphic hardware.

Limitation of BP Specifically, the problem is how to solve temporal and spatial credit assign-
ments. BP through time deals with temporal credit assignment by retaining the whole computational
graph of previous time steps and propagating errors along the reverse time, which is inconsistent
with the online property of spiking neurons (Bellec et al., 2020; Xiao et al., 2022). BP across layers
tackles spatial credit assignment by backward layer-by-layer error propagation. Considering the uni-
directional synapses between neurons, this requires reciprocal connections with symmetric weights,
as well as separate phases for signal propagation and storage of (surrogate) derivatives during for-
ward propagation for calculation of backward propagation. These are often regarded as biologically
implausible (Nøkland, 2016) and pose great challenges for on-chip training of SNNs.

Many previous works attempt to solve the problem with biologically more plausible training meth-
ods. For temporal credit assignment, online training methods based on eligibility traces have been
proposed (Bellec et al., 2020; Xiao et al., 2022). These methods track traces of activations to decou-
ple the temporal dependency and enable forward-in-time learning given error signals. Considering

1

Under review as a conference paper at ICLR 2024

spatial credit assignment for error signals of multi-layer networks, however, the problem is much
tougher to tackle. Some online training methods still rely on BP across layers (Bohnstingl et al.,
2022; Xiao et al., 2022). Existing works considering global supervision without BP either only
relieve the weight symmetric problem with target propagation (Lee et al., 2015), random/learned
feedback (Lillicrap et al., 2016; Akrout et al., 2019), or sign symmetric (Xiao et al., 2018), but
still require layer-by-layer backward propagation with reciprocal connections, separate phases, and
storage of derivatives, or directly propagate errors from the top layer to hidden layers by random
feedback weights, e.g., direct feedback alignment (DFA) (Nøkland, 2016), with limited guarantee
and poorer performance than BP. Some recent works propose forward gradients (Silver et al., 2022;
Baydin et al., 2022), but they suffer from large variances and poor performance. Some other works
turn to local learning with local readout layers for supervision (Kaiser et al., 2020) or local forward-
forward contrastive self-supervised learning (Hinton, 2022; Ororbia, 2023). As the basic component
of modern artificial intelligence, global learning is crucial to achieving promising results, and it
can also be combined with local learning. So it remains an important question to investigate better
spatial credit assignment methods for global learning.

Contribution In this work, we propose a new method, forward gradient training (FGT), for spik-
ing neural networks, which only requires unidirectional forward propagation across layers and feed-
back signals directly from the top layer for spatial credit assignment. Specifically, inspired by the
recent work of forward gradient (Baydin et al., 2022), we first propose forward surrogate gradients
to estimate backpropagated surrogate gradients in an unbiased approach with perturbation vectors.
Then, to tackle the large variance of vanilla forward gradient, we propose forward gradient with mo-
mentum feedback connections, which maintains feedback weights based on forward propagated per-
turbation vectors for direct error propagation from the top layer to hidden middle ones. Combining
FGT with online training methods for spatiotemporal credit assignments, we can obtain forward and
online training methods for SNNs, which pave solid paths for on-chip SNN training. Compared with
previous biologically plausible training methods, our method does not need layer-by-layer backward
propagation with separate phases or unguaranteed random feedback, and significantly outperforms
random feedback methods. Our contributions include:

1. We propose forward surrogate gradients for SNNs, which only requires unidirectional for-
ward propagation across layers and are unbiased estimator of backpropagated gradients.

2. We further propose forward gradient with momentum feedback connections to reduce the
variance and stabilize training, which maintains feedback weights directly from the top
layer to hidden layers. The method provides a more biologically plausible spatial credit
assignment method than BP with more guarantee than random feedback. Combined with
online training, it can pave paths for on-chip SNN learning.

3. We conduct extensive experiments on MNIST, N-MNIST, DVS-CIFAR10, DVS-Gesture,
CIFAR-10, and CIFAR-100 with both fully connected and convolutional networks, which
demonstrate the effectiveness of our method to reach a similar performance as BP. Ex-
periments also show the effectiveness of variants considering different signal propagation
methods, local learning, and stochastic neuron models, revealing the robustness and gener-
alization ability of our method.

2 RELATED WORK

SNN Training Methods For supervised training of SNNs, backpropagation through time is the
commonly used framework and the non-differentiable problem of the spiking function is solved by
applying surrogate derivatives (Shrestha & Orchard, 2018; Wu et al., 2018; 2019; Neftci et al., 2019;
Li et al., 2021; Deng et al., 2022) or computing gradients with respect to spiking times (Zhang & Li,
2020; Kim et al., 2020; Zhu et al., 2022). These methods rely on BP through time and across layers.
Another direction is to build connections between SNNs and equivalent closed-form mappings (or
implicit equilibriums) similar to artificial neural networks (ANNs) with specific encodings of spike
trains (e.g., firing rates or the first time to spike), and convert ANNs to SNNs (Rueckauer et al.,
2017; Sengupta et al., 2019; Deng & Gu, 2021; Stöckl & Maass, 2021; Meng et al., 2022b) or train
SNNs by gradients calculated from the mappings (Lee et al., 2016; Zhou et al., 2021; Wu et al.,
2021; Meng et al., 2022a) or equilibriums (O’Connor et al., 2019; Xiao et al., 2021; Martin et al.,
2021; Xiao et al., 2023). These methods also rely on BP across layers for multi-layer networks or
are limited to single-layer networks with symmetric recurrent connections. Considering biologically

2

Under review as a conference paper at ICLR 2024

more plausible / hardware-friendly methods, Zenke & Ganguli (2018); Bellec et al. (2020); Bohnst-
ingl et al. (2022); Xiao et al. (2022); Yin et al. (2021) propose online training methods rather than
BP through time by tracking eligibility traces or adding regularization for forward-in-time learning,
but they require BP across layers or leveraging random feedback with limited guarantee. Neftci et al.
(2017); Lee et al. (2020) apply DFA to SNNs with random feedback as well. Kaiser et al. (2020)
proposes online local learning of SNNs by ignoring temporal dependencies, and Yang et al. (2022)
proposes local tandem learning with ANN teachers. Different from them, we propose a new method
for spatial credit assignment of global learning without BP while maintaining similar performance.

Neural Network Training without Backpropagation Many previous works explore methods
other than BP across layers for effective global training of neural networks. Target propagation (Lee
et al., 2015) propagates targets instead of errors to avoid the weight symmetric problem. Feed-
back alignment (Lillicrap et al., 2016) replaces backward weights between successive layers with
random matrices. Akrout et al. (2019) improves it by learning backward weights to be symmetric
with forward weights. Sign symmetric (Liao et al., 2016; Xiao et al., 2018) shares the sign between
backward and forward weights. These methods still require layer-by-layer propagation as BP. Direct
feedback alignment (Nøkland, 2016; Launay et al., 2020) pushes forward feedback alignment to di-
rectly propagate errors from the top layer to hidden layers with random weights. However, methods
with random feedback are with limited guarantee and usually perform worse than BP, especially for
convolutional networks. Webster et al. (2020) borrows the idea from Akrout et al. (2019) to learn
feedback weights in DFA, and Bacho & Chu (2022) proposes to learn them with directional deriva-
tives. These works are for ANNs rather than SNNs and are without much theoretical justification.
Silver et al. (2022) and Baydin et al. (2022) propose unbiased random directional gradients by for-
ward computation, which inspire this work, but they cannot achieve competitive performance due to
the large variance. Ren et al. (2023) improves forward gradients with various architecture designs
and local losses, but still has a performance gap with BP and is orthogonal to our momentum feed-
back connections. There are also other methods such as equilibrium propagation (Scellier & Bengio,
2017) to train neural networks with energy functions, but they are limited to symmetric connections
and usually perform worse. Some methods use lifted proximal formulation to train neural networks
without explicit BP (Li et al., 2020). Other works turn to local learning rather than global super-
vision. Kaiser et al. (2020) leverages local readout layers for supervision. Hinton (2022) proposes
forward-forward contrastive self-supervised learning for layer-wise gradual learning. Different from
them, our work focuses on global learning and can also be combined with local learning.

3 PRELIMINARIES

3.1 SPIKING NEURAL NETWORKS

SNNs are composed of brain-inspired spiking neurons that transmit information by spike trains.
Each neuron maintains a membrane potential u to integrate input spike trains, and generates a spike
once u exceeds a threshold, after which u is reset to the resting potential. We consider the commonly
used leaky integrate and fire (LIF) model with the dynamics of the membrane potential as:

τm
du

dt
= −(u− urest) +R · I(t), u < Vth, (1)

where I is the input current, Vth is the threshold, and R and τm are resistance and time constant,
respectively. When u reaches Vth at time tf , a spike is generated and u is reset as zero. The output
spike train is defined with the Dirac delta function: s(t) =

∑
tf δ(t− tf).

A spiking neural network consists of connected spiking neurons with weights. We consider the
simple current model Ii(t) =

∑
j wijsj(t) + bi (the subscript i represents the i-th neuron), where

wij is the weight from neuron j to neuron i, and bi is a bias. The discrete computational form is:ui [t+ 1] = λ(ui[t]− Vthsi[t]) +
∑
j

wijsj [t] + bi,

si[t+ 1] = H(ui [t+ 1]− Vth),

(2)

where H(x) is the Heaviside step function, si[t] is the spike train of neuron i at discrete time step
t, λ < 1 is a leaky term (typically taken as 1 − 1

τm
). The constant R, τm, and time step size are

absorbed into the weights and bias. For the discrete time steps in multi-layer networks, we use
sl+1[t] to denote the (l + 1)-th layer’s response after receiving the l-th layer’s signals sl[t], i.e., the
expression is ul+1[t+ 1] = λ(ul+1[t]− Vths

l+1[t]) +Wlsl[t+ 1] + bl.

3

Under review as a conference paper at ICLR 2024

Most spiking neuron models consider the deterministic condition above, while biological stochas-
tic spiking can be modeled as well. In the stochastic setting, a neuron generates spikes follow-
ing a Bernoulli distribution, whose probability is the c.d.f. of a distribution w.r.t u[t] − Vth, i.e.,
f(ui [t+ 1] − Vth) that allows higher probability for a spike with larger u[t] − Vth. This can be
reparameterized as the spiking function si[t+ 1] = H(ui [t+ 1]− Vth − zi), where zi is a random
variable following the distribution specified by f . Under the stochastic setting, surrogate gradients
of SNNs can be introduced in a systematic approach (Shekhovtsov & Yanush, 2021; Shekhovtsov
et al., 2020). Stochastic neuron models may better tackle the hardware noise, e.g., thermal noise or
neuron silencing (Büchel et al., 2021), and can be more robust (Ma & Tang, 2022). We consider the
deterministic setting by default and will show that FGT is also applicable to the stochastic setting.

3.2 SURROGATE GRADIENT OF SNNS

Due to discrete spikes, training SNNs is a hard problem. A popular approach is the surrogate gradient
(SG) method combined with backpropagation through time (BPTT) or its variants. BPTT unfolds the
iterative update equation in Eq. (2) and backpropagates along the computational graph (Fig. 1(a)).
The non-differentiable terms ∂sl[t]

∂ul[t]
will be replaced by surrogate derivatives of a smooth function,

e.g., that of the sigmoid function: ∂s
∂u = 1

a1

e(Vth−u)/a1

(1+e(Vth−u)/a1)2
(a1 is hyperparameter).

Some works propose temporally online training methods by tracking eligibility traces of neurons
to overcome the drawback of BPTT. Take the recent OTTT method (Xiao et al., 2022) as an
example, gradients are online calculated at each time by the tracked presynaptic trace âl[t] =∑

τ≤t λ
t−τsl[τ] and instantaneous gradient gul+1 [t] =

(
∂L[t]
∂sN [t]

∏N−l−2
i=0

∂sL−i[t]
∂sL−i−1[t]

∂sl+1[t]
∂ul+1[t]

)⊤
as

∇WlL[t] = gul+1 [t]âl[t]
⊤, where ∂sl[t]

∂ul[t]
is also replaced by surrogate derivatives. They mainly

solve the problem of temporal BP (Fig. 1(a,b)), but still require spatial BP with reciprocal connec-
tions between successive layers for spatial credit assignment of multi-layer networks (Fig. 1(c)).

Theoretical Grounding of Surrogate Gradient SG for the deterministic spiking model is usually
considered empirical. Xiao et al. (2022) attempted to connect surrogate derivatives with derivatives
of well-defined transformations under their OTTT method, with a certain surrogate function and
convergent inputs. Considering stochastic neuron models, however, SG can be viewed as a system-
atic gradient estimation (Shekhovtsov & Yanush, 2021; Shekhovtsov et al., 2020). Specifically, for
stochastic models with the objective function of its expectation, gradients are actually well-defined
and the form of SG can be derived with techniques including derandomization and linear approxi-
mation, in which surrogate derivatives correspond to the probabilistic density function of the neuron
model. The deterministic condition may be viewed as a special case. More introductions are in
Appendix A. Overall, we consider SG as a reliable target for our forward gradient to estimate.

3.3 FORWARD MODE AUTOMATIC DIFFERENTIATION

Traditional backpropagation is based on the reverse mode automatic differentiation (AD), i.e., after
the forward calculation x → f(x), the error e is propagated in the backward pass Jf (x)

⊤
e ←

e, where Jf (x) is the Jacobian of f evaluated at x. For example, for the linear transformation
f(x) = Wx, the error is backpropagated as W⊤e. This leads to the forward-backward calculation
of BP with symmetric weights. The forward mode AD, on the other hand, only requires forward
calculation. Given a perturbation vector v, during the forward calculation x → f(x), forward AD
simultaneously calculate the Jacobian-vector product v → Jf (x)v. For the case of f : Rn →
R, the product is the directional derivative ⟨∇f(x),v⟩, and the forward gradient (Baydin et al.,
2022) can be defined as g(x) = ⟨∇f(x),v⟩v, which corresponds to the projected gradient in the
direction of v. The forward AD avoids the forward-backward calculation and the weight symmetry
problem, since the calculation only involves unidirectional calculation: for example, for the linear
transformation f(x) = Wx, the forward AD similarly calculates Wv.

4 FORWARD GRADIENT TRAINING OF SNNS

In this section, we introduce the proposed forward gradient training of SNNs. We first introduce
forward surrogate gradients in Section 4.1. Then in Section 4.2, we introduce forward gradient
with momentum feedback connections to tackle the problem of vanilla forward gradient training. In
section 4.3, we present combination with online training methods for forward and online training of
SNNs. Finally, discussions and implemented details are presented in Section 4.4.

4

Under review as a conference paper at ICLR 2024

(a) Backpropagation through time

(c) Backpropagation

𝑠𝑡−1
𝑙+1 𝑠𝑡

𝑙+1 𝑠𝑡+1
𝑙+1

𝑢𝑡−1
𝑙+1 𝑢𝑡

𝑙+1 𝑢𝑡+1
𝑙+1

𝑠𝑡−1
𝑙 𝑠𝑡

𝑙 𝑠𝑡+1
𝑙

𝑊𝑙 𝑊𝑙 𝑊𝑙

Time

𝜕𝐿

𝜕𝑠𝑡−1
𝑙+1

Reversed Time

𝜕𝐿

𝜕𝑠𝑡
𝑙+1

𝜕𝐿

𝜕𝑠𝑡+1
𝑙+1

𝜕𝐿

𝜕𝑠𝑡−1
𝑙

𝜕𝐿

𝜕𝑠𝑡
𝑙

𝜕𝐿

𝜕𝑠𝑡+1
𝑙

𝜕𝐿

𝜕𝑊𝑙

𝜕𝐿

𝜕𝑊𝑙

𝜕𝐿

𝜕𝑊𝑙

𝜕𝐿

𝜕𝑢𝑡−1
𝑙+1

𝜕𝐿

𝜕𝑢𝑡
𝑙+1

𝜕𝐿

𝜕𝑢𝑡+1
𝑙+1

𝑠𝑡−1
𝑙 𝑠𝑡

𝑙 𝑠𝑡+1
𝑙

𝑠𝑡−1
𝑙+1 𝑠𝑡

𝑙+1 𝑠𝑡+1
𝑙+1

𝑢𝑡−1
𝑙+1 𝑢𝑡

𝑙+1 𝑢𝑡+1
𝑙+1

𝑠𝑡−1
𝑙 𝑠𝑡

𝑙 𝑠𝑡+1
𝑙

𝑊𝑙 𝑊𝑙 𝑊𝑙

Time

𝜕𝐿

𝜕𝑠𝑡−1
𝑙+1

Time

𝜕𝐿

𝜕𝑠𝑡
𝑙+1

𝜕𝐿

𝜕𝑠𝑡+1
𝑙+1

𝜕𝐿

𝜕𝑠𝑡−1
𝑙

𝜕𝐿

𝜕𝑠𝑡
𝑙

𝜕𝐿

𝜕𝑠𝑡+1
𝑙

𝜕𝐿

𝜕𝑊𝑙

𝜕𝐿

𝜕𝑊𝑙

𝜕𝐿

𝜕𝑊𝑙

𝜕𝐿

𝜕𝑢𝑡−1
𝑙+1

𝜕𝐿

𝜕𝑢𝑡
𝑙+1

𝜕𝐿

𝜕𝑢𝑡+1
𝑙+1

ො𝑎𝑡−1
𝑙 ො𝑎𝑡

𝑙 ො𝑎𝑡+1
𝑙

Forward Backward

(b) Online training through time with eligibility traces

ො𝑎𝑡−1
𝑙 ො𝑎𝑡

𝑙 ො𝑎𝑡+1
𝑙

Forward
Track eligibility traces

Backward
Online through time

…
…

𝑊𝑁−1

𝑊𝑙

𝑊𝑁−1⊤

𝑊𝑙⊤

(d) Direct feedback alignment

…
…

𝑊𝑁−1

𝑊𝑙

𝐹𝑙
Fixed, random

(e) Forward gradient

…
…

…
…

…
…

𝑊𝑁−1

𝑊𝑙

…
…

𝑣𝑙

𝑒𝑁, 𝑧𝑁,𝑙

(f) Forward gradient with
momentum feedback connections

…
…

𝑊𝑁−1

𝑊𝑙

𝑀𝑙

…
…

𝑧𝑁,𝑙

𝑣𝑙

𝑧𝑁,𝑙

Figure 1: Illustration of SNN training methods. (a-b) Temporal credit assignment. (a) BPTT stores
and propagates along the computational graph of previous time, while (b) temporarily online meth-
ods leverage eligibility traces for forward-in-time learning (Bellec et al., 2020; Xiao et al., 2022).
(c-f) Spatial credit assignment. (c) BP backward propagates errors layer-by-layer with symmetric
weights. (d) DFA (Nøkland, 2016) directly propagates signals from the top layer to middle ones,
but the connections are fixed random matrices with limited guarantee. (e) Forward gradient forward
propagates perturbation vectors simultaneously with the forward propagation of neural networks,
and afterward, a scalar signal is passed to the middle layer which is shared by all neurons. (f) For-
ward gradient with momentum feedback connections further tracks feedback connections based on
perturbation vectors and directly propagates errors to neurons with top-down connections.

4.1 FORWARD SURROGATE GRADIENT

As introduced in Section 3.3, forward gradients can be calculated based on forward mode AD which
avoids the drawbacks of BP. The common definition of forward gradients relies on differentiable
functions, which is not the case for SNNs. Therefore, we propose forward surrogate gradients
for SNNs. We will build our work on online training methods, so the gradients mainly refer to
instantaneous gradients at each time step. In the following, we first consider a single time step at t.

For common surrogate gradients with BP across layers, the gradient for the (l+1)-th layer’s neuron

output is calculated by ˜∇sl+1L[t] =
(

∂L[t]
∂sN [t]

∏N−l−2
i=0

∂sN−i[t]
∂uN−i[t]

∂uN−i[t]
∂sN−i−1[t]

)⊤
with surrogate deriva-

tives of ∂sN−i[t]
∂uN−i[t]

. This requires backpropagating errors from the last layer to the (l + 1)-th layer

(Fig. 1(c)), i.e., the errors ei = ∂L[t]
∂si[t] are recursively calculated by

ei = Wi⊤(ei+1 ⊙ f(ui+1[t])), i = N − 1, · · · , l + 1, (3)

where f(ui+1[t]) is the surrogate derivative based on membrane potential in the forward calculation.

We use forward gradients to estimate ˜∇sl+1L[t]. Specifically, for the (l+1)-th layer’s neuron output,
we will sample a random vector vl+1 with the same size and forward propagate it to the last layer
based on the recursive calculation (with zl+1,l+1 = vl+1):

zi+1,l+1 = Wizi,l+1 ⊙ f(ui+1[t]), i = l + 1, · · · , N − 1. (4)

At the last layer (e.g., the classification output), with the local gradient eN obtained by differentiating
the loss function, the directional derivative is calculated by

〈
eN , zN,l+1

〉
. This process corresponds

to calculating the Jacobian-vector product as in Section 3.3. Then we obtain the forward gradient
gsl+1 =

〈
eN , zN,l+1

〉
vl+1. (5)

5

Under review as a conference paper at ICLR 2024

Similar to previous works (Baydin et al., 2022), we can show that it is an unbiased estimator.
Property 1. When vl+1 has i.i.d. components with zero mean and unit variance, the forward sur-

rogate gradient gsl+1 is an unbiased estimator of the surrogate gradient ˜∇sl+1L[t].
The distribution of v has various choices such as the multivariate standard Gaussian distribu-
tion (Baydin et al., 2022). Belouze (2022) shows that the centered Rademacher distribution, i.e.,
v will take 1 or −1 both with the probability 0.5, can achieve the minimally deviating forward gra-
dients. So we will consider this distribution for v, which also better fits the spike signals of SNNs.

The calculation of forward gradients is simultaneous and coupled with the forward propagation
of neural networks. Then the supervision signal

〈
eN , zN,l+1

〉
at the output layer is passed to the

(l+1)-th layer and formulates the gradient with the local vector vl+1, corresponding to a top-down
global modulation signal which is shared by all neurons in the layer, as shown in Fig. 1(e).

Although this forward gradient is an unbiased estimator, it can have a large variance when the
number of neurons is large — due to the curse of dimensionality, there is an exponentially growing
number of the possible projection direction v. As will be shown in the experiments, the simple
forward gradient method cannot work well for a relatively large amount of neurons, and this cannot
be directly solved by sampling a few directions for variance reduction due to the high dimensionality.

4.2 FORWARD GRADIENT WITH MOMENTUM FEEDBACK CONNECTIONS

To tackle the problem of vanilla forward gradient training, we propose to leverage momentum feed-
back connections so that different samples of v for different inputs can be leveraged to reduce the
large variance of a single direction. Specifically, for one sample of v in each iteration, the forward
gradient is calculated by gsl+1 =

〈
eN , zN,l+1

〉
vl+1 = vl+1zN,l+1⊤eN , which can also be viewed

as propagating top error signals eN with a connection weight vl+1zN,l+1⊤ to the middle layer. We
can track the momentum

Ml+1 = λMl+1 + (1− λ)vl+1zN,l+1⊤ (6)
and leverage the momentum term for signal propagation to reduce the variance, i.e., the error signals
are propagated by

gsl+1 = Ml+1eN , (7)
as shown in Fig. 1(f). The connection Ml+1 between the (l+1)-th layer and the output layer is first
updated by local vectors vl+1 and zN,l+1⊤ of two layers after the forward propagation, and then
directly propagates top error signal to the (l + 1)-th layer.

Compared with vanilla forward gradient, momentum feedback connections can better utilize differ-
ent samples of v to reduce the variance and stabilize training. Also, it enables a more detailed spa-
tial credit assignment as it propagates different feedback signals to each neuron, while the feedback
scalar signal in the vanilla forward gradient is shared by all neurons in the layer and the difference
between neurons comes from the sampled v which can be imprecise, as shown in Fig. 1(e, f).

However, the momentum may introduce bias as the Jacobian may vary for different inputs, i.e.,
for different inputs the final zN,l+1 can be different given the same vl+1. This is not related to
linear operations but mainly due to the difference in data-dependent neural activations and surrogate
derivatives, which can be a shared problem for methods without layer-by-layer error propagation
combined with (surrogate) derivatives of each layer.

Actually, the momentum can be viewed as a practical approximation to the expectation of (sur-
rogate) Jacobian over the dataset, and this is leveraged for error propagation instead of data-
dependent Jacobian. Let J̃f (x) denote the surrogate Jacobian of the forward function with surrogate
derivatives evaluated with input x. Using the expectation changes the original surrogate gradient
Exi J̃f (xi)e(xi) to Exi

(
Exj J̃f (xj)

)
e(xi), where xi denotes different input samples and e(xi)

denotes the error for the output layer (i.e., gradient) with input xi. We show that this gradient can
provide a similar descent direction as surrogate gradients under certain conditions, and the proof and
discussions can be found in Appendix B. We will also show empirical verifications of our FGT.

Proposition 1. Assume that J̃f (x) is LJ -Liptschitz continuous and e(x) is Le-Liptschitz con-

tinuous, xi is uniformly distributed data sample, when
∥∥∥Exi

J̃f (xi)e(xi)
∥∥∥ ≥ 1

2LJLe∆x, where

∆x = Exi,xj ∥xi − xj∥2, we have
〈
Exi J̃f (xi)e(xi),Exi

(
Exj J̃f (xj)

)
e(xi)

〉
≥ 0.

6

Under review as a conference paper at ICLR 2024

4.3 FORWARD AND ONLINE TRAINING

Building forward gradient training on online training methods, we can obtain forward and online
training methods for SNNs. We consider OTTT in this work as introduced in Section 3.2. By
replacing the backpropagated instantaneous gradient with forward gradients (gsl+1 or gsl+1 , we
use the notation gt

sl+1 for simplicity and the superscript t means that the gradient corresponds to
the forward propagation at the t-th time step), the gradients at each time step are calculated by
∇WlL[t] = (gt

sl+1 ⊙ f(ui+1[t]))âl[t]
⊤. This also has a similar form as the three-factor Hebbian

learning (Frémaux & Gerstner, 2016) with a global modulator directly from the top layer:
∇Wi,jL[t] = âi[t]f(uj [t])g

t
j , (8)

where Wi,j is the weight connecting neuron i and j, âi[t] is the tracked presynaptic activity, f(uj [t])
is the surrogate derivative which can represent the change rate of the postsynaptic activity (Xiao
et al., 2022), and gtj is a global error (gradient) modulator directly from the output layer (Fig. 1(e,f)).

Considering neuromorphic computing, there may be some delay of the error signal (for forward
propagation and feedback from the top layer). Xiao et al. (2022) has shown that under the condition
of convergent input and a certain surrogate function, the gradient can still be theoretically effective
under the delay ∆t, i.e., the update is based on âi[t+∆t]f(uj [t+∆t])gtj . Our method also shares the
conclusion. For simplicity and efficiency of simulation, we do not model the delay in experiments.

4.4 DISCUSSION AND IMPLEMENTATION DETAILS

Signal Propagation of Forward Gradient The propagation of forward gradients is simultaneous
and coupled with the forward propagation, and a natural question is how can the signal be prop-
agated. Actually, Payeur et al. (2021) have shown that signals in neural systems with different
frequencies can be simultaneously propagated with different information, and they demonstrate that
bursts of spikes may backpropagate errors. So we conjecture that the forward gradient propagation
can also be realized by neurons, e.g., with bursts. For example, after a spike in the common forward
propagation, neurons may generate bursts with burst inputs that represent forward gradients, and sig-
nals are encoded by the rate. To simulate this condition, we consider quantizing signals in Eq. (4),
i.e., the output of neurons are zi+1,l = Q(Wizi,l ⊙ f(ui+1[t])) representing the rate of bursts with
a few time steps (more details can be found in Appendix D). As will be shown, this works well even
under the condition of only one time step, i.e., only one spike for the signal is enough.

Another question is how signals of zi,l for different layers l are propagated. By default, we sequen-
tially sample a vl for the l-th layer during the forward propagation and add it to a list for propagation
with Eq. (4). To improve the efficiency and biological plausibility, when using momentum feedback
connections, we also consider only sampling one layer for forward gradient propagation and feed-
back connection update in each iteration, so that there will only be one gradient signal in the prop-
agation. Experiments show that it also works well. Additionally, we may also consider pretraining
feedback connections with forward gradients unsupervisedly before supervised learning, and update
them after a certain interval during training. In experiments, we update feedback connections by
forward gradients simultaneously with training. Pseudocodes are in Appendix C.

Combination with Local Learning Biological systems can learn from both global and local sig-
nals. Our work mainly focuses on global learning with modulation signals directly from the top
layer and is compatible with local learning. In experiments, we will show that introducing local
learning with local readout can further improve performance. We can add a fully connected readout
for each layer to provide local supervision with supervised loss (more details in Appendix D).

5 EXPERIMENTS

In this section, we demonstrate the effectiveness of FGT on both fully connected (FC) and convo-
lutional (Conv) neural networks for static and neuromorphic datasets. We conduct experiments on
MNIST and N-MNIST with FC networks consisting of two hidden layers with 400 neurons, and ex-
periments on DVS-CIFAR10, DVS-Gesture, CIFAR-10, and CIFAR-100 with 5-layer convolutional
networks (128C3-AP2-256C3-AP2-512C3-AP2-512C3-FC). Following previous works (Xiao et al.,
2022; Zhang & Li, 2020), we take T = 6 time steps for static datasets, T = 30 for N-MNIST,
T = 20 for DVS-Gesture, and T = 10 for DVS-CIFAR10. By default, we consider the deter-
ministic neuron model, and we will show results under the stochastic setting later. Please refer to
Appendix D for training details.

7

Under review as a conference paper at ICLR 2024

For our proposed methods, let “FGT” denote the default forward gradient with momentum feedback
connections, “FGT (w/o m)” denote vanilla forward gradient, “FGT (w/o m, s8)” denote vanilla
forward gradient with 8 samples of v, “FGT (Q20)” / “FGT (Q1)” denote representing signals by
bursts with 20 / 1 time steps (Section 4.4), and “FGT (S)” denote only sampling one layer for forward
gradient calculation in each iteration (Section 4.4). All results are based on the OTTT method.
Table 1: Accuracy (%) of different FGT methods on MNIST with fully connected networks and
DVS-CIFAR10 with convolutional networks.

Dataset FGT (w/o m) FGT (w/o m, s8) FGT FGT (Q20) FGT (Q1) FGT (S)

MNIST 96.06±0.12 97.62±0.11 98.12±0.00 98.14±0.00 98.22±0.06 98.10±0.01

DVS-CIFAR10 38.30±0.45 49.70±0.98 73.30±0.08 73.40±0.16 73.30±0.24 72.90± 0.36

Table 2: Accuracy (%) of different spatial credit assignment methods on MNIST with fully con-
nected networks and DVS-CIFAR10 with convolutional networks. LL denotes local learning.

Dataset BP DFA LL DFA + LL FGT FGT + LL

MNIST 98.19±0.05 97.83±0.03 / / 98.12±0.00 /

DVS-CIFAR10 75.57±0.57 60.20±0.42 48.53±0.75 61.70±0.36 73.30±0.08 75.13±0.46

Results of different forward propagation training methods As shown in Table 1, vanilla for-
ward gradient training cannot work well, especially for convolutional networks with a larger number
of neurons. Simply sampling a few more directions for variance reduction can slightly improve the
performance with larger training costs, but still cannot reach the competitive level. Also, note that
we train models by the Adam optimizer, so momentum techniques in the optimizer alone cannot
solve the problem. On the other hand, forward gradients with momentum feedback connections can
significantly improve the results, achieving similar results as BP (Table 2). Meanwhile, representing
signals by the rate of bursts with a few time steps can achieve similar performance, even with only
one time step (i.e., one spike). FGT with the signal of only one sampled layer per iteration also
works well. These results demonstrate the effectiveness and robustness of the proposed FGT.

(c) MNIST, angle (d) DVS-CIFAR10, angle

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

co
si

n
e

si
m

ila
ri

ty

epoch

FGT L1
FGT L2
DFA L1
DFA L2
FGT (w/o m) L1
FGT (w/o m) L2

-0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

co
si

n
e

si
m

ila
ri

ty

epoch

FGT L1
FGT L2
FGT L3
FGT L4
DFA L1
DFA L2
DFA L3
DFA L4
FGT (w/o m) L1
FGT (w/o m) L2
FGT (w/o m) L3
FGT (w/o m) L4

(a) MNIST, variance (b) DVS-CIFAR10, variance

1.E-11

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

0 10 20 30 40

va
ri

an
ce

epoch

FGT L1
FGT L2
BP L1
BP L2
FGT (w/o m) L1
FGT (w/o m) L2

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00

0 50 100 150 200 250

va
ri

an
ce

epoch

FGT L1
FGT L2
FGT L3
FGT L4
BP L1
BP L2
BP L3
BP L4
FGT (w/o m) L1
FGT (w/o m) L2
FGT (w/o m) L3
FGT (w/o m) L4

Figure 2: Results of gradient variances of different methods and gradient angles (cosine similarity)
between different methods and backpropagated gradients. “Li” denotes the i-th layer.

Comparison with other spatial credit assignment methods Table 2 summarizes the results of
different spatial credit assignment methods including BP, DFA, FGT, and combination with local
learning. For FC networks, since there are only two hidden layers, we do not consider local learning
settings. Results show that there is a large gap between DFA or local learning and BP, especially
for convolutional networks, while FGT can achieve more competitive performance. When com-
bined with local learning, FGT can achieve similar results as BP. Table 3 presents more results on
different datasets. The results show the effectiveness of FGT in achieving similar performance as
BP under various settings while avoiding the drawbacks of BP including layer-by-layer forward-
backward symmetric weights and separate phases, and FGT (Q1, S) provides a more efficient and
neuromorphic-friendly alternative. This can pave paths for on-chip training of SNNs.

8

Under review as a conference paper at ICLR 2024

Table 3: More accuracy (%) results on N-MNIST with fully connected networks as well as DVS-
Gesture, CIFAR-10, and CIFAR-100 with convolutional networks. LL denotes local learning.

Dataset BP DFA FGT (Q1, S) FGT FGT + LL

N-MNIST 97.77±0.03 97.68±0.02 97.93±0.04 97.98±0.00 /

DVS-Gesture 97.22±0.28 82.87±0.43 94.44±0.57 95.60±0.43 96.30±0.16

CIFAR-10 89.29±0.24 79.92±0.13 85.69±0.33 85.98±0.15 86.98±0.23

CIFAR-100 63.51±0.11 50.09±0.56 60.81±0.21 61.19±0.26 62.16±0.14

0.85

0.9

0.95

1

0 10 20 30 40 50

BP
DFA
FGT (w/o m)
FGT (w/o m, s8)
FGT

0.85

0.9

0.95

1

0 10 20 30 40 50

BP
DFA
FGT (w/o m)
FGT (w/o m, s8)
FGT

0.1

0.3

0.5

0.7

0.9

0 50 100 150 200 250 300

BP DFA
LL DFA+LL
FGT (w/o m) FGT (w/o m, s8)
FGT FGT+LL

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250 300

BP DFA
LL DFA+LL
FGT (w/o m) FGT (w/o m, s8)
FGT FGT+LL

(a) MNIST, FC, train (b) MNIST, FC, test (c) DVS-CIFAR10, Conv, train (d) DVS-CIFAR10, Conv, test

Figure 3: Training dynamics (accuracy w.r.t epoch) of different spatial credit assignment methods.

Table 4: Accuracy (%) of different methods with the stochastic neuron model on various datasets.

Method MNIST N-MNIST DVS-Gesture DVS-CIFAR10 CIFAR-10 CIFAR-100

BP 98.23±0.04 97.91±0.02 97.57±0.00 75.17±0.56 89.43±0.07 63.36±0.25

FGT 98.10±0.09 97.88±0.02 95.02±0.33 73.20±0.14 86.17±0.27 63.99±0.24

FGT + LL / / 96.99±0.16 75.17±0.12 87.17±0.16 64.60±0.24

Gradient variance and angles We conduct experiments of gradient variance and angles to verify
that our momentum feedback connections can effectively reduce variance and maintain valid descent
directions. As shown in Fig. 2, FGT can effectively reduce the variance of the vanilla forward
gradient by several orders, leading to a similar variance as BP, and the average cosine similarity
between FGT gradient and BP gradient is always above 0.75 throughout training, while DFA has
much worse results for convolutional networks (always below 0.2). The vanilla forward gradient is
close to orthogonal due to the projection to a random direction with high dimensions.

Training dynamics Fig. 3 illustrates the training dynamics of different methods. It shows that the
convergence speed of FGT for fully connected networks is faster than DFA and comparable to BP.
For convolutional networks, FGT is slower than BP but performs much better than DFA and local
learning. Meanwhile, local learning can improve FGT.

Effectiveness for stochastic neuron models As described in Section 3.1, stochastic neuron mod-
els have clearer grounding for surrogate gradients and may better correspond to hardware noise. Our
method is also applicable to the stochastic setting. As shown in Table 4, FGT generally achieves
similar or better results under the stochastic setting compared with the deterministic condition, es-
pecially on CIFAR-100 with ≥ 2.44% accuracy improvement, while BP has similar performance.

More results and discussions of training costs, firing rate statistics, deeper networks, and finetuning
ResNet-34 on ImageNet under noise are in Appendix E.

6 CONCLUSION

In this work, we propose a new training method, forward gradient training (FGT), for spiking neu-
ral networks. FGT enables spatial credit assignment with only unidirectional forward propagation
across layers and direct feedback from the top layer, avoiding drawbacks of BP across layers while
achieving similar performance. We show that FGT can be combined with online training methods
for forward and online training of SNNs. This takes a step forward towards on-chip SNN training
with biologically more plausible methods. FGT also provides the possibility for feedback signals
directly from the top layer with clearer meaning and more theoretical guarantees instead of ran-
dom feedback. Extensive experiments demonstrate the effectiveness and robustness of the proposed
method for both fully connected and convolutional networks under static and neuromorphic datasets.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul Merolla,
Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. TrueNorth: Design and tool
flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 34(10):1537–1557, 2015.

Mohamed Akrout, Collin Wilson, Peter Humphreys, Timothy Lillicrap, and Douglas B Tweed. Deep
learning without weight transport. In Advances in Neural Information Processing Systems, 2019.

Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo,
Tapan Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al. A low
power, fully event-based gesture recognition system. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

Florian Bacho and Dominique Chu. Directional direct feedback alignment: Estimating backpropa-
gation paths for efficient learning on neural processors. arXiv preprint arXiv:2212.07282, 2022.

Atılım Güneş Baydin, Barak A Pearlmutter, Don Syme, Frank Wood, and Philip Torr. Gradients
without backpropagation. arXiv preprint arXiv:2202.08587, 2022.

Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Legenstein,
and Wolfgang Maass. A solution to the learning dilemma for recurrent networks of spiking neu-
rons. Nature Communications, 11(1):1–15, 2020.

Gabriel Belouze. Optimization without backpropagation. arXiv preprint arXiv:2209.06302, 2022.

Thomas Bohnstingl, Stanisław Woźniak, Angeliki Pantazi, and Evangelos Eleftheriou. Online
spatio-temporal learning in deep neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 2022.

Andrew Brock, Soham De, and Samuel L Smith. Characterizing signal propagation to close the per-
formance gap in unnormalized resnets. In International Conference on Learning Representations,
2021a.

Andy Brock, Soham De, Samuel L Smith, and Karen Simonyan. High-performance large-scale
image recognition without normalization. In International Conference on Machine Learning,
2021b.

Julian Büchel, Dmitrii Zendrikov, Sergio Solinas, Giacomo Indiveri, and Dylan R Muir. Super-
vised training of spiking neural networks for robust deployment on mixed-signal neuromorphic
processors. Scientific Reports, 11(1):23376, 2021.

Hanting Chen, Yunhe Wang, Jianyuan Guo, and Dacheng Tao. Vanillanet: the power of minimalism
in deep learning. arXiv preprint arXiv:2305.12972, 2023.

Benjamin Cramer, Sebastian Billaudelle, Simeon Kanya, Aron Leibfried, Andreas Grübl, Vitali
Karasenko, Christian Pehle, Korbinian Schreiber, Yannik Stradmann, Johannes Weis, et al. Sur-
rogate gradients for analog neuromorphic computing. Proceedings of the National Academy of
Sciences, 119(4):e2109194119, 2022.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. IEEE Micro, 38(1):82–99, 2018.

Shikuang Deng and Shi Gu. Optimal conversion of conventional artificial neural networks to spiking
neural networks. In International Conference on Learning Representations, 2021.

Shikuang Deng, Yuhang Li, Shanghang Zhang, and Shi Gu. Temporal efficient training of spiking
neural network via gradient re-weighting. In International Conference on Learning Representa-
tions, 2022.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

10

Under review as a conference paper at ICLR 2024

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian. In-
corporating learnable membrane time constant to enhance learning of spiking neural networks. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

Nicolas Frémaux and Wulfram Gerstner. Neuromodulated spike-timing-dependent plasticity, and
theory of three-factor learning rules. Frontiers in Neural Circuits, 9:85, 2016.

Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

Jacques Kaiser, Hesham Mostafa, and Emre Neftci. Synaptic plasticity dynamics for deep continu-
ous local learning (decolle). Frontiers in Neuroscience, 14:424, 2020.

Jinseok Kim, Kyungsu Kim, and Jae-Joon Kim. Unifying activation-and timing-based learning rules
for spiking neural networks. In Advances in Neural Information Processing Systems, 2020.

Youngeun Kim, Yuhang Li, Hyoungseob Park, Yeshwanth Venkatesha, Ruokai Yin, and
Priyadarshini Panda. Exploring lottery ticket hypothesis in spiking neural networks. In Euro-
pean Conference on Computer Vision, pp. 102–120. Springer, 2022.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical report, University of Toronto, 2009.

Jonas Kubilius, Martin Schrimpf, Kohitij Kar, Rishi Rajalingham, Ha Hong, Najib Majaj, Elias Issa,
Pouya Bashivan, Jonathan Prescott-Roy, Kailyn Schmidt, et al. Brain-like object recognition with
high-performing shallow recurrent anns. In Advances in Neural Information Processing Systems,
2019.

Julien Launay, Iacopo Poli, François Boniface, and Florent Krzakala. Direct feedback alignment
scales to modern deep learning tasks and architectures. In Advances in Neural Information Pro-
cessing Systems, 2020.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.
In Proceedings of the European Conference on Machine Learning and Knowledge Discovery in
Databases, 2015.

Jeongjun Lee, Renqian Zhang, Wenrui Zhang, Yu Liu, and Peng Li. Spike-train level direct feedback
alignment: sidestepping backpropagation for on-chip training of spiking neural nets. Frontiers in
Neuroscience, 14:143, 2020.

Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural networks using
backpropagation. Frontiers in Neuroscience, 10:508, 2016.

Hongmin Li, Hanchao Liu, Xiangyang Ji, Guoqi Li, and Luping Shi. Cifar10-dvs: an event-stream
dataset for object classification. Frontiers in Neuroscience, 11:309, 2017.

Jia Li, Mingqing Xiao, Cong Fang, Yue Dai, Chao Xu, and Zhouchen Lin. Training neural networks
by lifted proximal operator machines. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 44(6):3334–3348, 2020.

Yuhang Li, Yufei Guo, Shanghang Zhang, Shikuang Deng, Yongqing Hai, and Shi Gu. Differen-
tiable spike: Rethinking gradient-descent for training spiking neural networks. In Advances in
Neural Information Processing Systems, 2021.

Yuhang Li, Tamar Geller, Youngeun Kim, and Priyadarshini Panda. Seenn: Towards temporal
spiking early-exit neural networks. arXiv preprint arXiv:2304.01230, 2023.

Qianli Liao, Joel Leibo, and Tomaso Poggio. How important is weight symmetry in backpropaga-
tion? In Proceedings of the AAAI Conference on Artificial Intelligence, 2016.

11

Under review as a conference paper at ICLR 2024

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature Communications, 7
(1):1–10, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Gehua Ma and Huajin Tang. Enabling probabilistic inference on large-scale spiking neural networks.
2022.

Erwann Martin, Maxence Ernoult, Jérémie Laydevant, Shuai Li, Damien Querlioz, Teodora Petrisor,
and Julie Grollier. Eqspike: spike-driven equilibrium propagation for neuromorphic implementa-
tions. Iscience, 24(3):102222, 2021.

Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Training
high-performance low-latency spiking neural networks by differentiation on spike representation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2022a.

Qingyan Meng, Shen Yan, Mingqing Xiao, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Training
much deeper spiking neural networks with a small number of time-steps. Neural Networks, 153:
254–268, 2022b.

Emre O Neftci, Charles Augustine, Somnath Paul, and Georgios Detorakis. Event-driven random
back-propagation: Enabling neuromorphic deep learning machines. Frontiers in Neuroscience,
11:324, 2017.

Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. In Advances
in Neural Information Processing Systems, 2016.

Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static image
datasets to spiking neuromorphic datasets using saccades. Frontiers in Neuroscience, 9:437, 2015.

Alexander Ororbia. Learning spiking neural systems with the event-driven forward-forward process.
arXiv preprint arXiv:2303.18187, 2023.

Peter O’Connor, Efstratios Gavves, and Max Welling. Training a spiking neural network with equi-
librium propagation. In International Conference on Artificial Intelligence and Statistics, 2019.

Alexandre Payeur, Jordan Guerguiev, Friedemann Zenke, Blake A Richards, and Richard Naud.
Burst-dependent synaptic plasticity can coordinate learning in hierarchical circuits. Nature Neu-
roscience, 24(7):1010–1019, 2021.

Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe
Zou, Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid Tianjic chip
architecture. Nature, 572(7767):106–111, 2019.

Arjun Rao, Philipp Plank, Andreas Wild, and Wolfgang Maass. A long short-term memory for ai
applications in spike-based neuromorphic hardware. Nature Machine Intelligence, 4(5):467–479,
2022.

Mengye Ren, Simon Kornblith, Renjie Liao, and Geoffrey Hinton. Scaling forward gradient with
local losses. In International Conference on Learning Representations, 2023.

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence
with neuromorphic computing. Nature, 575(7784):607–617, 2019.

Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu. Con-
version of continuous-valued deep networks to efficient event-driven networks for image classifi-
cation. Frontiers in Neuroscience, 11:682, 2017.

12

Under review as a conference paper at ICLR 2024

Benjamin Scellier and Yoshua Bengio. Equilibrium propagation: Bridging the gap between energy-
based models and backpropagation. Frontiers in Computational Neuroscience, 11:24, 2017.

Catherine D Schuman, Shruti R Kulkarni, Maryam Parsa, J Parker Mitchell, Prasanna Date, and Bill
Kay. Opportunities for neuromorphic computing algorithms and applications. Nature Computa-
tional Science, 2(1):10–19, 2022.

Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in spiking
neural networks: Vgg and residual architectures. Frontiers in Neuroscience, 13:95, 2019.

Alexander Shekhovtsov and Viktor Yanush. Reintroducing straight-through estimators as principled
methods for stochastic binary networks. In DAGM German Conference on Pattern Recognition,
2021.

Alexander Shekhovtsov, Viktor Yanush, and Boris Flach. Path sample-analytic gradient estimators
for stochastic binary networks. In Advances in Neural Information Processing Systems, 2020.

Sumit Bam Shrestha and Garrick Orchard. Slayer: spike layer error reassignment in time. In
Advances in Neural Information Processing Systems, 2018.

David Silver, Anirudh Goyal, Ivo Danihelka, Matteo Hessel, and Hado van Hasselt. Learning by
directional gradient descent. In International Conference on Learning Representations, 2022.

Christoph Stöckl and Wolfgang Maass. Optimized spiking neurons can classify images with high
accuracy through temporal coding with two spikes. Nature Machine Intelligence, 3(3):230–238,
2021.

Matthew Bailey Webster, Jonghyun Choi, et al. Learning the connections in direct feedback align-
ment. 2020.

Stanisław Woźniak, Angeliki Pantazi, Thomas Bohnstingl, and Evangelos Eleftheriou. Deep learn-
ing incorporating biologically inspired neural dynamics and in-memory computing. Nature Ma-
chine Intelligence, 2(6):325–336, 2020.

Jibin Wu, Yansong Chua, Malu Zhang, Guoqi Li, Haizhou Li, and Kay Chen Tan. A tandem learning
rule for effective training and rapid inference of deep spiking neural networks. IEEE Transactions
on Neural Networks and Learning Systems, 2021.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in Neuroscience, 12:331, 2018.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spiking neural
networks: Faster, larger, better. In Proceedings of the AAAI Conference on Artificial Intelligence,
2019.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Yisen Wang, and Zhouchen Lin. Training feed-
back spiking neural networks by implicit differentiation on the equilibrium state. In Advances in
Neural Information Processing Systems, 2021.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online training
through time for spiking neural networks. In Advances in Neural Information Processing Systems,
2022.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Yisen Wang, and Zhouchen Lin. Spide: A purely
spike-based method for training feedback spiking neural networks. Neural Networks, 161:9–24,
2023.

Will Xiao, Honglin Chen, Qianli Liao, and Tomaso Poggio. Biologically-plausible learning al-
gorithms can scale to large datasets. In International Conference on Learning Representations,
2018.

Qu Yang, Jibin Wu, Malu Zhang, Yansong Chua, Xinchao Wang, and Haizhou Li. Training spik-
ing neural networks with local tandem learning. In Advances in Neural Information Processing
Systems, 2022.

13

Under review as a conference paper at ICLR 2024

Bojian Yin, Federico Corradi, and Sander M Bohte. Accurate online training of dynamical spiking
neural networks through forward propagation through time. arXiv preprint arXiv:2112.11231,
2021.

Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking neural
networks. Neural Computation, 30(6):1514–1541, 2018.

Wenrui Zhang and Peng Li. Temporal spike sequence learning via backpropagation for deep spiking
neural networks. In Advances in Neural Information Processing Systems, 2020.

Shibo Zhou, Xiaohua Li, Ying Chen, Sanjeev T Chandrasekaran, and Arindam Sanyal. Temporal-
coded deep spiking neural network with easy training and robust performance. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2021.

Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, YAN Shuicheng, Yonghong Tian, and
Li Yuan. Spikformer: When spiking neural network meets transformer. In International Confer-
ence on Learning Representations, 2023.

Yaoyu Zhu, Zhaofei Yu, Wei Fang, Xiaodong Xie, Tiejun Huang, and Timothée Masquelier. Train-
ing spiking neural networks with event-driven backpropagation. In Advances in Neural Informa-
tion Processing Systems, 2022.

14

Under review as a conference paper at ICLR 2024

A MORE INTRODUCTION TO STOCHASTIC SPIKING NEURON MODELS AND
SURROGATE GRADIENTS

As introduced in Section 3.1, the stochastic spiking neuron model generates spikes with a probability
distribution. The deterministic model generates spikes once the membrane potential exceeds the
threshold:

si[t] = H(ui[t]− Vth), (9)

while for the stochastic model, si[t] follows {0, 1} valued Bernoulli distribution with probability
p(si[t] = 1) = F (ui[t] − Vth), where F is the cdf of the distribution. This can be realized by
reparameterization, i.e., the spike generation is:

si[t] = H(ui[t]− Vth − zi), (10)

where zi is a random variable following the distribution of F . Such formulation can be viewed
as a noise injection for the membrane potential, which may correspond to some hardware noise,
e.g., thermal noise (Büchel et al., 2021), for neuromorphic computing. Different F corresponds
to different noises. For example, for the sigmoid function, the noise corresponds to the logistic
noise, while for the erf function, the noise corresponds to the Gaussian noise. The commonly used
surrogate functions all have corresponding noises (Shekhovtsov & Yanush, 2021).

For the stochastic model, the objective function should be changed to the expectation over the ran-
dom variables. Specifically, we first consider a single hidden layer network with a single time step
for simplicity. The input x are connected to n hidden spiking neurons by the weight W, which are
then connected to an output readout layer by the weight O. For deterministic models, the objective
function is to minimize Ex[L(s)], with s = H(u − Vth),u = Wx. For stochastic models, the
objective is to minimize

Ex[Es∼p(s|x,W)[L(s)]] (11)

considering the expectation of s with the probability distribution whose cdf is F (u − Vth) (vari-
ables si are independent of each other). In this setting, the gradients are actually well-defined, and
Shekhovtsov & Yanush (2021); Shekhovtsov et al. (2020) show that a similar form of surrogate
gradients (also known as straight-through-estimator) can be derived through derandomization and
linear approximation. Specifically, we focus on how gradients of u can be derived. Given inputs,
the gradients are expressed as:

∂

∂u
Es∼p(s|W)[L(s)] =

∂

∂u

∑
s

(∏
i

p(si|W)

)
L(s)

=
∑
s

∑
i

∏
i′ ̸=i

p(si′ |W)

(∂

∂u
p(si|W)

)
L(s).

(12)

Then derandomization can be applied, i.e., performing summation over si with other random vari-
ables fixed (Shekhovtsov & Yanush, 2021). Let s¬i denote all variables excluding si. Since si is
binary valued, given s¬i, we have

∑
si∈{0,1}

∂p(si|W)

∂u
L([s¬i, si]) =

∂p(si|W)

∂u
L(s) + ∂(1− p(si|W))

∂u
L(s↓i)

=
∂p(si|W)

∂u
(L(s)− L(s↓i)) ,

(13)

where [s¬i, si] denotes taking the values of s¬i and si for random variables, s is a sample (si can
be either 0 or 1, i.e., the RHS is invariant of si), and s↓i denotes that si is changed to the other state

15

Under review as a conference paper at ICLR 2024

while other variables are fixed. Since 1 =
∑

si
p(si|W), Eq. (12) can be written as

∂

∂u
Es∼p(s|W)[L(s)] =

∑
i

∑
s¬i

∏
i′ ̸=i

p(si′ |W)

∑
si

(
∂

∂u
p(si|W)

)
L([s¬i, si])

=
∑
i

∑
s¬i

∏
i′ ̸=i

p(si′ |W)

∑
si

p(si|W)
∂p(si|W)

∂u
(L(s)− L(s↓i))

=
∑
s

(∏
i

p(si|W)

)∑
i

∂p(si|W)

∂u
(L(s)− L(s↓i))

= Es∼p(s|W)

∑
i

∂p(si|W)

∂u
(L(s)− L(s↓i)) .

(14)

We can take one sample in each forward procedure for the unbiased gradient estimation as the
Monte Carlo method. Considering the probability distribution, the term ∂p(si|W)

∂u just correspond
to a surrogate function f(u, Vth), which is the derivative of the cdf function F , e.g., the derivative
of the sigmoid function, triangular function, etc. The term L(s) − L(s↓i) can be tackled by linear
approximation considering that si is {0, 1} valued: L(s)−L(s↓i) ≈ ∂L(s)

∂si
, given the gradient ∂L(s)

∂s .
Then the surrogate gradient is systematically derived:

∂̃L(s)
∂u

=
∂L(s)
∂s

∂̃s

∂u
,

∂̃s

∂u
=

∂p(si|W)

∂u
= f(u, Vth). (15)

The linear approximation can introduce bias, while it can be reduced considering over-parameterized
neural networks whose weights are at the scale of 1√

m
, where m is the neuron number — for each el-

ement of the readout o = Os, changing the state of one si only has O(1√
m
) influence. Shekhovtsov

& Yanush (2021) shows that the gradient provides a valid ascent direction under a certain condi-
tion considering the gradient scale and Lipschitz constant of the gradient. At the same time, the
deterministic model can be viewed as a special case, e.g., the samples of noise are always taken as
zero, and Shekhovtsov & Yanush (2021) also shows that the deterministic gradient gives a similar
ascent direction under certain conditions considering the gradient scale, the Lipchitz constant of the
gradient, and the probability for stochastic neurons to generate the same spikes. For more details,
please refer to Shekhovtsov & Yanush (2021).

For multi-layer networks, the results can be similarly derived by iteratively performing the above
analysis (Shekhovtsov & Yanush, 2021), and it can be the same for gradients at each time step. In
practice, surrogate gradients also achieve successful results. Therefore, we consider that surrogate
gradients can be reliable targets, and our forward gradients are to estimate them.

B DETAILED PROOFS

B.1 PROOF OF PROPERTY 1

Proof. For the forward gradient gsl+1 =
〈
eN , zN,l+1

〉
vl+1, according to the definition of the sur-

rogate gradient and zN,l+1, we have〈
eN , zN,l+1

〉
=
〈

˜∇sl+1L[t],vl+1
〉
=
∑
j

(
˜∇sl+1L[t]

)
j
vl+1
j . (16)

Then for each element of (gsl+1)i, we have

(gsl+1)i =
(

˜∇sl+1L[t]
)
i
vl+1
i

2
+
∑
j ̸=i

(
˜∇sl+1L[t]

)
j
vl+1
i vl+1

j . (17)

Since vl+1 has i.i.d. components with zero mean and unit variance, we have E
[
vl+1
i

2
]
= 1 and

E
[
vl+1
i vl+1

j

]
= 0. Then the expectation of each element is

E [(gsl+1)i] =
(

˜∇sl+1L[t]
)
i
E
[
vl+1
i

2
]
+
∑
j ̸=i

(
˜∇sl+1L[t]

)
j
E
[
vl+1
i vl+1

j

]
=
(

˜∇sl+1L[t]
)
i
. (18)

16

Under review as a conference paper at ICLR 2024

Therefore, E[gsl+1] = ˜∇sl+1L[t].

B.2 PROOF OF PROPOSITION 1

Proof. According to the Lipschitz condition, it holds that
∥∥∥J̃f (xi)− J̃f (xj)

∥∥∥ ≤ LJ ∥xi − xj∥,
∥e(xi)− e(xj)∥ ≤ Le ∥xi − xj∥. Then based on the equation that 1

2n2

∑
i,j(ai − aj)(bi − bj) =

1
n

∑
i aibi −

1
n2

∑
i,j aibj , we have∥∥∥Exi

J̃f (xi)e(xi)− Exi

(
Exj

J̃f (xj)
)
e(xi)

∥∥∥
=

∥∥∥∥∥ 1n∑
xi

J̃f (xi)e(xi)−

(
1

n

∑
xi

J̃f (xi)

)(
1

n

∑
xi

e(xi)

)∥∥∥∥∥
=

∥∥∥∥∥∥ 1

2n2

∑
xi,xj

(
J̃f (xi)− J̃f (xj)

)
(e(xi)− e(xj))

∥∥∥∥∥∥
≤ 1

2n2

∑
xi,xj

∥∥∥(J̃f (xi)− J̃f (xj)
)∥∥∥ ∥(e(xi)− e(xj))∥

≤ 1

2n2

∑
xi,xj

LJLe∥xi − xj∥2 =
1

2
LJLe∆x

≤
∥∥∥Exi J̃f (xi)e(xi)

∥∥∥ .

(19)

Therefore,〈
Exi

J̃f (xi)e(xi),Exi

(
Exj

J̃f (xj)
)
e(xi)

〉
=

∥∥∥Exi J̃f (xi)e(xi)
∥∥∥2 − 〈Exi J̃f (xi)e(xi),Exi J̃f (xi)e(xi)− Exi

(
Exj J̃f (xj)

)
e(xi)

〉
≥

∥∥∥Exi
J̃f (xi)e(xi)

∥∥∥2 − ∥∥∥Exi
J̃f (xi)e(xi)

∥∥∥∥∥∥Exi
J̃f (xi)e(xi)− Exi

(
Exj

J̃f (xj)
)
e(xi)

∥∥∥
≥ 0.

(20)

Remark 1. The proposition makes assumptions on the Liptschitz condition of the surrogate Jaco-
bian and the gradient of the output layer w.r.t. inputs. This can be reasonable under the stochastic
neuron setting where surrogate gradients are well-defined and objective functions are the expecta-
tion over random variables. LJ will depend on the non-linearity of networks, for example, LJ = 0
for linear networks. This will influence the condition of effective descent direction considering the
gradient scale as in the proposition. Actually, these assumptions are not necessary premises, and
FGT with momentum feedback connections is a practical approximation to the gradient considered
in the proposition. We have empirically shown that FGT provides effective descent directions. This
proposition mainly provides insights into the condition with the expectation of (surrogate) Jacobian
that FGT approximates.

C PSEUDOCODE OF THE FGT ALGORITHM

We present the pseudocode of one iteration of FGT training with momentum feedback connections
in Algorithm 1 to better illustrate our training method. It is based on the OTTT method (Xiao et al.,
2022), and we present OTTTA with the accumulation of several time steps for simplicity, while it is
also possible for the online OTTTO.

17

Under review as a conference paper at ICLR 2024

Algorithm 1 One iteration of FGT training for a feedforward network.
Input: Network parameters {Wl}; Feedback connections {Ml}; Input data x; Label y; Time

steps T ; Other hyperparameters;
Output: Trained network parameters {Wl}, updated {Ml}.

1: for t = 1, 2, · · · , T do
2: z list = []. // The list of forward gradients for different layers, we use z to distinguish them

from sampled vl at each layer
3: for l = 1, 2, · · · , N do // Forward propagation
4: Update membrane potentials ul[t] and generate spikes sl[t] at layer l;
5: Update the tracked presynaptic activities âl[t] = λâl[t− 1] + ŝl[t] at layer l;
6: Forward propagate elements in z list as Eq. (4);
7: Sample vl, z list.append(vl). // For FGT (S), only one random layer will sample vl

for forward propagation
8: Get local gradient eN at the output layer.
9: for l = 1, 2, · · · , N − 1 do // Feedback from the top layer, parallelizable

10: Update Ml as Eq. (6) based on vl and elements in z list at the output layer; // For
FGT (S), only one random layer will update

11: Propagate errors from the top layer to obtain feedback errors gsl [t] = MleN ;
12: Calculate the instantaneous gradient∇WlL[t] based on gsl+1 [t] and âl[t];
13: Accumulate gradients∇WlL = ∇WlL+∇WlL[t].
14: Update parameters {Wl} with accumulated {∇WlL} based on the gradient-based optimizer.

D IMPLEMENTATION DETAILS

D.1 ENCODING SIGNALS BY THE RATE OF BURSTS

As introduced in Section 4.4, we will consider representing signals of forward gradients by the rate
of bursts. We consider TB discrete time steps for the bursts and take the spiking rate as the signal.
Specifically, given an input signal x, a spike train with TB discrete time steps is outputted which can
also be viewed as the output of the non-leaky integrate and fire neuron with the constant input x,
and the rate of the spike train is regarded as the signal. Then given a scale s for each spike, this can

correspond to a quantization of the input signal x as Q(x) = s× [clamp(x,−s,s)
s ×TB]
TB

. We use this for-
mulation in experiments and for TB = 20, we take s = 10, while for TB = 1, we take s = 1. Note
that the discretization step size for the bursts can have a different scale than the common forward
propagation, i.e., they are high-frequency signals and multiple discrete steps of bursts can corre-
spond to one step of the common forward signals. Also note that the signals may require negative
spikes to propagate negative inputs, i.e., neurons will generate a negative spike when the membrane
potential is lower than a negative threshold. This is inevitable for the propagation of gradient signals
which can be either positive or negative, and is shared by methods to propagate gradient signals
across layers. One solution is to enable negative spiking. Another solution for common positively
spiking neuron models can be leveraging a neuron couple with recurrent connections between each
other to simulate ternary spikes, as illustrated in Xiao et al. (2023) (more details please refer to Xiao
et al. (2023)).

D.2 COMBINATION WITH LOCAL LEARNING

In our experiments of local learning, we simply consider fully connected readout layers for each
layer to provide supervision. Specifically, for the output sl of each layer, we obtain the readout
rl = Rlsl to calculate loss based on it: L(rl,y). Then the gradient for sl is calculated by the
local loss, and it is only leveraged to update synaptic weights directly connected to the neurons.
Note that for simplicity, we assume the weight symmetry for propagating errors through Rl in the
experiments, and the readout weight is learned with local errors, while Kaiser et al. (2020) has shown
that fixed random matrix and sign symmetry can be effective for such local learning without weight
symmetry. It can be extended to these settings, as well as other local learning methods.

18

Under review as a conference paper at ICLR 2024

D.3 TRAINING SETTINGS

D.3.1 DATASETS

We conduct experiments on MNIST (LeCun et al., 1998), N-MNIST (Orchard et al., 2015), DVS-
CIFAR10 (Li et al., 2017), DVS-Gesture (Amir et al., 2017), CIFAR-10 (Krizhevsky & Hinton,
2009), and CIFAR-100 (Krizhevsky & Hinton, 2009).

MNIST The MNIST dataset consists of 10-class handwritten digits with 60,000 training samples
and 10,000 testing samples. Each sample is a 28 × 28 grayscale image. We normalize the inputs
based on the global mean and standard deviation, and convert the pixel value into a real-valued input
current at every time step. No data augmentation is applied. The license of MNIST is the MIT
License.

N-MNIST The N-MNIST dataset is a neuromorphic dataset converted from MNIST by a Dynamic
Version Sensor (DVS). It consists of spike trains triggered by the intensity change of pixels when
DVS scans the static MNIST images along given directions. Since the intensity can either increase
or decrease, there are two channels corresponding to ON- and OFF-event spikes. And the pixel
dimension is expanded to 34 × 34 due to the relative shift of images. Therefore, each sample is a
spike train pattern with the size of 34 × 34 × 2 × T , where T is the temporal length. The original
data record 300ms with the resolution of 1µs. We follow the prepossessing of Zhang & Li (2020)
to reduce the time resolution by accumulating the spike train within every 3ms, and we will use the
first 30 time steps. The license of N-MNIST is the Creative Commons Attribution-ShareAlike 4.0
license.

DVS-CIFAR10 The DVS-CIFAR10 dataset is the neuromorphic dataset converted from the
CIFAR-10 dataset by DVS, which is composed of 10,000 samples, one-sixth of the original CIFAR-
10. It consists of spike trains with two channels corresponding to ON- and OFF-event spikes. The
pixel dimension is expanded to 128× 128. Following the common practice, we split the dataset into
9000 training samples and 1000 testing samples. As for the data pre-processing, we reduce the time
resolution by accumulating the spike events (Fang et al., 2021) into 10 time steps, and we reduce
the spatial resolution into 48× 48 by interpolation. We apply the random cropping augmentation as
CIFAR-10 to the input data and normalize the inputs based on the global mean and standard devi-
ation of all time steps (which can be integrated into the connection weights of the first layer). The
license of DVS-CIFAR10 is CC BY 4.0.

DVS-Gesture The DVS-Gesture dataset is a neuromorphic dataset with 11 kinds of hand gestures
from 29 subjects under 3 kinds of illumination conditions recorded by a DVS camera. It is composed
of 1176 training samples and 288 testing samples. Following Fang et al. (2021), we pre-possess the
data to integrate event data into 20 frames. The license of DVS-Gesture is the Creative Commons
Attribution 4.0 license.

CIFAR-10 The CIFAR-10 dataset consists of 10-class color images of objects, which contains
50,000 training samples and 10,000 testing samples. Each sample is a 32× 32× 3 color image. We
normalize the inputs based on the global mean and standard deviation, and apply random cropping,
horizontal flipping, and cutout (DeVries & Taylor, 2017) for data augmentation. The inputs to the
first layer of SNNs at each time step are directly the pixel values, which can be viewed as a real-
valued input current.

CIFAR-100 CIFAR-100 is a dataset similar to CIFAR-10 except that there are 100 classes of
objects. It also consists of 50,000 training samples and 10,000 testing samples. We use the same
pre-processing as CIFAR-10.

The license of CIFAR-10 and CIFAR-100 is the MIT License.

D.3.2 TRAINING DETAILS AND HYPERPARAMETERS

Our training settings mainly follow Xiao et al. (2022). For SNN models, following the common
practice, we assume that the neurons of the last classification layer will not spike or reset, and do

19

Under review as a conference paper at ICLR 2024

classification based on the accumulated membrane potential. That is, the final output is uN [t] =
WN−1sN−1[t] + bN at each time step. The classification is based on the accumulated uN =∑T

t=1 u
N [t], and the loss during training is also calculated based on uN [t], i.e., L(uN [t],y). And

our loss function takes the same form as Xiao et al. (2022), i.e., it is based on the combination
of cross-entropy (CE) loss and mean-square-error (MSE) loss. The hyperparameters for spiking
neurons are set as Vth = 1 and λ = 0.5. We take the sigmoid-like surrogate function with the
hyperparameter as a1 = 0.25, and for the stochastic neuron model, the noise corresponds to the
logistic noise of this sigmoid function. For convolutional networks, we apply the scaled weight
standardization (Brock et al., 2021a;b) as in Xiao et al. (2022).

We train all our models by the AdamW optimizer (Loshchilov & Hutter, 2019) with learning 2e-
4 and weight decay 2e-4. The batch size is set as 128 for most datasets and 16 for DVS-Gesture
following Xiao et al. (2022), and the learning rate is cosine annealing to 0. For MNIST and N-
MNIST, we train models by 50 epochs and we apply dropout with the rate 0.2 (except for N-MNIST
with the stochastic model). For DVS-CIFAR10, DVS-Gesture, CIFAR-10, and CIFAR-100, we
train models by 300 epochs. For DVS-CIFAR10, we apply dropout with the rate 0.1. We set the
momentum coefficient for momentum feedback connections as λ = 0.999, and for the combination
with local learning, the local loss is scaled by 0.01.

The code implementation is based on the PyTorch framework, and experiments are carried out on
one NVIDIA GeForce RTX 3090 GPU. All experiments are based on 3 runs of experiments and are
carried out under the same random seeds 2022, 0, and 1.

As for gradient variance and angle experiments, the gradient angles are represented by cosine sim-
ilarity (average per epoch) with the backpropagated gradient and we study FGT, DFA, and FGT
(w/o m) (i.e., the vanilla forward gradient), and the gradient variances are calculated by the batch
gradients in one epoch, i.e., var =

∑
∥gi−g∥2

n , where gi is the batch gradient, g is the average of
batch gradients, and n is the number of batches multiplied by the number of elements in the gradient
vector. The variance consists of sample variance as well as additional variance, e.g., introduced by
the vanilla forward gradient. We study the variance of FGT, BP, and FGT (w/o m).

E ADDITIONAL RESULTS

E.1 TRAINING COSTS

Table 5: Estimation of training costs on potential neuromorphic hardware. For illustration, we
consider neural networks with N hidden layer with n neurons for each layer and m neurons for the
output layer, where m≪ n. The costs mainly focus on additional synaptic costs besides the normal
forward procedure.

Method Memory Operations

BP (if possible) O
(
(N − 1)n2 +mn

)
O
(
(N − 1)n2 +mn

)
DFA O (Nmn) O (Nmn)

FGT (S) O (Nmn) O
(
1
2 (N − 1)n2 +mn+Nmn

)
Here we provide a detailed discussion of computational overhead on both common hardware and
potential neuromorphic hardware. The theoretical estimation of training costs on neuromorphic
hardware is presented in Table 5, while the implemented training costs on GPU are shown in Table 6.
Note that neuromorphic hardware is expected to have different architectures than GPU, so the costs
can be different. And since we do not fully optimize the codes for low-level optimization of our
method as BP in PyTorch, the results on GPU are brief comparisons. It can also be further improved,
e.g., with parallelization of computation for forward gradients.

First, for memory cost, let’s first consider the cost on CPU/GPU. The symmetric weight of BP
does not require additional storage on GPU. For FGT, FGT (S), and DFA, they maintain feedback
connections directly from the last layer to middle ones, which can be additional to BP that uses
symmetric weights to backpropagate errors. And FGT additionally stores random vectors for N

20

Under review as a conference paper at ICLR 2024

Table 6: Brief comparison of training costs on GPU for CIFAR-100 with convolutional networks.
LL denotes local learning.

Method Memory Time per epoch

BP 3.2G 52s

DFA 3.3G 48s

FGT (w/o m) 3.4G 67s

FGT 3.4G 70s

FGT (S) 3.4G 53s

FGT + LL 3.8G 76s

layers while FGT (S) stores random vector for 1 layer. So the costs of DFA, FGT, and FGT (S) on
GPU can be slightly larger than BP, which accords with the actual cost. Despite this, the overall
costs are comparable.

On the other hand, if we consider neuromorphic computing with unidirectional synapses, BP (if
possible) should maintain all backward synapses between successive layers, while FGT, FGT (S),
and DFA keep direct feedback connections from the top layer, which can be smaller than BP since
middle layers usually have much more neurons. As shown in Table 5, the memory costs of DFA and
FGT (S) can be much smaller than BP.

Second, for operation numbers, BP requires a backward propagation across N layers, DFA requires
direct feedback to N layers, FGT requires N forward propagation of forward gradients for different
layers (across N,N−1, ..., 1 layers) and direct feedback to N layers, and FGT (S) requires a forward
propagation across average N/2 layers and direct feedback to N layers which can be more practical
than FGT. Direct feedback to N layers may need fewer operations than BP across N layers as middle
layers usually have more neurons (for example, propagation from 400 to 400 neurons requires much
more operations than from 10 to 400 neurons). So with a rough estimation, DFA needs much fewer
operations than BP, and FGT (S) needs fewer operations than BP, as shown in Table 5.

Additionally, we emphasize that our method mainly focuses on developing neuromorphic-friendly
algorithms rather than only considering efficiency on GPU. Our ultimate goal is to consider efficient
neuromorphic hardware, and as it is currently immature we develop methods with simulation on
GPU. Our method is with more neuromorphic properties and is more plausible than BP. And com-
pared with DFA-based methods, our method significantly improves performance to a similar level
as BP. We can realize these targets with comparable costs, which could be acceptable.

E.2 FIRING RATE STATISTICS

0

0.1

0.2

0.3

0.4

Layer 1 Layer 2 Layer 3 Layer 4 Total

BP FGT FGT + LL

0

0.1

0.2

0.3

0.4

Layer 1 Layer 2 Layer 3 Layer 4 Total

BP FGT FGT + LL

(a) DVS-CIFAR10 (b) CIFAR10

Figure 4: Firing rate statistics of models trained by different spatial credit assignment methods on
DVS-CIFAR10 and CIFAR-10.

We compare the firing rate of models trained by BP, FGT, and FGT + LL in Fig. 4. On the neuro-
morphic dataset, the trend in different layers is similar for different methods, and the model trained

21

Under review as a conference paper at ICLR 2024

by FGT has more spikes than BP, while local learning can reduce the spikes. On the static dataset,
the trend in different layers is different for BP and FGT, and the model trained by FGT has similar
spikes as BP, while local learning can also significantly reduce the spikes by about half.

E.3 RESULTS OF DEEPER NETWORKS

Table 7: Comparison results of a deeper 9-layer network (64C3-128C3-AP2-256C3-256C3-AP2-
512C3-512C3-AP2-512C3-512C3-FC) on DVS-CIFAR10 and CIFAR-100 under the stochastic set-
ting. IGL denotes intermediate global learning, where we add an additional readout layer at the
middle of the network (4-th layer) that also provides feedback signals to previous layers.

DVS-CIFAR10
BP DFA FGT FGT + LL

74.5 65.0 71.4 74.3

CIFAR100
BP DFA FGT FGT + IGL

64.53 48.76 60.48 63.87

We supplement results with a deeper 9-layer network in Table 7. Our method is still valid. It is
similar to the 5-layer setting that there is a large improvement over DFA (> 10% on CIFAR-100),
and FGT with local learning (or intermediate global learning (IGL) with an additional readout layer
at middle that also provides feedback to previous layers) achieves similar performance as BP.

The results show the potential for deeper networks. On the other hand, biological systems do not
have that deep architectures, and previous works show that shallow ANNs with recurrence achieve
higher functional fidelity of human brains and similarly high performance (Kubilius et al., 2019).
Recent works also show that ANNs with about 10 layers can achieve SOTA results with special
designs (Chen et al., 2023). So we think that the results provide effective verification of our method,
and future work can consider advanced network architectures.

E.4 MORE COMPARISON RESULTS

Table 8: Comparison results with the adjusted error feedback matrices method DKP.

Method MNIST N-MNIST DVS-Gesture DVS-CIFAR10 CIFAR-10 CIFAR-100

DFA 97.83 97.68 82.87 60.20 79.92 50.09

DKP 97.80 97.26 44.10 36.80 82.86 53.78

FGT 98.12 97.98 95.60 73.30 85.98 61.19

We supplement comparison results with the adjusted error feedback matrices method DKP (Webster
et al., 2020) in Table 8. DKP is based on the formulation of DFA and learn feedback weights
similar to Kolen-Pollack learning, i.e., the gradient for the feedback weight is calculated based on
the product of the middle layer’s activation and the error from the top layer, whose thought is to keep
the update direction of feedback and feedforward weights the same. DKP is designed for ANN, and
we implement it for SNN with the adaptation of activations to pre-synaptic traces for feedback
weight learning (similar to the update of feedforward weight). As shown in the results, DKP has
around 3% performance improvement compared with DFA on CIFAR-10 and CIFAR-100, which is
about the same as in its paper. However, we observe that DKP cannot work well for neuromorphic
datasets. And both DKP and DFA have significant performance gaps compared with FGT.

E.5 FINETUNING RESNET-34 ON IMAGENET UNDER NOISE

To further study the effectiveness of our method under large-scale and complex settings, we sup-
plement an experiment on finetuning a pretrained ResNet-34 on ImageNet under potential hardware
noise. This task is on the ground that there can be hardware mismatch for deploying trained SNN
models (Yang et al., 2022; Cramer et al., 2022), and we may expect finetuning models directly on
hardware to better deal with the problem. Our method paves paths for on-chip learning and may be
combined with other works aiming at GPU training for SOTA performance in such scenario. We
simulate a kind of potential hardware noise by considering the stochastic neuron setting as described

22

Under review as a conference paper at ICLR 2024

in Section 3.1, which may correspond to some hardware noise such as thermal noise. We consider
finetuning a pretrained NF-ResNet-34 model released by Xiao et al. (2022), which is trained under
the deterministic setting (i.e., no noise) with the original test accuracy as 65.15%, under the noise
setting with different levels of noises. All methods are trained for only 1 epoch with the Adam
optimizer and learning rate 2e-6, and the results are below (where the noise parameter corresponds
to the hyperparameter for the sigmoid function of the logistic noise, and the larger the parameter the
larger the noise scale).

Table 9: Comparison results of finetuning ResNet-34 on ImageNet under noise by different methods.

Noise parameter Direct test DFA 1 epoch FGT (S) 1 epoch BP 1 epoch

1/6 49.17 44.42 58.56 61.40

1/8 58.51 58.34 62.14 63.05

As shown in Table 9, our proposed FGT (S) can effectively finetune such large-scale models, while
previous biologically plausible methods with random feedback (DFA) fail. BP is not biologically
plausible and its results are only for reference. FGT (S) has lower performance than BP under the
condition of 1 epoch because it may have a slower convergence rate than BP (as studied in Section 5).
Our proof-of-concept results mainly verify the effectiveness of our method for such scenarios and
large-scale models. Future work can consider more SOTA models, e.g., (Kim et al., 2022; Li et al.,
2023).

Besides this setting, we may also expect potential on-chip training of pretrained models for new data
or tasks considering real applications, as pretrain-finetune is the popular scenario considering recent
advances in deep learning. These can be interesting future work.

F MORE DISCUSSIONS

F.1 COMPARISON TO WORKS WITH SOTA PERFORMANCE

Our work is a different line from most recent works with SOTA performance (Kim et al., 2022; Li
et al., 2023; Zhou et al., 2023), and they can be orthogonal and combined with each other. Specifi-
cally, recent works with SOTA performance focus on training high-performance SNNs on common
hardware (e.g., GPU) with training methods such as BPTT and other improvements of models, and
the trained models are expected to be directly deployed on neuromorphic hardware. Their hardware
efficiency is about trained models. Our work, on the other hand, aims at developing algorithms that
adhere to neuromorphic properties and are expected to pave paths for on-chip training of SNNs. Our
hardware efficiency is about the training algorithm.

These two lines of work are compatible with each other. First, most recent SOTA works focus on
the improvement of models and are still based on BP for training. Our work considers a different
error propagation method and is orthogonal to them, which can be possibly combined in the future.
With biologically plausible training methods that pave paths for potential on-chip training, we may
also expect energy-efficient training directly on hardware, because GPUs are not designed for event-
driven and in-memory computation, and training SNNs on GPUs is costing.

Second, considering real applications, we can also first pretrain a high-performance SNN on GPU
as these works, and after deploying it on hardware, we may expect on-chip training of the models to
deal with problems such as hardware mismatch or tuning the model for new data or tasks so that the
model can adaptively evolve for real applications. One such scenario is verified in Appendix E.5.

Our experiments also mainly make fair comparisons with BP under the same settings and show the
effectiveness of our method with better neuromorphic properties, without claiming superiority over
SOTA models.

F.2 NEUROMORPHIC COMPUTING PROPERTIES

Currently, the development of neuromorphic hardware is immature and is also developing consid-
ering software-hardware co-design (Schuman et al., 2022), so most algorithms are simulated on

23

Under review as a conference paper at ICLR 2024

common computational devices while considering properties of neuromorphic computing, without
experiments on real neuromorphic chips. The compatibility is measured by fitness to neuromorphic
properties (or biological plausibility) because neuromorphic hardware will be designed following
them for efficient event-driven and in-memory computation. An important feature of neuromorphic
computing is unidirectional synaptic connections for event-driven and in-memory computation to
avoid frequent memory transport which accounts for the majority of energy costs in real hardware
(the computation architecture is expected to be different from the commonly used hardware with von
Neumann architecture such as CPU or GPU). This means that each synapse between two neurons
only allows unidirectional communications, and its weight value is stored locally. This is the reason
why BP can hardly be suitable for (future) neuromorphic hardware, because BP will require two dif-
ferent forward and backward connections between successive layers with exactly the same weight,
which will need frequent memory exchange (and also two stages, etc.) that is not compatible to the
basic thought of ideal neuromorphic computing, and can have larger costs even if it is supported.
Our proposed FGT, on the other hand, avoids BP’s problems and is thus more biologically plausible
and compatible with neuromorphic hardware. We do not restrict the method to specific hardware,
but follow the basic properties that will guide the development of hardware and algorithms.

F.3 DISCUSSION OF LIMITATIONS

This work is built on online training methods for SNNs, so similar to these methods, it may also limit
the usage of some techniques such as batch normalization along the temporal dimension. We follow
Xiao et al. (2022) to adopt the scaled weight standardization for convolutional networks, while more
techniques can be explored to better suit the properties of SNNs and scale up models. Additionally,
this work mainly considers feedforward networks, and future work can consider more biologically
plausible recurrent architectures with multiple layers.

24

	Introduction
	Related Work
	Preliminaries
	Spiking Neural Networks
	Surrogate Gradient of SNNs
	Forward Mode Automatic Differentiation

	Forward Gradient Training of SNNs
	Forward Surrogate Gradient
	Forward Gradient with Momentum Feedback Connections
	Forward and Online Training
	Discussion and Implementation Details

	Experiments
	Conclusion
	More Introduction to Stochastic Spiking Neuron Models and Surrogate Gradients
	Detailed Proofs
	Proof of Property 1
	Proof of Proposition 1

	Pseudocode of the FGT algorithm
	Implementation Details
	Encoding Signals by the Rate of Bursts
	Combination with Local Learning
	Training Settings
	Datasets
	Training Details and Hyperparameters

	Additional Results
	Training Costs
	Firing Rate Statistics
	Results of Deeper Networks
	More Comparison Results
	Finetuning ResNet-34 on ImageNet under Noise

	More Discussions
	Comparison to Works with SOTA Performance
	Neuromorphic Computing Properties
	Discussion of Limitations

