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Abstract

Multi-fidelity surrogate modeling aims to describe
complex systems governed by partial differential
equations with few high-fidelity data points and
abundant low-fidelity data points. Recent works
leverage deep neural networks and few-shot trans-
fer learning to achieve good results on several
high-dimensional surrogate modeling problems.
However, these works treat “multi-fidelity” as
“multi-resolution” where low-fidelity simulations
are computed using the same algorithm as high-
fidelity simulations but with coarser grids. In real
practice, low-fidelity simulations are often com-
puted by approximating hard-to-compute terms
and neglecting physics that are difficult to model.
The features learned from low-fidelity data are not
useful for predicting phenomena caused by those
ignored physics. During fine-tuning, new features
that the model learns for these regions will be
inaccurate and can corrupt the pre-trained fea-
tures. This can create unnecessary uncertainty for
the predictions of regions that are less dependent
on ignored physics. To overcome this problem,
we propose a multi-step transfer learning method
that, in each step, adaptively relaxes the constraint
on model weights and collects regional pseudo-
high-fidelity data to enlarge the training set. Our
experiments on modeling wind farm flow fields
show that our method significantly outperforms
vanilla transfer learning methods.

1. Introduction
Recently, data-driven neural operator learning has achieved
great success in building surrogate models for many com-
putational problems such as weather forecasting (Pathak
et al., 2022), seismic wave propagation (Yang et al., 2021),
and CO2 migration (Wen et al., 2022). However, producing
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enough data for the training of deep neural networks (DNNs)
poses a challenge when the solution of the partial differential
equations (PDEs) that describe our systems is computation-
ally expensive. Alternatively, low-fidelity models can offer
reasonably accurate solutions at a lower computational cost.
Therefore, training DNN models with a combination of low-
and high-fidelity data may offer a solution when the quan-
tity of the latter is limited. Previous works (Chen & Stinis,
2024; De et al., 2020; Zhang et al., 2023; Lyu et al., 2023;
Liao et al., 2021) have used the idea of few-shot transfer
learning to the multi-fidelity modeling of high or infinite
dimensional outputs with deep neural operators, achieving
good results. However, these works treat “multi-fidelity”
as “multi-resolution”, where low-fidelity simulations are
computed using the same algorithm as in the high-fidelity
simulations but on coarser grids.

Low-fidelity simulations can also come from simplified
model compared to high-fidelity simulations. These of-
ten neglect or approximate some hard-to-compute terms
found in high-fidelity models. Consequently, they can
yield significant speed improvement compared to merely
employing coarser grids. For example, the Euler method
ignores high-order terms and only keeps first-order terms
during the propagation of ordinary differential equations
(ODEs). Another example is Reynolds-Averaged Navier-
Stokes (RANS) (Reynolds, 1895), which computes the mean
flow by modeling the effect of the turbulence fluctuations
by approximating the Reynolds stresses. The ignored or ap-
proximated terms have different effects at different regions
of the output space. The Euler method will have higher
errors as time increases. The errors between RANS and
high-fidelity simulations show spatial dependence as shown
in previous works (Rumsey & Nishino, 2011; Breuer et al.,
2003; Rodi, 1997).

While previous works successfully apply vanilla transfer
learning to the first type of multi-fidelity, we found that di-
rectly applying vanilla transfer learning methods to the sec-
ond type of multi-fidelity yields inaccurate results. The rela-
tionship between the pre-trained features and high-fidelity
data varies significantly across different regions of the sim-
ulation. We hypothesize that this is the reason for low
performance. For the regions that are largely dependent on
the physics neglected by low-fidelity data, the pre-trained
features are less related to high-fidelity simulations. During
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fine-tuning, the model will learn new features from these
regions and corrupt the pre-trained features. However, for
the regions where observed high-fidelity simulations largely
match the physics preserved in the low-fidelity data, the
pre-trained features are useful for making accurate predic-
tions. The corrupted pre-trained features can degrade the
prediction accuracy in these regions.

We propose a multi-step transfer learning method to deal
with this problem based on a multi-task network. By in-
creasing the weight on high-fidelity outputs and reducing
the weight on low-fidelity outputs in the loss function, we
gradually increase the flexibility of the model to first fit
highly related regions and then to less related regions. We
collect pseudo high-fidelity data on the way of reducing con-
straint so that when we increase the model flexibility, the
uncertainty of already well-fitted regions will not increase.

Since the second type of multi-fidelity has not been studied
before in high-dimensional surrogate modeling, there are no
datasets that can be used to evaluate model performance on
the second type of multi-fidelity. We create one test case of
wind farm mean flow predictions and evaluate our method
on this problem. Our experiments show that our method sig-
nificantly outperforms the vanilla transfer learning method.
We hope to collect more test cases in the future and create a
benchmark dataset for second-type multi-fidelity modeling.

The main contributions of our paper are:

• We point out the second type of multi-fidelity, which
is generally ignored in recent works, and show that
methods successful in the first type of multi-fidelity
are not directly applicable to the second type of multi-
fidelity.

• We propose a multi-step transfer learning method to
solve the second type of multi-fidelity surrogate mod-
eling problem.

• We construct a test case of wind farm mean flow predic-
tions and design a network that can efficiently predict
the wind farm mean flow with input from the input pa-
rameter space. Empirical results show that the vanilla
transfer learning method is not fit for the second type
of multi-fidelity problems and our method significantly
outperforms the vanilla baseline.

2. Background
Multi-fidelity surrogate modeling aims to build models
emulating high-fidelity simulations with data from differ-
ent fidelity levels, where low-fidelity data are often more
abundant compared to high-fidelity data. Multi-Fidelity
Kriging (MFK) (Kennedy & O’Hagan, 1998; Kennedy &
O’Hagan, 2001) and its variants (Damianou & Lawrence,

2013; Le Gratiet, 2012; Perdikaris et al., 2015) use an auto-
regressive model to integrate simulations of different fidelity
levels with a Gaussian Process. MFK has been the standard
solution for low-dimensional multi-fidelity problems. For-
rester (Forrester et al., 2007) is the most classic test function
for these methods. Surjanovic & Bingham also proposes
some common functions used to evaluate multi-fidelity mod-
els, including Borehole, Currin, and Park91 A and B func-
tions. However, their outputs are only one-dimensional
scalar values. Therefore, they are not good test functions
for high-dimensional neural operator methods. MFK is also
not scalable for high-dimensional data.

Few-shot transfer learning aims to adapt a model pre-trained
on large-scale datasets for a downstream task with a limited
amount of data. Such adaptation is often realized by fine-
tuning. Intuitively, the fine-tuned model will have better per-
formance if the pre-trained features are more related to the
downstream task. Zhou et al. (2021) gives an upper bound
on the test error of fine-tuning empirical risk minimizer
(ERM) which depends on the L2-distance between pre-
trained model weights and fine-tuned model weights. Hu
et al. (2024b;a) explicitly define a model-agnostic method to
calculate ”task distance” as a measurement for task similar-
ity in classification problems. Zamir et al. (2018) and later
works (Dwivedi & Roig, 2019; Sun et al., 2019; Liu et al.,
2020) consider heterogeneous similarities in the pre-train
task. They try to divide pre-training tasks into different
subsets of tasks based on task similarity and choose the
best subset of pre-training sub-tasks for different down-
stream tasks. These methods consider the heterogeneous
similarity in pre-training tasks and focus on building a bet-
ter pre-trained model by choosing more related pre-training
sub-tasks and abandoning less related sub-tasks. They con-
sider the downstream task as a whole and compare it to
different subsets of pre-training tasks. Our paper considers
the similarity of the physics underlying the high and low
fidelity simulations at different regions of the simulation for
the same task and proposes a better fine-tuning strategy.

Multi-fidelity surrogate modeling through transfer learning
pre-trains a deep neural network on low-fidelity data and
fine-tunes the network on high-fidelity data. Deep neural
networks like DeepONet (Lu et al., 2019) and FNO (Li
et al., 2020) have shown great ability as data-driven surro-
gate models for high- or infinite-dimensional outputs. The
computational cost of collecting enough training data for
neural-network training urges us to adapt these data-driven
models to multi-fidelity surrogate modeling. Transfer learn-
ing is a natural approach and has been studied in different
problems (Chen & Stinis, 2024; De et al., 2020; Zhang et al.,
2023; Lyu et al., 2023; Liao et al., 2021). Except for passive
learning, multi-fidelity active learning (Li et al., 2022a; Wu
et al., 2023; Li et al., 2022b) tries to balance between in-
formation gain and computational cost and actively decide
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Figure 1. Predicted flow of SWiFT wind farm under 13m/s Northeast wind. Each column visualizes a slice at turbine hub height parallel
to the x-y plane of the predicted flow (first row) and the error between this prediction and the high-fidelity simulation (second row). (a)
High-fidelity simulations (b) Low-fidelity simulations (c) model w/ vanilla transfer learning (d) our model.

the fidelity level of the next data to acquire. However, all of
these works treat “multi-fidelity” as “multi-resolution” for
experiments with high-dimensional outputs and collect data
from the same algorithms with different resolutions of grids.

Semi-supervised learning combines a small amount of la-
beled data with a large amount of unlabeled data to improve
learning accuracy. Pseudo labeling (Lee, 2013) assigns
pseudo labels to unlabeled data points based on the predic-
tions of a model. It enforces the classifiers to make confident
predictions on the unlabeled data and reduce prediction un-
certainty. Yalniz et al. (2019) works on a semi-supervised
learning scenario similar to multi-fidelity surrogate model-
ing where there are abundant images with low-fidelity labels
(tags) and few images with high-fidelity labels (class). They
pre-train their model first on low-fidelity labels and then
fine-tune the model with semi-supervised methods. How-
ever, this multi-fidelity problem is still low-dimensional.
The pseudo-label-selecting method in image classification
is also not applicable in collecting regional pseudo data in
high dimensional continuous functional space.

Wake flows refer to the movement of fluid streams interact-
ing with objects along their path. Accurate simulations of
mean wake flows are important in many areas, such as air-
craft and vehicle design and wind farm optimization. While
computational fluid dynamics methods like direct numer-
ical simulations (DNS) and large eddy simulations (LES)
(Zhiyin, 2015) offer high-fidelity predictions, they come
with inherent challenges. DNS requires a grid resolution
smaller than the smallest dynamically significant length

scale (the Kolmogorov micro-scale), which makes it pro-
hibitively expensive. Although LES requires a lower grid
resolution than DNS, it still requires a large number of com-
putational grid nodes to resolve vortices in turbulent flow,
so it is computationally expensive, especially in scenarios
like large-scale wind farms.

Reynolds-averaged Navier Stokes (RANS) (Reynolds,
1895) offers another numerical prediction method of time-
averaged flow with less accuracy and lower cost compared
to LES. It directly models the time-averaged flows by mod-
eling fluctuations with some approximation of the Reynolds
stress. The Gaussian wake model (GWM) (Niayifar & Porté-
Agel, 2016; Bastankhah & Porté-Agel, 2016) is an even
simpler analytical model for time-averaged wind farm flow
field prediction. It assumes the velocity deficit of the flow
follows Gaussian distributions in the spanwise direction and
resolves the whole velocity fields based on the conservation
of mass and momentum.

Mean wake flows are good testing cases for high-
dimensional surrogate modeling. For every simulation of
an entire flow field, fluid acts differently at different regions
(Th.Yao-Tsu, 2005) from free stream overhead to extremely
chaotic behavior when interacting with objects and finally
goes to gradually steady far-wake. The approximations
made by RANS and GWM have different effects at different
regions and create heterogeneous similarities to LES. Wind
farm flow fields have even more diverse behavior since they
involve the wake of turbines ahead and interacting with tur-
bines behind. Fig 1(a)(b) shows a comparison between LES
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and GWM of SWiFT wind farm.

3. Multi-step Transfer Learning
Since fitting the model to some regions can corrupt the
pre-trained features, creating unnecessary uncertainty for
other regions highly correlated with the pre-trained features,
we should constrain the model from drifting too far away
from the pre-trained one. However, strong constraints will
also limit the ability of the model to learn new features for
regions with low correlation with pre-trained features, creat-
ing prediction bias in these regions. To overcome the bias
and variance problems in different regions simultaneously,
instead of using a fixed constraint, we use a constraint that
can be adjusted by some control parameters γ, where γ = 1
represents the strongest constraint and γ = 0 represents no
constraint. We gradually release γ from 1 to 0. For each
value of γ, we train the model until optimized. We sample
data points from the parameter space, evaluate the regional
similarities between high- and low-fidelity simulations at
these data points, and select some parts of them as pseudo-
high-fidelity data. The idea of collecting these pseudo data
is to reduce the uncertainty of model predictions for regions
already well-fitted when we further reduce the constraint.

We implement model constraint and pseudo-data selection
with a multi-task network. Let SL = (xi, y

L
i ) be the low-

fidelity dataset, SH = (xj , y
H
j ) be the high-fidelity dataset,

fθ be some neural backbone, AL and AH be two linear
layers. ŷLi = ALfθ(xi) are the low-fidelity predictions
and ŷHj = AHfθ(xj) are the high-fidelity predictions. The
network is trained to minimize a multi-task loss:

L = γ
|SL|

∑
i ||ŷLi − yLi ||2 +

(1−γ)
|SH |

∑
j ||ŷHj − yHj ||2.

Here, we analyze how the value of γ determines the con-
straint on the model. When γ = 1, the model will be trained
to match low-fidelity simulations. When γ = 0, the model
will be trained to match high-fidelity simulations. Taking
only the 1 and 0 values of γ without pseudo labeling will be
a vanilla transfer learning process. For γ → 1, the model
learns to solve a constrained optimization problem to mini-
mize ||ŷH − yH ||2 subject to ŷH ≈ ALA

∗
HyL where A∗

H is
the pseudo-inverse of AH . Therefore γ → 1 is the same as
the constraint that the predicted high-fidelity outputs must
be approximately a linear transformation of the low-fidelity
simulations. For other values of γ, this multi-task loss gen-
erally constrains how far away the high-fidelity predictions
can be from a subspace spanned by some linear transforma-
tions of their corresponding low-fidelity ones.

To select regional pseudo data, we partition high-
dimensional outputs into regions. Let V be the output
space, P (V ) = {vk} be some partition over V and n(vk)
be the relative volume of vk with respect to V . For some re-
gions vk and some functional similarity measure F , the

Algorithm 1 Multi-step transfer learning
Input: low-fidelity dataset SL = {(xi, y

L
i )}; high-

fidelity datset SH = {(xj , y
H
j , V )}; neural backbone

fθ; Linear layers AL and AH ; Multi-task loss function L;
similarity measurement F ; output space partition P (V );
threshold parameter δ, η
for γ = 1 to 0 do

Minimize L
if γ ̸= 1 then

for (x, yL) in SL do
for v in P (V ) do

if 1
n(v)

∫
v
F(AHfθ(x), y

L)dv < 1
(δ+γ)η then

Add (x,AHfθ(x), v) to SH

end if
end for

end for
end if

end for

regional similarity is 1
n(vk)

∫
vk

F(yL, yH)dv. However,
since we do not have yH for x we use the estimated one
as ŷH = AHfθ(x) and the estimated regional similarity
is 1

n(vk)

∫
vk

F(AHfθ(x), y
H)dv. Fig 7 shows the ground

truth and estimated regional similarity in the wind farm ex-
periment with γ = 0.5 and L2-norm as similarity measure-
ment. The estimated similarities approximate the ground
truth well. It also shows that measured similarity values
lie in distinct groups. This matches our assumption that
similarities are varied at different regions due to the amount
of physics ignored by low-fidelity methods.

As we gradually increase flexibility, we want to collect
pseudo data at the regions where high- and low-fidelity sim-
ulations are less relevant. Therefore, We use an adaptive
threshold 1

(δ+γ)η , where γ is the constraint control parame-
ter and δ and η are some pre-selected threshold parameters.
If the estimated similarity is smaller than this threshold at
region v of input x, we add (x,AHfθ(x), v) to the high-
fidelity training set.

After regional pseudo data are added to the training set. Not
all data points in high-fidelity datasets have ground truth
over the entire output space V . We represent the new high-
fidelity training set as SH = {(xj , y

H
j , vj)}, where vj is the

confident regions in V for input x. vj = V if the data point
is from the original training set. The multi-task loss will be
modified as:

L = γ
|SL|

∑
i ||ŷLi −yLi ||2+

(1−γ)∑
j n(vj)

∑
j ||(ŷHj −yHj )1vj ||2,

where 1(·) represents the indicator function of confident
regions.
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(a) (b)

Figure 2. (a) Illustration of the South wind direction LES configuration and a zoomed-in region surrounding a turbine. This turbine is
located closely downwind to another turbine, and therefore, it is affected by the upwind turbine wake. (b) Illustration of the simulation
box under different wind directions. The simulation box is adjusted so that the x-axis is always along the current wind direction.

4. Wind Farm Wake Flow Prediction
4.1. Dataset

We collect high-fidelity data by using LES to simulate the
Sandia National Laboratories Scaled Wind Farm Technol-
ogy (SWiFT) site (Berg et al.) in Lubbock, Texas, which
includes three Vestas V27 turbines. The wind turbine layout
is shown in Fig 2(a). The wind turbines, Vestas V27s, have
rotor diameters of D = 27m and hub heights of 32.1m. These
simulations have 1.8 × 107 grid nodes and took 8 × 104

CPU hours to converge. The amount of data collected was
strictly limited by the high computational cost. We run LES
under five different wind speeds (bulk speed U∞ = 7, 9, 11,
13, 15 m/s) and four different wind directions (150◦, 0◦,
330◦, and 274◦, taking south as 0◦). We denote these wind
directions as Northeast, South, Southwest, and West (Fig
2(b)). They were selected so that there was always one tur-
bine directly downwind of another turbine and therefore was
affected by the wake of the upwind turbine. This ensures
that our model is trained and tested on “hard examples”. For
all wind directions, wind turbines are adjusted to directly
facing the up-coming wind (0◦ yaw angles). We calculate
the time-average flow fields by averaging LES results until
they statistically converge.

We choose GWM to generate low-fidelity data. GWM is
much faster than RANS and we can do dense sampling
with it. GWM is also less accurate compared to RANS. This
makes GWM-LES a harder multi-fidelity problem compared
to RANS-LES. We used FLOw Redirection and Induction
in Steady State (FLORIS) to generate the low-fidelity sim-
ulations of the same site. We densely sampled the wind
directions from 0◦ to 359◦ with a spacing of 1◦ and the wind
speeds from 7m/s to 15m/s with a spacing of 1m/s. The
generation of low-fidelity simulations requires less than one
minute per case. This creates a total of 3,240 low-fidelity
cases.

We construct the training set with three high-fidelity cases

(Southwest 7m/s, South 11m/s, and West 15m/s) and all low-
fidelity cases. The other high-fidelity simulations are test
cases. Specifically, simulations of Northeast wind directions
do not exist in the training set. They are considered to be
out-of-distribution test cases to evaluate the model’s ability
to extrapolate/generalize.

4.2. Model Architecture

We separate parameters into two groups: one describing
the wind condition and the other describing the wind farm
condition - and process them separately.

We use the wind condition to approximate the free-stream
flow field by the law of the wall (Kármán, 1930). The law
of the wall states that the velocity of the fluid at a point in
the boundary layer depends logarithmically on the distance
from the wall. This can be viewed as an approximation
of wind farm flow without any turbine. Although it is a
coarse approximation, it can be calculated efficiently on
GPUs and produces a representation that contains all the
wind information and is suitable for the convolutional neural
network (CNN).

We encode the layout of the wind farm by representing each
turbine as a 3-D Gaussian distribution in the wind farm
whose mean is at the turbine center location and variance is
determined by the covariance matrix:(4cos2(θ) + sin2(θ))D2 2sin(2θ)D2 0

2sin(2θ)D2 (4sin2(θ) + cos2(θ))D2 0
0 0 D2


where D is the turbine diameter and θ is the blade yaw angle
of the turbine. Representing object locations as Gaussian
distributions is a common technique in computer vision.
Moreover, as (Niayifar & Porté-Agel, 2016; Bastankhah &
Porté-Agel, 2016) has shown that turbine wake deficit is
approximately Gaussian in the spanwise direction, we also
believe that this 3-D Gaussian representation of wind farm

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Transfer Learning in Multi-fidelity Surrogate Modeling : A Wind Farm Case

Figure 3. Model Architecture. Parameters are pre-processed separately. Parameters describing the upcoming wind are encoded by the
law of wall. Parameters describing the wind-farm layout are encoded by 3-D Gaussian. The encoded representations are concatenated
together. The concatenated representation is passed to a U-Net backbone. Two linear layers take U-Net output and produce predictions of
GWM and LES.

to the actual flow field is an easy-to-learn mapping.

We concatenate both representations and pass them to a
U-Net (Ronneberger et al., 2015) backbone. Two linear
layers are used for multi-task outputs for GWM and LES
predictions. Fig 3 illustrates the architecture of our model.

4.3. Collecting Pseudo data

Previous work on semi-supervised learning of high-
dimensional outputs (Li et al., 2023) uses patch-level pseudo
labels. We follow this convention and use patch-level
pseudo data in our problem as regional pseudo data. Rather
than evenly dividing the parameter space into patches, we
define finer patches around wind turbines. For each tur-
bine, we define three patches. All of them are 3D wide
in the y-axis and 1D tall in the z-axis, where D is the tur-
bine blade diameter. In the wind flow direction, x-axis, the
patches are divided based on their distance to the turbine
center. These patches include overhead patch (2D to 0.5D
ahead), turbulence patch (0.5D ahead to 1D behind), wake
patch (1D behind to 10D behind). Furthermore, if a patch
A of a turbine intersects with patch B of another turbine,
we divide the patch into A/B, B/A, and A ∩B. After we
create turbine-related patches, the other background patches
are evenly divided. Each of them is a cube with (Length,
Width, Height) = 1

5 (Length, Width, Height) of the whole
simulation box. For background patch A and turbine-related
patch B, if A ∩ B ̸= ∅, reassign A as A/B. This ensures
no overlap patches.

4.4. Training

We take γ = 1, 0.5, 0, η = 50, δ = 0 and use L2-norm as
similarity measurement. For each value of γ, the network
is trained for 100,000 iterations using the Adam optimizer
(Kingma & Ba, 2014) with a learning rate of 10−4. For each

iteration, we choose a mini-batch of 20 low-fidelity data
points and 20 high-fidelity data points.

The vanilla transfer learning baseline is trained with exactly
the same setup except that γ only takes two values: 0 and 1,
and there is no pseudo labeling.

4.5. Results

We evaluate the model performance by root mean squared
error (RMSE) between model-predicted flows and high-
fidelity flows as shown in Tab 1. Since the entire simulation
box is dominated by free-stream, we report the RMSE be-
tween model-predicted flows and high-fidelity flows only
at zoomed-in regions around turbines. Such zoomed-in re-
gions are defined as in Fig 2(a). In all wind directions, our
method outperforms vanilla transfer learning methods.

We also plot pixel-level 2-D histograms of model-predicted
values against high-fidelity values in Fig 6. Prediction er-
rors of our model are significantly less variate compared to
predictions from the vanilla model across different regions.
This demonstrates that our model successfully reduces pre-
diction uncertainty. Predictions of our model have some
bias at a few places. The reason may be that we accidentally
collected regional pseudo data that are not yet well fitted.
However, since the reduced uncertainty is much more sig-
nificant than the induced bias, our model still outperforms
the vanilla one by a large margin.

High-fidelity flow fields of Northeast wind direction are not
present in the training cases. Therefore, these are consid-
ered out-of-distribution testing cases to evaluate the model
extrapolation/generalization ability. The predicted fields of
the time-averaged velocity at the hub-height plane of the
most Northeast 13 m/s case are shown in Fig 1. We also
provide a detailed comparison of the mean flow prediction

6
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(a) (b)

Figure 4. Visualization of region surrounding turbine 3 in Fig 1. (a) Errors between high-fidelity ground truth and prediction by vanilla
model (first row) and Errors between high-fidelity ground truth and prediction by our model (second row). Our model has better
performance in all regions. (b) Time-averaged velocity profiles along the spanwise direction. Profiles are taken along the y-direction as
denoted by the dashed lines on (a) as labeled 1 through 6. For each profiles, we show predicted relative velocities from LES(-), vanilla
model(-), and our model(-). Predicted velocities of our model closely agree with LES and is much better than velocities calculated from
vanilla model.

(a) (b)

Figure 5. (a) Illustration of the free stream velocity field con-
structed using the law of the wall. Velocities are increasing log-
arithmically along z-axis (Height). (b) Illustration of Gaussian
representation corresponding to a turbine; Red line represents the
turbine blades; 1-σ area of the Gaussian distribution is painted gray.
Both figures have the same coordinates as in Fig 2(a) with x-axis
as the flow direction, y-axis as spanwise direction, and z-axis as
vertical direction.

error maps and velocity profiles around a specific turbine in
Fig 4. Our model significantly outperforms the vanilla one
in all regions.

5. Discussion and Future Works
Multi-fidelity learning is a potential solution for data-driven
neural operator learning if the computational cost of collect-

Table 1. RMSE of the zoomed-in regions of all turbines under
different wind directions, averaged over different wind speeds.
Vanilla: model trained with vanilla transfer learning; Multi-step:
model trained with our method.

WIND DIRECTION VANILLA MULTI-STEP

WEST 0.0188 0.0185
SOUTH 0.0165 0.0144
SOUTHWEST 0.0179 0.0157
NORTHEAST 0.0195 0.0159

ing high-fidelity simulations is prohibitively high. While
multiple recent works are focusing on this problem, there is
no standard benchmark dataset for the evaluation of high-
dimensional multi-fidelity surrogate modeling. The datasets
they generated on their own simply treat “multi-fidelity” as
“multi-resolution”.

In this work, we argue that models that work well on “multi-
resolution” learning may not generalize to multi-fidelity
learning problems where low-fidelity data is simulated by
ignoring or approximating hard-to-compute terms. We cre-
ate a test case of wind farm mean flow prediction to evaluate
model performance on the second type of multi-fidelity. We
propose a multi-step transfer learning method that shows
better performance on wind farm mean flow predictions than

7
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(a) (b)

Figure 6. Pixel-level 2D histograms of high-fidelity relative velocities against model-predicted relative velocities. Pixels are collected
from the zoomed-in regions of all turbines under different wind directions and different wind speeds. (a) Histogram of vanilla-model
predictions, having high variance across all values; (b) Histogram of our-model predictions, significantly reducing the variance.

Figure 7. Scatter plot of estimated similarities (y-axis) and actual
similarities (x-aixs) of different patches with γ = 0.5 and L2-
norm as similarity measure. Values are evaluated at the data points
where LES is available but not exist in training set.

vanilla transfer learning. However, a single test case is not
enough. We hope to collect more test cases that represent
both the first and second types of multi-fidelity and cre-
ate a benchmark dataset for high-dimensional multi-fidelity
surrogate modeling in the future.

Our works also contribute to the wind energy management
community. Based on our method, we build the first end-
to-end wind-farm mean-flow prediction model that requires
a very small amount of high-fidelity supervision, achieves
high accuracy, and is trainable and can perform inference
efficiently on a single commercial GPU. We also plan to

test its engineering applicability for real-world wind-farm
design, analysis, and control in the future.
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