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Abstract
Modern recurrent architectures, such as xL-
STM and Mamba, have recently challenged the
Transformer in language modeling. However,
their structure constrains their applicability to
sequences only or requires processing multi-
dimensional data structures, such as images or
molecular graphs, in a pre-defined sequential
order. In contrast, Multi-Dimensional RNNs
(MDRNNs) are well suited for data with a higher
level structure, like 2D grids, trees, and directed
acyclic graphs (DAGs). In this work, we ex-
tend the notion of multi-dimensionality to lin-
ear RNNs. We introduce parallelizable Linear
Source Transition Mark networks (pLSTMs) us-
ing Source, Transition, and Mark gates that act
on the linegraph of a general DAG. This enables
parallelization in analogy to parallel associative
scans and the chunkwise-recurrent form of se-
quential linear RNNs, but for DAGs. For regular
grids (1D and 2D), like images, this scheme can
be efficiently implemented using einsum opera-
tions, concatenations, and padding in logarithmic
time. pLSTMs tackle the vanishing/exploding
activation/gradient problem for long distances in
DAGs via two distinct modes: a directed prop-
agation mode (P-mode) and a diffusive distri-
bution mode (D-mode). To showcase the long-
range capabilities of pLSTM, we introduce arrow-
pointing extrapolation as a synthetic computer
vision task that contains long-distance directional
information. We demonstrate that pLSTMs gen-
eralize well to larger image sizes, whereas Trans-
formers struggle to extrapolate. On established
molecular graph and computer vision benchmarks,
pLSTMs also show strong performance. Code and
Datasets are available at: https://github.
com/ml-jku/plstm_experiments.
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Workshop Contribution

1. Introduction
Linear RNNs such as DeltaNet (Schlag et al., 2021), Gated
Linear Attention (Yang et al., 2023), Mamba (Gu & Dao,
2023; Dao & Gu, 2024), and xLSTM (mLSTM) (Beck et al.,
2025b) have recently evolved as a powerful alternative to the
Transformer (Vaswani et al., 2017). In addition to sequence-
parallelizable training, such modern recurrent architectures
are more efficient at inference time than Transformers. In
contrast to classical RNNs, they come with associative mem-
ory expansion, enabling more performant sequence mod-
eling. However, these modern recurrent architectures are
inherently limited to sequences. While linear RNNs have
shown good performance on multi-dimensional data such
as images, they enforce a pre-defined sequential traversal
structure (Zhu et al., 2024; Alkin et al., 2025). For images,
this corresponds to processing patches in a scanline form.
This is problematic as, within one layer, vertical neighbors
in a patch grid are only distantly related, in a line-wise pro-
cessing. When switching between a line- and column-wise
order across layers, diagonal relationships are not covered
sufficiently. This mismatch of short-range spatial and long-
distance relations in a certain path with precise positioning
requirements leads to credit assignment problems (Min-
sky, 1961; Bengio & Frasconi, 1993; Schmidhuber, 2015)
and suffers from vanishing activations/gradients (Hochreiter,
1991; Bengio et al., 1994; Hochreiter et al., 2001; Hochreiter
& Schmidhuber, 1997; Pascanu et al., 2013).

Multi-dimensional RNNs (MDRNNs) (Graves et al., 2007)
have demonstrated how non-linear RNNs like LSTMs
(Hochreiter, 1991; Hochreiter & Schmidhuber, 1997) can be
extended to multi-dimensional data, such as images (Graves
et al., 2007; van den Oord et al., 2016), trees (Tai et al.,
2015), and DAGs (Peng et al., 2017). While these works
can be applied to general DAGs, they do not tackle the
exploding/vanishing activation/gradient problem. In this
work, we translate the findings of MDRNNs to linear RNNs
and introduce parallelizable Linear Source Transition Mark
Networks (pLSTM).

To showcase the long-range capabilities of pLSTM in mul-
tiple dimensions, we first introduce the synthetic arrow-
pointing extrapolation task (see Figure 5). Importantly,
pLSTM generalizes well to increasing image resolutions
compared to the Transformer. Moreover, experiments on
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ImageNet-1k and on molecular graphs show promising re-
sults compared to baselines and good scaling behavior to
larger model sizes. In summary, we make the following
contributions:

• We translate the findings of classic MDRNNs to linear
RNNs and introduce pLSTM, with adapted gates and a
scalable chunkwise-parallel formulation.

• We formally derive the general stabilization of
pLSTMs for long-range propagation on general DAGs
(including images), establishing the directional propa-
gation or P- and diffusive distribution or D-mode.

• We introduce the synthetic Arrow Pointing Task to
highlight the theoretical advantage of pLSTMs, in
which pLSTM shows strong extrapolation abilities, and
provide a highly scalable implementation of pLSTM.
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Figure 1: Illustration of the receptive fields induced by
pLSTM and related architectures (for a single layer). CNNs
are locally restricted while ViTs have a global receptive
field. Modern recurrent architectures, such as ViM, traverse
the 2D grid sequentially. pLSTM effectively extends the
receptive field via its combination of D-mode and P-mode.

2. Related Work
Recent works extend the Mamba architecture to two di-
mensions in several ways. Most related to our work are
2DMamba (Zhang et al., 2024a) and V2M (Wang et al.,
2024), which cover only the D-mode of pLSTM, at the loss
of directional propagation. Mamba2D (Baty et al., 2024)
and 2-D SSM (Baron et al., 2024) cover the P-mode of
pLSTM, but unlike pLSTM, they are limited to the diagonal
line instead of input-directed propagation along any line due
to their normalization factor of 1/2 (see Appendix F.2). For
a more detailed discussion of related work, see Appendix C.

3. pLSTM
Similar to how LSTMs are extended to general DAGs, this
can be applied to linear RNNs. Here, we extend the setting

of MDRNNs and DAG LSTMs to enable guided directional
propagation. Instead of being associated with a node in the
graph, the Cell state Ce is now associated with an edge. The
inputs and outputs / hidden states are still associated with
nodes. Using this reformulation, we can define generalized
linear DAG networks that resemble the LSTM structure (see
Figures 4 and 3):
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The Cell state receives an external input via the Source
S
n→(e)
e at the incoming node in addition to a sum of the Cell
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the respective Transition T
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k . Note that the Source, Transition, and Mark gates are

influenced by the input at node n, and optionally by the edge
features of their associated local edges. Functionally, the
Source replaces the input gate, the Transition the forget gate,
and the Mark the output gate of a traditional LSTM (Hochre-
iter & Schmidhuber, 1997; Gers, 1999), while acting here
on the node-edge, edge-edge, and edge-node combinations.
The direct Dn term represents a skip directly from input to
output at a node and also integrates the Q

n
k ,K

n
k , V
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These equations define general parallelizable Linear Source
Transition Mark (pLSTM) networks on DAGs. This S-T-M
structure can be computed sequentially, going through the
DAG in a topological node order.

3.1. Parallelization on DAGs

3.1.1. NAÏVE PARALLELIZATION OVER PATHS

Since all operations are linear, the iterative definition of
Equation 1 can also be resolved to a sum over all ancestor
nodes and a combination of Source, path Transition and
Mark over all paths P(e′, e) connecting nodes n′ and n via
first edge e

′ and last edge e:

H
n
v = ∑

n′
<n

K
n
′

k V
n
′

v ∑
e′,e

S
n
′

e′
⎛
⎜
⎝

∑
P∈P(e′,e)

∏
np

∈P

T
n
p

en
p
→ en

p
←

⎞
⎟
⎠
M

n
e

Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
Gn′n

Q
n
k

+K
n
k V

n
k D

n

Í ÒÒÑÒÒÒÏ
Gnn

Q
n
k (3)

The middle STM part in Equation 3 can be precomputed

to the gating matrix G
n
′
n, and the state expansion and pro-

jection via K
n
′

k and Q
n
k are externally integrated, similar
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to classical (linear) self-attention (Vaswani et al., 2017;
Katharopoulos et al., 2020), the D

n term contains self-
connections. Computing the gating matrix via all paths is in-
feasible due to their exponential number (see Appendix F.1).

3.1.2. HIERARCHICAL PARALLELIZATION

Similar to an associative scan in 1D, we can apply a
divide-and-conquer approach for hierarchical paralleliza-
tion. Recursively, we merge Source-Transition, Transition-
Transition, and Transition-Mark combinations to higher-
order Source, Transition, and Mark objects that cover more
than a single node. In Appendix D.2, we show how this
procedure works for DAGs. To better convey the core idea
of pLSTM parallelization, we include a sketch for DAG and
grid cases and pLSTM in general in Appendix Figure 3.

3.2. Long-Range Stability

For sequential data, it is known since the seminal LSTM
work of Hochreiter & Schmidhuber (1997) that having for-
get gates larger or smaller than one in magnitude leads to
exploding/vanishing activations and gradients. For general
DAGs, this was not explored yet, with recent analyses on
undirected GNNs (Arroyo et al., 2025). In DAG LSTM,
Tree LSTM, Grid LSTM, or MD LSTM, potentially ex-
ploding parts are limited only in the hidden state by non-
linear, bounded activation functions (i.e., tanh) (Hochreiter
& Schmidhuber, 1997). The Cell states, however, can grow
exponentially if the forget gates are limited to only one, see
Appendix F.1 for details. Using the more general setting
of Transitions Tn

e′e from edge to edge, as introduced in this
work, we can derive two modes of stability.

The first stabilization option for the P-mode is to limit the
norm of T as in Equation 30. A node-local option to achieve
this is to limit the Transition entries Tn

e′e per node as:

∑
e∈E←(n)

∣Tn
e′e∣

!
⩽ 1 (4)

For the second stabilization option, the D-mode, we do not
limit a matrix norm of T , but instead reduce the associated
line graph from a DAG to a multitree (Jung, 1978), i.e., a
directed graph, such that two nodes are only connected by a
single path, so no exponential growth (see Appendix F.1).

3.3. pLSTM on regular grids

Although pLSTMs can be used and parallelized on gen-
eral DAGs, the additional structure greatly helps with the
parallelization for regular grids. All operations can be de-
composed into generalized matrix operations in the form
of views, einsums, concatenations, and paddings. We show
this for the 1D case of sequences in Appendix D.4.

3.3.1. PLSTM IN 2D - IMAGES

On a 2D undirected grid, pLSTM can be applied in
different ways since there are more than two options
for DAGs covering the undirected graph. There are,
however, four distinct DAG covers, for which the local
structure translates to a global structure: allowing only
Transitions exclusively left or right and up or down, both
in combination: ¨,«,©,ª. We focus on the first, the
right-down combination, for the description, but all four
combinations are used.
As Transitions follow all edge combinations, there
are four options again: →, ⤷, ⤵, ↓. The level zero
Source, Transition, and Mark tensors are therefore:
S
↦
xy, S

↧
xy, T

→
xy, T

⤷
xy, T

⤵
xy, T

↓
xy,M

↣
xy,M

#
xy. Additionally, we

now use u for internal indices along the x-axis, and v for in-
ternal indices along the y-axis, and a, b, c for an index along
the edge/boundary direction, while keeping x, y for outer in-
dices. These are needed for the higher-level tensors, leading
to a recursion shown in Appendix D.3. The Source, Transi-
tion and Mark tensors at level l have the following structure:
S
l,↦
xyuva, S

l,↧
xyuva, T

l,→
xyab, T

l,⤷
xyab, T

l,⤵
xyab, T

l,↓
xyab,M

l,↣
xyuvb,M

l,#
xyuvb

with u, v, a, b ∈ {0..2l − 1}. The general DAG is depicted
in Figure 3 in the center right. As the in- and out-degrees
of this DAG are now larger than one, there are more
stabilization options, the P-mode and D-mode (Section 3.2).

P-mode When we allow all Transition options→,⤷,⤵,
↓, we are in the P-mode. In general, the Transition matrix

at position x, y looks like Txy = [T
→
xy T

⤷
xy

T
⤵
xy T

↓
xy

]. The P-mode

stabilization now limits this matrix to absolute column sums
⩽ 1. For a practical parameterization, we therefore fix this
structure with the ’angle’ of propagation α and an additional
decay factor γ (see also Appendix F.2):

T = γ [ α α
(1 − α) (1 − α)] (5)

D-mode While the P-mode offers a directional propaga-
tion, the receptive field of a node/patch/pixel is limited to
roughly a line -it cannot reach all other nodes equally. The
D-mode can provide this by losing the notion of directional-
ity. For the D-mode, either T⤷xy or T⤵xy have to be set to zero
globally. In this way, two edges can only be connected via a
single path. In Figure 3, the bottom right, the second option
is shown, with an additional decay. At criticality, this node
reaches all other nodes to its bottom right.

Directional Initialization and Combination Using the
concept of multiple heads, as used in Vaswani et al. (2017),
we can initialize our network to cover multiple directions
in P-mode at criticality on initialization. Similarly, we can
initialize different decay scales for both P- and D-mode for
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different heads. By using the P- and D-mode in alternating
layers, we leverage both their potential.

Figure 2: Training curves for the Arrow Pointing Ex-
trapolation task, averaged over 5 seeds with 90% CI. ViT
and EfficientNet can quickly match the training set (left),
and EfficientNet reaches the best validation performance of
all models on the samples of the same resolution as seen
during training. pLSTM performs best on the extrapola-
tion set (right) by a significant gap. While Mamba2D and
2DMamba should cover restricted modes of pLSTM, their
learning shows high variance. ViL and Mamba2D do not
extrapolate at all beyond random performance.

4. Experiments
We first showcase the theoretical advantages of pLSTM on
the synthetic arrow-pointing extrapolation task (see Section
4.1). In the appendix, we highlight the benefits of pLSTM
for two-dimensional input data on ImageNet-1K (Deng et al.,
2009; Russakovsky et al., 2015), demonstrating scalability
to large-scale datasets (see Appendix G.3 and G.4). We
show that pLSTM scales to more than two input dimensions
on established graph benchmarks (see Section 4.2).

4.1. Arrow Pointing Extrapolation

In this task, an image containing an arrow and a circle must
be classified as to whether the arrow is pointing to the circle.
This is a long-range directional task as it involves the long-
range relative positioning of two objects, combined with
local information from one of them - the direction of the
arrow. To test for arrow pointing extrapolation capabilities,
we generate a balanced dataset of 100k arrow pointing im-
ages at resolution 192×192, with positions of the arrow and
circle randomly sampled. For validation, we generate 5120
images in the same resolution and at resolution 384 × 384
- to test for extrapolation capabilities. For all models, in-
cluding the ViT (Dosovitskiy et al., 2021) baseline, we use
a bicubic interpolation of the positional embeddings (via
jax.image.resize) for scaling to higher resolutions
(see also (Dosovitskiy et al., 2021)). For results, see Fig-
ure 2, for details on the training schedule, see Appendix G.2.

4.2. Graphs

Small molecules and proteins are typically depicted as an
undirected graph. However, both exist as 3D structures in

the real world, and GNNs trained on such datasets might
benefit from directional information propagation, as there
is an underlying spatial relation. We test this hypothesis on
popular small molecules and bioinformatics datasets from
the TUDataset benchmark (Morris et al., 2020). The results
in Table 1 show that pLSTM can compete with popular
GNN architectures on those datasets. Similar to the com-
puter vision experiments (Section G.3), pLSTM alternates
between the P-mode and the D-mode. Since there is no
external notion of direction, we use node and edge features
to compute the Transition for the P-mode.

Table 1: Test accuracy on small molecule and bioinformat-
ics datasets as provided by TUDataset.

Model MUTAG NCI1 PROTEINS PTC FM AVG

GAT (Veličković et al., 2018) 0.7822 ± 0.09 0.7968 ± 0.03 0.7215 ± 0.03 0.6105 ± 0.05 0.7277 ± 0.06
GCN (Kipf & Welling, 2017) 0.7234 ± 0.08 0.7852 ± 0.02 0.7395 ± 0.03 0.6162 ± 0.04 0.7161 ± 0.05
GIN (Xu et al., 2018) 0.8251 ± 0.10 0.8175 ± 0.02 0.7350 ± 0.04 0.6097 ± 0.10 0.7468 ± 0.08
LSTM GNN (Liang et al., 2016) 0.7450 ± 0.11 0.7951 ± 0.02 0.7503 ± 0.04 0.6076 ± 0.04 0.7245 ± 0.06
MPNN (Gilmer et al., 2017) 0.7450 ± 0.09 0.8012 ± 0.02 0.7350 ± 0.04 0.5786 ± 0.07 0.7149 ± 0.06
PLSTM 0.8512 ± 0.06 0.7324 ± 0.03 0.7502 ± 0.05 0.6133 ± 0.08 0.7368 ± 0.06

5. Conclusion
In this work, we introduce pLSTM, which unites the benefits
of MDRNNs (Graves et al., 2007) and the recently intro-
duced xLSTM (Beck et al., 2025b). pLSTM overcomes the
limitations of modern recurrent architectures when applied
to multi-dimensional data, such as images and graphs. To
achieve this, we modify the gating structure of xLSTM and
introduce Source, Transition, and Mark gates. Then, we
derive a parallelization scheme that enables processing data
in multiple dimensions concurrently. pLSTM comes with a
P-mode and a D-mode, which together enable a large and
auto-tunable effective receptive field. We demonstrate the
theoretical advantages of pLSTM on the arrow-pointing task
and highlight its ability to generalize to varying grid reso-
lutions. Finally, we show the efficacy of pLSTM both on
classical computer vision and graph benchmarks.

Limitations & Future Work pLSTM shows promising
results across different domains, however, there is still room
for improvement compared to highly optimized domain-
specific models. With the incorporation of domain-specific
inductive biases, we are positive that the results can be fur-
ther improved. Moreover, while pLSTM models generalize
better than ViTs, which use position embeddings to encode
spatial relations, there is still a gap towards perfect extrapo-
lation. This leaves room for improvements, both on the data
side of harder multi-dimensional long-range benchmarks
and the architectural side to better generalize to that data.
Given the flexibility of pLSTM to handle data with rich
multi-dimensional structure, we anticipate that pLSTMs
can be successfully applied across a broader spectrum of
challenging domains, including biology, chemistry, medical
imaging, and other scientific domains.
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Brandstetter, J., Klambauer, G., Pascanu, R., and Hochre-
iter, S. A large recurrent action model: xlstm en-
ables fast inference for robotics tasks. arXiv preprint
arXiv:2410.22391, 2024.

Siems, J., Carstensen, T., Zela, A., Hutter, F., Pontil, M.,
and Grazzi, R. Deltaproduct: Improving state-tracking
in linear rnns via householder products. arXiv preprint
arXiv:2502.10297, 2025.

Stollenga, M., Byeon, W., Liwicki, M., and Schmidhuber,
J. Parallel multi-dimensional lstm, with application to

fast biomedical volumetric image segmentation. In Pro-
ceedings of the 28th International Conference on Neural
Information Processing Systems (NIPS), pp. 2998–3006,
2015.

Sun, Y., Li, X., Dalal, K., Xu, J., Vikram, A., Zhang, G.,
Dubois, Y., Chen, X., Wang, X., Koyejo, S., et al. Learn-
ing to (learn at test time): Rnns with expressive hidden
states. arXiv preprint arXiv:2407.04620, 2024.

Tai, K. S., Socher, R., and Manning, C. D. Improved seman-
tic representations from tree-structured long short-term
memory networks. arXiv preprint arXiv:1503.00075,
2015.

Tan, M. and Le, Q. Efficientnet: Rethinking model scal-
ing for convolutional neural networks. In International
conference on machine learning, pp. 6105–6114. PMLR,
2019.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles,
A., and Jégou, H. Training data-efficient image transform-
ers & distillation through attention. In International con-
ference on machine learning, pp. 10347–10357. PMLR,
2021.

Touvron, H., Cord, M., and Jégou, H. DeiT III: Revenge of
the ViT. In Computer Vision – ECCV 2022: 17th Euro-
pean Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXIV, pp. 516–533, Berlin, Heidelberg,
2022. Springer-Verlag. ISBN 978-3-031-20052-6. doi:
10.1007/978-3-031-20053-3 30. URL https://doi.
org/10.1007/978-3-031-20053-3_30. event-
place: Tel Aviv, Israel.

Van Den Oord, A., Kalchbrenner, N., and Kavukcuoglu,
K. Pixel recurrent neural networks. In International
conference on machine learning, pp. 1747–1756. PMLR,
2016.

van den Oord, A., Kalchbrenner, N., and Kavukcuoglu, K.
Pixel Recurrent Neural Networks. In Balcan, M. F. and
Weinberger, K. Q. (eds.), Proceedings of The 33rd Inter-
national Conference on Machine Learning, volume 48
of Proceedings of Machine Learning Research, pp. 1747–
1756, New York, New York, USA, June 2016. PMLR.
URL https://proceedings.mlr.press/v48/
oord16.html.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.
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A. Method Visualization
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Figure 3: Illustration of pLSTM on general DAGs (left), and on 1D / 2D grids (right): In the top-left part, a general DAG
is visualized, with Sources Sn

e′ , Transitions Te′e, and Marks Mn
e populating node-outgoing-edge, incoming-edge-outgoing-

edge, and incoming-edge-node pairs. Due to the associative structure of these linear operators, they can be combined;
examples are shown in the center left. The end-to-end (node-to-node) result is the Gating matrix. In the bottom left, the two
stable modes are depicted: The P-mode, where the sum over absolute Transitions of an in-coming edge have to be limited by
one, and the D-mode, where the line graph over edges is reduced to a multitree, requiring the remaining Transitions each to
be limited in absolute to one. On the right, the application of this to regular 1D and 2D grids is shown. For 2D, the P-mode
results in a directional propagation, whereas the D-mode results in a diffusive / un-directed distribution (shown with decay).
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B. Background
B.1. Multidimensional RNNs

The most general form of MDRNNs (Graves et al., 2007) was introduced as DAG LSTM by Zhu et al. (2016), as it can be
applied to all directed acyclic graphs P(N,E). We denote n→(e), n←(e), incoming and outgoing node of an edge e ∈ E,
and E→(n), E←(n) the sets of incoming and outgoing edges of a node n ∈ N . The core element of (Multi-Dimensional)
LSTMs is the LSTM Cell cn computed as:

cn = ∑
n′
∈PG(n)

fnn′ ⊙ cn′ + in ⊙ zn (6)

hn = on ⊙ tanh (cn) (7)

with hidden state / output hn and PG(n) denoting the parents of node n in a DAG G. In standard LSTMs, the input in,
forget fn, output gates on and the Cell update zn are dependent on external inputs xn and on the previous/parent hidden
states (hn′)n′

∈PG(n), which makes them non-linear. In contrast, for undirected graphs, DAG LSTMs can be applied by
ordering the nodes first, thereby fixing edge directions and using a DAG LSTM bi-directionally. Note that there is typically
more than one ordering option, where different orders can lead to different outcomes.

B.2. Linear RNNs

Figure 4: Transition from input/forget/out-
put gating in between nodes (and input/out-
put) in (linear) RNNs towards Source/Tran-
sition/Mark gating between edges and in-
put/output (bottom/top) in pLSTMs.

Linear RNNs resemble the structure of the original LSTM. For linearization,
they remove the previous hidden state dependency of the gates and cell
update. Additionally, they commonly include a state expansion dimension
or query / key dimension. This enables a form of associative memory
with inner-product retrieval in relation to quadratic energy-based models
(Hopfield, 1982; Schmidhuber, 1992). To include all relevant dimensions,
we switch to the Einstein sum convention notation (so dimensions are visible
in the indices) and absorb the input gate in the key and the output gate in
the query. In reverse, query and key can also be interpreted as extended
input and output gates. Additional normalization, as in mLSTM (Beck et al.,
2025b), can be interpreted as a parallel execution with similar inputs and
reduced dimensionality.

Ctkv = FtCt−1kv +KtkVtv (8)
Htv = QtkCtkv (9)

For certain architectures, the scalar forget gate Ft is extended to the key dimension as Ftk in GLA (Yang et al., 2023) or a
matrix in DeltaNet as Ftkk′Ct−1k′v with Ftkk′ = 1 − βtKtkKtk′ (Schlag et al., 2021; Yang et al., 2024) or Gated DeltaNet
(Yang et al., 2025). DeltaProduct (Siems et al., 2025) uses a product of multiple of these Householder-matrices. The
important part is the linearization, by removing the dependence on the previous hidden state. All of Ft, Ktk, Vtv and Qtk

depend only on the input of the layer xtd for this time step. This structure enables a chunkwise-recurrent form for efficient
execution on modern hardware (Beck et al., 2025a; Yang et al., 2023; 2024).

C. Extended Related work
Modern Recurrent Architectures This work presents a new form of linear RNNs, where DeltaNet (Schlag et al., 2021;
Yang et al., 2024), LRU (Orvieto et al., 2023), GLA (Yang et al., 2023), Mamba (Gu & Dao, 2023; Dao & Gu, 2024), and
xLSTM (Beck et al., 2025b) (in the mLSTM form) have shown their effectiveness on sequence modeling in the language
domain. Recently, this line of work has been complemented by TTT (Sun et al., 2024), Titans (Behrouz et al., 2024), and
DeltaProduct (Siems et al., 2025), which motivate this structure as a gradient-based optimization in context, in line with
early work on Fast-Weight Programmers (Schlag et al., 2021). Due to their ability for parallelization during training, modern
recurrent architectures scale to large-scale datasets similar to Transformers. Moreover, they come with efficient inference,
which is attractive for real-world applications (Schmidinger et al., 2024; Schiff et al., 2024; Schmied et al., 2024).
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Non-Linear Multi-Dimensional RNNs The first foundational extension of non-linear RNNs / LSTMs to multiple
dimensions was carried out by Graves et al. (2007). Subsequently, Stacked LSTM was proposed (Graves et al., 2013),
which stacks LSTM layers on top of each other. MDRNNs are hard to parallelize, while re-arranging the traditional cuboid
order of computations in MDLSTMs in pyramidal fashion led to PyraMiD LSTM (Stollenga et al., 2015), which can be
parallelized. Grid LSTM (Kalchbrenner et al., 2015) operates in multiple processing dimensions simultaneously, thus
generalizing one-dimensional LSTM to more dimensions. Tree-LSTM (Tai et al., 2015) and DAG-LSTM (Zhu et al., 2016;
Peng et al., 2017; Chen et al., 2017) extend MDRNNs to tree structures and DAGs. PixelRNN (Van Den Oord et al., 2016)
operates directly on pixel-level and improves MDRNNs for images. Due to their strictly recurrent nature, these architectures
are not parallelizable and therefore unsuitable for modern hardware. Moreover, they lack the associative memory component
(state expansion) of modern linear RNNs, making them less powerful.

Linear RNNs on Multi-Dimensional data VisionMamba (ViM) (Zhu et al., 2024) and Vision-LSTM (ViL) (Alkin et al.,
2025) applied linear RNNs to the vision domain to challenge the common Vision Transformer (ViT) with its quadratic
scaling (Dosovitskiy et al., 2021). These works rely on traversing the 2D plane in a predefined order to accommodate
their sequential nature and often employ flipping the traversal order across layers. This was also investigated further in
Mamba-ND (Li et al., 2025). Recent works extend the Mamba architecture to two dimensions. Most related to our work
are 2DMamba (Zhang et al., 2024a) and V2M (Wang et al., 2024), which cover only the D-mode of pLSTM, at the loss of
directional propagation. Mamba2D (Baty et al., 2024) and 2-D SSM (Baron et al., 2024) cover the P-mode of pLSTM, but
in contrast to pLSTM, they are limited to the diagonal line instead of input-directed propagation along any line because of
their normalization factor of 1/2 (see Appendix F.2).

Relation to GNNs and MPNNs - Since pLSTM propagates recurrent states along a (directed acyclic) graph, it can be seen
as a form of Graph Neural Network (GNN) (Scarselli et al., 2009) that covers a whole connected component of a DAG per
layer instead of just a one-hop neighborhood.

D. Method Details
D.1. Loosely self-similar graphs

Graphs modeling hierarchical order or spatial extensions, as in meshes or grids do typically have low node degree and can be
decomposed recursively into subgraphs of similar structure. We use the term loosely self-similar graphs for these. In particu-
lar, a graph G ∶= G(L) should be decomposable into M subgraphs {G(L−1)

a = (N (L−1)
a , E

(L−1)
a )}a∈{1..M}, and boundary

edges B(L−1)
ab ⊂ N

(L−1)
a ×N

(L−1)
b such that G = G(L)

= (⋃a N
(L−1)
a ,⋃a,b B

(L−1)
ab ∪⋃a E

(L−1)
a ). This decomposition

should be applicable recursively down to single nodes, such that ∣N (0)
α ∣ = 1 ∀α with α = (aL−1...a0) the multi-index

of successive decompositions. Ideally, all decompositions should be balanced, ∣N (l)
α ∣ − ∣N (l)

β ∣ ∈ {−1, 0, 1} ∀ l, α, β, for
optimal parallelization - which should serve as the definition of loosely self-similar. Choosing arbitrary subsets of nodes for
subgraphs, one can always arrive at a decomposition of any graph, but the edges across subgraphs might not be balanced.

D.2. Hierarchical Parallelization

Given a decomposition of a (loosely self-similar) DAG, we can apply a divide-and-conquer strategy to the expensive

Transition sum/product combination. We want to calculate now the Gn
′
n matrix entry for two nodes n′

, n ∈ N ;n
′
⩽ n, such

that, at level l + 1, both are in the subgraph Gl+1
α ∶ n′

, n ∈ N
l+1
α but going one level lower, they are in distinct subgraphs

n
′
∈ N

l
α∶a, n ∈ N

l
α∶b a ≠ b. With incoming and outgoing boundary edges e′ ∈ B

l
→α∶a, e ∈ B

l
←α∶a, we define the generalized

Source, Transition, and Mark tensors at level l:

S
n
′
,l,α∶a

e ∶= ∑
e′∈E←(n′)

S
n
′

e′ ∑
P∈P(e′,e)

∏
nP

∈P

T
n

en
P
→ en

P
←

(10)

T
l,α∶k
e′e

∶= ∑
P∈P(e′,e)

∏
nP

∈P

T
n

en
P
→ en

P
←

(11)

M
n,l,α∶b
e′

∶= ∑
e∈E→(n)

⎛
⎜
⎝

∑
P∈P(e′,e)

∏
nP

∈P

T
n

en
P
→ en

P
←

⎞
⎟
⎠
M

n
e (12)

11



pLSTM: parallelizable Linear Source Transition Mark networks

Given these, the gating matrix entry can be calculated as:

G
n
′
n
= ∑

e∈Bl
←α∶a

∑
e′∈Bl

→α∶j

S
n
′
,l,α∶a

e

⎛
⎜
⎝

∑
P l

∈Pl(e′,e)
∏
c∈P l

T
l,α∶c

e
l,α∶c

→ml
c
e
l,α∶c

←ml
c

⎞
⎟
⎠
M

n
′
,l,α∶b

e′

Here, P l is the set of ”meta-paths” that connect two edges e′, e via subgraphs at level l, in these meta-paths the subgraphs
act as ”nodes” and the boundary edges Bl

←α∶a, Bl
→α∶a as ”edges”. Note that, by Einstein sum convention we implicitly

sum over multiple in-coming and out-going edges el,α∶c
→ml

c
and e

l,α∶c

←ml
c

for generalized Transitions T l,α∶c in G
n
′
n and in the

following. See Figure 3 for an illustration of this decomposition. In reverse, this means that higher-level Source, Transition,
and Mark can be constructed recursively bottom-up from one level lower (a chosen such that n′

∈ N
l
α∶a or n ∈ N

l
α∶a):

S
n
′
,l+1,α

e = ∑
e′∈Bl

←α∶a

S
n
′
,l,α∶a

e′
∑

P l
∈Pl(e′,e)

∏
b∈P l

T
l,α∶b

e
l,α∶b

→ml
b

e
l,α∶b

←ml
b

(13)

T
l+1,α
e′e

= ∑
P l

∈Pl(e′,e)
∏
b∈P l

T
l,α∶b

e
l,α∶b

→ml
b

e
l,α∶b

←ml
b

(14)

M
n,l+1,α
e′

= ∑
e∈Bl

→α∶a

⎛
⎜
⎝

∑
P l

∈Pl(e′,e)
∏
b∈P l

T
l,α∶b

e
l,α∶b

→ml
b

e
l,α∶b

←ml
j

⎞
⎟
⎠
M

n,l,α∶a
e (15)

Note that using this hierarchy only up to a certain level, one can optimize the parallelization to the used hardware. Whereas
first, all the Source, Transition, Mark, and Gating matrix objects are constructed in parallel up to a certain level, the recurrent
mode of Equation 1 is applied with generalized Source, Transition and Mark matrices of level l, in the topological ordering
of the subgraphs at this level. This resembles the structure of the chunk-wise parallel formulation for linear RNNs.

D.3. Parallelization of pLSTM in 2D - images

See Section D.4 for the definition of the notational structure.

S
l+1,↦
xyuwa = [[[Sl,↦

(2x)(2y)(u⌋0)(w⌋1)bT
l,→

(2x+1)(2y)b(a⌋2), S
l,↦

(2x+1)(2y)(u⌉0)(w⌋1)(a⌋2)]0, [0(u⌋0)(w⌉1)(a⌋2), 0(u⌋0)(w⌉1)(a⌋2)]0]1,

(16)

[[Sl,↦

(2x)(2y)(u⌋0)(w⌋1)bT
l,⤵

(2x+1)(2y)bcT
l,⤷

(2x+1)(2y+1)c(a⌉2) + S
l,↧

(2x)(2y)(u⌋0)(w⌋1)bT
l,⤷

(2x)(2y+1)bcT
l,→

(2x+1)(2y+1)c(a⌉2),

S
l,↧

(2x+1)(2y)(u⌉0)(w⌋1)bT
l,⤷

(2x+1)(2y+1)bc]0, [S
l,↦

(2x)(2y+1)(u⌋0)(w⌉1)bT
l,→

(2x+1)(2y+1)b(a⌉2), S
l,↦

(2x+1)(2y+1)(u⌉0)(w⌉1)(a⌉2)]0]1]
2

(17)
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S
l+1,↧
xyuwa = [[[Sl,↧

(2x)(2y)(u⌋0)(w⌋1)bT
l,↓

(2x)(2y+1)b(a⌋2), 0(u⌉0)(w⌋0)(a⌋2)]0, [S
l,↧

(2x)(2y+1)(u⌋0)(w⌉1)(a⌋2), 0(u⌉0)(w⌉0)(a⌋2)]0]1,

(18)

[[Sl,↦

(2x)(2y)(u⌋0)(w⌋1)bT
l,⤵

(2x+1)(2y)bcT
l↓
(2x+1)(2y+1)c(a⌉2) + S

l,↧

(2x)(2y)(u⌋0)(w⌋1)bT
l,⤷

(2x)(2y+1)bcT
⤵

(2x+1)(2y+1)c(a⌉2),

S
l,↧

(2x+1)(2y)(u⌉0)(v⌋1)bT
l,↓

(2x+1)(2y+1)b(a⌉0)]0, [S
l,↦

(2x)(2y+1)(u⌋0)(w⌉1)bT
l,⤵

(2x+1)(2y+1)b(a⌉2), S
l,↧

(2x+1)(2y+1)(u⌉0)(v⌉1)(a⌉2)]0]1]
2

T
l,→
xyab = [[T l,→

(2x)(2y)(a⌋0)cT
l,→

(2x+1)(2y)c(b⌋1), 0(a⌉0)(b⌋1)]0, (19)

[T l,↓

(2x)(2y)(a⌋0c)T
l,⤷

(2x)(2y+1)cdT
l,→

(2x+1)(2y+1)d(b⌉1) + T
l,→

(2x)(2y)(a⌋0)cT
l,⤵

(2x+1)(2y)cdT
l,⤷

(2x+1)(2y+1)d(b⌉1),

T
l,→

(2x)(2y+1)(a⌉0)cT
l,→

(2x+1)(2y+1)c(b⌉1), 0(a⌉0)(b⌋1)]0]1

T
l,↓
xyab = [[T l,↓

(2x)(2y)(a⌋0)cT
l,↓

(2x)(2y+1)c(b⌋1), 0(a⌉0)(b⌋1)]0, (20)

[T l,↓

(2x)(2y)(a⌋0c)T
l,⤷

(2x)(2y+1)cdT
l,⤵

(2x+1)(2y+1)d(b⌉1) + T
l,→

(2x)(2y)(a⌋0)cT
l,⤵

(2x+1)(2y)cdT
l,↓

(2x+1)(2y+1)d(b⌉1),

T
l,↓

(2x+1)(2y)(a⌉0)cT
l,↓

(2x+1)(2y+1)c(b⌉1), 0(a⌉0)(b⌋1)]0]1

T
l,⤷
xyab = [[T l,⤷

(2x)(2y)(a⌋0)cT
l,→

(2x+1)(2y)c(b⌋1), T
l,⤷

(2x+1)(2y)(a⌉0)(b⌋1)]0, (21)

T
l,⤷

(2x)(2y)(a⌋0)cT
l,⤵

(2x+1)(2y)cdT
l,⤷

(2x+1)(2y+1)d(b⌉1) + T
l,↓

(2x)(2y)(a⌋0)cT
l,⤷

(2x)(2y+1)cdT
l,→

(2x+1)(2y+1)d(b⌉1),

T
l,↓

(2x+1)(2y)(a⌉0)cT
l,⤷

(2x+1)(2y+1)c(b⌉1)]0]1

T
l,⤵
xyab = [[T l,⤵

(2x)(2y)(a⌋0)cT
l,↓

(2x)(2y+1)c(b⌋1), T
l,⤵

(2x)(2y+1)(a⌉0)(b⌋1)]0, (22)

T
l,⤵

(2x)(2y)(a⌋0)cT
l,⤷

(2x)(2y+1)cdT
l,⤵

(2x+1)(2y+1)d(b⌉1) + T
l,→

(2x)(2y)(a⌋)0cT
l,⤵

(2x+1)(2y)cdT
l,↓

(2x+1)(2y+1)d(b⌉1),

T
l,→

(2x)(2y+1)(a⌉0)cT
l,⤵

(2x+1)(2y+1)c(b⌉1)]0]1

M
l,↣
xyuva = [[[M l,↣

(2x)(2y)(u⌋0)(v⌋1)(a⌋2), T
l,→

(2x)(2y)(a⌋2)bM
l,↣

(2x+1)(2y)(u⌉0)(v⌋1)b]0, [T
l,⤵

(2x)(2y)(a⌋2)bM
l,#

(2x)(2y+1)(u⌋0)(v⌉1)b, (23)

T
l,⤵

(2x)(2y)(a⌋2)bT
l,⤷

(2x)(2y+1)bcM
l,↣

(2x+1)(2y+1)(u⌉0)(v⌉1)c + T
l,→

(2x)(2y)(a⌋2)bT
l,⤵

(2x+1)(2y)bcM
l,#

(2x+1)(2y+1)(u⌉0)(v⌉1)c]0]1,

[[0(u⌋0)(v⌋1)(a⌉2), 0(u⌉0)(v⌋1)(a⌉2)]0, [M
l,↣

(2x)(2y+1)(u⌋0)(v⌉1)(a⌉2), T
l,→

(2x)(2y+1)(a⌉2)bM
l,↣

(2x+1)(2y+1)(u⌉0)(v⌉1)b]0]1]
2

M
l,#
xyuva = [[[M l,#

(2x)(2y)(u⌋0)(v⌋1)(a⌋2), T
l,⤷

(2x)(2y)(a⌋2)bM
l,↣

(2x+1)(2y)(u⌉0)(v⌋1)b]0, [T
l,↓

(2x)(2y)(a⌋2)bM
l,#

(2x)(2y+1)(u⌋0)(v⌉1)b, (24)

T
l,⤷

(2x)(2y)(a⌋2)bT
l,⤵

(2x+1)(2y)bcM
l,#

(2x+1)(2y+1)(u⌉0)(v⌉1)c + T
l,↓

(2x)(2y)(a⌋2)bT
l,⤷

(2x)(2y+1)bcM
l,↣

(2x+1)(2y+1)(u⌉0)(v⌉1)c]0]1,

[[0(u⌋0)(v⌋1),M
l,#

(2x+1)(2y)(u⌉0)(v⌋1)]0, [0(u⌋0)(v⌉1 , T
l,↓

(2x+1)(2y)(a⌉2)bM
l,#

(2x+1)(2y+1)(u⌉0)(v⌉1)b]0]1]
2
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D.4. Parallelization of pLSTM in 1D - sequences

For a sequence as a DAG, pLSTMs reduce to linear RNNs (with slightly modified gating). Here, all nodes and subgraphs
have a single incoming and outgoing (boundary) edge. For parallelization, the decomposition is done hierarchically in
powers-of-two splits. The S, T , M and G tensors are constructed as follows:

S
l
an = [Sl−1

(2a)(n⌋0)T
l−1
(2a+1), S

l−1
(2a+1)(n⌉0)]0 (25)

T
l
a = T

l−1
(2a)T

l−1
(2a+1) (26)

M
l
an = [M l−1

(2a+1)(n⌋0), T
l−1
(2a)M

l−1
(2a+1)(n⌉0)]0 (27)

G
l
an′n = [ [Gl

(2a)(n′⌋0)(n⌋1), 0]0 , (28)

[Sl−1
(2a)(n′⌋0)M

l−1
(2a+1)(n⌉1), G

l
(2a+1)(n′⌉0)(n⌉1)]0 ]1

with a the external index (Source index ∈ {0..S/2l − 1} of level l), n the internal index (node index ∈ {0..2l − 1} within
generalized Source S

l
a). Here, []i denotes a concatenation along the axis i, and ⌋i and ⌉i denote these indices are used as

axis i for this concatenation - one taking the lower half, one the upper half, e.g. for vectors a ∈ RN ; b, c ∈ RN/2:

an = [b(n⌋0), c(n⌉0)]0 ∶= {bn n < N/2
cn−N/2 n ≥ N/2 (29)

Note that we use a causal setting here. For a non-causal structure, one would apply this bi–bidirectionally, effectively filling
the top-right entries of the gating matrix with a different Source/Mark combination for the opposite order. Equivalently, both
directions can be added in their outputs while computing the parallel parts twice.

D.5. Stability Derivation

The line graph of a DAG G = (N,E) is the DAG G ′
= (E,E

′) formed by the edges E of the original DAG and the line
edges e′ ∈ E

′
⟺ e

′
= (e1, e2),∃n ∈ N ∶ e1 ∈ E→(n) ∩ e2 ∈ E←(n), which connect two original edges if these are

connected by a node in G (Whitney, 1932). Given the previous definitions of Cell states Ce and Transitions Tn
e′e, these can

be interpreted as states and edges on the nodes of the line graph G ′. The Transitions Te′e can be viewed as entries of the
adjacency matrix T of G ′. This way, we can apply the theory of power iterations and matrix norms. The application of a
pLSTM of Equation 1 is equivalent to the application of the power iteration and can be bounded by compatible matrix norms
∣ ⋅ ∣:

∣c∣ = ∣ (
∞

∑
p=0

T
p) s∣ = ∣

⎛
⎜
⎝

PG′

∑
p=0

T
p⎞⎟
⎠
s∣

∣T ∣⩽1
⩽ PG ′∣s∣ (30)

As G is a DAG, also its line graph G ′ is a DAG and this one’s adjacency matrix Te′e is nilpotent, for a certain power
∃PG ′ ⩽ ∣N∣ ∶ ∀p > PG ′ ∶ T p

= 0. For simplicity, we use matrix-vector notation here for Cell states c, Transitions T , and
Sources s - without key-value extension.

Stabilization of the P-mode The normalization of Equation 4 limits the respective column e
′ in the line graph adjacency

matrix T , and in turn limits its L1-norm ∣∣T ∣∣1. Since the L1-norm is sub-multiplicative (Horn & Johnson, 1985), this can
be applied to the matrix powers in Equation 30 and keeps the L1-norms of the Cell states Ce limited. Keeping the norm
fixed at one exactly enables long-range propagation (e.g., by division of the column entries by the norm). This also stabilizes
the gradient propagation with an L∞ bound, as gradients are propagated backwards and the applied transposed adjacency
matrix T

T is row-(sub)-normalized and therefore L∞ bounded (the dual norm to the L1 norm).

D.6. State-Tracking Extension

Recent research has shown that having scalar, positive Transitions Tn
e→e← does not allow for state tracking capabilities in

these linear RNNs (Merrill et al., 2024; Grazzi et al., 2025). We can generalize the Transition scalars to Transition matrices
here as well: Tn

en→e
n
←
→ T

n
en→e

n
←ij i, j ∈ {1..JT }, JT being the Transition state tracking dimension. Note that in this way, the
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Source and Mark matrix have to include this extended dimension as well. We can define generalizations with additional
state tracking dimensions JS , JM :

S
n
′
,l,α

e → S
n
′
,l,α

eki k ∈ {1..JS}, i ∈ {1..JT } (31)

T
l,α

e′e
→ T

l,α

e′eij
i, j ∈ {1..JT } (32)

M
n,l+1,α
e′

→M
n,l,α

e′jm
j ∈ {1..JT },m ∈ {1..JM} (33)

G
n
′
n
→ G

n
′
n

km k ∈ {1...JS},m ∈ {1..JM} (34)

This extension includes specific parameterizations such as defining the Transition matrix as Tij = 1 + βkikj known from
DeltaNet (Schlag et al., 2021). For these, the chunk-wise parallelization of Yang et al. (2024) is applicable along multiple
dimensions.

D.7. Stability in the State Tracking Extension

The stabilization of Section D.6 can be applied in the state tracking extensions as well. In the extended case, the absolute
values of Transitions are replaced by the spectral norm of the Transition matrix (Te′eij)ij defined by its largest singular
value. The stability can be ensured by limiting the sum of the largest singular values (instead of scalar entries) for the
P-mode or zero matrix entries, resulting in a line graph tree with maximally unit norm matrices for tree Transitions in the
D-mode. There are several options to limit or set the Transition matrices by/to one in magnitude. A straightforward option is
to parametrize not the Transition entries Tij directly, but to parametrize its singular value decomposition, with orthogonal (or
unitary) matrices T = UΣV

T . The singular values Σ can be limited in magnitude by a tanh (for multiplicative decay) or
fixed to ±1 (long-range propagation). In the case of multiple directions (see 2D grid case), in the P-mode, they are multiplied
by an additional softmax-limited propagation factor (”angle”) - limiting the sum over the direction pairs in Equation 4.
The orthogonal matrices U , V can be parametrized by the product of Householder matrices (generated from vectors), or
the exponential of the Lie-group / generating group of special orthogonal matrices: the skew-symmetric matrices (directly
parameterized). With these parametrizations, in turn depending on the network inputs (at nodes), state-tracking capabilities
can be achieved while maintaining long-range stability (Merrill et al., 2024; Grazzi et al., 2025).

D.8. Chunkwise-Parallel Form

Given the hierarchical structure of the parallelization shown in Sections D.2, D.4, and D.3, one can stop at a certain level of
it. At this level, the resulting objects will again form a higher-level DAG or grid, which can now be processed sequentially,
in the topological ordering of this DAG. This way, the quadratic complexity introduced by the parallelization is only
introduced up to the optimal level of the hardware’s parallelization capabilities. While typically the FLOP-optimal point is at
lower parallelization, Beck et al. (2025a) showed that a certain degree of parallelization is hardware optimal for linear RNNs.

Multi-Directional Form For the 2D grid case of images, we use pLSTM in all four direction combinations of the 2D
DAG at once in parallel, at each node going down/right, down/left, up/right, up-left. By pre-computing all of them in full
parallelization, we can add up their gating matrices, resulting in just a single pass of the gated linear attention computation
(see Equation 3). We use this fully parallelized form for the vision experiments.

E. Full Model Architecture
E.1. pLSTM for Vision

For the pLSTM-Vis, we use the ViT (Dosovitskiy et al., 2021) with pre-LayerNorm (actually RMSNorm) structure as
backbone architecture, replacing the Multi-Head Attention with a pLSTM layer. Note that in addition to query-, key-, value-,
and out-projections, we have linear layers for Source, Transition, and Mark gates in the four direction combinations. In
addition, we apply a multi-head RMSNorm after the pLSTM, as common for linear RNNs (Yang et al., 2023; Beck et al.,
2025b). Note that the Source, Mark, and Direct gates are sigmoid-activated, and the Transition is tanh-activated. For details,
we refer to the attached source code.
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F. Theoretical Analysis
F.1. Exponential growth of path counts in a 2D grid

Assume a 2D grid structure of a DAG, then the number of paths between two nodes can be calculated in the following way.
In total, the number of Transitions to the right and Transitions to the bottom are fixed by the position offsets ∆x and ∆y

between the nodes. In total, the number of paths can be counted by the number of orderings of a string consisting of ∆x

times→ and ∆y times←. This results in the combinatorial factor, which is exponential in the path length ∆x +∆y =∶ ∆:

#Paths = (
∆x +∆y

∆x
) =

(∆x +∆y)!
∆x!∆y!

Stirling
≈

√
(∆x +∆y)
2π∆x∆y

(∆x +∆y)∆x+∆y

∆
∆x
x ∆

∆y
y

∆x∶=β∆
=

√
1

2π∆β(1 − β)(β
−β(1 − β)−(1−β))

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
⩾1

∆
(35)

Given Transitions / forget gates potentially all at 1, this exponential number of paths leads to an exponentially growing
magnitude of the Cell state C, as of Equation 3. For a non-linear MD-RNN, like DAG-LSTM, this path count applies as
well, assuming that all forget gates are fixed to one. Also in this case, the cell states accumulate all their ancestors’ values
via all paths.

F.2. Long-Range Decay for P-mode in 2D

As the P-mode offers a directional propagation, here, we want to calculate the decay of one Source signal along the leading

direction - given all Transitions are equal within the grid and at criticality: T = [ α α
(1 − α) (1 − α)]. This results in

the following overall Transition from Source Sxy at x, y to Mark M(x+∆x)(y+∆y) at x +∆x, y +∆y - with path length
∆ = ∆x +∆y ≫ 1, direction β ≔

∆x

∆
:

T
full
xy(x+∆x)(y+∆y) = ∑

Paths

T
∆x
r∗ T

∆y

d∗ = (
∆x +∆y

∆x
)α∆x(1 − α)∆y

= ( ∆
β∆)αβ∆(1 − α)(1−β)∆ (36)

Notice the binomial structure of the equation that fixes the total sum ∑∆x∈{0..∆} T
full
xy(x+∆x)(y+∆y) to 1, so the total activation

is conserved along the diagonal. Differentiating this equation by β, we can get the direction of largest propagation:

0
!
= ∂β log T

full
xy(x+∆x)(y+∆y) = −∂β (log Γ(∆ + 1) + log Γ(β∆ + 1) + log Γ((1 − β)∆ + 1)) +∆ log(α) −∆ log(1 − α)

(37)
Stirling
≈ −∂β (β∆ log(β) + (1 − β)∆ log(1 − β)) +∆ log(α) −∆ log(1 − α)

= ∆ log (α(1 − β)
β(1 − α))

This implies β = α for the direction of largest propagation. Now, inserting this direction into the Transition product:

T
full
xy(x+∆x)(y+∆y)∣β=α = ( ∆

α∆)αα∆(1 − α)(1−α)∆ Stirling
≈

√
2π∆ (∆

e
)∆ α

α∆(1 − α)(1−α)∆
√
2πα∆ (α∆

e
)α∆

√
2π(1 − α)∆ ( (1−α)∆

e
)
(1−α)∆

=

√
1

2πα(1 − α)∆ (38)

So, even in the critical case of the P-mode, the signal is decaying, but only as a power law O(∆−1/2) of the path length.
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G. Experimental Results

Due to the complex structure of pLSTM in 2D and its parallelization, we use a jax 1-based implementation to enable
efficient compilation of the computational graph. In particular, we re-use parts of Park (2024). Early experiments on using
torch.compile on the torch 2 implementation showed a slowdown rather than a speed-up of the model computations,
which is why we use jax. Our source code, released with this work, has a detached configuration that works for both jax
and torch and should enable a fast switch of frameworks for future changes. We use jax version 0.4.32 and CUDA
12.2. For the detailed library versions we refer to the attached source code.

G.1. Initialization

We use small source, mark and direct bias initialization as suggested in Beck et al. (2025a) for linear RNNs.

Table 2: General pLSTM initialization settings

Parameter Value (→ Fine-Tuning)

Source Bias Init -4
Mark Bias Init -4
Direct Bias Init -6
Transition Bias Init 1
Transition Scaling Factor 5
Orientation Bias Init Headwise Range in [-2, 2]
Multi-Head RMSNorm ϵ 1e-5
Pooling Corner Patches
Mode P+D (alternating)

G.2. Arrow Pointing

Figure 5: Illustration of the Arrow pointing task: the model has to classify whether an arrow is pointing towards a
circle (top left). Models with global receptive fields, such as Vision Transformers (ViTs), can solve this task by leveraging
directional information encoded via positional embeddings (top right), but they often struggle to generalize to higher
resolutions. In contrast, pLSTMs can effectively solve this task in both diffusive distribution (D-mode, bottom left) and
directed propagation (P-mode, bottom right) modes, enabling long-range reasoning and better scalability.

1https://jax.dev
2https://pytorch.org
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Here, we train for 50 epochs on 100k training images with batch size 128, using learning rates [ 1e-4, 3e-4, 1e-3 ] and
report the mean validation curves over five seeds at the best learning rate. For ViL, we include 1e-5 as the learning rate, as it
fails to improve for higher learning rates. The validation datasets (standard and extrapolation) are generated from the same
validation seed for all runs. We use a linear-warmup + cosine-decay schedule with one warmup epoch starting from zero
and ending at 0.001 × peak lr. The models take about one hour of training on a single NVIDIA H100-64GB. See Figure 6
and Table 3 for an additional ablation of pLSTM variants.

Figure 6: Training curves for the Arrow Pointing Extrapolation task, averaged over 5 seeds with 90% CI on different
model ablations. P-mode by itself performs worse, D-mode by itself is not as general in interpolation, but performs better on
extrapolation compared to other models. pLSTM does not rely on the positional embedding for strong performance.

Table 3: Test Results on Arrow Pointing Extrapolation (5 seeds, 90% confidence interval)

Best LR Test Acc. Test Acc. (Ext.)
Model

pLSTM 0.0001 0.972 ± 0.003 0.778 ± 0.031
pLSTM / (no posemb.) 0.0001 0.975 ± 0.003 0.769 ± 0.018
pLSTM / (P-mode only) 0.0003 0.978 ± 0.005 0.746 ± 0.027
pLSTM / (D-mode only) 0.0001 0.957 ± 0.002 0.828 ± 0.028
pLSTM / (STM bias only) 0.0001 0.975 ± 0.003 0.784 ± 0.020
ViT 0.0003 0.915 ± 0.019 0.707 ± 0.014

G.3. ImageNet-1k

To test for real-world image model capabilities, we train pLSTM using the schedule of DeiT-III (Touvron et al., 2022),
comparing our architecture to other vision models. pLSTM performs similar to other popular approaches. With the
integration of local features, e.g., including additional convolutions such as in Vision LSTM (Alkin et al., 2025), we see
room to narrow the gap to SOTA. For a detailed discussion on the results and relation to previous work, see Appendix G.3.

G.4. ImageNet-1k Ablation

We ablate our pLSTM and compare against a ViT trained using the ViT-T model scale, using a simpler single pre-training
schedule close to DeiT (Touvron et al., 2021) at 224 × 224 resolution (see Appendix G.4.1) for details. In our re-training,
pLSTM can outperform ViT by a significant margin.

Setup For training on ImageNet-1k, we match the original training schedule of DeiT-III (Touvron et al., 2022). Efficient-
Nets (Tan & Le, 2019) as a convolution-based baseline architecture are still the SOTA at these scales, but it is important to

2https://github.com/facebookresearch/fvcore
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Table 4: ImageNet-1K pre-training accuracy. All models use a patch size of 16×16 with 224×224 resolution at maximum.
Models with “+” in their “Epochs” column pre-train on lower resolution, followed by fine-tuning on 224×224 resolution for
some epochs. Values of reference models are taken from Alkin et al. (2025) and the original work for 2DMamba, Mamba2D
and EfficientNet (Tan & Le, 2019; Zhang et al., 2024b; Baty et al., 2024). Note that EfficientNet, as a CNN-based baseline,
still outperforms the more recent baselines, but was also trained on larger resolutions for the scaled-up versions. Due to the
chunkwise-recurrent option, pLSTM FLOPs could be optimized further (see Appendix D.8).

Model Epochs #Params FLOPS IN-1K
EfficientNet-B0 (Tan & Le, 2019) ? 5M 0.39G 77.1
DeiT-T (Touvron et al., 2021) 300 6M 1.3G 72.2
DeiT-III-T (reimpl.) (Touvron et al., 2022) 800+20 6M 1.1G 75.4
VRWKV-T (Duan et al., 2024) 300 6M 1.2G 75.1
Vim-T (Zhu et al., 2024) 300 7M 1.5G 76.1
ViL-T (Alkin et al., 2025) 800+20 6M 1.3G 78.3
pLSTM-Vis-T 800+20 6M 1.4G 75.2
EfficientNet-B4 (Tan & Le, 2019) ? 19M 1.8G 82.9
DeiT-S (Touvron et al., 2021) 300 22M 4.6G 79.8
DeiT-III-S (reimpl.) (Touvron et al., 2022) 400+20 22M 4.6G 80.3
ConvNeXt-S (iso.) (Liu et al., 2022) 300 22M 4.3G 79.7
VRWKV-S (Duan et al., 2024) 300 24M 4.6G 80.1
Vim-S (Zhu et al., 2024) 300 26M 5.3G 80.5
Mamba2D-T (Baty et al., 2024) 300 27M - 82.4
2DMamba-T (Zhang et al., 2024a) ? 30M 4.9G 82.8
ViL-S (Alkin et al., 2025) 400+20 23M 4.7G 81.5
pLSTM-Vis-S 400+20 23M 4.9G 80.7
EfficientNet-B6 (Tan & Le, 2019) ? 43M 19G 84.0
DeiT-B (Touvron et al., 2021) 300 86M 17.6G 81.8
DeiT-III-B (reimpl.) (Touvron et al., 2022) 400+20 87M 16.8G 83.5
ConvNeXt-B (iso.) (Liu et al., 2022) 300 87M 16.9G 82.0
VRWKV-B (Duan et al., 2024) 300 94M 18.2G 82.0
2DMamba-S (Zhang et al., 2024a) ? 50M 8.8G 83.8
ViL-B (Alkin et al., 2025) 400+5 89M 17.9G 82.4
pLSTM-Vis-B 400+20 89M 18.2 G 82.5

note that larger models were also trained at larger resolutions, whereas training resolution was not scaled with the models
for all other models. EfficientNet, Mamba2D, and 2DMamba are non-isotropic, in that their embedding dimensions are
scaled up with depth. ViT, ViL, and pLSTM are isotropic as is the reported isotropic ConvNeXt. For ConvNeXt, isotropic
models showed lower performance compared to non-isotropic ones. For pLSTM, a transition to non-isotropic model could
therefore lead to performance gains as well.

All of the models are pre-trained for up to 24 hours on 4 nodes, with 4 NVIDIA H100-64GB GPUs each. ViT models are
faster (about 30-50%), as our models do not yet utilize specific kernels. For counting FLOPs, we use fvcore3 on the
PyTorch implementation. For arrow pointing extrapolation training, the Mamba2D and 2DMamba variants were about twice
as slow as pLSTM despite utilizing custom kernels.

G.4.1. ABLATION SETTINGS

For the ablation studies, we use a simplified training setting, without an additional fine-tuning stage, resembling a DeiT-T
training over 400 epochs (Touvron et al., 2021). In Table 7, we provide a summary of the used training hyperparameters.

G.5. Graph Benchmarks

For the graph version of pLSTM, we use torch, as the dynamic computation graph support is better for this framework.
For simplicity, we also do not implement any parallelization of the graph computation, but use the recurrent form only.

3https://github.com/facebookresearch/fvcore
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Table 5: Ablation of pLSTM variants and ViT (DeiT) re-training on ImageNet-1k.

Model ImageNet-1k top-1

pLSTM 75.51

pLSTM / (no posemb.) 75.22
pLSTM / (P-mode only) 74.86
pLSTM / (D-mode only) 75.13
pLSTM / (STM bias only 75.10

ViT 74.66

Table 6: ImageNet1k - DeiT-III style training parameters

Parameter Value (→ Fine-Tuning)

Image Resolution 192 × 192→ 224 × 224
Training Epochs 800 (T), 400 (S), 400 (B)→ 20
Hidden Dimension 192 (T), 384 (S), 768 (B)
Num Heads 3 (T), 6 (S), 12 (B)
DropPath Rate 0. (T), 0.05 (S), 0.1 (B)
LayerScale -
Warmup Epochs 5
Peak Learning Rate 4e-3 (T), 4e-3 (S), 3e-3 (B)→ 1e-5
Weight Decay 0.2
Gradient Clip Norm 1.0
Optimizer Lamb→ AdamW
Loss Type Binary Cross Entropy→ Cross Entropy
MixUp 0.8
CutMix 1.0
Label Smoothing 0.0→ 0.1
Global Batch Size 2048→ 512
ColorJitter 0.3→ 0.0
AutoAugment ”3a”→ ”rand-m9-mstd0.5-inc1”
RandomErasing 0.
AugmentRepeats 3→ 1
TestCropRatio 1.0
RandomCrop rrc

Datasets. Our experiments are conducted with 10-fold cross-validation on popular TUDatasets (Morris et al., 2020). For
each fold, we use 1/10 of the respective training data as test set, 1/10 for validation and 8/10 for training. For every fold, we
pick the test accuracy of the epoch with the best validation accuracy and report the average over all folds. For pLSTM, we
encode the number of neighbors for each node with a standard positional encoding (Vaswani et al., 2017). Otherwise, no
data transformation, augmentation, or normalization is used.

Training procedure. We train all models for 100 epochs with AdamW, a learning rate of 0.001, batch size of 64, and a
cosine decay learning rate schedule with 5 warmup epochs.

Models. The compared models are GAT (Veličković et al., 2018), GCN (Kipf & Welling, 2017), GIN (Xu et al., 2019),
LSTM GNN (Liang et al., 2016), MPNN (Gilmer et al., 2017). All GNNs consist of an encoder, decoder, and 4 or 8 message
passing layers. The best model configuration is selected based on the validation accuracy. pLSTM also consists of the
same encoder and decoder, but has 2 layers that operate in D-mode and 2 layers that operate in P-mode. To achieve an
approximately similar parameter count, we fix the hidden dimension of pLSTM to 96, while the other GNNs have a hidden
dimension of 128. All trained models have a parameter count of < 300,000.
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Table 7: ImageNet1k - DeiT style ablation training parameters

Parameter Value

Image Resolution 224 × 224
Training Epochs 400
Hidden Dimension 192
Num Heads 3
DropPath Rate 0.
LayerScale -
Warmup Epochs 5
Peak Learning Rate 1e-3
Weight Decay 0.05
Gradient Clip Norm 1.0
Optimizer AdamW
Loss Type Cross Entropy
MixUp 0.8
CutMix 1.0
Label Smoothing 0.0→ 0.1
Global Batch Size 2048
ColorJitter 0.0
AutoAugment ”rand-m9-mstd0.5-inc1”
RandomErasing 0.25
AugmentRepeats 3→ 1
TestCropRatio 1.0
RandomCrop rrc
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