
Lie Detector: Unified Backdoor Detection via
Cross-Examination Framework

Xuan Wang
National University of Defense Technology

wangxuan21d@nudt.edu.cn

Siyuan Liang∗

National University of Singapore
pandaliang521@gmail.com

Dongping Liao
State Key Lab of IoTSC, CIS Dept,

University of Macau
yb97428@um.edu.mo

Han Fang
National University of Singapore

fanghan@nus.edu.sg

Aishan Liu
Beihang University

liuaishan@buaa.edu.cn

Xiaochun Cao
Sun Yat-sen University

caoxiaochun@mail.sysu.edu.cn

Yuliang Lu
National University of Defense Technology

publicLuYL@126.com

Ee-chien Chang∗
National University of Singapore
changec@comp.nus.edu.sg

Xitong Gao∗
Shenzhen Institutes of Advanced Technology, CAS

Shenzhen University of Advanced Technology
xt.gao@siat.ac.cn

Abstract

Institutions with limited data and computing resources often outsource model train-
ing to third-party providers in an untrusted third-party setting, assuming adherence
to prescribed training protocols with pre-defined learning paradigm (e.g.,supervised
or self-supervised learning). However, this practice can introduce severe security
risks, as adversaries may poison the training data to embed backdoors into the
resulting model. Existing detection approaches predominantly rely on statistical
analyses, which often fail to maintain universally accurate detection accuracy
across different learning paradigms. To address this challenge, we propose a
unified backdoor detection framework in the an untrusted third-party setting that
exploits cross-examination of model inconsistencies between two independent ser-
vice providers. Specifically, we integrate central kernel alignment to enable robust
feature similarity measurements across different model architectures and learning
paradigms, thereby facilitating precise recovery and identification of backdoor
triggers. We further introduce backdoor fine-tuning sensitivity analysis to distin-
guish backdoor triggers from adversarial perturbations, substantially reducing false
positives. Extensive experiments demonstrate that our method achieves superior
detection performance, improving accuracy by 4.4%, 1.7%, and 10.6% over SoTA
baselines across supervised, self-supervised, and autoregressive learning tasks,
respectively. Notably, it is the first to effectively detect backdoors in multimodal
large language models, highlighting its broad applicability and advancing secure
deep learning.

1 Introduction
Deep learning models have grown exponentially in size in recent years, outstripping the computational
resources available to many small and medium-sized institutions. Consequently, these institutions
often rely on third-party cloud providers for model training. Although these providers are considered

∗* Correspondence to Siyuan Liang, Ee-chien Chang and Xitong Gao.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

C
lo

u
d

C

u
st

o
m

e
rs B

ackd
o

o
r

D
etectio

n

Model
Architecture

Training
Paradigm

Hyperpar
ameters

Datasets

User & Police
Hard Disk
Storage

GPU
Resources

U
n

tr
u

st
ed

th

ir
d

-p
a

rt
y

Providers 1 & Suspect 1
Model f1

poisoning

training

Providers 2 & Suspect 2
Model f2

training

Non-poisoning

Model f1 Model f2

&
Protocol Model

Probe

Figure 1: In the absence of training resources, the user delegates model training to a third-party
vendor in an untrusted third-party environment and generates two independent models. At the same
time, the user doubles as a police to identify potential backdoor models through comparative analysis.

“untrusted third-party” in that they ostensibly adhere to prescribed protocols, they may still covertly
manipulate data or models. This scenario can give rise to a significant backdoor threat, where hidden
triggers are embedded during training, enabling the model to function normally under most conditions
but exhibit malicious behavior when specific triggers are activated [13, 34, 3, 25, 30, 28, 33, 29, 56].

Current backdoor detection methods frequently rely on model behavior and statistical analyses
(e.g.,gradient-based detection, posterior analysis) [45, 35, 26, 12, 46, 47, 39]. Nevertheless, these
methods exhibit significant sensitivity to fluctuations in optimization targets, loss functions, and
feature representations across various learning paradigms [6]. This makes it hard for them to work
with different architectures and attack tactics, which makes it hard to keep model security in untrusted
third-party settings.

In many real-world scenarios, access to multiple independently trained models is feasible and
practiced. Government, defense, and finance are examples of security-critical fields that commonly
hire several outside companies to build models. This allows for cross-validation and builds trust.
Modern machine learning pipelines, e.g.,federated learning, AutoML, and AutoTrain often train
models at the same time with various seeds or settings. These realistic workflows naturally give rise
to the multi-model input setting our method leverages.

Building on this observation, we propose the Lie Detector defense via a cross-examination backdoor
detection framework designed for third-party verification. In Figure 1, the user (acting as police)
gives the identical job to two different providers (the suspects) and finds backdoors by looking
for differences in their model outputs (the lies). Specifically, we employ Central Kernel Align-
ment (CKA) [19, 4] for representation similarity, enabling the reverse-engineering of triggers (the
evidence) by maximizing representational differences between two independently trained models.
In contrast to conventional methods that rely on decision boundaries, our approach optimizes triggers
based on output distributions, generalizing across supervised, self-supervised, and autoregressive
learning paradigms. In order to reduce false positives and improve detection robustness, we also
introduce a fine-tuning sensitivity analysis to distinguish between truly backdoored and benign
models. With its consistent high detection accuracy across a variety of learning paradigms, Lie
Detector provides a useful and adaptable backdoored model verification solution.

We thoroughly assess Lie Detector’s performance in supervised, self-supervised, and autoregressive
settings. Our method works better than current methods, with relative increases of 4.4%, 1.7%, and
10.6% for SL, SSL, and AR, respectively. For instance, Lie Detector’s 95% on COCO/TrojanVLM
clearly outperforms previous techniques, which struggle on vision-language models (e.g.,LLaVA)
with accuracies frequently below 50%. Furthermore, Lie Detector’s robustness is highlighted by
its great stability under a variety of random seeds. In order to increase security assurances for
deep learning models, we believe that this research will promote a wider usage of secure training
procedures in third-party services.

Our contributions are: 1) We design a unified cross-examination framework for backdoor detection
by analyzing inconsistencies in models provided by multiple third-party service providers, enhancing
the security of outsourced training in untrusted third-party environments. 2) Our method combines
CKA for representation similarity and output distribution optimization, breaking the reliance on

2

decision boundaries and enabling backdoor detection to generalize beyond supervised learning to self-
supervised learning and autoregressive learning. 3) We achieve superior generalization across three
learning paradigms and seven attack methods. Notably, it is the first to enable backdoor detection in
multi-modal large language models, further broadening its applicability.

2 Related Work
Development of Learning Paradigms. Deep learning has evolved through training paradigms
to address diverse challenges and data. This article focuses on supervised, self-supervised, and
autoregressive learning, outlining their motivations, progress, and limitations. Supervised learning
(SL) relies on labeled data, with early advances like CNNs [23] for image classification and DNNs for
speech. Large-scale datasets (e.g.,ImageNet [7]) and architectures like ResNet [15] further propelled
the field. However, dependence on costly annotations led to new paradigms. Self-supervised learning
(SSL) mitigates this by generating supervisory signals from unlabeled data. BERT [8] revolutionized
NLP, while SimCLR [2] and related methods advanced vision. Contrastive learning (CL), a subset
of SSL, learns by distinguishing positive and negative pairs, with CLIP [40] and CoCoOp [53]
demonstrating flexibility across modalities. Autoregressive learning (AL) builds on SSL and CL by
modeling data distributions and generating samples, enabling cross-modal understanding via models
like MiniGPT-4 [54] and LLaVA [24]. The evolution from SL to SSL and AL enhances adaptability
and generalization, though high computational costs remain a barrier to broader adoption.

Backdoor Attack. Backdoor attacks have become a major security concern in deep learning, evolving
alongside training paradigms. These attacks implant malicious behaviors during training, activated
at inference by specific triggers. Early attacks focused on SL, leveraging labeled data to embed
triggers. Examples include BadNets [13], which inserts poisoned data with fixed triggers; Blended [3],
which blends patterns to evade detection; ISSBA [25], which uses invisible, sample-specific triggers
for stealth; WaNet [38], which applies warping-based perturbations to boost success; and Low-
Frequency [52], which exploits frequency features to implant hidden triggers. With the rise of SSL,
attackers adapted or designed methods for unlabeled data. BadCLIP [31] compromises contrastive
language-image models, while BadEncoder [18] poisons feature encoders to affect downstream tasks.
As AL advances, attacks like TrojanVLM [27] embed multimodal triggers in vision-language models,
and Shadowcast [51] targets text-to-image pipelines with stealthy backdoors. The attack surface now
spans SL, SSL, and AL, with techniques tailored to each paradigm. This proliferation highlights the
urgent need for robust, general-purpose defenses to safeguard models across tasks and modalities.

Existing Backdoor Detection Methods. Current methods often rely on model behavior and statistical
analysis, such as gradients, activations, or output distributions [45, 35, 26, 12, 46, 37, 55]. Neural
Cleanse (NC) [45] detects anomalies via trigger reversibility, while ABS [35] uses activation clustering
to isolate poisoned neurons. NAD [26] applies knowledge distillation to suppress backdoors during
fine-tuning. MM-BD [46] identifies arbitrary backdoor patterns via output landscape analysis and
unsupervised anomaly detection. Some methods have extended detection to SSL and AL settings:
DECREE [12] reverses triggers via optimization, and SEER [55] leverages auxiliary modalities for
improved detection. While promising in specific paradigms, most of these methods lack scalability
and fail to generalize across diverse learning settings. Our Lie Detector distinguishes itself in two key
aspects: 1) Novelty. We are the first to integrate CKA and fine-tuning sensitivity analysis for backdoor
detection. While each has been used independently, their combination is purposefully designed to
address both representation-level misalignment and behavioral instability, achieving complementary
robustness. 2) Effect. Our method is the first unified framework applicable to SL SSL, and AL. It also
enables backdoor detection in large multimodal vision-language models (e.g.,LLaVA, MiniGPT-4),
previously untouched by existing defenses, highlighting its broad applicability.

3 Preliminary
3.1 Threat Model
We consider a practical outsourced training scenario, where model training is performed by a third-
party provider who may nominally follow the protocol but is essentially untrusted and may insert
backdoors. The user has no visibility into the training process, but can independently inspect the
returned model for malicious behavior.

Adversarial capabilities. During training or fine-tuning, the adversary, e.g., a malicious service
provider (the suspects), might introduce backdoors into the model by either directly altering the

3

Clean Output

Backdoor Output

Cross-Model Trigger Reverse
Output Distribution

Cross-Examination Framework

Input Output

FT data Backdoor Clean

Fine-tuning Sensitivity Analysis
Suspicious

models
Centralized Kernel Alignment

…
Activation
matrices

Initial trigger

Clean images

+
ASR ↓

ASR -

clean

backdoor
FT model 𝑓1

′

FT model 𝑓2
′

Clean Clean

Detection

Backdoor Backdoor

+

Model 𝑓1

Model 𝑓2

Optimized
trigger

𝑓2

𝑓1

…

Figure 2: Overview of Lie Detector. We propose a general backdoor detection method via a cross-
examination framework. Using output distribution and CKA losses to reverse triggers, and fine-tuning
sensitivity analysis to identify backdoored models, our approach secures third-party training.

model’s parameters to encode malicious behavior or by contaminating the training data with trigger
patterns

Adversarial knowledge. The model architecture and training procedure may be completely known to
the adversary, but they are not aware of the precise detection methods the verifier uses. This ensures
that the backdoor detection framework remains robust against adaptive attacks.

Detection constraints. The verifier user (the police) cannot access the full training data or training
process on the provider side but may have access to a small, trusted subset of clean data. There is
no assumption of a clean reference model. This is consistent with real-world situations where the
training process is treated as a "black box" and third parties are not privy to it.

3.2 Centered Kernel Alignment
CKA [49, 4, 19] measures the similarity between activations or feature representations. To compute
CKA, we input data X into models f1 and f2 and extract activations from a specific layer l. Let
A1∈Rn×p1 and A2∈Rn×p2 denote the extracted activation matrices of the two models, where p1
and p2 are the dimensionalities of the representations at that layer. The activations A1 and A2 are
then transformed into kernel matrices K1 and K2 using a kernel function, typically a linear kernel:

K = H(AAT)H⊤, H = I− 1

n
11⊤, (1)

where H is the centering matrix, with I as the identity matrix and 1 a vector of ones. This trans-
formation ensures that the kernel matrix K ∈ Rn×n eliminates biases due to differences in model
architecture. The CKA similarity between the feature representations of two models is defined as:

CKA(f1, f2,X) =
⟨K1,K2⟩F√
∥K1∥2F · ∥K2∥2F

, (2)

where ⟨·, ·⟩F is the Frobenius inner product, and ∥·∥2F the squared Frobenius norm, with ⟨K1,K2⟩F =
Tr(K⊤

1 K2) and ∥Ki∥2F = ⟨Ki,Ki⟩F , where Tr(·) is the matrix trace.

CKA is architecture independent because it remains unchanged under certain transformations [4,
19], meaning architectural differences do not affect model similarity. Specifically: 1) Orthogonal
transformation invariance. CKA is unaffected by rotations or reflections of the feature space, making
it robust to different basis representations. 2) Isotropic scaling invariance. Uniform scaling of
features does not affect CKA, ensuring comparisons are unbiased by activation magnitudes. These
properties make CKA ideal for comparing models with different architectures, as it captures the
relative structure of representations rather than absolute values or network specifics.

4 Method
We introduce the Lie Detector via the cross-examination framework (Figure 2). Section 4.1 outlines
the framework, while Section 4.2–4.4 detail the method and Algorithm 1 presents the full procedure.

4.1 Cross-Examination Framework
To secure third-party machine learning models, we propose a Cross-Examination-Based Backdoor
Detection Framework under an untrusted third-party verification setting, comprising three modules:

Cloud customers. It consists of users who require model training services but lack direct control
over the training process. These users also act as the verification party (the police), who have the

4

Algorithm 1 Lie Detecor
Require: Models f1, f2; clean subset Ds & finetune set Dft; thresholds η, γ; weights α, β, λ; epochs T ; Adam
Ensure: Backdoor status of f1 and f2

1: Initialize trigger mask m and pattern p ▷ Stage I: Cross-Model Trigger Reverse
2: for t = 1 to T do
3: for all (x, y) ∈ Ds do
4: x′ ←m⊙ p+ (1−m)⊙ x ▷ Generate poisoned input (Eq. (4))
5: Compute LOD,LCKA ▷ Eq. (5), Eq. (6)
6: end for
7: L ← α · LCKA + β · LOD + λ · (∥m∥1 + ∥p∥1) ▷ Total loss (Eq. (7))
8: Update the trigger (m,p) by minimizing L via Adam
9: end for

10: Db ← {x′ = m⊙ p+ (1−m)⊙ x | x ∈ Ds} ▷ Build poisoned set
11: for f ∈ {f1, f2} do
12: Predict ỹi = f(x′

i), estimate target ŷc by averaging ▷ Stage II: Activation-Based Identification
13: Compute ASR(f) = E[I(f(x′) = ŷc)]
14: if ASR(f) > η then ▷ Stage III: Fine-tuning Sensitivity Analysis
15: Fine-tune f on Dft; compute ASR(f ′); set ∆ASR← ASR(f)−ASR(f ′)
16: return Backdoored if ∆ASR > γ else return Clean
17: else
18: return Clean
19: end if
20: end for

authority to verify model integrity. The users provide the clean dataset Dc, training hyperparameters,
model architecture f , and the learning paradigm Llearn.

an untrusted third-party providers. They are independent service providers (the suspects)
responsible for model training. While following the user-specified protocol, they may still embed
backdoors by poisoning part of the training data. Specifically, we assume the suspect constructs
a poisoned training set by modifying a subset Dr ⊂ Dc into Dp, resulting in D = (Dc \ Dr) ∪ Dp.
The poisoned set Dp contains α|Dc| samples, where α∈ [0, 1] is the poison rate. The model fθ is
then trained on D. The adversary’s learning process can be formulated as an optimization problem:

argmin
θ

{
Llearn(fθ,D) ≜ (1− α)E(xc,yc)∼Dc

[
ℓ(fθ(xc), yc)

]
+ αE(xp,ŷc)∼Dp

[
ℓ(fθ(xp), ŷc)

]}
, (3)

where yc is the ground-truth label of a clean sample xc, and ŷc the adversarial target for a poisoned
sample xp. The objective Llearn depends on the paradigm, with loss function ℓ defined as: In SL, y is
a class label and ℓ is cross-entropy; in CL (e.g.,CLIP), y encodes similarity and ℓ is contrastive; in AL
(e.g.,LLaVA), y is a reconstruction target and ℓ is autoregressive or reconstruction loss.

Cross-examination backdoor detection. The goal of cross-examination backdoor detection is to
verify whether a model has been compromised without requiring access to its training data or process.
Rather than relying on a known clean reference or predefined attack patterns, our approach detects
backdoors by exploiting inconsistencies between two independently trained models (f1 and f2) from
different third-party providers. Under this framework, there are three possible outcomes: both models
are clean, both models are backdoored, or one model is clean while the other is backdoored.

Next, we outline the key challenges and motivations of our framework.

Challenges. Backdoor detection faces two key challenges: 1) Accuracy: Many methods rely on
statistical analysis and assume access to a clean reference model or known attack patterns. These as-
sumptions often fail under unknown or adaptive attacks, as mismatched priors cause errors. Statistical
methods also struggle to generalize beyond known attacks, limiting reliability. 2) Generalization: A
practical framework must generalize across architectures and learning paradigms, not just classifica-
tion. Methods tied to specific models or objectives often fail in complex settings like self-supervised
or generative learning. Architectural and task-agnostic generalization is essential for deployment.

Motivations. Our framework tackles these challenges with two key innovations: 1) Exploiting model
inconsistencies to avoid predefined attack priors. Traditional methods rely on assumptions about
trigger or poison distributions, making them vulnerable to novel or adaptive attacks. We bypass this
by comparing independently trained models on the same dataset, enabling detection without prior

5

attack knowledge. 2) Leveraging invariant features for better generalization. Existing defenses often
depend on specific architectures or tasks. In contrast, we target structural inconsistencies shared
across models and paradigms, enabling broader applicability beyond classification.

4.2 Cross-Model Trigger Reverse
To identify potential backdoors, we reverse-engineer an effective trigger by exploiting behavioral
discrepancies between two independently trained models f1 and f2. This stage serves as an initial
screening for suspicious models. We randomly sample a subset Ds ⊂ Dc of 1000 clean instances.

Trigger formulation. We adopt a trigger parameterization unified across various learning paradigms.
Inspired by prior work on universal backdoor patterns [45], we define the trigger as a trainable pat-
tern–mask pair. Let p ∈ RH×W×C be the injected pattern and m ∈ [0, 1]H×W×C the corresponding
mask indicating modified pixels. For clean input x, the poisoned input is defined as:

x′ = m⊙ p+ (1−m)⊙ x, (4)
where ⊙ is the element-wise product. By optimizing m and p, we reconstruct effective triggers that
are capable of eliciting malicious behavior in the suspect model.

Output Distribution Loss. To identify a backdoor trigger (evidence), we optimize the pair (m,p)
defined in Eq. (4), so that the poisoned input x′ induces abnormal behavior in the model. Backdoored
models are typically trained to produce confident, target predictions that deviate from the ground-truth
label, whereas clean models remain stable and preserve correct outputs under such perturbations.
Minimizing the output distribution loss LOD over clean samples guides the discovery of trigger
patterns that accentuate this behavioral gap. The output distribution loss is defined as:

LOD =
1

|Ds|
∑

(xi,yi)∈Ds


−ℓCE(f(x

′
i), yi), if SL,

ℓSim(f(x
′
i), f(yi)), if SSL,

−
∑

t ℓAR(f(x
′
i)

(t), y
(t)
i), if AL.

(5)

For SL, ℓCE is the cross-entropy loss w.r.t. the ground-truth label yi; minimizing its negative
encourages confident misclassification. For SSL, ℓSim penalizes similarity between poisoned and
clean features, with lower values indicating semantic drift. For AL, ℓAR measures generation error
against the ground-truth yi; minimizing its negative reveals sequence-level deviations.

CKA-based loss. To capture internal discrepancies caused by backdoors, we leverage CKA as
a representation-level metric. Unlike output-based measures, CKA quantifies alignment between
intermediate feature spaces, making it suitable for comparing models across different architectures or
objectives. By maximizing this divergence, we highlight the Lie hidden within a suspect model. Let
Kl

1, Kl
2 denote kernel matrices from activations at layer l of models f1 and f2 given input x′. The

CKA loss is defined as:

LCKA(x
′, f1, f2, l) =

⟨Kl
1(x

′),Kl
2(x

′)⟩F√
∥Kl

1(x
′)∥2F · ∥Kl

2(x
′)∥2F

. (6)

Joint objective. The full optimization combines the output-level and representation-level signals:
L(m,p) = α · LCKA + β · LOD + λ · (∥m∥1 + ∥p∥1), (7)

where the ∥ · ∥1 regularization promotes sparsity and limits perturbation magnitude, thereby aiding
trigger optimization, following the design principles of DECREE [12].

4.3 Activation-Based Identification via Trigger-Induced ASR
We introduce two post-trigger criteria to determine whether a model is backdoored. The first criterion
evaluates the model’s behavior under trigger injection, serving as a fast and effective filter.

The motivation lies in the fact that backdoored models are explicitly trained to associate specific trigger
patterns with an attacker-defined target label, resulting in consistent and confident mispredictions
when the trigger is applied. In contrast, clean models lack such associations and typically retain
correct predictions under the same perturbations. Given the poisoned set Db = {x′

i} constructed
from clean inputs Ds using Eq. (4), we compute the prediction ỹi = f(x′

i) for each model f , and
estimate the target label ŷc by averaging over all ỹi. The attack success rate (ASR) is then defined as:

ASR(f) = Ex′∈Db

[
I(f(x′) = ŷc)

]
. (8)

A model is flagged as backdoored if:
Backdoored ⇐⇒ ASR(f) > η. (9)

This criterion offers a straightforward and effective filter for strongly triggered behaviors, but may
suffer from false positives in certain edge cases.

6

4.4 Fine-tuning Sensitivity Analysis for Robust Backdoor Confirmation
To mitigate the limitations of Criterion I, we propose a robustness-based test: fine-tune the model on
a small clean subset Dft ⊂ Dc (e.g.,10%) using its original objective:

f ′ = argminf Llearn(f,Dft). (10)

The motivation is that clean models naturally generalize well to clean data, and their predictions
remain stable under further fine-tuning. In contrast, backdoored models embed spurious dependencies
on trigger patterns; fine-tuning on clean samples disrupts these dependencies and deactivates the
backdoor effect. We then recompute the ASR on the fine-tuned model f ′:

ASR(f ′) = Ex′∈Db

[
I(f ′(x′) = ŷc)

]
. (11)

A significant drop in ASR indicates a disrupted backdoor and confirms the malicious dependency:

Backdoored ⇐⇒ ∆ASR = ASR(f)− ASR(f ′) > γ. (12)

Together, these two criteria form a dual-phase verification pipeline: the first captures activation, and
the second verifies its robustness. Criterion II also represents a key innovation of our framework,
enabling accurate identification with reduced false positives.

5 Experiments
5.1 Implementation Details
Models and Datasets. We evaluate across diverse learning paradigms. For supervised learning, we
use ResNet18 [15] and VGG16 [42] on CIFAR-10 [21] and TinyImageNet [44]. For self-supervised
and autoregressive learning, we test CLIP [40] and CoCoOp on ImageNet [7] and Caltech101 [11],
while LLaVA [24] and MiniGPT-4 [54] are evaluated on COCO [32], Frisk-30k [10], and Frisk-
8k [16].

Attacks and Defenses. We consider backdoor attacks across different paradigms, including Bad-
Nets [13], Blended [3], ISSBA [25], WaNet [38], and Low-Frequency [52] for supervised learning.
For self-supervised and autoregressive learning, we adapt these attacks and further evaluate Bad-
CLIP [31], BadEncoder [18], TrojanVLM [27], and Shadowcast [51]. We employ advanced defenses,
including NC [45], ABS [35], NAD [26], UNICORN [48], MM-BD [46], DECREE [12], and
SEER [55]. Some methods, such as MM-BD, are extended to multiple paradigms. Unless otherwise
specified, all attacks use a 10% poison rate. All evaluations are conducted using the untrusted
third-party environment, with detailed settings and evaluation metrics in Appendices B.1 and B.2.

Configurations. In our experiments, we use equal numbers of clean and backdoored models. In
each evaluation, two models are randomly sampled to form clean–clean, clean–backdoored, or
backdoored–backdoored pairs. To ensure a fair comparison, we randomly select 20 model pairs
(without repetition) for testing and compute the detection performance by averaging their scores. The
trigger is optimized with Adam. We use default hyperparameters for Algorithm 1: γ=0.2, η=0.75,
α=0.6, β=0.3, λ=0.1, T =100.

Evaluation Assumption. All comparisons between suspicious models and defense methods in this
work are conducted under the assumption that the evaluator (or defender) has access to at least one
clean model, which serves as a reference for comparison and judgment. This is consistent with the
settings adopted in prior studies [50, 37]. In cases where this assumption does not hold, the behaviors
and threshold choices of many defense methods may differ substantially in a fully black-box scenario
without any clean baseline.

5.2 Detection Performance in SL
In Table 1, we compare our Lie Detector with 7 SOTA detection methods against 4 representative
attacks on CIFAR-10 and TinyImageNet. Lie Detector consistently achieves 100.0% DSR across
all attacks and datasets, with average gains of 4.4% over the next-best methods and near-zero
FPR. In contrast, others often fail under adaptive or stealthy attacks, particularly ISSBA and Low-
Frequency. On CIFAR-10, Lie Detector surpasses the next-best method by 5.0% on ISSBA and
7.5% on Low-Frequency. On TinyImageNet, similar margins appear: 5.0% on Blended and 7.5% on
Low-Frequency. These gains come with consistently lower FPR (0.0–5.0%) compared to higher rates
from other methods. While recent defenses like UNICORN, MM-BD, and DECRE improve over
early detectors (e.g.,NC, ABS, NAD), they still lack robustness under challenging attacks. Notably,
while both NC and Lie Detector perform trigger reversal in the spatial domain, our method introduces

7

Table 1: Detection performance (%) on SL (ResNet-18). For each attack, we evaluate 20 clean and
20 backdoored models. Detection Success Rate (DSR) and False Positive Rate (FPR) are reported.

Dataset Attack NC [45] ABS [35] NAD [26] UNICORN [48] MM-BD [46] DECREE [12] Lie Detector

DSR FPR DSR FPR DSR FPR DSR FPR DSR FPR DSR FPR DSR FPR

CIFAR10

BadNet 87.5 10.0 90.0 5.0 92.5 15.0 100.0 5.0 100.0 0.0 97.5 0.0 100.0 0.0
Blended 30.0 25.0 80.0 15.0 67.5 10.0 92.5 5.0 97.5 0.0 92.5 5.0 100.0 0.0
ISSBA 25.0 30.0 37.5 40.0 50.0 20.0 90.0 5.0 92.5 5.0 90.0 5.0 100.0 0.0
Low-Freq. 10.0 55.0 25.0 45.0 20.0 30.0 60.0 25.0 92.5 5.0 87.5 10.0 100.0 0.0

TinyImgNet

BadNet 77.5 10.0 80.0 10.0 82.5 20.0 90.0 5.0 95.0 0.0 97.5 0.0 100.0 0.0
Blended 15.0 30.0 70.0 20.0 42.5 15.0 90.0 10.0 92.5 5.0 95.0 0.0 100.0 0.0
ISSBA 10.0 40.0 25.0 25.0 40.0 25.0 85.0 10.0 95.0 5.0 92.5 10.0 97.5 5.0
Low-Freq. 5.0 50.0 12.5 45.0 30.0 30.0 45.0 35.0 92.5 5.0 90.0 5.0 100.0 5.0

Table 2: Detection performance (%) on SSL (CLIP) and AL (LLaVA). We evaluate 20 clean and 20
backdoored models per attack. DSR and FPR are reported.

Architecture Dataset Attack MM-BD [46] DECREE [12] SEER [55] Lie Detector
DSR FPR DSR FPR DSR FPR DSR FPR

CLIP

Caltech101
BadNet 75.0 10.0 87.5 20.0 100.0 0.0 100.0 0.0
Blended 72.5 20.0 82.5 25.0 97.5 0.0 97.5 0.0
BadCLIP 52.5 25.0 60.0 30.0 90.0 0.0 95.0 5.0

ImageNet
BadNet 67.5 10.0 72.5 10.0 95.0 0.0 95.0 0.0
Blended 65.0 15.0 75.0 15.0 90.0 5.0 92.5 0.0
BadCLIP 42.5 30.0 45.0 20.0 87.5 10.0 90.0 5.0

LLaVA
COCO TrojanVLM 15.0 45.0 60.0 40.0 80.0 15.0 95.0 5.0

Shadowcast 15.0 50.0 60.0 45.0 85.0 10.0 92.5 0.0

Flickr-30K TrojanVLM 15.0 50.0 55.0 45.0 80.0 5.0 90.0 10.0
Shadowcast 10.0 45.0 45.0 35.0 80.0 10.0 90.0 5.0

CKA to measure representational misalignment between models. This enables detection of semantic
inconsistencies even when trigger patterns are smooth or imperceptible, as in Low-Frequency attacks.
Even UNICORN, which considers feature- and frequency-space triggers, underperforms in such cases,
highlighting the strength of CKA-driven alignment in exposing cross-model backdoor discrepancies.

5.3 Detection Performance in SSL and AL
We evaluate our method against 4 defenses under SSL and AL paradigms, with default implemen-
tations and modest modifications, across 4 datasets and 3 attacks. Table 2 concludes: 1) Limited
generalization. Traditional methods (MM-BD, DECREE) show inconsistent performance across
datasets and architectures. While some perform well on CLIP (e.g.,DECREE: 87.5% DSR on
Caltech101/BadNet), they fail on vision-language models (e.g.,LLaVA), with DSRs often below
50% (e.g.,MM-BD: 15%, DECREE: 60% on COCO/TrojanVLM), indicating weak adaptability. 2)
High FPR. Many methods, particularly MM-BD, exhibit FPRs up to 50%, misclassifying clean
models as backdoored with detection rates no better than random guessing. In contrast, our method
shows better generalization, maintaining high DSR (e.g.,95.0% on COCO/TrojanVLM, 90.0% on
Flickr/Shadowcast) and low FPR (≤10.0%), with average gains of 1.7% for SSL and 10.6% for AR
over the next-best methods.

5.4 Adaptive Attack on Lie Detector

To further validate the robustness of the proposed method, we conduct adaptive attack experiments,
which simulate adaptive attackers by modifying the training process of the backdoor model.

We design an adaptive attacker that is aware of our detection and aims to bypass our CKA-based
representation divergence detector. In particular, the attacker first trains a clean reference model fclean
on the clean training dataset. Then, when training the adaptive backdoored model f on the poisoned
training dataset, the attacker combines the original training loss Lorigin with a regularization term
designed to suppress detection. This regularizer maximizes the CKA similarity between the clean
and backdoored models:

Ladaptive = Lorigin − λ · LCKA(f, fclean) (13)
LCKA denotes the CKA similarity between intermediate representations of the two models under the
same input as used in our paper, and λ controls the strength. We vary λ and report the attacker’s ASR
as well as our defense’s DSR and FPR in the table below.
In Table 3, as λ increases the attacker can partly suppress cross-model representation divergence,
causing DSR to drop from 99.61% to 86.54%; ASR also falls from 98.75% to 82.37%, indicating a

8

Table 3: Performance under adaptive attacks with varying λ.
λ ASR(%) DSR(%) FPR(%)

0 (No adaptive) 98.75 100.0 0.0
0.1 94.90 92.5 0.0
0.2 90.68 90.0 5.0
0.5 82.37 85.0 10.0

Table 4: Component ablation experiments. (FTSA = Fine-tuning Sensitivity Analysis; CKA =
Centered Kernel Alignment loss)

wo/ FTSA wo/ CKA Lie Detector (Ours)
Attack Task Trigger Size Model DSR FPR DSR FPR DSR FPR

Blended CIFAR10 4×4 ResNet-18 100.0 10.0 85.0 7.5 100.0 0.0
VGG16 100.0 20.0 82.5 10.0 100.0 0.0

BadEncoder Caltech101 32×32 CLIP 100.0 20.0 80.0 10.0 95.0 2.5
CoCoOp 100.0 20.0 82.5 5.0 100.0 0.0

Shadowcast Flickr8k 50×50 LLaVA 90.0 20.0 77.5 10.0 92.5 2.5
Mini-GPT4 90.0 30.0 75.0 7.5 90.0 0.0

weakened backdoor. This demonstrates a trade-off between stealth and efficacy, even under adaptive
attacks our method raises the difficulty and cost of stealthy backdoor injection.

5.5 Discussion

Component ablation. To validate the effectiveness of Lie Detector under different configurations.
Specifically, with or without “Fine-tuning Sensitivity Analysis (FTSA)” and the “Centered Kernel
Alignment (CKA) loss”, we conduct component ablation experiments in Table 4. The results lead to
three conclusions: (1) the “Cross-Model Trigger Reverse” method combined with basic “Activation-
Based Identification” is effective but less robust, while achieving high Detection Success Rates (DSR),
it suffers from elevated False Positive Rates (FPR), reaching up to 30% in some cases, indicating that
some clean models are misclassified as backdoored; (2) introducing “Fine-tuning Sensitivity Analysis”
significantly enhances robustness, reducing FPR to 0% across all settings while maintaining equally
high DSR, effectively distinguishing backdoored models from clean ones; and (3) removing the CKA
loss term (Eq. (7)) leads to noticeable degradation in performance. As shown in A5, eliminating
CKA results in clear drops in DSR (e.g., 100.0 → 85.0 on CIFAR-10/Blended) and increases in
FPR (e.g., 0.0 → 7.5), confirming that the CKA loss provides complementary representation-level
supervision during trigger optimization. This is particularly crucial for complex architectures (e.g.,
CLIP, LLaVA), where relying solely on output distributions may fail to sufficiently expose backdoor
inconsistencies, while CKA effectively compensates for this limitation.

Number of epochs T . We show the detection accuracies (DSR) as the number of epochs increases for
ResNet-18 and CLIP models in Figure 3. We observe that our method converges stably and remains
effective across all attack methods on both ResNet-18 and CLIP. The DSR consistently improves
with training epochs, demonstrating the robustness and adaptability of our approach in identifying
backdoored models across learning paradigms.

Feature layer selection. As shown in Table 6, CKA values in clean models remain stable across
layers, while backdoored models show a clear decline in deeper layers. This trend holds for both
ResNet-18 (SL) and CLIP (SSL), confirming CKA’s reliability as a backdoor probe. Notably, layer
4 yields the largest CKA drop (0.427 in ResNet-18, 0.314 in CLIP), making it the most effective
for detection. A likely reason is that deeper-layer features capture more abstract semantics, which
backdoor triggers distort, leading to greater representation shifts. We therefore use fourth-layer
features to compute the CKA loss. Further analysis of CKA under varying poison rates and across
clean/backdoored models is provided in Appendix A.

Model architecture. We evaluate our detection method across six model architectures spanning
three learning paradigms, as shown in Table 7. Specifically, we assess supervised models (ResNet-18,
VGG16), contrastive language-image models (CLIP, CoCoOp), and vision-language models (LLaVA,
Mini-GPT4) under three attacks. Results show: (1) Our method achieves 100% DSR and 0% FPR
across all architectures, including complex multimodal models like LLaVA and Mini-GPT4. (2)
Detection remains unaffected by model complexity, as measured by FLOPs. For instance, despite the

9

0
2 0

4 0

6 0

8 0

1 0 0
0

2 0

4 0

6 0

8 0

1 0 0

B l e n d e d

B a d N e t s

S S B A

W a N e t

L o w - F r e q u
e n c y

D e t e c t i o n s u c c e s s R a t e %

e p o c h

(a) ResNet-18

0
2 0

4 0

6 0

8 0

1 0 0
0

2 0

4 0

6 0

8 0

1 0 0

B l e n d e d

B a d N e t s

S S B A

B a d C L I P

B a d E n c o d
e r

D e t e c t i o n s u c c e s s R a t e %

e p o c h

(b) CLIP

Figure 3: DSR as the number of epochs T .

Table 6: CKA value variation across layers.

Layer ResNet-18 CLIP
Clean Backdoor Clean Backdoor

1 0.974 0.945 0.891 0.863
2 0.936 0.768 0.853 0.632
3 0.901 0.542 0.810 0.497
4 0.872 0.427 0.795 0.314

Table 7: Performance across model architectures.
Attack Task Trigger Size Model DSR FPR GFLOPs

BadNet CIFAR10 4×4 ResNet-18 100.0 0.0 0.7
VGG16 100.0 0.0 0.4

BadCLIP Caltech101 32×32 CLIP 90.0 0.0 4.9
CoCoOp 100.0 0.0 5.0

TrojanVLM Flickr8k 50×50 LLaVA 90.0 0.0 76.6
Mini-GPT4 80.0 0.0 80.3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

25

50

75

100

DS
R

(%
)

Badnet
Blended
ISSBA
Lowfrequency

Figure 4: DSR of various γ.

increase in computational cost from ResNet-18 (0.7 GFLOPs) to Mini-GPT4 (80.3 GFLOPs), our
method maintains perfect detection with zero false positives.

Hyperparameter γ. As shown in Figure 4, we evaluate the impact of γ on detection accuracy across
multiple backdoor attacks. When γ = 0, the framework relies solely on the activation-based criterion
and achieves high detection accuracy. However, as γ increases beyond 0.2, performance drops sharply.
At γ = 0.6, all attacks converge to 0% detection accuracy, indicating that overly strict reliance on the
ASR-drop criterion may suppress correct detections.

Impact of similarity metric and poison rate. We evaluate four metrics (CKA, CCA, SVCCA, and
COS [22]) under five poison rates (0.1%, 1%, 5%, 10%, 20%) against the Blended attack. CKA
consistently outperforms others across learning paradigms, especially on LLaVA, reaching an F1
score of 0.92 at 10% poison rate, and vs. 0.55 (COS), 0.50 (CCA), and 0.47 (SVCCA), demonstrating
robustness to subtle backdoors and model-agnostic performance. While detection improves with
higher poison rates, traditional metrics degrade under low poisoning; for example, at 1% on CLIP,
CKA achieves 0.50 while others remain below 0.3. Full results are in Appendix D.

Comparison with existing methods. Appendix F shows that Lie Detector offers lower cost than
NAD, and works without label supervision, relying only on clean data. It supports SL, SSL, and
AL, unlike DECRE (pre-training only) and others limited to classification. While it requires two
independently trained models, this is practical in many real-world settings. Overall, it achieves the
highest detection success rate (99.7%), outperforming all baselines.

Potential advanced scenarios. We outline three advanced cases (details in Appendix E): 1) Collusion
Attacks. Multiple providers may collude to train aligned backdoored models, concealing discrepancies
and bypassing cross-model detection. 2) Client-level Inspection in FL. In a simplified FL setup,
clients train separately and submit models for centralized auditing, akin to detecting poisoned updates
before aggregation. 3) Scaling to Larger Models. Extending our approach to large-scale architectures.

6 Conclusion
This paper proposes Lie Detector, a unified backdoor detection framework for untrusted third-party
settings where model training is outsourced to third-party providers. By leveraging cross-examination
of inconsistencies between independent providers, our method significantly improves detection
robustness across learning paradigms. We integrate Centered Kernel Alignment (CKA) for precise
feature similarity measurement and fine-tuning sensitivity analysis to distinguish backdoor triggers
from adversarial perturbations, effectively reducing false positives. Extensive experiments show
that our approach outperforms state-of-the-art methods, achieving superior detection accuracy in
supervised, contrastive, and autoregressive tasks. Notably, it is the first to effectively detect backdoors
in multimodal large language models. This work offers a practical solution to mitigate backdoor risks
in outsourced training, paving the way for more secure and trustworthy AI systems. We also provide
the limitations of our work in Appendix I, discussing generality and scalability as future directions.

10

Acknowledgments

This work is supported in part by Yu Liang Lu’s Project Team Development Funding (KY23A102),
National Natural Science Foundation of China (62376263), Natural Science Foundation of
Guangdong (2024A1515030209), and Shenzhen Science and Technology Innovation Commission
(JCYJ20230807140507015).

References
[1] S. A. Alvarez. Gaussian rbf centered kernel alignment (cka) in the large-bandwidth limit. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 45(5):6587–6593, 2022.

[2] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning
of visual representations. In Proc. Int’l Conf. Machine Learning, pages 1597–1607, 2020.

[3] X. Chen, C. Liu, B. Li, K. Lu, and D. Song. Targeted backdoor attacks on deep learning systems
using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

[4] L. Ciernik, L. Linhardt, M. Morik, J. Dippel, S. Kornblith, and L. Muttenthaler. Training
objective drives the consistency of representational similarity across datasets. arXiv preprint
arXiv:2411.05561, 2024.

[5] C. Cortes, M. Mohri, and A. Rostamizadeh. Algorithms for learning kernels based on centered
alignment. The Journal of Machine Learning Research, 13(1):795–828, 2012.

[6] S. Dargan, M. Kumar, M. R. Ayyagari, and G. Kumar. A survey of deep learning and its
applications: a new paradigm to machine learning. Archives of computational methods in
engineering, 27:1071–1092, 2020.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages
248–255, 2009.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In J. Burstein, C. Doran, and T. Solorio, editors,
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Pa-
pers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics.

[9] Z. Du, Y. Qian, X. Liu, M. Ding, J. Qiu, Z. Yang, and J. Tang. Glm: General language model
pretraining with autoregressive blank infilling. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages 320–335, 2022.

[10] H. Fang, S. Gupta, F. Iandola, R. K. Srivastava, L. Deng, P. Dollar, J. Gao, X. He, M. Mitchell,
J. C. Platt, C. Lawrence Zitnick, and G. Zweig. From captions to visual concepts and back. In
Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition, June 2015.

[11] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training ex-
amples: An incremental bayesian approach tested on 101 object categories. In 2004 Conference
on Computer Vision and Pattern Recognition Workshop, pages 178–178, 2004.

[12] S. Feng, G. Tao, S. Cheng, G. Shen, X. Xu, Y. Liu, K. Zhang, S. Ma, and X. Zhang. Detecting
backdoors in pre-trained encoders. In Proc. IEEE Int’l Conf. Computer Vision and Pattern
Recognition, pages 16352–16362, 2023.

[13] T. Gu, B. Dolan-Gavitt, and S. Garg. Badnets: Identifying vulnerabilities in the machine
learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

[14] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis: An overview
with application to learning methods. Neural computation, 16(12):2639–2664, 2004.

11

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition, June 2016.

[16] M. Hodosh, P. Young, and J. Hockenmaier. Framing image description as a ranking task: Data,
models and evaluation metrics. Journal of Artificial Intelligence Research, pages 853–899,
2013.

[17] H. Hotelling. Relations between two sets of variates. In Breakthroughs in statistics: methodology
and distribution, pages 162–190. Springer, 1992.

[18] J. Jia, Y. Liu, and N. Z. Gong. Badencoder: Backdoor attacks to pre-trained encoders in self-
supervised learning. In 2022 IEEE Symposium on Security and Privacy (SP), pages 2043–2059.
IEEE, 2022.

[19] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton. Similarity of neural network representations
revisited. Statistics, 2019.

[20] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton. Similarity of neural network representations
revisited. In Proc. Int’l Conf. Machine Learning, pages 3519–3529. PMLR, 2019.

[21] H. G. Krizhevsky A. Learning multiple layers of features from tiny images. 2009.

[22] A. R. Lahitani, A. E. Permanasari, and N. A. Setiawan. Cosine similarity to determine similarity
measure: Study case in online essay assessment. In 2016 4th International conference on cyber
and IT service management, pages 1–6. IEEE, 2016.

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, pages 2278–2324, 1998.

[24] C. Li, C. Wong, S. Zhang, N. Usuyama, H. Liu, J. Yang, T. Naumann, H. Poon, and J. Gao.
Llava-med: Training a large language-and-vision assistant for biomedicine in one day. In
Proc. Annual Conf. Neural Information Processing Systems, 2023.

[25] Y. Li, Y. Li, B. Wu, L. Li, R. He, and S. Lyu. Invisible backdoor attack with sample-specific
triggers. In Proc. IEEE Int’l Conf. Computer Vision, pages 16443–16452, 2021.

[26] Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma. Neural attention distillation: Erasing
backdoor triggers from deep neural networks. arXiv preprint arXiv:2101.05930, 2021.

[27] J. Liang, S. Liang, A. Liu, and X. Cao. Vl-trojan: Multimodal instruction backdoor attacks
against autoregressive visual language models. International Journal of Computer Vision, pages
1–20, 2025.

[28] J. Liang, S. Liang, A. Liu, X. Jia, J. Kuang, and X. Cao. Poisoned forgery face: Towards
backdoor attacks on face forgery detection. arXiv preprint arXiv:2402.11473, 2024.

[29] S. Liang, J. Liang, T. Pang, C. Du, A. Liu, E.-C. Chang, and X. Cao. Revisiting backdoor
attacks against large vision-language models. arXiv preprint arXiv:2406.18844, 2024.

[30] S. Liang, M. Zhu, A. Liu, B. Wu, X. Cao, and E.-C. Chang. Badclip: Dual-embedding guided
backdoor attack on multimodal contrastive learning. arXiv preprint arXiv:2311.12075, 2023.

[31] S. Liang, M. Zhu, A. Liu, B. Wu, X. Cao, and E.-C. Chang. Badclip: Dual-embedding guided
backdoor attack on multimodal contrastive learning. In Proc. IEEE Int’l Conf. Computer Vision
and Pattern Recognition, pages 24645–24654, June 2024.

[32] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft coco: Common objects in context. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars,
editors, Proc. IEEE European Conf. Computer Vision, pages 740–755, 2014.

[33] A. Liu, X. Zhang, Y. Xiao, Y. Zhou, S. Liang, J. Wang, X. Liu, X. Cao, and D. Tao. Pre-trained
trojan attacks for visual recognition. arXiv preprint arXiv:2312.15172, 2023.

12

[34] X. Liu, S. Liang, M. Han, Y. Luo, A. Liu, X. Cai, Z. He, and D. Tao. Elba-bench: An
efficient learning backdoor attacks benchmark for large language models. arXiv preprint
arXiv:2502.18511, 2025.

[35] Y. Liu, S. Ma, W.-C. Lee, Y. Aafer, G. Tao, and X. Zhang. Abs: Scanning neural networks for
back-doors by artificial brain stimulation. In CCS ’19: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019.

[36] W. I. D. Mining. Introduction to data mining. Mining Multimedia Databases, Mining Time
Series and, 2006.

[37] X. Mo, Y. Zhang, L. Y. Zhang, W. Luo, N. Sun, S. Hu, S. Gao, and Y. Xiang. Robust backdoor
detection for deep learning via topological evolution dynamics. In 2024 IEEE Symposium on
Security and Privacy (SP), 2024.

[38] T. A. Nguyen and A. T. Tran. Wanet-imperceptible warping-based backdoor attack. In Proc. Int’l
Conf. Learning Representations, 2021.

[39] T. Qin, X. Wang, J. Zhao, K. Ye, C.-z. Xu, and X. Gao. On the adversarial robustness of visual-
language chat models. In Proceedings of the 2025 International Conference on Multimedia
Retrieval, ICMR ’25, page 1118–1127, New York, NY, USA, 2025. Association for Computing
Machinery.

[40] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from
natural language supervision. In Proc. Int’l Conf. Machine Learning, pages 8748–8763, 2021.

[41] M. Raghu, J. Gilmer, J. Yosinski, and J. Sohl-Dickstein. Svcca: Singular vector canonical corre-
lation analysis for deep learning dynamics and interpretability. In Proc. Annual Conf. Neural
Information Processing Systems, volume 30, 2017.

[42] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[43] A. Singhal et al. Modern information retrieval: A brief overview. IEEE Data Eng. Bull.,
24(4):35–43, 2001.

[44] O. Vinyals, C. Blundell, T. Lillicrap, k. kavukcuoglu, and D. Wierstra. Matching networks for
one shot learning. In Proc. Annual Conf. Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016.

[45] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao. Neural cleanse:
Identifying and mitigating backdoor attacks in neural networks. In 2019 IEEE Symposium on
Security and Privacy (SP), 2019.

[46] H. Wang, Z. Xiang, D. J. Miller, and G. Kesidis. Mm-bd: Post-training detection of backdoor
attacks with arbitrary backdoor pattern types using a maximum margin statistic. In 2024 IEEE
Symposium on Security and Privacy (SP), 2024.

[47] X. Wang, X. Gao, D. Liao, T. Qin, Y.-l. Lu, and C.-z. Xu. A3: Few-shot prompt learning of
unlearnable examples with cross-modal adversarial feature alignment. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 9507–9516,
June 2025.

[48] Z. Wang, K. Mei, J. Zhai, and S. Ma. Unicorn: A unified backdoor trigger inversion framework.
In Proc. Int’l Conf. Learning Representations, 2023.

[49] Z. Wang, Z. Zhang, S. Liang, and X. Wang. Diversifying the high-level features for better
adversarial transferability. arXiv preprint arXiv:2304.10136, 2023.

[50] X. Xu, Q. Wang, H. Li, N. Borisov, C. A. Gunter, and B. Li. Detecting ai trojans using meta
neural analysis, 2020.

13

[51] Y. Xu, J. Yao, M. Shu, Y. Sun, Z. Wu, N. Yu, T. Goldstein, and F. Huang. Shadowcast:
Stealthy data poisoning attacks against vision-language models. In Proc. Annual Conf. Neural
Information Processing Systems, 2024.

[52] Y. Zeng, W. Park, Z. M. Mao, and R. Jia. Rethinking the backdoor attacks’ triggers: A frequency
perspective. In Proc. IEEE Int’l Conf. Computer Vision, pages 16473–16481, October 2021.

[53] K. Zhou, J. Yang, C. C. Loy, and Z. Liu. Conditional prompt learning for vision-language models.
In Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition, pages 16816–16825, June
2022.

[54] D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny. Minigpt-4: Enhancing vision-language
understanding with advanced large language models. arXiv preprint arXiv:2304.10592, 2023.

[55] L. Zhu, R. Ning, J. Li, C. Xin, and H. Wu. Seer: Backdoor detection for vision-language
models through searching target text and image trigger jointly. In Proc. AAAI Conf. on Artificial
Intelligence, pages 7766–7774, March 2024.

[56] M. Zhu, S. Liang, and B. Wu. Breaking the false sense of security in backdoor defense through
re-activation attack. arXiv preprint arXiv:2405.16134, 2024.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We demonstrate the contributions and the scope of our paper in the abstract
and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Appendix I.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

15

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We present the details of the implementation of our method in Section 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

16

Answer: [Yes]
Justification: We provide the data and code in the anonymous repository.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We give the implementation details and explain every result we got in the
experiment to help readers understand.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive.
But we keep the random seed fixed for all competing methods.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We list the equipment needed for running and reproduce our experiment
alongwith the code in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed and met the code of ethics for our research.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the social impact of our research in Section H.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: his research does not have this kind of risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not describe potential risks incurred by study participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

20

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A CKA Effectiveness Analysis

To validate that CKA (Centered Kernel Alignment) effectively highlights differences between models
and can distinguish clean models from backdoored ones, we select a specific poisoned dataset to test
whether CKA values differ between two clean models versus those involving a backdoored model.
This experiment aims to verify the discriminative capability of CKA in detecting backdoor attacks.

Table Appendix 1: Comparison of CKA under different poison rates
poisoned data(poison rate=0.1)

Model 1 Model 2 Similarity

clean_model_1 clean_model_2 0.801
backdoor_model_1 backdoor_model_2 0.311
backdoor_model_1 backdoor_model_3 0.385
clean_model_1 backdoor_model_1 0.254
clean_model_2 backdoor_model_1 0.249
clean_model_1 backdoor_model_2 0.267
clean_model_2 backdoor_model_2 0.253
clean_model_1 backdoor_model_3 0.368
clean_model_2 backdoor_model_3 0.316

poisoned data (poison rate=0.2)

clean_model_1 clean_model_2 0.801
backdoor_model_1 backdoor_model_2 0.286
backdoor_model_1 backdoor_model_3 0.391
clean_model_1 backdoor_model_1 0.263
clean_model_2 backdoor_model_1 0.236
clean_model_1 backdoor_model_2 0.229
clean_model_2 backdoor_model_2 0.214
clean_model_1 backdoor_model_3 0.351
clean_model_2 backdoor_model_3 0.325

In table Appendix 1, we can see that there is a backdoor model, the CKA between the two models will
be much lower than the CKA between two clean models, and this phenomenon is robust to changes
in the poisoned rate. Additionally, we tested the trigger inversion capability of CKA on the CLIP.

We used the attack success rate as the metric to evaluate the capability of reverse trigger detection.
Experimental results demonstrate that, compared to the four existing similarity measurement methods,
our approach achieves the best performance in trigger inversion.

B Additional Details

B.1 Attack Setting

Attack parameters. Unless otherwise specified, all attack methods are configured with a 10% poison
rate, meaning 10% of the training data is poisoned to simulate real-world adversarial conditions. The
number of backdoor training images used for poisoning was carefully chosen for each backdoor
pattern and for each dataset to ensure a high attack success rate for the created backdoor attacks.
Details are shown in Tab. Appendix 2.

The detailed implementations for all backdoor attack methods are given below:

BadNets [13]. We follow the attack methodology proposed by BadNets, and this work belongs
to the simple backdoor attack. Backdoor injection during training, we inject adversarial inputs by
randomly selecting a target label and modifying the training data. The adversarial input is created by
applying a trigger, which a white square in the bottom right corner of the image that does not cover
any significant part, such as faces or symbols. The trigger’s shape and color are chosen to ensure
uniqueness and to prevent it from occurring naturally in the input images. To keep the trigger subtle,
its size is limited to about 1% of the entire image.

22

Table Appendix 2: Training Configuration for Different Datasets and Models
Parameter CIFAR-10 TinyImagenet Caltech101 COCO

Model ResNet-18 VGG-16 CLIP VLM
Optimizer Adam Adam Adam Adam
Batch Size 64 128 224 224

Epochs 60 100 100 100
Image Size 32× 32 64× 64 224× 224 224× 224

Learning Rate 1× 10−3 1× 10−4 1× 10−3 1× 10−3

Blended [3]. We follow the attack methodology proposed by Blended and treat it as a simple backdoor
attack. Backdoor injection is performed during training by overlaying a global trigger, typically a
fixed pattern such as a translucent image onto the entire input image. The trigger is blended with the
original image using a low opacity (e.g., blending ratio of 0.2) to ensure that it is visually unobtrusive.
The target label is fixed and used for all poisoned samples. The trigger pattern is designed to be
unique and unlikely to appear in natural images, ensuring its effectiveness during inference.

ISSBA [25]. We directly use the ISSBA backdoor attack method in the original paper. This method
belongs to the specific label attack. This method employs an encoder-decoder network to embed a
string specified by the attacker into a benign image as the backdoor pattern. The encoder constructs
the poisoned image, aiming to minimize the difference between the poisoned and normal images.
The decoder decodes the triggers in the poisoned image, minimizing the reconstruction loss of the
encoding.

Low-Frequency [52]. We follow the attack methodology in the original paper and consider it as
a spectral-domain backdoor attack. During training, poisoned samples are generated by adding
adversarial perturbations constrained to the low-frequency components of the input image. This is
achieved via Discrete Cosine Transform (DCT), where perturbations are restricted to low-frequency
subbands. These perturbations are imperceptible to human eyes but can significantly degrade model
generalization. A fixed target label is assigned to all poisoned examples to enable the backdoor effect
during inference.

WaNet [38]. We follow the attack methodology in the original paper, which is a warping-based
clean-label backdoor attack. During training, we apply a subtle image-warping operation to a subset
of training samples using a smooth and learnable warping field, while keeping their labels unchanged.
The warping field is constructed from a randomly generated control point grid passed through a
thin-plate spline transformation, ensuring natural-looking distortions. At test time, a fixed warping
trigger is applied to activate the backdoor. The trigger is designed to be imperceptible to humans,
making the poisoned inputs visually indistinguishable from clean data.

BadCLIP [31]. For the implementation of BadCLIP, we follow the methodology in the original paper.
BadCLIP is a backdoor attack targeting multimodal contrastive learning models such as CLIP. During
pretraining, a small set of image-text pairs is poisoned by inserting a visual trigger into the image
and aligning it with a fixed target text prompt. The dual-embedding optimization encourages the
poisoned samples to be pulled toward the target prompt in the joint embedding space while preserving
performance on clean samples. The visual trigger is small and imperceptible, ensuring stealthiness
and effectiveness.

BadEncoder [18]. We follow the official implementation of BadEncoder, which introduces a
backdoor into the visual encoder of multimodal models. A learnable perturbation is added to all input
images during training to construct a universal adversarial feature space. The poisoned visual encoder
is optimized to align these features with a target prompt, enabling targeted manipulation at test time.
The attack is clean-label and does not require modifying the textual input.

TrojanVLM [27]. We implement TrojanVLM by following the official training pipeline. This attack
injects backdoors into large pre-trained vision-language models through prompt-based tuning. A
trigger prompt (e.g., a specific phrase or token) is injected into the textual input, and clean images
are used during training. The attack encourages the model to misinterpret benign visual content as
matching the target class when the trigger phrase appears in the prompt. The visual encoder remains
fixed while tuning the textual components.

23

ShadowCast [51]. For ShadowCast, we follow the official implementation, which constructs
unlearnable examples by injecting stealthy adversarial perturbations into both the visual and textual
modalities of vision-language models. During training, perturbations are optimized to reduce
the model’s ability to learn meaningful alignment between image-text pairs, without affecting
human perception. The resulting poisoned dataset causes a significant degradation in downstream
performance while preserving data utility for human observers.

B.2 Defense Setting

Detection protocol. We evaluate each detection method under an untrusted third-party environment
where only limited clean data is available for verification. Specifically, each dataset is split into a
90%-10% training-validation ratio, with only 10% clean data accessible for detection. We report two
key metrics: Detection Success Rate (DSR), which measures the percentage of correctly identified
backdoored models, and False Positive Rate (FPR), which quantifies the rate of clean models
misclassified as backdoored.

Evaluation across learning paradigms. To demonstrate the generalizability of our method, we test
it across different learning paradigms. For supervised learning, we use ResNet18 and VGG16 trained
on CIFAR-10 and TinyImageNet. For self-supervised learning, we evaluate CLIP and CoCoOp on
ImageNet and Caltech101. For autoregressive learning, we test LLaVA and Mini-GPT4 on COCO
and Flickr-30k.

Implementation details. All experiments are conducted using PyTorch, with models trained on
NVIDIA A100 GPUs. For fair comparison, we fine-tune each detection method with hyperparameters
optimized based on their respective papers. The detailed implementations for all competing defenses
are given below:

NC [45]. For the implementation of NC (Neural Cleanse), we follow the official code released by
Wang et al. (2019). The method searches for minimal perturbation patterns that cause misclassification
to a specific target class, and flags potential backdoor behavior if the required perturbation is
significantly smaller than others. We apply NC to detect backdoor triggers after the victim model is
trained.

ABS [35]. We adopt the official implementation of ABS (Activation Clustering-Based Signature),
which identifies potential backdoored neurons by analyzing the neuron activation distribution across
clean and poisoned samples. A strong activation pattern discrepancy indicates the presence of a
backdoor. We use TinyImageNet as the evaluation dataset and apply ABS on the final convolutional
layer.

NAD [26]. For NAD (Neural Attention Distillation), we follow the setup in the original paper. NAD
defends against backdoors by distilling knowledge from a suspicious model into a student model
using attention transfer, which helps suppress backdoor behaviors. We use the public NAD codebase
and apply it after finetuning with a small clean subset.

UNICORN [48]. For the implementation of UNICORN, we follow the official code. UNICORN
is a unified backdoor trigger inversion framework designed to recover potential backdoor triggers
from a trained victim model without access to the original training data. It optimizes a trigger pattern
and mask jointly by minimizing classification loss on a clean validation set while maximizing the
attack success rate on target labels. We apply UNICORN on the TinyImageNet dataset using a
ResNet-18 backbone, initializing trigger size and mask as suggested in the original paper, and report
the recovered trigger quality and subsequent defense efficacy.

MM-BD [46]. For the implementation of MM-BD (Maximum Margin Backdoor Detection), we
follow the official code and experimental protocol. MM-BD is a post-training backdoor detection
method designed to identify backdoored models regardless of the trigger pattern type by leveraging
a maximum margin statistic computed on the penultimate layer features. The method effectively
distinguishes clean and backdoored classes by analyzing class-wise feature margins. Due to its strong
transferability, we extend MM-BD to the vision-language model (VLM) setting and evaluate its
detection performance on COCO datasets.

DECREE [12]. For the implementation of DECREE, we follow the official code and methodology.
DECREE is designed to detect backdoors in pre-trained encoders by analyzing the encoder’s latent
representations and identifying anomalous patterns associated with backdoor triggers. The method

24

X

20
15

10
5

0
5

10
15

20
Y

20
15

10
5

0
5

10
15

20

Variance

0.002

0.004

0.006

0.008

0.010

0.0010

0.0015

0.0020

0.0025

0.0030

Variance

(a) Lie Detector

X

20
15

10
5

0
5

10
15

20
Y

20
15

10
5

0
5

10
15

20

Variance

0.002

0.004

0.006

0.008

0.010

0.001

0.002

0.003

0.004

0.005

0.006

0.007

Variance

(b) NAD

X

20
15

10
5

0
5

10
15

20
Y

20
15

10
5

0
5

10
15

20

Variance

0.002

0.004

0.006

0.008

0.010

0.002

0.003

0.004

0.005

0.006

Variance

(c) DECREE

Figure Appendix 1: Stability of different defense methods on Blended.

0.001 0.01 0.050.1 0.2
Poison Rate

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

Resnet18
CKA
COS
CCA
SVCCA
Base

0.001 0.01 0.050.1 0.2
Poison Rate

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

VGG16

CKA
COS
CCA
SVCCA
Base

(a) SL

0.001 0.01 0.050.1 0.2
Poison Rate

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

CLIP

CKA
COS
CCA
SVCCA
Base

0.001 0.01 0.050.1 0.2
Poison Rate

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

LLaVA
CKA
COS
CCA
SVCCA
Base

(b) SSL and AL
Figure Appendix 2: F1 scores under four different similarity metrics.

does not require access to the original training data and can be applied post-hoc on the encoder. We
evaluate DECREE on the Caltech101 dataset with a CLIP (backbone: ResNet-50), reporting detection
accuracy and robustness across multiple backdoor attack variants.

SEER [55]. For the implementation of SEER, we follow the official code and experimental setup.
SEER is a backdoor detection framework tailored for vision-language models, which jointly searches
for target text triggers and corresponding image triggers to identify backdoor behaviors. The
method exploits multimodal correlations to effectively detect poisoned inputs without requiring prior
knowledge of the trigger patterns. We evaluate SEER on a variety of datasets, reporting detection
accuracy and false positive rates under various backdoor attacks.

C Method stability

We conducted 10 experiments to obtain F1 scores, from which a variance was calculated. A total of
100 tests were performed, resulting in 10 sets of variances, which were used to evaluate the stability
of the method, as shown in Figure Appendix 1.

D Effect of Poison Rate and Similarity Metric on Detection Performance

To analyze how poison rate and similarity metrics affect trigger reverse, we report the F1 scores of
four similarity metrics (CKA, COS, CCA, SVCCA) across four model architectures in Fig. Appendix
2. The evaluation covers supervised models (ResNet-18, VGG16), contrastive models (CLIP), and
multimodal models (LLaVA), tested under five poison rates (0.1%, 1%, 5%, 10%, 20%) against the
Blended attack. Higher F1 scores indicate better detection performance.

We highlight three key observations: (1) CKA achieves the highest F1 scores across all settings,
significantly outperforming COS, CCA, and SVCCA. This demonstrates CKA’s robustness in cap-
turing backdoor-induced representation shifts across different architectures and learning paradigms.
(2) Detection performance improves with higher poison rates. All metrics show increasing F1
scores as the poison rate rises. However, traditional metrics struggle in low-poison regimes, while
CKA maintains strong performance even at 0.1% and 1%, validating its sensitivity to subtle backdoor
effects. (3) At extremely low poison rates, detection becomes difficult due to the weak backdoor
effect and limited number of poisoned samples. In these cases, the ASR remains below 10–20%,

25

Table Appendix 3: Levels of model collusion simulated in our experiments.
Level Name Description Data Share Initialize LR Epoch

L0 Baseline Same backdoor target and config, fully independent training × × ✓ ✓
L1 Weak Partial backdoor data share (30% overlap); different initialization 30% × ✓ ✓
L2 Moderate Full backdoor data share; different initialization ✓ × ✓ ✓
L3 Strong Full backdoor data share and identical training ✓ ✓ ✓ ✓

Table Appendix 4: Lie Detector performance under varying levels of model collusion.
Attack / Dataset Model Level DSR (%) FPR (%) SOTA DSR / FPR (%)

ISSBA / CIFAR-10 (MM-BD) ResNet-18

L0 100.0 0.0 92.5 / 5.0
L1 95.0 2.5
L2 82.5 7.5
L3 70.0 15.0

BadCLIP / Caltech101 (SEER) CLIP

L0 95.0 5.0 90.0 / 5.0
L1 90.0 5.0
L2 75.0 10.0
L3 72.5 15.0

TrojanVLM / COCO (SEER) LLaVA

L0 92.5 5.0 80.0 / 15.0
L1 85.0 7.5
L2 72.5 12.5
L3 67.5 17.5

and the backdoored model behaves similarly to a clean model, leading to low F1 scores across all
methods. Nonetheless, such low poisoning also implies minimal real-world threat, as the attack itself
is largely ineffective.

E Advanced scenarios

We discuss three advanced scenarios here to assess the applicability and limitations of Lie Detector
beyond the untrusted third party setting:

1) Collusion Attacks. To further evaluate the robustness of Lie Detector under collusion attacks, we
simulate different levels of provider collusion. As summarized below, “✓”/× indicate whether two
providers share or differ in a given training aspect:

Our method remains robust under weak or moderate collusion (L1–L2). Even when some poisoned
data are shared between providers, the models still learn distinct internal representations, and CKA
successfully captures these discrepancies. Consequently, Lie Detector continues to outperform SOTA
detection approaches in these settings.

As expected in Tab. Appendix 4, performance degrades under strong collusion (L3), where both
models are nearly identical due to shared initialization and training data. This extreme setting,
discussed in Appendix 3, represents an impractical yet instructive worst-case scenario. Importantly,
even under such strong collusion, Lie Detector maintains a detection success rate exceeding 70%,
demonstrating resilience against synchronized adversaries.

In real-world deployments, such perfectly coordinated collusion is rare and difficult to achieve, espe-
cially among independent commercial or decentralized service providers. One promising mitigation
strategy is to randomly distribute training data among multiple independent parties, reducing the
risk of collusion from the outset. Later, their models can be aggregated via ensemble or knowledge
distillation, maintaining accuracy while enhancing robustness. We plan to explore this direction in
future work.

2) Client-Level Inspection in Federated Learning (FL). We consider a realistic FL-inspired use case,
where models from multiple clients are submitted for centralized auditing before aggregation. Using
CIFAR-10, we divide the training set into four equal partitions and assign them to four independent
clients. Some clients train clean ResNet-18 models, while the remaining clients apply backdoor

26

Table Appendix 5: Detection performance of Lie Detector under FL-inspired client-level inspection
on CIFAR-10. Each cell shows DSR / FPR (%). The header denotes the number of backdoored
clients out of 4 total clients.

Attack ↓, backdoored_clients
client_num → 0/4 1/4 2/4 3/4 4/4

BadNet 100.00 / 0.00 99.17 / 0.00 98.50 / 0.00 97.33 / 0.00 96.17 / 0.33
Blended 100.00 / 0.00 98.00 / 0.00 98.17 / 0.33 97.67 / 0.50 96.00 / 0.83
ISSBA 100.00 / 0.00 96.17 / 0.83 96.67 / 0.50 97.00 / 0.67 95.83 / 1.33

Average 100.00 / 0.00 97.78 / 0.28 97.78 / 0.28 97.33 / 0.39 96.00 / 0.69

attacks (BadNet, Blended, ISSBA, and Low-Frequency). Each client trains its model locally without
any parameter sharing or global model fusion. We then evaluate Lie Detector by exhaustively
sampling model pairs (4×3=12 combinations) and performing detection over 50 trials.

Tab. Appendix 5 shows the detection success rate (DSR) and false positive rate (FPR) under varying
numbers of backdoored clients, denoted as backdoored_client / client_num. We simulate
scenarios from fully clean (0/4) to fully poisoned (4/4), offering a comprehensive view under different
FL threat levels. Lie Detector remains robust across all settings. In the clean case (0/4), it correctly
raises no alarms (FPR = 0%, DSR = 100%). As backdoored clients increase (1/4 to 3/4), DSR
stays high (96.17%–99.17%) and FPR remains low (≤1%), indicating strong sensitivity to injected
backdoors without misclassifying clean models. Even in the hardest case (4/4), where no clean
client exists, the method still achieves >95% DSR and <1.5% FPR across all attack types. This
suggests Lie Detector can exploit subtle inconsistencies from imperfect backdoor optimization, even
among colluding clients. Slightly higher FPRs are observed for ISSBA and Low-Frequency in
high-poisoning scenarios, reflecting their stealthy nature, but overall resilience holds. These results
demonstrate Lie Detector’s effectiveness for decentralized auditing in FL without requiring clean
references, aggregation, or inter-client communication.

3) Scaling to Larger Models. We further assess Lie Detector on high-capacity vision-language models:
VisualGLM-6B [9] and LLaVA-1.5-7B [24], whose GFLOPs are 191.1 and 76.6, respectively. We
adopt two recent multi-modal backdoor attacks TrojanVLM and Shadowcast, and construct 20 clean
and 20 poisoned models per model-attack combination via fine-tuning with or without injected
triggers. The experimental setup is same as the main paper. The results are in Tab. Appendix 6. On
VisualGLM-6B, Lie Detector achieves a DSR of 90.0% and FPR of 5.0% under TrojanVLM, and
85.0% DSR and 10.0% FPR under Shadowcast. These results confirm that Lie Detector generalizes
well to larger high-capacity backdoored models, making it a promising solution for securing next-
generation foundation architectures.

Table Appendix 6: Detection results on large-scale VLMs under TrojanVLM and Shadowcast attacks.
We use 20 clean and 20 poisoned models for evaluating VisualGLM-6B and LLaVA-1.5-7B.

Model GFLOPs Attack DSR (%) FPR (%)

VisualGLM-6B 191.1 TrojanVLM 90.00 5.00
Shadowcast 85.00 10.00

LLaVA-1.5-7B 76.6 TrojanVLM 92.50 0.00
Shadowcast 90.00 5.00

F Detailed Comparisons with Existing Backdoor Detection Methods

To provide a comprehensive understanding of the strengths of our method, we compare Lie Detector
with several representative backdoor detection techniques, including post-training methods (MM-BD,
NAD, ABS, NC, UNICORN) and the pre-training method DECRE. The comparison covers multiple
aspects such as computational cost, label and data dependency, applicable scenarios, limitations, and
detection performance. A detailed summary is presented in Tab. Appendix 7.

27

Table Appendix 7: Comparison with existing backdoor detection methods. Cost: Computational Cost.
Label: whether ground-truth labels are required. Performance: average DSR across datasets (from
Tab. 1).
Method Cost Label Required Data Dependency Applicable Scenario Limitation Performance

MM-BD Low No No clean data Post-training Weak on adaptive attacks 94.7%
NAD High Yes Clean data needed Mitigation High cost 53.1%
ABS High Yes Clean data needed Detection Poor for spatial triggers 52.5%
NC Medium Yes Clean data needed Detection Poor for global triggers 32.5%
UNICORN High No Clean data needed Multi-trigger detection High cost 81.6%
DECREE Low No No clean data Pre-training (SSL/multimodal) Pre-training only 92.8%
Lie Detector Medium No Clean data only Unified (SL/SSL/AL) Assumes two models 99.7%

As shown in the table, many existing methods rely on ground-truth labels and clean training data,
which may not always be available in practical scenarios. Several also operate under the white-box
assumption or require training dynamics, making them less applicable to black-box or third-party
verification settings.

In contrast, Lie Detector does not require label supervision or access to model internals, and is
applicable across supervised, self-supervised, and autoregressive learning paradigms. It achieves
state-of-the-art performance (99.7% DSR) while maintaining moderate computational cost, and
uniquely supports unified detection in complex settings like multimodal LLMs. Also, as deonstrated
in the main paper, our method has extremely low false positive rate.

The only minor limitation is the requirement of two independently trained models, which is a
reasonable and realistic assumption third-party scenarios.

G Theoretical Properties of Similarity Metrics

G.1 Summary of Properties

We compare four commonly used similarity metrics Cosine similarity, Canonical Correlation Analysis
(CCA), Singular Vector CCA (SVCCA), and Centered Kernel Alignment (CKA) across key theoretical
properties. The comparison is summarized in Tab. Appendix 8.

Table Appendix 8: Comparison of theoretical properties across similarity metrics.
Metric Scale Invariant Angle Sensitive Cross-Model Stable Nonlinear Compatible

Cosine No Yes Low (basis sensitive) No
CCA No No Medium (linear only) No
SVCCA Partial No Medium (SVD improves stability) No
CKA Yes Yes High Yes

Among all the evaluated similarity metrics, CKA uniquely satisfies all four desirable theoretical
properties: it is invariant to isotropic scaling, sensitive to angular alignment, robust to architectural
changes, and compatible with nonlinear relationships. These strengths are especially critical in our
setting, where models may differ in architecture, training dynamics, or feature scales. In contrast,
Cosine similarity lacks stability across bases, CCA fails under nonlinearity, and SVCCA only
partially improves robustness through dimensionality reduction. CKA’s kernel-based formulation
and normalization by Frobenius norm ensure consistent and meaningful comparisons across diverse
model outputs, making it particularly well-suited for cross-model backdoor detection in the absence
of clean references. We also provides the mathematical proofs in the following section.

G.2 Mathematical Proofs

1. Cosine Similarity [43, 36]

Definition: Given vectors a,b ∈ Rd, cosine similarity is defined as:

Cos(a,b) =
⟨a,b⟩

∥a∥ · ∥b∥

28

Property Proofs

• Scale Invariance: Cosine similarity is invariant to positive scalar multiplication:

Cos(λa,b) =
λ⟨a,b⟩

λ∥a∥ · ∥b∥
= Cos(a,b)

However, this does not hold under general affine or non-uniform scaling. It also fails under
feature shuffling or reparametrization.

• Angle Sensitivity: Cosine similarity explicitly measures cos(θ), the angle between a and b.
For unit vectors:

Cos(a,b) = cos(θ)

• Cross-Model Stability: Cosine similarity is sensitive to feature basis. A rotation matrix R
gives:

Cos(Ra,b) ̸= Cos(a,b)

• Nonlinear Compatibility: Not compatible. Cosine similarity is a linear measure and does
not preserve structure under nonlinear transformations.

2. Canonical Correlation Analysis (CCA) [17, 14]

Definition: Given two centered data matrices X ∈ Rn×p and Y ∈ Rn×q, CCA finds projections
wx ∈ Rp, wy ∈ Rq that maximize the correlation between Xwx and Y wy:

ρ = max
wx,wy

w⊤
x ΣXY wy√

w⊤
x ΣXXwx ·

√
w⊤

y ΣY Y wy

Property Proofs

• Scale Invariance: If X ′ = DX for diagonal D, then:

ΣX′X′ = DΣXXD⊤, ΣX′Y = DΣXY

The correlation changes unless D = λI , i.e., only isotropic scaling is invariant. Hence CCA
is not generally scale-invariant.

• Angle Sensitivity: CCA finds directions maximizing correlation, not angle:

corr(Xwx, Y wy) ̸= cos(θ)

No explicit relation to angular alignment → not angle-sensitive.
• Cross-Model Stability: Sensitive to changes in basis; aligned projections across indepen-

dently trained models are not guaranteed unless architectures match.
• Nonlinear Compatibility: CCA is linear; incapable of capturing nonlinear dependencies.

3. SVCCA [41]

Definition: SVCCA applies singular value decomposition to reduce noise, then uses CCA. Let
X ∈ Rn×p:

X = UXSXV ⊤
X , keep top k components

Apply CCA on Uk
X , Uk

Y .

Property Proofs

• Scale Invariance: If X → λX , then SX → λSX and UX is unchanged. So SVD step is
scale-invariant. But since CCA is not, SVCCA is only partially scale-invariant.

• Angle Sensitivity: CCA is used after SVD. Since neither SVD nor CCA is angle-sensitive,
SVCCA is not.

• Cross-Model Stability: SVD suppresses noise and basis sensitivity. Better than CCA.
• Nonlinear Compatibility: Still linear; no support for nonlinearity.

29

4. Centered Kernel Alignment (CKA) [5, 20, 1]

Definition: Given two activation matrices A1, A2 ∈ Rn×p (rows are samples), define their Gram
(kernel) matrices:

K1 = HA1A
⊤
1 H, K2 = HA2A

⊤
2 H,

where H = I − 1
n11

⊤ is the centering matrix that removes the mean from each feature vector.

Then the linear CKA similarity is defined as:

CKA(A1, A2) =
⟨K1,K2⟩F

∥K1∥F · ∥K2∥F
,

where ⟨A,B⟩F = Tr(A⊤B) is the Frobenius inner product and ∥A∥F =
√

⟨A,A⟩F is the Frobenius
norm.

Property Proofs:

• Scale Invariance: Suppose A1 7→ λA1 and A2 7→ µA2, with scalars λ, µ ∈ R. Then:

K1 7→ λ2HA1A
⊤
1 H = λ2K1, K2 7→ µ2K2

Hence:

CKA(λA1, µA2) =
λ2µ2⟨K1,K2⟩F

λ2∥K1∥F · µ2∥K2∥F
= CKA(A1, A2)

Therefore, CKA is invariant to isotropic scaling of inputs.
• Orthogonal Invariance: Suppose A1 7→ A1Q and A2 7→ A2R where Q,R are orthogonal

matrices (i.e., Q⊤Q = I , R⊤R = I). Then:

A1A
⊤
1 7→ (A1Q)(A1Q)⊤ = A1QQ⊤A⊤

1 = A1A
⊤
1

Hence, K1 and K2 remain unchanged → CKA is invariant to orthogonal transformations
(rotations, reflections, etc.).

• Angle Sensitivity: Since the Frobenius inner product between two kernel matrices K1 and
K2 reflects alignment between their feature spaces:

⟨K1,K2⟩F =

n∑
i,j=1

K1(i, j) ·K2(i, j),

it is maximized when the two representations encode similar pairwise distances (i.e., angles)
between samples.
Moreover, when the features are centered and normalized, CKA behaves similarly to cosine
similarity in the kernel (pairwise similarity) space:

CKA = cos∠(K1,K2),

making it sensitive to representational misalignment.
• Cross-Model Stability: Due to centering (which removes mean differences) and Frobe-

nius normalization (which removes magnitude differences), CKA is robust across model
architectures, feature dimensionalities, and training dynamics.
It is also **basis-invariant**, meaning it evaluates the relative structure between representa-
tions regardless of coordinate systems:

CKA(A,A) = 1, CKA(A,B) < 1 iff representations differ.

• Nonlinear Compatibility: CKA is compatible with nonlinear feature mappings. For
example, let ϕ : Rp → H be a nonlinear map to a high-dimensional (possibly infinite)
Hilbert space. Then kernel matrices are computed via:

Kij = ⟨ϕ(xi), ϕ(xj)⟩

allowing CKA to measure similarity in both linear and nonlinear spaces by replacing AiA
⊤
i

with any positive semidefinite kernel Ki.

30

H Impact Statement

This work proposes a practical and general-purpose framework for detecting backdoors in machine
learning models, particularly in outsourced or third-party training settings. The proposed cross-
examination mechanism eliminates the need for a trusted clean model or prior attack knowledge,
enabling robust verification across supervised, self-supervised, and autoregressive learning paradigms.
Notably, it is the first to support backdoor detection in large multimodal vision-language models
(e.g.,LLaVA, MiniGPT-4), addressing a critical gap in securing foundation models. From a broader
perspective, this work contributes to the growing need for AI accountability and trustworthy deploy-
ment, especially as AI models are increasingly developed by external vendors or deployed in critical
applications such as healthcare, finance, and national security. By reducing reliance on assumptions
about attackers or training access, the framework enhances the resilience of model verification proto-
cols. On the social level, this research promotes transparency and auditability in machine learning
pipelines, aligning with global efforts around AI governance and certification. While the method can
expose malicious behaviors, it does not introduce harm, manipulate data, or compromise privacy.
Nevertheless, continued evaluation is needed to ensure fairness in model comparisons and avoid
mislabeling benign discrepancies as malicious behavior in edge cases.

I Limitation

Our framework assumes an untrusted third-party verification setting, where third-party providers
independently train models and do not actively collude. While this assumption holds in many
real-world applications, such as government or enterprise auditing, AutoML pipelines, or federated
deployments with disjoint training, it may not capture stronger threat models. For instance, in
collusion attacks, coordinated adversaries may align backdoored models to mask inconsistencies,
potentially reducing the effectiveness of cross-model comparison. We note that in the extreme case
where two backdoored models fully collude, the detection success rate (DSR) drops significantly. For
example, under the BadNet/CLIP setting, we observe that the DSR can decrease sharply to 45%. This
indicates that collusive backdoors constitute a current limitation of our method, warranting further
investigation and the development of more robust attack and defense schemes in future work.

Furthermore, in this work, all attack and defense evaluations on multimodal models follow experi-
mental settings consistent with prior studies, primarily performing poisoning or fine-tuning at the
project layer or downstream head, while keeping the CLIP and LLM backbones frozen during the
poisoning stage to ensure methodological comparability and reproducibility. We explicitly report, for
each experiment, the targeted layer and the range of trainable parameters (including LoRA, Adapter,
downstream fine-tuning, and full fine-tuning strategies).

It is important to emphasize that if full-parameter fine-tuning or alternative fine-tuning hierarchies
are adopted, it becomes necessary to separately measure and jointly analyze the impact on key CLIP
and LLM modules, as well as the corresponding attack and defense performance. Since this study
does not provide a systematic evaluation covering all modules under full fine-tuning, this constitutes
a limitation of our current work. Future research will extend this analysis with more comprehensive
module-level comparisons and evaluations to achieve a deeper understanding of model robustness
across different fine-tuning paradigms.

These scenarios point to promising directions for future work rather than fundamental limitations,
and our framework offers a solid foundation for extending to such advanced settings.

31

	Introduction
	Related Work
	Preliminary
	Threat Model
	Centered Kernel Alignment

	Method
	Cross-Examination Framework
	Cross-Model Trigger Reverse
	Activation-Based Identification via Trigger-Induced ASR
	Fine-tuning Sensitivity Analysis for Robust Backdoor Confirmation

	Experiments
	Implementation Details
	Detection Performance in SL
	Detection Performance in SSL and AL
	Adaptive Attack on Lie Detector
	Discussion

	Conclusion
	CKA Effectiveness Analysis
	Additional Details
	Attack Setting
	Defense Setting

	Method stability
	Effect of Poison Rate and Similarity Metric on Detection Performance
	Advanced scenarios
	Detailed Comparisons with Existing Backdoor Detection Methods
	Theoretical Properties of Similarity Metrics
	Summary of Properties
	Mathematical Proofs

	Impact Statement
	Limitation

