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ABSTRACT

Discrete diffusion models have gained increasing attention for their ability to
model complex distributions with tractable sampling and inference. However,
the error analysis for discrete diffusion models remains less well-understood. In
this work, we propose a comprehensive framework for the error analysis of dis-
crete diffusion models based on Lévy-type stochastic integrals. By generalizing
the Poisson random measure to that with a time-independent and state-dependent
intensity, we rigorously establish a stochastic integral formulation of discrete dif-
fusion models and provide the corresponding change of measure theorems that
are intriguingly analogous to Itô integrals and Girsanov’s theorem for their con-
tinuous counterparts. Our framework unifies and strengthens the current theoret-
ical results on discrete diffusion models and obtains the first error bound for the
τ -leaping scheme in KL divergence. With error sources clearly identified, our
analysis gives new insight into the mathematical properties of discrete diffusion
models and offers guidance for the design of efficient and accurate algorithms for
real-world discrete diffusion model applications.

1 INTRODUCTION

Diffusion and flow-based models designed for discrete distributions have gained significant attention
in recent years due to their versatility and wide applicability across various domains. These models
have been proposed and refined in several key works (Sohl-Dickstein et al., 2015; Austin et al.,
2021; Floto et al., 2023; Hoogeboom et al., 2021a;b; Meng et al., 2022; Richemond et al., 2022;
Sun et al., 2022; Santos et al., 2023). The appeal of such models stems from their potential to
address challenging problems in fields like computational biology, where they have shown promise
in tasks such as molecule, protein, and DNA sequence design (Seff et al., 2019; Alamdari et al.,
2023; Avdeyev et al., 2023; Emami et al., 2023; Frey et al., 2023; Watson et al., 2023; Yang et al.,
2023b; Campbell et al., 2024; Stark et al., 2024; Kerby & Moon, 2024; Yi et al., 2024). Additionally,
these approaches have proven effective in combinatorial optimization (Li et al., 2024e), modeling
retrosynthesis (Igashov et al., 2023), image synthesis (Lezama et al., 2022; Gu et al., 2022), text
summarization (Dat et al., 2024) along with the generation of graph (Niu et al., 2020; Shi et al., 2020;
Qin et al., 2023; Vignac et al., 2022), layout (Inoue et al., 2023; Zhang et al., 2023), motion (Chi
et al., 2024; Lou et al., 2023), sound (Campbell et al., 2022; Yang et al., 2023a), image (Hu et al.,
2022; Zhu et al., 2022), speech (Wu et al., 2024) and text (He et al., 2022; Wu et al., 2023; Gong
et al., 2023; Zheng et al., 2023; Zhou et al., 2023; Shi et al., 2024; Sahoo et al., 2024). Discrete
diffusion models also synergize with other methodologies, including tensor networks (Causer et al.,
2024), enhanced guidance mechanisms (Gruver et al., 2024; Nisonoff et al., 2024; Li et al., 2024d),
structured preferential generation (Rissanen et al., 2024), and alternative metrics, e.g. the Fisher
information metric (Davis et al., 2024). These developments highlight the growing importance of
discrete modeling in advancing both theoretical understanding and efficient implementations.

Partly due to the absence of a discrete equivalent to Girsanov’s theorem, the error analysis for dis-
crete diffusion models remains underdeveloped compared to their continuous counterparts. Existing
theoretical work, including a Markov chain-based error analysis for τ -leaping in total variation dis-
tance by Campbell et al. (2022) and further advancements for the particular state space X = {0, 1}d
by Chen & Ying (2024), are largely algorithm-specific and not quite easy to be generalized. In this
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work, our goal is to establish a comprehensive framework for analyzing discrete diffusion mod-
els through a stochastic analysis perspective, which is motivated by the theory of continuous dif-
fusion models and different from previous works in many aspects. Drawing on tools from Lévy
processes and methodologies for analyzing the simulations of chemical reactions (Li, 2007; Ander-
son et al., 2011), we extend Poisson random measures to those with evolving intensities, i.e. both
time-inhomogeneous and state-dependent intensities (Protter, 1983), introduce Lévy-type stochastic
integrals (Applebaum, 2009), and articulate corresponding change of measure theorems, which are
analogous to the Itô integrals and Girsanov’s theorem in continuous settings.

We further demonstrate that discrete diffusion models implemented via either the τ -leaping or the
uniformization scheme can be formulated as stochastic integrals w.r.t. Poisson random measures
with evolving intensity, which leads to a unified framework for error analysis. This new stochas-
tic integral-based framework, marking a first for discrete diffusion models, is especially convenient
and straightforward for decomposing inference error into three parts: truncation, approximation,
and discretization, drawing satisfying parallels with state-of-the-art theories for continuous diffu-
sion model (Chen et al., 2022; 2023a; Benton et al., 2023a). Our approach thus provides intuitive
explanations for the loss design and unifies the error analysis across both schemes, enhancing the
comparative understanding of their convergence characteristics. Notably, we achieve stronger con-
vergence results in KL divergence and relax some of the stringent assumptions previously required
for the state space, the rate matrix, and the estimation of score functions, etc., thereby paving the
way for the analysis of a broader class of discrete diffusion models of interest, providing valuable
tools for designing efficient and accurate algorithms tailored to the practical demands of discrete
diffusion models in real-world applications, and facilitating the transfer of theoretical and practical
insights between continuous and discrete diffusion models.

1.1 CONTRIBUTIONS

Our main contributions are summarized as follows:

• We develop a rigorous framework for discrete diffusion models using Lévy-type stochastic inte-
grals based on the Poisson random measure with evolving intensity, which includes formulating
discrete diffusion models into stochastic integrals and establishing change of measure theorems
that facilitate explicit log-likelihood ratio calculations;

• Our framework extends to a comprehensive, continuous-time analysis for error decomposition
in discrete diffusion models, drawing clear parallels with the methodologies used in continuous
models and enabling more effective adaptations of techniques across different model types;

• We unify and fortify existing research on discrete diffusion models by deriving the first error
bound for τ -leaping in terms of KL divergence, stronger compared to earlier results in TV dis-
tance, and providing a comparative study of τ -leaping and uniformization implementations.

1.2 RELATED WORKS

Continuous Diffusion Models. Continuous diffusion models have been one of the most active
research areas in generative modeling. Earlier work on continuous diffusion models and probability
flow-based models include (Sohl-Dickstein et al., 2015; Zhang et al., 2018; Song & Ermon, 2019;
Ho et al., 2020; Song et al., 2020; 2021; Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-
Eijnden, 2022; Albergo et al., 2023). It has shown state-of-the-art performance in various fields of
science and engineering. For some recent work and comprehensive review articles, one may refer
to (Xu et al., 2022; Yang et al., 2023c; Chan, 2024; Wang et al., 2023; Alakhdar et al., 2024; Chen
et al., 2024b; Fan et al., 2024; Guo et al., 2024; Riesel et al., 2024; Zhu et al., 2024).

Theory of Continuous Diffusion Models. In addition to the huge success achieved by diffusion
models in empirical studies, many works have also tried to establish sampling guarantees for dif-
fusion and probability flow-based models, such as (Tzen & Raginsky, 2019; Block et al., 2020;
Benton et al., 2023b; Chen et al., 2023b; Mbacke & Rivasplata, 2023; Liang et al., 2024). Re-
garding theoretical analysis of continuous diffusion models, (Lee et al., 2022) provided the first
sampling guarantee under the smoothness and isoperimetry assumptions. Follow-up work removed
such assumptions (Chen et al., 2022; 2023a; Lee et al., 2023) and obtained better convergence re-
sults (Benton et al., 2023a; Pedrotti et al., 2023; Li et al., 2023; 2024a;b). For the probability
flow-based implementation, sampling guarantee was also established and further refined in many
recent work (Chen et al., 2024c; Gao & Zhu, 2024; Huang et al., 2024; Li et al., 2024c)
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2 PRELIMINARIES

In this section, we introduce the basic concepts of both continuous and discrete diffusion models
and then roughly outline the error analysis for continuous diffusion models, which will serve as a
reference for the error analysis for discrete diffusion models.

2.1 CONTINUOUS DIFFUSION MODELS

In diffusion models, the forward process is designed as an Itô process (xt)0≤t≤T in Rd satisfying
the following stochastic differential equation (SDE):

dxt = bt(xt)dt+ gtdwt, with x0 ∼ p0, (2.1)

where (wt)t≥0 is a standard Brownian motion. The probability distribution of xt is denoted by
pt, and the distribution p0 at time t = 0 is the target distribution for sampling. The time-reversal
( ⃗xs)0≤s≤T of (2.1) satisfies the backward process:

d ⃗xs =
[
− ⃗bs( ⃗xs) + ⃗gs ⃗g⊤

s ∇ log ⃗ps( ⃗xs)
]
ds+ ⃗gsdws, (2.2)

where ⃗∗s denotes ∗T−s, with ⃗p0 = pT and ⃗pT = p0.

One of the common choices for the drift bt and the diffusion coefficient g is bt(x) = − 1
2βtxt and

g = σ
√
βtI , under which (2.1) is an Ornstein-Uhlenbeck (OU) process converging exponentially,

i.e. pT ≈ p∞ := N (0, σ2I), and the forward process (2.1) and the backward process (2.2) reduce
to the following form:

dxt = −
1

2
βtxtdt+ σ

√
βtdwt, and d ⃗xs = ⃗βs

[
1

2
⃗xs + σ2∇ log ⃗ps( ⃗xs)

]
ds+ σ

√
⃗βsdws. (2.3)

In practice, the score function st(xt) := ∇ log pt(xt) is often estimated by a neural network ŝθt (xt),
where θ denotes the parameters, and trained via denoising score-matching (Hyvärinen & Dayan,
2005; Vincent, 2011):

θ = argmin
θ

∫ T

0

ψtExt∼pt

[∥∥∇ log pt(xt)− ŝθt (xt)
∥∥2] dt, (2.4)

where pt|0(xt|x0) is the transition distribution from x0 to xt under (2.3) with an explicit form as

N (µt, σ
2
t I), where µt = x0e

− 1
2

∫ t
0
βtdt and σ2

t = σ2
(
1− e−

∫ t
0
βtdt
)
, (2.5)

and ψt is a weighting function for the loss at time t. After obtaining the NN-based score function
ŝθt (xs), the backward process in (2.3) is approximated as:

dys =

[
1

2
ys + ŝθs(ys)

]
ds+ dws, with y0 ∼ q0 = N (0, σ2I). (2.6)

2.2 DISCRETE DIFFUSION MODELS

In discrete diffusion models, one turns to consider a continuous-time Markov chain (xt)0≤t≤T in a
space X of finite cardinality as the forward process. We denote the probability distribution of xt by
a vector pt ∈ ∆|X|, where ∆|X| denotes the probability simplex in R|X|. Given the target distribution
p0, the Markov chain satisfies the following master equation:

dpt

dt
= Qtpt, where Qt = (Qt(y, x))x,y∈X ∈ R|X|×|X| (2.7)

is the rate matrix at time t. The rate matrix Qt satisfies the following two conditions:
(i) Qt(x, x) = −

∑
y ̸=x

Qt(y, x), ∀x ∈ X; (ii) Qt(x, y) ≥ 0, ∀x ̸= y ∈ X.

In the following, we will use a shorthand notation Q̃t to denote the matrix Qt with the diagonal
elements set to zero. It can be shown that the corresponding backward process is of the same form
but with a different rate matrix (Kelly, 2011):

d ⃗ps

ds
= Qs ⃗ps, where Qs(y, x) =

{
⃗ps(y)
⃗ps(x)

⃗Qs(x, y), ∀x ̸= y ∈ X,
−
∑

y′ ̸=xQs(y
′, x), ∀x = y ∈ X.

(2.8)
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The rate matrix Qt is often chosen to possess certain sparse structures such that the forward process
converges to a simple distribution that is easy to sample from. Several popular choices include the
uniform and absorbing transitions (Lou et al., 2024).

The common practice is to define the score function (or rather the score vector) as st(x) =
(st(x, y))y∈X := pt

pt(x)
, for any x ∈ X and estimate it by a neural network ŝθt (x), where the neural

network θ is trained by minimizing the score entropy (Benton et al., 2022; Lou et al., 2024):

θ = argmin
θ

∫ T

0

ψtExt∼pt

[∑
y ̸=x

(
− log

ŝθt (x,y)
st(x,y)

− 1 +
ŝθt (x,y)
st(x,y)

)
st(x, y)Qt(x, y)

]
dt. (2.9)

Similar to the continuous case, the backward process is approximated by the continuous-time
Markov chain with the following master equation with q0 = p∞ and rate matrix Q̂

θ

s:

dqs
ds

= Q̂
θ

sqs, where Q̂
θ

s(y, x) =
⃗ŝθs(x, y)

⃗Qs(x, y), ∀x ̸= y ∈ X. (2.10)

and sampling is accomplished by first sampling from the distribution p∞ and then evolving the
Markov chain accordingly.

2.3 ERROR ANALYSIS OF CONTINUOUS DIFFUSION MODELS

Before we proceed to the error analysis of discrete diffusion models, we first review that the error
analysis of continuous diffusion models, which is often conducted by considering the following
three error terms:

• Truncation Error: The error caused by approximating pT by p∞, which is often of the order
O(d exp(−T )) due to exponential ergodicity;

• Approximation Error: The error caused by approximating the score function ∇ log pt(xt) by a
neural network ŝθt (xt), which is often assumed to be of order O(ϵ), where ϵ is a small threshold,
given a thorough training process;

• Discretization Error: The error caused by numerically solving the SDE (2.6) with Euler-
Maruyama scheme or other schemes, e.g. exponential integrator (Zhang & Chen, 2022).

The total error is obtained from these three error terms with proper choices of the order of the time
horizon T and the design of the numerical scheme. We extract the following theorem from the
state-to-the-art theoretical result (Benton et al., 2023a) for later comparison:

Theorem 2.1 (Error Analysis of Continuous Diffusion Models). Suppose the time discretization
scheme (si)i∈[0,N ] with s0 = 0 and sN = T−δ satisfies sk+1−sk ≤ κ(T−sk+1) for k ∈ [0 : N−1].
Assume cov(p0) = I , and the score function∇ log pt(xt) is estimated by the neural network ŝθt (xt)
with ϵ-accuracy, i.e.

N−1∑
k=0

(sk+1 − sk)E ⃗xsk
∼ ⃗psk

[∥∥∥∇ log ⃗psk( ⃗xsk)− ⃗ŝθsk(xsk)
∥∥∥2] ≤ ϵ.

Then under the following choice of the order of parameters

T = O(log(dϵ−1)), κ = O(d−1ϵ log−1(dϵ−1)), N = O(dϵ−1 log2(dϵ−1)),

we haveDKL(pδ∥q̂sN ) ≤ ϵ, where q̂sN is the distribution of the approximate backward process (2.6)
implemented with exponential integrator after N steps.

3 STOCHASTIC INTEGRAL FORMULATION OF DISCRETE DIFFUSION
MODELS

In this section, we introduce the stochastic integral formulation of discrete diffusion models. The
goal is to establish a path evolution equation analogous to Itô integral (or equivalently, stochas-
tic differential equations) with the master equation (2.7) and (2.8) analogous to the Fokker-Planck
equation in the continuous case.
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3.1 POISSON RANDOM MEASURE WITH EVOLVING INTENSITY

In the following, the Poisson distribution with expectation λ is denoted by P(λ).
Definition 3.1 (Poisson Random Measure with Evolving Intensity). Let (Ω,F ,P) be a probability
space and (X,B, ν) be a measure space and λt(y) is a non-negative predictable process on R+ ×
X×Ω satisfying for any T > 0,

∫ T

0

∫
X 1∨ |y| ∨ |y|2λt(y)ν(dy)dt <∞, a.s.. The random measure

N [λ](dt, dy) on R+ × X is called a Poisson random measure with evolving intensity λt(y) if

(i) For any B ∈ B and 0 ≤ s < t, N [λ]((s, t]×B) ∼ P
(∫ t

s

∫
B
λτ (y)ν(dy)dτ

)
;

(ii) For any t ≥ 0 and disjoint sets {Bi}i∈[n] ⊂ B, {Nt[λ](Bi) := N [λ]((0, t]×Bi)}i∈[n] are
independent stochastic processes.

0.0 0.2 0.4 0.6 0.8 1.0
t

1

2

3

4

5

x
t

0

0.5

1

f t

Figure 1: Example trajectories of stochastic in-
tegrals (3.1) w.r.t. Poisson random measure with
different evolving intensities. The intensity is cho-
sen as λt(y) = 50ft if |y−xt− | = 1 or otherwise
0, as shown in dashed lines. Intuitively, λt con-
trols the rate of jumps at time t and location y.

Well-definedness of the Poisson random mea-
sure with evolving intensity is non-trivial and
we refer readers to Appendix A for more de-
tails and discussions. Intuitively, Poisson ran-
dom measures randomly assign jumps to inter-
vals along the evolution, with the number of
points in each region following a Poisson distri-
bution, while those with evolving intensity not
only assign jumps but also locations controlled
by the intensity function λt(y). In the follow-
ing, we will denote the filtration generated by
the Poisson random measure N [λ](dt, dy) by
(Ft)t≥0.

The Poisson random measure defined above ad-
mits similar properties as the standard Poisson
random measure and the Brownian motion. In
particular, one can extend the Itô integral to the
Lévy-type stochastic integral w.r.t. Poisson ran-
dom measure with evolving intensity for predictable processes. It also admits Itô isometry, Itô’s
formula (Theorem A.10), and Lévy’s characterization theorem (Theorem A.9), for which we refer
readers to Appendix A.2 for details.

Now we turn to the setting of discrete diffusion models, where the state space X is finite endowed
with the natural σ-algebra B = 2X and the counting measure ν =

∑
y∈X δy .

Proposition 3.2 (Stochastic Integral Formulation of Discrete Diffusion Models). The forward pro-
cess in discrete diffusion models (2.7) can be represented by the following stochastic integral:

xt = x0 +

∫ t

0

∫
X
(y − xt−)N [λ](dt, dy), with λt(y) = Q̃t(y, xt−), (3.1)

and the backward process in discrete diffusion models (2.8) can be represented by the following
stochastic integral:

⃗xs = ⃗x0 +

∫ s

0

∫
X
(y − ⃗xs−)N [µ](ds, dy), with µs(y) = ⃗ss( ⃗xs− , y)Q̃s( ⃗xs− , y), (3.2)

where Xt− denotes the left limit of a càdlàg process Xt at time t.

The proof of Proposition 3.2 is provided in Appendix A.4. Figure 1 illustrates the stochastic integral
in (3.1), comparing two different intensity functions. It is evident that jumps occur more frequently
in regions where the intensity is higher and less frequently where it is lower. Additionally, the
intensity function, which encapsulates key information about the stochastic process, is often much
easier and more straightforward to analyze compared to the complex trajectories of the process.

We would like to remark that the stochastic integral formulation in Proposition 3.2 is tantalizingly
close to the Itô integral in continuous diffusion models in the form of stochastic differential equations
(cf. (2.1) and (2.2)). Recalling that in the continuous case, Girsanov’s theorem is applied to SDEs

5
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for deriving the score-matching loss (2.4) and also for the error analysis by associating the loss
with the KL divergence, one may wonder if similar techniques can be applied to discrete diffusion
models. The following section gives an affirmative answer to this question by providing a change of
measure for Poisson random measures with evolving intensity, which is the theoretical foundation
of our stochastic integral-based error analysis framework for discrete diffusion models.

3.2 CHANGE OF MEASURE

The following theorem provides a change-of-measure argument for stochastic integrals w.r.t. Pois-
son random measures with evolving intensity, analogous to Girsanov’s theorem for Itô integrals w.r.t.
Brownian motions.
Theorem 3.3 (Change of Measure for Poisson Random Measure with Evolving Density). Let
N [λ](dt, dy) be a Poisson random measure with evolving intensity λt(y) in the probability space
(Ω,F ,P), and ht(y) be a positive predictable process on R+ × X × Ω. Suppose the following
exponential process is a local Ft-martingale:

Zt[h] := exp

(∫ t

0

∫
X
log ht(y)N [λ](dt× dy)−

∫ t

0

∫
X
(ht(y)− 1)λt(y)ν(dy)

)
, (3.3)

and Q is another probability measure on (Ω,F) such that Q ≪ P with Radon-Nikodym derivative
dQ/dP|Ft

= Zt[h]. Then the Poisson random measure N [λ](dt, dy) under the measure Q is a
Poisson random measure with evolving intensity λt(y)ht(y).

Intuitively, Theorem 3.3 depicts the relations between the Random-Nikodym derivative (Zt[h]) of
the probability measures on which two Poisson random measures with different intensities are de-
fined. Zt[h] also roughly translates to the likelihood ratio between two paths generated with different
intensities, with which one could work on stronger convergence results, e.g. KL divergence.

It is straightforward to derive the following corollary, which was derived in (Benton et al., 2022)
with a different technique with Feller processes and adopted in (Lou et al., 2024; Chen & Ying,
2024) in the design of loss functions for the neural network training:
Corollary 3.4 (Equivalence between KL Divergence and Score Entropy-based Loss Function). Let
⃗p0:T and q0:T be the path measures of the backward process (2.8) and the approximate backward

process (2.10), then it holds that
DKL( ⃗pT ∥qT ) ≤ DKL( ⃗p0:T ∥q0:T )

=DKL( ⃗p0∥q0) + E

[∫ T

0

∫
X
K

(
⃗ŝθs( ⃗xs− , y)

⃗ss( ⃗xs− , y)

)
⃗ss( ⃗xs− , y)Q̃s( ⃗xs− , y)ν(dy)dt

]
,

(3.4)

where K(x) = x − 1 − log x ≥ 0, and the expectation is taken w.r.t. paths generated by the back-
ward process (3.2). Consequently, minimizing the loss function (2.9) for discrete diffusion models is
equivalent to minimizing the KL divergence between the path measures of the ground truth and the
approximate backward process.

Proofs of the change of measure-related arguments above will be provided in Appendix A.3. One
should recall that in the continuous case with Itô integrals, the proximity of two paths in KL diver-
gence only requires a small difference between the drift terms by Girsanov’s theorem, and thus the
score function can be trained with the mean squared error loss (2.4) (Song et al., 2020), while in the
discrete case, the proximity of two paths requires the likelihood ratio to be close to one, accounting
for a more complicated score entropy design (2.9) (Benton et al., 2022; Lou et al., 2024).

4 ERROR ANALYSIS OF DISCRETE DIFFUSION MODELS

In this section, we firstly review two different implementations of the discrete diffusion models,
namely τ -leaping (Gillespie, 2001) and uniformization (Van Dijk, 1992), derive their stochastic
integral formulations as in Proposition 3.2, and provide our main results for their error analysis.

4.1 ALGORITHMS

4.1.1 τ -LEAPING.

A straightforward algorithm for simulating the backward process is to discretize the integral in (3.2)
with an Euler-Maruyama scheme. This leads to the τ -leaping algorithm summarized in Algorithm 1.

6
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The main idea is to employ a predetermined time discretization scheme and approximate the infer-
ence process within each interval using the intensity observed at the time and location corresponding
to the start of the interval.

Algorithm 1: τ -Leaping Algorithm for Discrete Diffusion Model Inference
Input: ŷ0 ∼ q0, time discretization scheme (si)i∈[0:N ] with s0 = 0 and sN = T − δ, intensity

function µ̂θ
s defined in Proposition 4.1, and neural network-based score function

estimation ŝθt .
Output: A sample ŷsN ∼ q̂tN .

1 for n = 0 to N − 1 do
2 ŷsn+1

←
∑
y∈X

(y − ŷsn)P(µ̂θ
s(ŷsn)(sn+1 − sn)); (4.1)

3 end

As shown in the following proposition, τ -leaping can be formulated as a stochastic integral.
Proposition 4.1 (Stochastic Integral Formulation of τ -Leaping). The τ -leaping algorithm (Algo-
rithm 1) is equivalent to solving the following stochastic integral equation:

ŷs = ŷ0 +

∫ s

0

∫
X
(y − ŷ⌊s⌋−)N [µ̂θ

⌊·⌋](ds, dy), (4.2)

where the evolving intensity µ̂θ
s(y) is given by µ̂θ

⌊s⌋(y) =
⃗ŝθ⌊s⌋(ŷ⌊s⌋− , y)Q̃⌊s⌋(ŷ⌊s⌋− , y) = µ̂θ

sn(y), in
which we used the symbol ⌊s⌋ = sn for s ∈ [sn, sn+1). We will call the process ŷs the interpolating
process of the τ -leaping algorithm and denote the distribution of ŷs by q̂s.

In general, the stochastic integral associated with τ -leaping (4.2) is computed using a piecewise
constant intensity rather than the original continuous intensity. This approximation introduces dis-
cretization error as a trade-off for more efficient implementation.

4.1.2 UNIFORMIZATION

Another algorithm considered for simulating the backward process in discrete diffusion models is
uniformization. The algorithm is summarized in Algorithm 2, in which σ(m) denotes the m-th
order statistic of the M uniform random variables on [0, 1], and the randomness in (4.3) should be
understood as sampling a categorical distribution and updating the state accordingly.

Algorithm 2: Uniformization Algorithm for Discrete Diffusion Model Inference
Input: ŷ0 ∼ q0, time discretization scheme (sb)b∈[0,N ] with s0 = 0 and sB = T − δ, intensity

upper bound process λs, intensity function µ̂θ
s defined in Proposition 4.1, and neural

network-based score function estimation ŝθt .
Output: A sample xsB ∼ qtB .

1 for b = 0 to B − 1 do
2 M ∼ P(λsb+1

(sb+1 − sb)), σm ∼ Unif([0, 1]) for m ∈ [M ];
3 for m = 1 to M do
4

ŷsb+σ(m)
←

{
y, with prob. µ̂θ

sb+σ(m)
(y)/λsb+1

, for y ∈ X,
ŷsb , with prob. 1−

∑
y∈X µ̂

θ
sb+σ(m)

(y)/λsb+1
;

(4.3)

5 end
6 end

The main idea is to simulate the backward process by a Poisson random measure with a piecewise
constant intensity upper bound process and then sample the behavior of each jump according to the
intensity µ̂θ

s(y) at time s. The uniformization algorithm also admits a stochastic integral formulation,
as shown in the following proposition.
Proposition 4.2 (Stochastic Integral Formulation of Uniformization). Under the block discretization
scheme (sb)b∈[0,B] with s0 = 0 and sB = T − δ, and for any s ∈ (sb, sb+1], we define the
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piecewise constant intensity upper bound process by λs = sups∈(sb,sb+1]

∫
X µ̂

θ
s(y)ν(dy). Then the

uniformization algorithm (Algorithm 2) is equivalent to solving the following stochastic integral
equation in the augmented measure space (X× [0, λ],B ⊗ B([0, λ]), ν ⊗m):

ys = y0 +

∫ s

0

∫
X

∫
R
(y − ys−)10≤ξ≤

∫
X µ̂θ

s(y)ν(dy)
N [µ̂θ](ds, dy, dξ), (4.4)

where the evolving intensity µ̂θ
s(y) is given by µ̂θ

s(y) =
⃗ŝθs(ŷs− , y)Q̃s(ŷs− , y).

Based on Proposition 4.2, one can show that the uniformization algorithm simulates the backward
process in discrete diffusion models accurately (cf. Theorem A.13), and the proofs of the claims
above will be provided in Appendix A.4.

4.2 ASSUMPTIONS

We need the following assumptions to ensure the well-definedness of discrete diffusion models. For
simplicity, we assume the rate matrix Qt is time-homogeneous and symmetric, i.e. Qt = Q for
any t ≥ 0. In fact, the results can be easily extended to the time-inhomogeneous case of the family
Qt = βtQ with a rescaling factor βt, and asymmetric cases will be left for future works.
Assumption 4.3 (Regularity of the Rate Matrix). The rate matrix Q satisfies the following condi-
tions:

(i) For any x, y ∈ X, Q(x, y) ≤ C and D ≤ −Q(x, x) ≤ D for some constants C,D,D > 0;

(ii) The modified log-Sobolev constant ρ(Q) of the rate matrix Q (cf. Definition B.6) is lower
bounded by ρ > 0.

Statement (i) assumes the regularity of the rate matrix, which is often trivially satisfied in many
applications, while Statement (ii) ensures the exponential convergence of the forward process in
discrete diffusion models. In general, ρ(Q) may depend on the connectivity and other structures of
the corresponding graph G(Q) (cf. Definition B.1). Such lower bound has been obtained for specific
graphs (e.g. Example B.10 and B.11), and general results are in active research (Saloff-Coste, 1997;
Bobkov & Tetali, 2006). We refer readers to Appendix B for further discussions on the literature of
the modified log-Sobolev constant, as well as its relation to the spectral gap, the mixing time, etc..
Assumption 4.4 (Bounded Score). The true score function satisfies st(x, y) ≲ 1 ∨ t−1, while the
learned score function satisfies ŝθs(x, y) ∈ (0,M ], for any x, y ∈ X.

The first part on the asymptotic behavior of the true score corresponds to the estimation E[∥st∥2] ∼
E[∥xt −µt∥2/σ2

t ] ∼ 1∨ t−1 in the continuous case (Chen et al., 2023a, Assumption 1) and further
justification is provided in Remark B.3. The bound on the estimated score can be easily satisfied by
adding truncation in post-processing in the implementation of the NN-based score estimator.
Assumption 4.5 (Continuity of Score Function). For any t > 0 and y ∈ X such thatQ(xt− , y) > 0,

we have
∣∣∣µt+ (y)

µt(y)

∣∣∣ := ∣∣∣pt(xt− )Q(xt,y)

pt(xt)Q(xt− ,y) − 1
∣∣∣ ≲ 1 ∨ t−γ , for some exponent γ ∈ [0, 1].

Assumption 4.5 corresponds to the Lipschitz continuity of the score function (cf. (Chen et al., 2022,
Assumption 1), (Chen et al., 2023a, Assumption 3)) for continuous diffusion models, and is in light
of the postulation that adjacent vertices should have close score function and intensity values. In
the worse case, assume Q(x, y) = Θ(1), then a naïve bound would be

∣∣∣µt+ (y)

µt(y)

∣∣∣ ≲ |st(xt, xt−)| ≲
1 ∨ t−1 with γ = 1. However, when the initial distribution is both upper and lower bounded, γ may
be as small as 0, and we plan to investigate how this (local) continuity of the score function affects
the overall performance of discrete diffusion models.
Assumption 4.6 (ϵ-accurate Score Estimation). The score function st(xt) is estimated by the neural
network ŝθt (xt) with ϵ-accuracy, i.e.

N−1∑
n=0

(sn+1 − sn)E
[∫

X
K

(
⃗ŝθsn ( ⃗x

s
−
n
,y)

⃗ssn ( ⃗x
s
−
n
,y)

)
⃗ssn( ⃗xs−n , y)Q̃( ⃗xs−n , y)ν(dy)

]
≤ ϵ.

This assumption assumes the expressive power and sufficient training of the NN-based score esti-
mator and is standard in diffusion model-related theories (Chen et al., 2022; 2023a; Benton et al.,
2023a; Chen et al., 2024c).
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4.3 ERROR ANALYSIS

Our main results are presented below for each algorithm introduced in Section 4.1.

4.3.1 τ -LEAPING

Theorem 4.7 (Error Analysis of τ -Leaping). Suppose the time discretization scheme (si)i∈[0,N ]

with s0 = 0 and sN = T − δ satisfies for k ∈ [0 : N − 1], sk+1 − sk ≤ κ
(
1 ∨ (T − sk+1)

1+γ−η
)
,

where the exponent η satisfies γ < η ≲ 1 − T−1 when γ < 1, and η = 1 when γ = 1. Under
Assumptions 4.3, 4.4, 4.5, and 4.6, we have the following error bound

DKL(pδ∥q̂T−δ) ≲ exp(−ρT ) log |X|+ ϵ+D
2
κT,

and under the following choice of the order of parameters:

T = O

(
log
(
ϵ−1 log |X|

)
ρ

)
, κ = O

(
ϵρ

D
2
log (ϵ−1 log |X|)

)
, δ =

{
0, γ < 1,

Ω(e−
√
T ), γ = 1,

(4.5)

where the mixing time tmix is defined in Definition B.12, we have DKL(pδ∥q̂T−δ) ≲ ϵ with N =

κ−1T = O
(

D
2
ρ2 log2(ϵ−1 log |X|)

ϵ

)
total steps.

The conclusions and detailed proof (as provided in Appendix C), whose sketch is given in Ap-
pendix C.1, are analogous to the error bound for continuous diffusion models (cf. Theorem 2.1), as
a summation of the truncation, approximation, and discretization errors as outlined in Section 2.3.
We would like to point out the main differences between the continuous and discrete diffusion mod-
els:

• Truncation Error: While the Ornstein-Uhlenbeck process converges exponentially fast in the
continuous diffusion models, the exponential convergence of the forward process in discrete dif-
fusion models is non-trivial for general graphs G(Q), for which the lower bound on the modified
log-Sobolev constant ρ is one of the sufficient conditions. In practice, the exponential convergence
of the forward process should be verified for the specific problem at hand;

• Discretization Error: In continuous diffusion models, the analysis of the discretization error is
based on the Itô integral and Girsanov’s theorem, while for discrete diffusion models, the stochas-
tic integral framework, including the Poisson random measure with evolving intensity (cf. Defini-
tion 3.1) and change of measure (cf. Theorem 3.3) that we developed above, is employed instead.

Remark 4.8 (Remark on Early Stopping). As in Assumption 4.4, the true score function may exhibit
singular behavior as s → T , due to possible vacancy in the target distribution p0. To handle this
singularity, two different regimes are considered for the time discretization scheme depending on the
continuity parameter γ of the score function (Assumption 4.5). The main intuition is that (a) in the
worse case γ = 1, early stopping at time s = T − δ is necessary; (b) if the target distribution p0 is
such well-posed (e.g. both upper and lower bounded) and the rate matrix Q is constructed in a way
that the score exhibits certain (local) continuity reflected by γ < 1, one may choose an appropriate
shrinkage η, with which finite discretization error can be achieved with finite steps.

In Theorem 4.7, the coefficient D roughly translates to the dimension d when the discrete diffusion
model is applied to X = [S]d, where S is the number of states along each dimension. For example,
when each state is connected to those at a Manhattan distance of 1 with unit weight, we have C = 1,
D = 2d, log |X| = d logS hold in Assumption 4.3. Plugging D = log |X| = O(d) into the results,
we obtain that the total number of steps N = Õ(d2), where Õ denotes the order up to logarithmic
factors. This recovers the dependency described in (Campbell et al., 2022, Theorem 1) for τ -leaping
with a completely different set of techniques, and importantly, our results do not rely on strong
assumptions such as a uniform bound on the true score. We also reduce assumption stringency
by relating our assumption on the estimation error (Assumption 4.6) more closely to the practical
training loss rather than requiring an L∞-accurate score estimation error. Most notably, we provide
the first convergence guarantees for τ -leaping in KL divergence, which is stronger than the total
variation distance, for discrete diffusion models.

9
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4.3.2 UNIFORMIZATION

The error analysis of the uniformization algorithm requires the following modified assumption on
the accuracy of the learned score function ŝθt (xt):

Assumption 4.6’ (ϵ-accurate Learned Score). The score function st(xt) is estimated by the neural
network ŝθt (xt) with ϵ-accuracy, i.e.

E

[∫ T−δ

0

∫
X
K

(
⃗ŝθs( ⃗xs− ,y)

⃗ss( ⃗xs− ,y)

)
⃗ss( ⃗xs− , y)Q̃( ⃗xs− , y)ν(dy)

]
ds ≤ ϵ.

Theorem 4.9 (Error Analysis of Uniformization). Suppose the block discretization scheme
(sb)b∈[0,N ] with s0 = 0 and sN = T − δ satisfies for k ∈ [0 : N − 1], sk+1 − sk ≤
κ (1 ∨ (T − sk+1)) . Under Assumptions 4.3, 4.4, 4.5, and 4.6’, we have the following error bound

DKL(pδ∥qT−δ) ≲ exp(−ρT ) log |X|+ ϵ,

where the mixing time tmix is defined in Definition B.12. Then with T = O
(

log(ϵ−1 log |X|)
ρ

)
and the early stopping scheme δ = Ω(e−T ), we have DKL(pδ∥qT−δ) ≲ ϵ with E[N ] =

O
(

D log(ϵ−1 log |X|)
ρ

)
steps.

The proof of Theorem 4.9 is deferred to Appendix C, where a corresponding sketch is provided in
Appendix C.1. Following a similar argument for Theorem 4.7, the dimensionality dependency of
the uniformization scheme is Õ(d), confirming the result for the special case X = {0, 1}d in (Chen
& Ying, 2024) and X = [S]d in (Zhang et al., 2024). Theorem 4.7 and 4.9 offer a direct comparison
of the efficiency of the τ -leaping and uniformization implementations for discrete diffusion mod-
els. Our proof reveals that the less favorable quadratic dependency in the τ -leaping scheme arises
from the truncation error, which is not present in the uniformization scheme, illustrating a possible
advantage of the latter in reducing computational complexity.

Recalling the current state-of-the-art result for continuous diffusion models (Theorem 2.1) is Õ(d),
we conjecture that Õ(d) is also the optimal rate in the discrete case. In the continuous case, the linear
dependency does not depend on the accurate simulation of the approximate backward process (2.10)
(or (3.2)) and is achievable with Euler-Maruyama schemes. The proof was via an intricate stochas-
tic localization argument (Benton et al., 2023a), with which the bound on E[∥∇2 log pt(xt)∥2] is
improved by a O(d)-factor from O(d2). The corresponding argument for the τ -leaping scheme of
discrete diffusion models would be a possible refinement on Proposition C.2, which we believe is of
independent interest and will be explored in future work.

5 CONCLUSION

In this paper, we have developed a comprehensive framework for the error analysis of discrete dif-
fusion models. We rigorously introduced the Poisson random measure with evolving intensity and
established the Lévy-type stochastic integral alongside change of measure arguments. These ad-
vancements not only hold mathematical significance but also facilitate a clear-cut analysis of dis-
crete diffusion models. Moreover, we demonstrated that the inference process can be formulated
as a stochastic integral using the Poisson random measure with evolving intensity, allowing the er-
ror to be systematically decomposed and optimized by algorithmic design, mirroring the theoretical
framework for continuous diffusion models. Our framework unifies the error analysis of discrete
diffusion models and provides the first error bounds for the τ -leaping scheme in KL divergence.

Our results lay a theoretical groundwork for the design and analysis of discrete diffusion models,
adaptable to broader contexts, such as time-inhomogeneous and non-symmetric rate matrices. Fu-
ture research directions include exploring the continuum limit of discrete diffusion models in state
spaces and time (Winkler et al., 2024; Zhao et al., 2024) and how to accelerate the implementation
via parallel sampling (Chung et al., 2023; Shih et al., 2024; Tang et al., 2024; Chen et al., 2024a;
Gupta et al., 2024). We hope our work will inspire further research on both the theoretical analysis
and practical applications of discrete diffusion models in various fields.
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A MATHEMATICAL FRAMEWORK OF POISSON RANDOM MEASURE

In this section, we provide a mathematical framework for Poisson random measure with evolving
intensity, which is crucial for the error analysis of discrete diffusion models in the main text.

A.1 PRELIMINARIES

We first provide the definition of the ordinary Poisson random measure.
Definition A.1 (Poisson Random Measure). Let (Ω,F ,P) be a probability space and (X,B, ν) be
a measure space satisfying that ∫

X
1 ∨ |y| ∨ |y|2ν(dy) <∞,

The random measure N(dt, dy) on R+ × X is called a Poisson random measure w.r.t. measure ν if
it is a random counting measure satisfying the following properties:

(i) For any B ∈ B and 0 ≤ s < t, N((s, t]×B) ∼ P (ν(B)(t− s));

(ii) For any t ≥ 0 and pairwise disjoint sets {Bi}i∈[n] ⊂ B, {Nt(Bi) := N((0, t]×Bi)}i∈[n] are
independent stochastic processes.

The following definition of predictability will be frequently used for the well-definedness of stochas-
tic integrals w.r.t. Poisson random measure, and thus the extension from ordinary Poisson random
measure to Poisson random measure with evolving intensity.
Definition A.2 (Predictability). The predictable σ-algebra on R+ × X is defined as the σ-algebra
generated by all sets of the form (s, t] × B for 0 ≤ s < t and B ∈ B. A process Xt is called
predictable if and only if Xt is predictable w.r.t. the predictable σ-algebra above.

In the following, we will define the Poisson random measure with evolving intensity, which is a
special case of random measures (Jacod & Shiryaev, 2013, Definition 1.3).
Definition A.3 (Poisson Random Measure with Evolving Intensity). Let (Ω,F ,P) be a probability
space and (X,B, ν) be a measure space. Suppose λt(y) is a non-negative predictable process on
R+ × X× Ω satisfying that for any 0 ≤ T < T ,∫ T

0

∫
X
1 ∨ |y| ∨ |y|2λt(y)ν(dy)dt <∞, a.s..

The random measure N [λ](dt, dy) on R+ × X is called a Poisson random measure with evolving
intensity λt(y) w.r.t. measure ν if it is a random counting measure satisfying the following proper-
ties:

(i) For any B ∈ B and 0 ≤ s < t, N [λ]((s, t]×B) ∼ P
(∫ t

s

∫
B
λτ (y)ν(dy)dτ

)
;

(ii) For any t ≥ 0 and pairwise disjoint sets {Bi}i∈[n] ⊂ B,

{Nt[λ](Bi) := N [λ]((0, t]×Bi)}i∈[n]

are independent stochastic processes.
Theorem A.4 (Well-definedness of Poisson Random Measure with Evolving Intensity). The Poisson
random measure N [λ](dt, dy) with evolving intensity λt(y) is well-defined under the conditions in
the definition above.

Proof. We first augment the (X,B, ν) measure space to a product space (X×R,B×B(R), ν×m),
wherem is the Lebesgue measure on R, and B(R) is the Borel σ-algebra on R. The Poisson random
measure with evolving intensity λt(y) can be defined in the augmented measure space as

N [λ]((s, t]×B) :=

∫ t

s

∫
B

∫
R
10≤ξ≤λτ (y)N(dτ, dy, dξ), (A.1)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where N(dτ, dy, dξ) is the Poisson random measure on R+ × X× R w.r.t. measure ν(dy)dξ.

Then it is straightforward to verify the two conditions in the definition of Poisson random measure
with evolving intensity by noticing that for pairwise disjoint sets {Bi}i∈[n] ⊂ B, {Bi × R}i∈[n] ⊂
B × B(R) are also pairwise disjoint.

The Poisson random process N [λ](dt, dy) with evolving intensity λt(y) is well-defined up to an
eventual explosion time

T = inf
T

{∫ T

0

∫
X
λt(y)ν(dy)dt =∞, a.s.

}
.

We refer the readers to (Protter, 1983) for a more rigorous detailed version of the proof.

Remark A.5 (Relations to the classical Poisson random measure and that with state-dependent den-
sity). The classical Poisson random measure is well-studied by the theory of Lévy processes (Ap-
plebaum, 2009), and the extension to the state-dependent intensity is proposed and analyzed
in (Glasserman & Merener, 2004). Notably, Li (2007) establishes the stochastic integral formu-
lation for the chemical master equation with the Poisson random measure with state-dependent
intensity, which is a special case of the evolving intensity, and subsequently shows the weak and
strong convergence of the τ -leaping scheme.

Remark A.6 (Relation to the Cox process). The Poisson random measure with evolving intensity
shares multiple similarities with the Cox process (Cox, 1955; Last & Penrose, 2017), including being
a point process and with the intensity being a random measure. The main difference is that the Cox
process is defined on a general measure space, while the Poisson random measure with evolving
intensity is defined on the product space (X × R,B × B(R), ν × m) and the intensity function is
required to be predictable to ensure the well-definedness of its stochastic integral.

A.2 STOCHASTIC INTEGRAL W.R.T. POISSON RANDOM MEASURE

The following theorems provide the properties of stochastic integrals w.r.t. Poisson random measure
with evolving intensity. The proofs are based on the observation that with the augmentation of the
measure space argument (A.1), the stochastic integral w.r.t. Poisson random measure with evolving
intensity in (X,B, ν) can be reduced to the stochastic integral w.r.t. homogeneous Poisson random
measure in (X×R,B×B(R), ν×m), and under certain conditions on the measure space (X,B, ν),
to the well-known Lévy-type stochastic integral (Applebaum, 2009). For simplicity, we will work
on the interval t ∈ [0, T ] with T < T and the following regularity conditions of the Poisson random
measure:

0 < ess inf
τ∈[0,T ],y∈X

λτ (y) ≤ ess sup
τ∈[0,T ],y∈X

λτ (y) < +∞.

One can easily generalize the following results to their local versions on [0, T ) by considering its
compact subsets.
Theorem A.7 (Stochastic Integrals w.r.t. Poisson Random Measure with Evolving Density). For any
predictable process Kt(y) on R+ × X × Ω, the stochastic integral w.r.t. Poisson random measure
with evolving intensity λt(y)

xt = x0 +

∫ t

0

∫
X
Kt(y)N [λ](dt, dy), (A.2)

has a unique solution, for which the following properties hold:

(1) (Expectation) For any t ≥ 0, we have

E
[∫ t

0

∫
X
Kt(y)N [λ](dt, dy)

]
=

∫ t

0

∫
X
Kt(y)λt(y)ν(dy)dt;

(2) (Martingale) For any t ≥ 0, we have∫ t

0

∫
X
Kt(y)Ñ [λ](dt, dy) :=

∫ t

0

∫
X
Kt(y)N [λ](dt, dy)−

∫ t

0

∫
X
Kt(y)λt(y)ν(dy)dt

is a local Ft-martingale;
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(3) (Itô Isometry) For any t ≥ 0, we have

E

[(∫ t

0

∫
X
Kt(y)N [λ](dt, dy)

)2
]
=

∫ t

0

∫
X
Kt(y)

2λt(y)ν(dy)dt.

Proof. We first write the integral (A.2) in the augmented measure space (X×R,B ×B(R), ν ×m)
as

xt = x0 +

∫ t

0

∫
X

∫
R
Kt(y)10≤ξ≤λt(y)N(dt, dy, dξ), (A.3)

and since Kt(y)10≤ξ≤λt(y) is a predictable process, the desired properties can be derived from the
corresponding properties of the stochastic integral w.r.t. Poisson random measure in the augmented
measure space.

The subsequent proof will follow a similar argument as the proof of the stochastic integral w.r.t.
Brownian motion (e.g. in (Øksendal, 2003)) by starting from proving the properties for elementary
processes, which in our case refer to working with the elementary predictable processes of the
following form:

Zt(y, ξ)(ω) =

n−1∑
i=0

m∑
j=1

l∑
k=1

Zi,j,k(ω)1t∈(ti,ti+1]1y∈Bj1ξ∈Ck
,

where 0 = t0 < · · · < tn = T is a partition of [0, T ], Bj ∈ B for j ∈ [m] are a parti-
tion of X with ν(Bk) < ∞, and Ck ∈ B(R) for k ∈ [l] are a partition of the time interval
[0, ess supτ∈[0,T ],y∈X λτ (y)] with m(Ck) < ∞, and Ki,j,k is bounded and Fti -measurable, on
which the stochastic integral is defined as∫ t

0

∫
X
Zt(y, ξ)N(dt, dy, dξ) =

n−1∑
i=0

m∑
j=1

l∑
k=1

Zi,j,kNti((ti, ti+1]×Bj × Ck).

Then, it is straightforward to verify the properties of the stochastic integral for the elementary pre-
dictable process Z+

t (y, ξ), using the definition of Poisson random measure (Definition A.1). For
general predictable processes Zt(y, ξ), we write Zt(y, ξ) = Z+

t (y, ξ) − Z−
t (y, ξ), where Z+

t (y, ξ)
and Z−

t (y, ξ) are positive and negative parts of Zt(y, ξ), and apply the results to Z+
t (y, ξ) and

Z−
t (y, ξ) separately.

Finally, we take Zt(y, ξ) = Kt(y)10≤ξ≤λt(y) to derive the properties of the stochastic integral w.r.t.
Poisson random measure with evolving intensity.

We refer readers to (Eberle, 2015, Section 2.2) for detailed arguments. For the uniqueness of the
solution to the stochastic integral, we also refer to (Protter, 1983, Theorem 3.1).

Proposition A.8. Define the list of jump times (tn)n∈N recursively as

t0 = 0, tn+1 = inf{t > tn|∆xt ̸= 0}, n ≥ 0,

the Poisson random measure N [λ](dt, dy) with evolving intensity λt(y) can be written as

N [λ](dt, dy) =

∞∑
n=1

δtn(dt)δYn
(dy), (A.4)

and the stochastic integral (A.2) is càdlàg and can be rewritten as a sum of jumps:

xt = x0 +

N∑
n=1

∆xtn = x0 +

N∑
n=1

Ktn(Yn), (A.5)

whereN is a random variable satisfying tN ≤ t < tN+1, and ∆xtn are the jumps ∆xtn = xtn−xt−n
with xt−n := lims→t−n

xs.
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Proof. To see the solution is càdlàg, we notice the following right limit at time t:

lim
ϵ→0

(xt+ϵ − xt) =
∫
(t,t+ϵ]×X

Kt(y)N [λ](dt, dy)→ 0,

and the left limit at time t:

∆xt = lim
ϵ→0

(xt − xt−ϵ) =

∫
(t−ϵ,t]×X

Kt(y)N [λ](dt, dy)→
∫
X
Kt(y)N [λ]({t} × dy), (A.6)

where the notation N [λ]({t} × dy) should be understood as N [λ]({t} × dy) = 0 if t /∈ {tn}n∈N,
or otherwise Yn = N [λ]({tn} × dy) is a random variable on X.

Since the Poisson random measure N [λ](dt, dy) with evolving intensity λt(y) is a random counting
measure, it can be represented as a countable sum of Dirac measures as in (A.4), and thus we have

xt = x0 +

∫ t

0

∫
X
Kt(y)N [λ](dt, dy)

=x0 +

∫ t

0

∫
X
Kt(y)

N∑
n=1

δtn(dt)δYn
(dy) = x0 +

N∑
n=1

Ktn(Yn).

By the definition of Poisson random measure, (tn)n∈[N ] are also the jump times of the homo-
geneous Poisson random measure N(dt, dy, dξ) in the augmented measure space (X × R,B ×
B(R), ν ×m) w.r.t. measure ν(dy)dξ. Therefore, with a slight abuse of notations, we will assume
(tn, Yn,Ξn)n∈[N ] are i.i.d. random variables with probability measure proportional to dtν(dy)dξ,
for each of which Ξn ≤ λtn(Yn) holds because otherwise the jump would not occur.

Then the distribution of Yn can be derived as a conditional probability of the jump location Yn given
the jump time tn and Ξn ≤ λtn(Yn):

P(Yn = y)ν(dy) =

∫
R ν(dy)1Ξn≤λtn (y)dξ∫

R
∫
X ν(dy)1Ξn≤λtn (y)dξ

=
λtn(y)ν(dy)∫
X λtn(y)ν(dy)

, (A.7)

and the proof is complete.

The following theorem gives the martingale characterization of Poisson random measure with evolv-
ing intensity, which will be crucial for the proof of the change of measure arguments:

Theorem A.9 (Martingale Characterization of Poisson Random Measure with Evolving Density).
Let N [λ](dt, dy) be a Ft-adapted process in the probability space (Ω,F ,P). Then N [λ](dt, dy) is
a Poisson random measure with evolving intensity λt(y) if and only if the complex-valued process

Mt[f ] = exp

(
i

∫ t

0

∫
X
fτ (y)N [λ](dτ, dy) +

∫ t

0

∫
X

(
1− eifτ (y)

)
λτ (y)ν(dy)dτ

)
(A.8)

is a local martingale for any predictable process fτ (y) satisfying that fτ (y) ∈ L1(X, ν), a.s..

Proof. By Proposition A.8, we rewrite the stochastic integral as a sum of jumps:∫ t

0

∫
X
ft(y)N [λ](dτ, dy) =

N∑
n=1

ftn(Yn),

where (tn, Yn,Ξn)n∈[N ] are i.i.d. random variables with probability measure proportional to
dtν(dy)dξ, for each of which Ξn ≤ λtn(Yn) holds, following a similar argument as in the proof of
Proposition A.8.

Then, it is straightforward to derive the following probability of the jump time tn = τ :

P(tn = τ)dτ =

∫
X P(Yn = y, tn = τ)ν(dy)∫ t

0

∫
X P(Yn = y, tn = τ)ν(dy)dτ

=

∫
X λτ (y)ν(dy)dτ∫ t

0

∫
X λτ (y)ν(dy)dτ

;
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and by the definition of the Poisson random measure, we have the following probability of the total
number of jumps N = n:

P(N = n) =
1

n!
exp

(
−
∫ t

0

∫
X
λτ (y)ν(dy)dτ

)(∫ t

0

∫
X
λτ (y)ν(dy)dτ

)n

.

Without loss of generality, we only verify E[Mt[f ]] = 1 as follows, and general cases are similar by
Markov property:

E
[
exp

(
i

∫ t

0

∫
X
ftn(y)N [λ](dτ, dy)

)]
=E

[
exp

(
i

N∑
n=1

f(Yn)

)∣∣∣∣Ξn ≤ λtn(Yn), ∀n ∈ [N ]

]

=E

[
N∏

n=1

E
[
eiftn (Yn)

∣∣Ξn ≤ λtn(Yn)
]]

=E

[
N∏

n=1

E
[∫

X

eifτ (y)λτ (y)ν(dy)∫
X λτ (y)ν(dy)

∣∣∣∣tn = τ

]]

=

∞∑
n=1

1

n!

(∫ t

0

∫
X
eifτ (y)λτ (y)ν(dy)dτ

)n

exp

(
−
∫ t

0

∫
X
λτ (y)ν(dy)dτ

)
=exp

(∫ t

0

∫
X

(
eifτ (y) − 1

)
λτ (y)ν(dy)dτ

)
,

which immediately yields the desired result E[Mt[f ]] = 1.

On the other hand, for any 0 ≤ s < t and B ∈ B, we set

Zt(y) = u1t∈(s,t]1y∈B ,

where u ∈ R, and by assumption, we have

E [Mt[Z]] = E
[
exp

(
i

∫ t

0

∫
X
Zτ (y)N [λ](dτ, dy) +

∫ t

0

∫
X

(
1− eiZτ (y)

)
λτ (y)ν(dy)dτ

)]
=E

[
exp

(
iu

∫ t

s

∫
B

N [λ](dτ, dy) +

∫ t

s

∫
X

(
1− eiu

)
λτ (y)ν(dy)dτ

)]
=E

[
exp

(
iuN [λ]((s, t]×B) +

(
1− eiu

)
(t− s)

∫
X
λτ (y)ν(dy)

)]
= 1,

i.e. the following holds for any u ∈ R:

E [exp (iuN [λ]((s, t]×B)))] =
(
eiu − 1

)
(t− s)

∫
X
λτ (y)ν(dy),

which by Lévy’s continuity theorem implies that

N [λ]((s, t]×B) ∼ P
(
(t− s)

∫
X
λτ (y)ν(dy)

)
,

and thusN [λ](dt, dy) is a Poisson random measure with evolving intensity λt(y) by Definition A.1.

Theorem A.10 (Itô’s Formula for Poisson Random Measure with Evolving Density). Let
N [λ](dt, dy) be a Poisson random measure with evolving intensity λt(y) in the probability space
(Ω,F ,P) and Kt(y) be a predictable process on R+ × X × Ω. Suppose a process xt satisfies the
stochastic integral

xt = x0 +

∫ t

0

∫
X
Kt(y)N [λ](dt, dy), (A.9)
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then for any ft(y) ∈ C(R+ × X) with probability 1, we have

ft(xt) = f0(x0) +

∫ t

0

∂τfτ (xτ )dτ +

∫ t

0

∫
X
(fτ (xτ− +Kτ (y))− fτ (xτ−))N [λ](dτ, dy).

Proof. By Proposition A.8, we again rewrite the stochastic integral as a sum of jumps:

xt = x0 +

N∑
n=1

Ktn(Yn),

where (tn)n∈[N ] are the jump times with t0 = 0 and tN ≤ t < tN+1, and (Yn)n∈[N ] are the jump
locations. Consequently, it is easy to see that xt−n = xt = xtn−1

for t ∈ (tn−1, tn] and n ∈ [N ].

Then we have the following decomposition:

ft(xt)− f0(x0)

=ft(xt)− ftN (xtN ) +

N∑
n=1

(
ftn(xtn)− ftn(xt−n ) + ftn(xt−n )− ftn−1

(xtn−1
)
)

=

∫ t

tN

∂τfτ (xtN )dτ +

N∑
n=1

∫ tn

tn−1

∂τfτ (xtn−1)dτ +

N∑
n=1

(
ftn(xtn−1 +Ktn(Yn))− ftn(xtn−1)

)
,

and for the last term in the above equation, we have

N∑
n=1

(
ftn(xtn−1 +Ktn(Yn))− ftn(xtn−1)

)
=

N∑
n=1

(
ftn(xt−n +Ktn(Yn))− ftn(xt−n )

)
=

∫ t

0

∫
X
(fτ (xτ− +Kτ (y))− fτ (xτ−))N [λ](dτ, dy).

Combining the above results, we have the desired result.

Lemma A.11. Denote the trajectory obtained by simulating the master equation (2.7) of the forward
process of the discrete diffusion model as xt, then the time interval ∆tn = tn+1 − tn is distributed
according to the following distribution:

P(∆tn > τ) = exp

(∫ τ

0

Qτ ′(xtn , xtn)dτ
′
)
, (A.10)

and the jump location xtn+1
is distributed according to the following distribution:

P(xtn+1 = y) = −
Qtn+1

(y, xtn)

Qtn+1(xtn , xtn)
. (A.11)

Proof. The results can be found in (Eberle, 2009, Section 1.2). While a fully rigorous proof can be
conducted by discretizing the time-inhomogeneous continuous-time Markov chain into 2n uniform
steps and taking the limit as n → ∞, following the approach in (Lalley, 2012), we will provide a
more intuitive proof here for completeness.

Set ptn = extn
, where ey is the y-th unit vector in R|X|. then the xtn -th entry of (2.7) yields

d

dt
P(xt = xtn) =

d

dt
pt(xtn) =

∑
y∈X

Qt(xtn , y)pt(y),

which, by the assumed continuity of the rate matrix Qt, implies

P(∆tn > τ) = P(xtn+τ = xtn) = 1 +Qtn(xtn , xtn)τ + o(τ),
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and thus

d

dτ
logP(∆tn > τ) = lim

τ→0

logP(∆tn > τ)

τ
= lim

τ→0
Qtn(xtn , xtn) + o(1) = Qtn(xtn , xtn),

integrating the above equation yields the desired result.

Similarly, by setting ptn+1−τ = extn
, we have for all y ∈ X \ {xtn}:

P(xtn+1 = y) = ptn+1(y)

= lim
τ→0

ptn+1−τ (y) +Qtn+1−τ (y, xtn)τ + o(τ)∑
y∈X\{xtn}

(
ptn+1−τ (y) +Qtn+1−τ (y, xtn)τ + o(τ)

)
=

Qtn+1(y, xtn)∑
y∈X\{xtn}Qtn+1

(y, xtn)
= −

Qtn+1(y, xtn)

Qtn+1
(xtn , xtn)

,

and the result follows.

A.3 PROOFS OF CHANGE OF MEASURE RELATED ARGUMENTS

Proof of Theorem 3.3. In the following, we will denote the expectation under the measure P by EP
and the expectation under the measure Q by EQ.

By Theorem A.9, to verify that the Poisson random measure N [λ](dt, dy) with evolving intensity
λt(y) is a Poisson random measure with evolving intensity λt(y)ht(y) under the measure Q, it
suffices to show that for any f ∈ L1(X, ν), the complex-valued process

Mt[f ] = exp

(
i

∫ t

0

∫
X
f(y)N [λ](dτ, dy) +

∫ t

0

∫
X

(
1− eif(y)

)
λτ (y)hτ (y)ν(dy)dτ

)
is a local martingale under the measure Q.

To this end, we perform the following calculation:

EQ [Mt[f ]] = EP [Mt[f ]Zt[h]]

=EP

[
exp

(
i

∫ t

0

∫
X
f(y)N [λ](dτ, dy) +

∫ t

0

∫
X

(
1− eif(y)

)
λτ (y)hτ (y)ν(dy)dτ

)
exp

(∫ t

0

∫
X
log ht(y)N [λ](dt× dy)−

∫ t

0

∫
X
(ht(y)− 1)λt(y)ν(dy)

)]
=EP

[
exp

(
i

∫ t

0

∫
X
(f(y) + log ht(y))N [λ](dτ, dy) +

∫ t

0

∫
X

(
1− eif(y)ht(y)

)
λt(y)ν(dy)

)]
=EP [Mt[f + log h]] ,

and by assumption, f+log h ∈ L1(X, ν), a.s., which implies thatMt[f+log h] is a local martingale
under the measure P again by Theorem A.9. Consequently, Mt[f ] is a local martingale under the
measure Q, and the result follows.

Remark A.12. One may verify that the exponential process Zt in (3.3) is a local Ft-martingale
by Applebaum (2009, Corollary 5.2.2) under mild assumptions on the function ht(y) (cf. Novikov’s
condition in the Girsanov’s theorem for Itô integrals).

Proof of Corollary 3.4. With a similar argument as in the proof of Proposition 3.2, we have the
following stochastic integral representation of the approximate backward process with the learned
neural network score function ŝθt :

ys = y0 +

∫ s

0

∫
X
(y − ys−)N [µ̂θ](ds, dy), with µ̂θ

s(y) =
⃗ŝθs(ys− , y)Q̃s(ys− , y) = µ̂θ

s(y). (A.12)

By the data-processing inequality and the chain rule of KL divergence, we have

DKL( ⃗pT ∥qT ) ≤ DKL( ⃗p0:T ∥q0:T ) = DKL( ⃗p0∥q0) + E [DKL( ⃗p0:T ∥q0:T | ⃗x0 = y0 = y)] .
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Then notice that conditioning on the alignment of the initial state ⃗x0 = y0 = y for any y ∈ X, the
second term in the above equation can be expressed as

DKL( ⃗p0:T ∥q0:T | ⃗x0 = y0 = y) = E
[
log

d ⃗p0:T
dq0:T

∣∣∣∣ ⃗x0 = y0 = y

]
= E

[
logZ−1

T

[
µ̂θ

µ

]]
,

where the last equality is by the change of measure in Theorem 3.3 from the stochastic integral
formulation (3.2) of the backward process (2.8) with the true score function ⃗s to the stochastic
integral formulation (A.12) of the approximate backward process with the learned score function ŝθ.

Plug in the expression of ZT in (3.3) and notice that

µ̂θ
s

µs
=

⃗ŝθs(ys− , y)Q̃s(ys− , y)

⃗ss(ys− , y)Q̃s(ys− , y)
=

⃗ŝθs(ys− , y)

⃗ss(ys− , y)
,

we have

E
[
logZ−1

T

[
µ̂θ

µ

]]

=E

− ∫ T

0

∫
X
log

⃗ŝθs(ys− , y)

⃗ss(ys− , y)
N [µ](ds× dy) +

∫ T

0

∫
X

 ⃗ŝ
θ

s(ys− , y)

⃗ss(ys− , y)
− 1

µs(y)ν(dy)ds


=E

∫ T

0

∫
X

 ⃗ŝ
θ

s(ys− , y)

⃗ss(ys− , y)
− 1− log

⃗ŝθs(ys− , y)

⃗ss(ys− , y)

 ⃗ss(ys− , y)Q̃s(ys− , y)ν(dy)ds


=E

[∫ T

0

∫
X

(
⃗ŝ
θ

s(ys− , y)− ⃗ss(ys− , y)− ⃗ss(ys− , y) log
⃗ŝθs(ys− , y)

⃗ss(ys− , y)

)
Q̃s(ys− , y)ν(dy)ds

]
,

rearranging the terms in the above equation yields the desired result.

A.4 PROOFS OF STOCHASTIC INTEGRAL FORMULATIONS

Proof of Proposition 3.2. In the following, we will denote the trajectory obtained by simulating the
master equation (2.7) of the forward process of the discrete diffusion model as x̃t and the trajectory
obtained by the stochastic integral (3.1) as xt, with x0 = x̃0. We will also use the notation ·̃ to denote
the quantities associated with the trajectory x̃t. The goal is to show that xt and x̃t are identically
distributed for any t ∈ [0, T ].

We prove this claim by induction. We assume that for any t ∈ [0, tn], where n ∈ N and tn is the
n-th jump time with t0 = 0, the two trajectories xt and x̃t are identically distributed. For simplicity,
we realign the two processes xt and x̃t at time tn by setting xtn = x̃tn .

We first consider the process x̃t generated by the discrete diffusion model (2.7). Recall the definition
λt(y) = Q̃t(y, x̃t−), we have that∫

X
λt(y)ν(dy) =

∑
y∈X

Q̃t(y, x̃t−) = −Qt(x̃t− , x̃t−) = −Qt(x̃tn , x̃tn), for t ∈ (tn, tn+1].

By Lemma A.11, the time interval ∆t̃n = t̃n+1 − t̃n is distributed according to (A.10), i.e.

P(∆t̃n > τ) = exp

(∫ τ

0

Qτ ′(x̃tn , x̃tn)dτ
′
)

= exp

(
−
∫ τ

0

∫
X
λτ ′(y)ν(dy)dτ ′

)
.

Similarly, the jump location x̃tn+1
is distributed according to (A.11), i.e.

P(x̃tn+1
= y) = −

Qtn+1(y, x̃tn)

Qtn+1
(x̃tn , x̃tn)

=
λtn+1(y)∫

X λtn+1(y)ν(dy)
.

Now we turn to the stochastic integral (3.1). By definition of the Poisson random measure, we have

P(∆tn > τ) = P(N [λ]((tn, tn + τ ]× X) = 0) = exp

(
−
∫ tn+τ

tn

∫
X
λτ ′(y)ν(dy)dτ ′

)
,
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and the jump location is distributed according to (A.7), i.e.

P(xtn+1
= y) =

λtn+1(y)∫
X λtn+1

(y)ν(dy)
.

Comparing the arguments above, we conclude that the two processes xt and x̃t are identically dis-
tributed for any t ∈ [0, tn+1], and the induction is complete.

The proof of the equivalence between the backward process of the discrete diffusion model governed
by (2.8) and the corresponding stochastic integral (3.2) can be conducted similarly, and the result
follows.

A.4.1 τ -LEAPING

Proof of Proposition 4.1. Without loss of generality, we give the proof for s = sN , and the general
case can be proved similarly.

The stochastic integral (4.2) can be partitioned by the time discretization (si)i∈[0:N ] intoN intervals
along which the evolving intensity is constant, i.e.

ŷsN = ŷ0 +

∫ s

0

∫
X
(y − ŷ⌊s⌋−)N [µ̂⌊·⌋](ds, dy)

=ŷ0 +

N∑
i=1

∫ si

si−1

∫
X
(y − ŷs−i−1

)N [µ̂si−1
](ds, dy)

=ŷ0 +

N∑
i=1

∫
X
(y − ŷs−i−1

)N [µ̂si−1
]((si−1, si], dy),

which given X is finite, can be further decomposed into the following sum of jumps:

ŷsN = ŷ0 +

N∑
i=1

∫
X
(y − ŷs−i−1

)N [µ̂si−1 ]((si−1, si], dy)

=ŷ0 +

N∑
i=1

∑
y∈X

(y − ŷs−i−1
)N [µ̂si−1 ]((si−1, si], {y})

∼ŷ0 +
N∑
i=1

∑
y∈X

(y − ŷs−i−1
)P((si − si−1)µ̂si−1

(y)),

which is exactly (4.1) in the τ -leaping algorithm (Algorithm 1).

A.4.2 UNIFORMIZATION

Theorem A.13 (Accurate Simulation by Uniformization). The uniformization algorithm (Algo-
rithm 2) with its stochastic integral formulation in (4.4) is equivalent to the approximate backward
process with its stochastic integral formulation in (A.12).

Proof of Proposition 4.2 and Theorem A.13. For simplicity, we only consider the stochastic inte-
gral (4.4) within the time interval (sb, sb+1].

We rewrite the stochastic integral (4.4) as a sum of jumps:

ysb+1
= ysb +

N∑
i=1

(Yn − ys−b,n)10≤Ξn≤
∫
X µ̂θ

ssb,n
(y)ν(dy),

where by Proposition A.8, (sb,n)n∈[N ] are the jump times and (Yn,Ξn)n∈[N ] are the jump locations
that are distributed according to

P(Yn = y,Ξn = ξ) =
µ̂θ
sb,n

(y)∫
X µ̂

θ
sb,n

(y)ν(dy)
∫ λ

0
dξ

=
µ̂θ
sb,n

(y)∫
X µ̂

θ
sb,n

(y)ν(dy)λ
. (A.13)
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Therefore, the n-th jump is not performed if
∫
X µ̂

θ
ssb,n

(y)ν(dy) < Ξn ≤ λ, which is of probability

P(Ξn > µ̂θ
sb,n

(ys−b,n
)) =

∫
X µ̂

θ
sb,n

(y)ν(dy)∫
X µ̂

θ
sb,n

(y)ν(dy)

λ−
∫
X µ̂

θ
ssb,n

(y)ν(dy)

λ

= 1−
∫
X µ̂

θ
sb,n

(y)ν(dy)

λ
,

and is to the state y with probability

P
(
Yn = y,Ξn ≤

∫
X
µ̂θ
ssb,n

(y)ν(dy)

)
=

µ̂θ
sb,n

(y)∫
X µ̂

θ
sb,n

(y)ν(dy)

∫
X µ̂

θ
sb,n

(y)ν(dy)

λ
=
µ̂θ
sb,n

(y)

λ
,

which coincides with (4.3) in the uniformization algorithm (Algorithm 2).

By conditioning on the occurrence of each jump, i.e. 0 ≤ Ξn ≤
∫
X µ̂

θ
ssb,n

(y)ν(dy), with slight
abuse of notation, we have that

P
(
Yn = y

∣∣∣∣0 ≤ Ξn ≤
∫
X
µ̂θ
ssb,n

(y)ν(dy)

)
=

µ̂θ
sb,n

(y)∫
X µ̂

θ
sb,n

(y)ν(dy)
,

which again by Proposition A.8 implies that ys also satisfies the stochastic integral (A.12) corre-
sponding to the approximate backward process, and vice versa, and the result follows.

B RESULTS FOR CONTINUOUS-TIME MARKOV CHAIN

In this section, we will provide some results for the continuous-time Markov chain (CTMC), includ-
ing the mixing time, the spectral gap, the modified log-Sobolev constant, etc..
Definition B.1 (Graph Corresponding to Rate Matrix). We denote G(Q) as the graph corresponding
to the rate matrix Q, i.e.

G(Q) = (X, E(G(Q)), Q), where E(G(Q)) = {(x, y) ∈ X× X|x ̸= y,Q(x, y) > 0},

and the weight of the directed edge (x, y) ∈ E(G(Q)) is Q(x, y).

We will assume that the continuous-time Markov chain is irreducible and reversible on the state
space X, and the corresponding stationary distribution is π.

B.1 SPECTRAL GAP

Definition B.2 (Spectral Gap). Let L = −Q be the graph Laplacian matrix with D = diagL,
corresponding to the graph G(Q). with

0 = λ1(L) < λ2(L) ≤ . . . ≤ λ|X|(L) ≤ 2max
x∈X

D(x, x) = 2D,

the spectral gap λ(Q) of the rate matrix Q is defined as the second smallest eigenvalue of the graph
Laplacian L, i.e. λ(Q) = λ2(L).
Remark B.3 (Asymptotic Behavior of the score function st). Assume Q is symmetric with the
following orthogonal eigendecomposition:

Q = −UΛU⊤,

where U = (u1,u2, . . . ,u|X|) is an orthogonal matrix, and the distribution pt has the following
decomposition w.r.t. the eigenvectors of the graph Laplacian L:

pt =

|X|∑
i=1

αt(i)ui = Uα(t),
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then the solution to the master equation (2.7) is given by

pt = exp(tQ)p0 = U exp(−tΛ)U⊤p0 = U exp(−tΛ)α0 =

|X|∑
j=1

uj exp(−tλj)α0(j),

i.e. αt = exp(−tΛ)α0 and thus for any i ∈ [|X|],

pt(i)− p0(i) =
|X|∑
j=1

uj(i)(−1 + exp(−tλj))α0(j) = −
∑
j>1

uj(i)α0(j)λjO(t).

Therefore, we have

st(x, y) =
pt(y)

pt(x)
=
p0(y)−

∑
j>1 uj(y)α0(j)λjO(t)

p0(x)−
∑

j>1 uj(x)α0(j)λjO(t)
≲ 1 ∨ (Ft)−1,

given that the following condition is satisfied

F = min
x∈X

∣∣∣∣∣∣
∑
j>1

uj(x)α0(j)λj

∣∣∣∣∣∣ > 0,

which only depends on the initial distribution p0 and the rate matrix Q.

Especially, the bound st(x, y) ≲ 1 for any x ∈ X s.t. p0(x) > 0 and st(x, y) ≲ t−1 for those s.t.
p0(x) = 0.
Definition B.4 (Conductance). The conductance ϕ(G) of a graph G is defined as

ϕ(G) = min
S⊂X

∑
x∈S,y/∈S Q(x, y)

min
{∑

x∈S D(x, x),
∑

y/∈S D(y, y)
} .

Theorem B.5 (Cheeger’s Inequality). Denote the normalized graph Laplacian matrix by L̃ =
D−1/2LD−1/2 with eigenvalues

0 ≤ λ1(L) ≤ λ2(L) ≤ . . . ≤ λ|X|(L) ≤ 2,

then the conductance of the graph G(Q) can be bounded by

1

2
λ2(L) ≤ ϕ(G(Q)) ≤

√
2λ2(L).

B.2 LOG-SOBOLEV INEQUALITIES

Definition B.6 (Modified Log-Sobolev Constant (Bobkov & Tetali, 2006)). For any function f, g :
X→ R, we denote the entropy functional Entπ(f) of f as

Entπ(f) := Eπ[f log f ]− Eπ[f ] logEπ[f ],

and the Dirichlet form Eπ(f, g) as

Eπ(f, g) = Eπ[fL
T g] :=

∑
y∈X

f(y)(LT g)(y)π(y) =
∑

x,y∈X

f(y)L(x, y)g(x)π(y),

where the Laplacian L = Q. Then the modified log-Sobolev constant of the rate matrix Q is defined
as

ρ(Q) := inf

{
Eπ(f, log f)
Entπ(f)

∣∣∣∣ f : X→ R, Entπ(f) > 0

}
.

Theorem B.7 (Theorem 2.4, (Bobkov & Tetali, 2006)). For any initial distribution p0, we have for
any t ≥ 0,

DKL(pt∥π) ≤ DKL(p0∥π) exp (−ρ(Q)t) ,

i.e. the KL divergence converges exponentially fast with rate ρ(Q).
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Proof. Noticing that Entπ(pt

π ) = DKL(pt∥π), we differentiate DKL(pt∥π) with respect to t to
obtain that

d

dt
DKL(pt∥π) =

d

dt

∑
x∈X

pt(x)

π(x)
log

(
pt(x)

π(x)

)
π(x) =

∑
x∈X

(
log

pt(x)

π(x)
+ 1

)
π(x)

d

dt

pt(x)

π(x)

=
∑
x∈X

(
log

pt(x)

π(x)
+ 1

)
d

dt
pt(x) = −

∑
x,y∈X

log
pt(x)

π(x)
L(x, y)pt(y)

=−
∑
y∈X

pt(y)

π(y)

(∑
x∈X

L(x, y) log
pt(x)

π(x)

)
π(y)

=− Eπ
(pt
π
, log

pt
π

)
≤ −ρ(Q)DKL(pt∥π),

(B.1)

and the result follows by applying Grönwall’s inequality to both sides above.

Then, the following proposition connects the modified log-Sobolev constant with the spectral gap.
Proposition B.8 ((Bobkov & Tetali, 2006, Proposition 3.5)). The modified log-Sobolev constant
ρ(Q) of the rate matrix Q is bounded by the spectral gap λ(Q), i.e. ρ(Q) ≤ λ(Q).

Proof. Below we provide a sketch of the informal proof of the proposition above for the sake of
completeness. Let f : X→ R be an arbitrary function and ζ > 0 be any positive number. From the
definition of the modified log-Sobolev constant, we have

Eπ(eζf , ζf) ≥ ρ(Q)Entπ(e
ζf ). (B.2)

Under the limit ζ → 0+, we may apply Taylor expansion to the two terms on the LHS and RHS,
which implies

Eπ(eζf , ζf) = Eπ(1 + ζf +O(ζ2), ζf)

= ζEπ(1, f) + ζ2Eπ(f, f) +O(ζ3) = ζ2Eπ(f, f) +O(ζ3)

Entπ(e
ζf ) = Eπ[e

ζfζf ]− Eπ[e
ζf ] logEπ[e

ζf ]

= Eπ

[(
1 + ζf +O(ζ2)

)
ζf
]
− Eπ[1 + ζf +O(ζ2)] logEπ[e

ζf ]

= ζEπ[f ] + ζ2Eπ[f
2] +O(ζ3)

−
(
1 + ζEπ[f ] +O(ζ2)

)
log
(
1 + ζEπ[f ] +O(ζ2)

)
= ζEπ[f ] + ζ2Eπ[f

2] +O(ζ3)−
(
1 + ζEπ[f ] +O(ζ2)

) (
ζEπ[f ] +O(ζ2)

)
= ζ2

(
Eπ[f

2]− Eπ[f ]
2
)
+O(ζ3)

(B.3)

Substituting (B.3) into (B.2) and taking the limit ζ → 0+ then yield the following inequality

ρ(Q) ≤ Eπ(f, f)
Eπ[f2]− Eπ[f ]2

for any non-constant function f : X→ R. Taking infimum on both sides above with respect to all f
then indicates

ρ(Q) ≤ inf
f

Eπ(f, f)
Eπ[f2]− Eπ[f ]2

≤ inf
f :Eπ [f ]=0

Eπ(f, f)
Eπ[f2]

= λ2(L) = λ(Q) (B.4)

where the last two equalities above follows from the definition of spectral gap, as desired.

In general, the lower bound of the modified log-Sobolev constant ρ(Q) and the spectral gap λ(Q)
depends on the connectivity and other specific structures of the graph G(Q), and the related research
is still an active area on a graph-by-graph basis (Bobkov & Tetali, 2006).

The properties of the spectral gap λ(Q) are better known in the literature, as it is closely related to the
conductance of the graph G(Q) via Cheeger’s inequality (Theorem B.5), and thus when D = DI ,
the spectral gap λ(Q) satisfies

1

2D
λ(Q) =

1

2
λ2(L) ≤ ϕ(G(Q)) ≤

√
2λ2(L) =

√
2λ(Q)

D
.
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However, as shown in Proposition B.8, the lower bound on the modified log-Sobolev constant ρ(Q)
is hard to obtain, as the KL divergence, the exponential convergence of which is controlled by ρ(Q),
is stronger than the total variation distance, the exponential convergence of which is controlled by
λ(Q), via Pinsker’s inequality. The following theorem gives a rough lower bound on d-regular
graphs.
Theorem B.9 ((Bobkov & Tetali, 2006, Proposition 5.4)). Suppose G is a d-regular graph on X
with unit weights and Q is the corresponding rate matrix such that G(Q) = G, then the modified
log-Sobolev constant ρ(Q) of the rate matrix Q satisfies

λ(Q)

log |X|
≤ ρ(Q) ≤ 8d log |X|

diam(G)2
,

where diam(G) is the diameter of the graph G.

For some specific graphs, the modified log-Sobolev constant ρ(Q) and the spectral gap λ(Q) can
be explicitly calculated, such as the following examples:
Example B.10 (Hypercube (Gross, 1975)). Let X = {0, 1}d and Q be the rate matrix for which the
graph G(Q) is a hypercube, and for any two states x, y ∈ X, the rate Q(x, y) = 1 if x and y differ
in exactly one coordinate. Then the modified log-Sobolev constant ρ(Q) and the spectral gap λ(Q)
are given by

ρ(Q) = λ(Q) = 4,

which is dimensionless.
Example B.11 (Asymmetric Hypercube (Diaconis & Saloff-Coste, 1996)). Let X = {0, 1}d and Q
be the rate matrix for which the graph G(Q) is a hypercube, and for any two states x, y ∈ X, the rate
Q(x, y) = p if x and y differ in exactly one coordinate and x is the state with 0 in that coordinate,
and Q(x, y) = q = 1− p if with 1 in that coordinate. Then the modified log-Sobolev constant ρ(Q)
and the spectral gap λ(Q) are given by

ρ(Q) =
2(p− q)

pq(log p− log q)
, and λ(Q) =

1

pq
.

Further results on log-Sobolev inequalities related to finite-state Markov chains are beyond the scope
of this paper, and we refer the readers to (Stroock, 1993; Saloff-Coste, 1997; Bobkov & Ledoux,
1998; Lee & Yau, 1998; Goel, 2004; Ledoux, 2006) for more detail.

B.3 MIXING TIME

Definition B.12 (Mixing Time). We define the mixing time tmix(ϵ) of the continuous-time Markov
chain with rate matrix Q as the smallest time t such that starting from any initial distribution p0,
the KL divergence DKL(pt∥π) is less than ϵ, i.e.

tmix(ϵ) = inf

{
t ∈ R+

∣∣∣∣DKL(pt∥π) = DKL(e
−tQp0∥π) ≤ ϵ

}
.

Similarly, we define the mixing time tmix,TV(ϵ) as the smallest time t such that starting from any
initial distribution p0, the total variation distance TV(pt,π) is less than ϵ, i.e.

tmix,TV(ϵ) = inf

{
t ∈ R+

∣∣∣∣TV(pt,π) = TV(e−tQp0,π) ≤ ϵ
}
.

With a slight abuse of notation, we will also denote the e−1-mixing time as tmix = tmix,KL(e
−1)

and tmix,TV = tmix,TV(e
−1).

Proposition B.13. The mixing time tmix(ϵ) of the continuous-time Markov chain with rate matrix
Q is bounded by the modified log-Sobolev constant ρ(Q), i.e.

tmix(ϵ) ≲ ρ(Q)−1
(
log ϵ−1 + log log π−1

∗
)
,

And the mixing time tmix,TV(ϵ) is bounded by the spectral gap λ(Q), i.e.

tmix,TV(ϵ) ≲ λ(Q)−1
(
log ϵ−1 + log log π−1

∗
)
.
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Proof. Define π∗ = minx∈X π(x), we first bound DKL(p0∥π) as follows:

DKL(p0∥p∞) ≤
∑
x∈X

p0(x) log
p0(x)

π(x)
≤ log π−1

∗ , (B.5)

and thus by Theorem B.7, we have

DKL(pt∥π) ≤ DKL(p0∥π) exp (−ρ(Q)t) ≤ log π−1
∗ exp (−ρ(Q)t) . (B.6)

Therefore, by setting the right-hand side of (B.6) to be ϵ, we have the desired result for the mixing
time

tmix(ϵ) ≤
1

ρ(Q)

(
log ϵ−1 + log log π−1

∗
)
.

For the mixing time tmix,TV(ϵ), we use the Pinsker’s inequality to obtain:

TV(pt,π) ≤ 2
√
DKL(pt∥π) ≤ 2

√
log π−1

∗ exp (−ρ(Q)t) ,

and therefore,

tmix,TV(ϵ) ≲
1

ρ(Q)
log

(
ϵ−1

√
log π−1

∗

)
≲ 1

ρ(Q)

(
log ϵ−1 + log log π−1

∗
)
.

Corollary B.14. The e−1-mixing time tmix and tmix,TV of the continuous-time Markov chain with
rate matrix Q satisfy

tmix ≲ ρ(Q)−1 log log π−1
∗ , and tmix,TV ≲ λ(Q)−1 log log π−1

∗ ,

and thus tmix ≳ tmix,TV.

C PROOFS OF ERROR ANALYSIS IN SECTION 4.3

In this section, we provide the proof of the primary results in the main text and their sketches.

C.1 PROOF SKETCH

A general pipeline of the proofs of Theorem 4.7 and 4.9 is to decompose the KL divergence between
the target distribution and the distribution of generated sample as a summation of the truncation,
approximation, and discretization errors, and then bound each term separately, echoing that for the
continuous case in Section 2.3.

• Truncation Error: As in the continuous case, the truncation error is caused by the finite time
horizon of the forward process (2.7) and is thus bounded by the convergence rate of the con-
structed forward process. In our work, we use the modified log-Sobolev constant ρ(Q) to bound
the truncation error (cf. Definition B.6). As discussed in Appendix B, a lower bound on the
modified log-Sobolev constant ρ(Q) guarantees the exponential convergence of the forward pro-
cess (cf. Theorem B.7), which then implies the upper bound on the truncation error presented in
Proposition C.1.

• Discretization Error: In the τ -leaping algorithm, the discretization error is caused by the ap-
proximation of the backward process with a piecewise constant function, and should decrease as
the time step κ decreases. We first analyze the discretization error within one step (cf. Propo-
sition C.4) and then provide the overall discretization error in Proposition C.5, taking different
discretization scheme into consideration and deriving early stopping criteria. In the uniformiza-
tion algorithm, due to its exactness, the discretization error is zero.

• Approximation Error: The approximation error is caused by the estimation error of the score
function, and is bounded by certain error assumptions (cf. Assumption 4.6 for τ -leaping and
Assumption 4.6’ for uniformization) on the score function estimation in the training process.

Then in Appendix C.4, we first invoke the change of measure theorem 3.3 and obtain KL diver-
gence bounds for both algorithms (Theorem C.6 and C.7), and then provide the overall error bounds
thereafter.
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C.2 TRUNCATION ERROR

Theorem C.1 (Truncation Error). The forward process (2.7) converges to the uniform distribution
p∞ = 1/|X| exponentially fast in terms of the KL divergence, i.e.

DKL(pt∥p∞) = DKL

(
pt

∥∥∥ 1

|X|

)
≲ e−ρt log |X|,

where |X| is the size of the state space, and tmix is the mixing time of the continuous-time Markov
chain corresponding to the rate matrix Q defined in Definition B.12.

Proof. Since Q is symmetric, we have the stationary distribution π = 1/|X| and thus
DKL(pt∥p∞) = DKL(pt∥π), and π∗ = 1/|X|.
By Assumption 4.3 and Corollary B.14, we have

DKL(pt∥π) ≤ e−ρ(Q)tDKL(p0∥π) ≤ e−ρt log π−1
∗ ≤ e−ρt log |X|,

where the last inequality is by (B.5).

C.3 DISCRETIZATION ERROR

Denote the shorthand notation G(x; y) = x(log x − log y) − x; it is easy to check that G′(x; y) =
log x− log y.
Proposition C.2. For any y ∈ X, we have

|∂σG(µσ(y); µ̂
θ
⌊sn⌋(y))| ≲ (logC + log (1 ∨ (T − σ)) + logM)µσ(y)D

(
1 ∨ (T − σ)−2

)
.

Proof. By the chain rule, we have

∂σG(µσ(y); µ̂
θ
⌊sn⌋(y)) = G′(µσ(y); µ̂

θ
⌊sn⌋(y))∂σµσ(y) =

(
log µσ(y)− log µ̂θ

⌊sn⌋(y)
)
∂σµσ(y).

We first compute ∂σµσ(y) as

∂σµσ(y) = Q̃( ⃗xσ− , y)∂σ ⃗sσ( ⃗xσ− , y) = Q̃( ⃗xσ− , y)∂σ

(
⃗pσ(y)

⃗pσ(xσ−)

)
=Q̃( ⃗xσ− , y)

(
1

⃗pσ(xσ−)
∂σ ⃗pσ(y)−

⃗pσ(y)

⃗pσ(xσ−)2
∂σ ⃗pσ(xσ−)

)

=Q̃( ⃗xσ− , y)

− ⃗pσ(y)

⃗pσ(xσ−)

∑
y′∈X

⃗pσ(y
′)

⃗pσ(y)
Q(y, y′) +

⃗pσ(y)

⃗pσ(xσ−)

∑
y′∈X

⃗pσ(y
′)

⃗pσ(xσ−)
Q(xσ− , y′)


=µσ(y)

−∑
y′∈X

⃗sσ(y, y
′)Q(y, y′) +

∑
y′∈X

⃗sσ(xσ− , y′)Q(xσ− , y′)

 ,

by which we have

|∂σµσ(y)| ≲ µσ(y)

∑
y′∈X

(
1 ∨ (T − σ)−2

)
|Q(xσ− , y′)|

 ≲ µσ(y)D
(
1 ∨ (T − σ)−2

)
,

and thus∣∣∣∂σG(µσ(y); µ̂
θ
⌊sn⌋(y))

∣∣∣ ≤ ∣∣∣log µσ(y)− log µ̂θ
⌊sn⌋(y)

∣∣∣ |∂σµσ(y)|

≤
(
| log Q̃( ⃗xσ− , y)|+ | log ⃗sσ( ⃗xσ− , y)|+ | log Q̃( ⃗xs−n , y)|+ | log

⃗ŝ
θ

sn( ⃗xs−n , y)|
)
|∂σµσ(y)|

≲µσ(y)
(
logC + log

(
1 ∨ (T − σ)−1

)
+ logM

)
D
(
1 ∨ (T − σ)−2

)
.
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Proposition C.3. For any 0 < s < t ≤ T , we have∫ t

s

∫
X
µσ(y

′)ν(dy′)dσ ≲
(
1 ∨ (T − t)−1

)
D(t− s).

Proof. ∫ t

s

∫
X
µσ(y

′)ν(dy′)dσ =

∫ t

s

∫
X

⃗sσ( ⃗xσ− , y′)Q̃( ⃗xσ− , y′)ν(dy′)dσ

≲
(
1 ∨ (T − t)−1

) ∫ t

s

∫
X
Q̃(y, ⃗xσ−)ν(dy′)dσ

≲
(
1 ∨ (T − t)−1

) ∫ t

s

|Q( ⃗xσ− , ⃗xσ−)| dσ ≲
(
1 ∨ (T − t)−1

)
D(t− s).

(C.1)

Proposition C.4. For any y ∈ X, we have

E
[∣∣∣G(µs; µ̂

θ
⌊sn⌋(y))−G(µsn ; µ̂

θ
⌊s⌋(y))

∣∣∣]
≲
(
logC + log

(
1 ∨ (T − sn+1)

−1
)
+ logM

)
µσ(y)D(s− sn)

(
1 ∨ (T − sn+1)

−1−γ
)
.

Proof. Applying Theorem A.10 to the backward process (3.2), we have

G(µs(y); µ̂
θ
⌊sn⌋(y)) =G(µsn(y); µ̂

θ
⌊s⌋(y)) +

∫ s

sn

∂σG(µσ(y); µ̂
θ
⌊sn⌋(y))dσ

+

∫ s

sn

∫
X

(
G(µσ+(y); µ̂θ

⌊sn⌋(y))−G(µσ(y); µ̂
θ
⌊sn⌋(y))

)
N [µ](dσ, dy′),

where we adopt the notation µσ+(y) as the right limit of the càglàd process µσ(y), i.e. µσ+(y) =

⃗sσ( ⃗xσ, y)Q̃( ⃗xσ, y).

For the first term, we have by Proposition C.2 that∣∣∣∣∫ s

sn

∂σG(µσ(y); µ̂
θ
⌊sn⌋(y))dσ

∣∣∣∣ ≲ ∫ s

sn

∣∣∣∂σG(µσ(y); µ̂
θ
⌊sn⌋(y))

∣∣∣ dσ
≲
∫ s

sn

(
logC + log

(
1 ∨ (T − σ)−1

)
+ logM

)
µσ(y)D

(
1 ∨ (T − σ)−2

)
dσ

≲
(
logC + log

(
1 ∨ (T − sn+1)

−1
)
+ logM

)
µσ(y)D(s− sn)

(
1 ∨ (T − sn+1)

−1
)
.

For the second term, we have∣∣∣G(µσ+(y); µ̂θ
⌊sn⌋(y))−G(µσ(y); µ̂

θ
⌊sn⌋(y))

∣∣∣
=
∣∣∣G′(ξ; µ̂θ

⌊sn⌋(y))(µσ+(y)− µσ(y))
∣∣∣ = ∣∣∣(log ξ − log µ̂θ

⌊sn⌋(y))(µσ+(y)− µσ(y))
∣∣∣

≤
(
|log µσ+(y)|+ |log µσ(y)|+

∣∣∣log µ̂θ
⌊sn⌋(y)

∣∣∣) ∣∣∣∣µσ+(y)

µσ(y)
− 1

∣∣∣∣µσ(y)

≲
(
logC + log

(
1 ∨ (T − σ)−1

)
+ logM

) (
1 ∨ (T − σ)−γ

)
µσ(y),

where the first equality follows from the mean value theorem and the last inequality is by Assump-
tion 4.5.
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Therefore,

E
[∣∣∣G(µs; µ̂

θ
⌊sn⌋(y))−G(µsn ; µ̂

θ
⌊s⌋(y))

∣∣∣]
≤E

[∣∣∣∣∫ s

sn

∂σG(µσ(y); µ̂
θ
⌊sn⌋(y))dσ

∣∣∣∣]
+E

[∫ s

sn

∫
X

∣∣∣G(µσ+(y); µ̂θ
⌊sn⌋(y))−G(µσ(y); µ̂

θ
⌊sn⌋(y))

∣∣∣N [µ](dσ, dy′)

]
≲
(
logC + log

(
1 ∨ (T − sn+1)

−1
)
+ logM

)
µσ(y)D(s− sn)

(
1 ∨ (T − sn+1)

−1
)

+

∫ s

sn

∫
X

(
logC + log

(
1 ∨ (T − σ)−1

)
+ logM

)
µσ(y)

(
1 ∨ (T − σ)−γ

)
µσ(y

′)ν(dy′)dσ

≲
(
logC + log

(
1 ∨ (T − sn+1)

−1
)
+ logM

)
µσ(y)D(s− sn)

(
1 ∨ (T − sn+1)

−1
)

+
(
logC + log

(
1 ∨ (T − sn+1)

−1
)
+ logM

)
µσ(y)

(
1 ∨ (T − sn+1)

−1−γ
)
(s− sn)D

≲
(
logC + log

(
1 ∨ (T − sn+1)

−1
)
+ logM

)
µσ(y)D(s− sn)

(
1 ∨ (T − sn+1)

−1−γ
)
,

where the second to last inequality is by Proposition C.3.

Proposition C.5 (Discretization Error). The following bound holds∫ T−δ

0

∫
X

∣∣∣G(µs(y); µ̂
θ
⌊sn⌋(y))−G(µsn(y); µ̂

θ
⌊s⌋(y))

∣∣∣ ν(dy)ds
≲
{
D

2
κT, γ < 1,

D
2
κ
(
T + log2 δ−1

)
, γ = 1,

with N =

{
κ−1T, γ < 1

κ−1(T + log δ−1), γ = 1
steps, by taking γ < η ≲ 1− T−1 when γ < 1, and η = 1

when γ = 1. In particular, in the former case, early stopping at time T − δ is not necessary, i.e.
δ = 0.

Proof. We have by Proposition C.4 that∫ sn+1

sn

∫
X

∣∣∣G(µs(y); µ̂
θ
⌊sn⌋(y))−G(µsn(y); µ̂

θ
⌊s⌋(y))

∣∣∣ ν(dy)ds
≲
∫ sn+1

sn

∫
X
µσ(y)ν(dy)(

logC + log
(
1 ∨ (T − sn+1)

−1
)
+ logM

)
D(s− sn)

(
1 ∨ (T − sn+1)

−1−γ
)
ds

≲
(
logC + log

(
1 ∨ (T − sn+1)

−1
)
+ logM

)
D

2
(sn+1 − sn)2

(
1 ∨ (T − sn+1)

−1−γ
)
.

• Case 1: γ < η ≲ 1− T−1

The following bound holds∫ sn+1

sn

∫
X

∣∣∣G(µs(y); µ̂
θ
⌊sn⌋(y))−G(µsn(y); µ̂

θ
⌊s⌋(y))

∣∣∣ ν(dy)ds
≲
(
1 + log

(
1 ∨ (T − sn+1)

−1
))
D

2
κ(sn+1 − sn)

(
1 ∨ (T − sn+1)

−1−γ+η
)
,
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and thus, the following error
N−1∑
n=0

∫ sn+1

sn

∫
X

∣∣∣G(µs(y); µ̂
θ
⌊sn⌋(y))−G(µsn(y); µ̂

θ
⌊s⌋(y))

∣∣∣ ν(dy)ds
≲

N−1∑
n=0

(
1 + log

(
1 ∨ (T − sn+1)

−1
))
D

2
κ(sn+1 − sn)

(
1 ∨ (T − sn+1)

−1−γ+η
)

≲D2
κ

(
T +

∫ 1

δ

t−1−γ+η log t−1dt

)
≲ D

2
κ

(
T +

∫ δ−1

1

t−1−(η−γ) log tdt

)
≲D2

κ
(
T + δη−γ log δ−1

)
→ D

2
κT, as δ → 0,

is achievable with finite number of steps N , i.e.

N ≲
∫ T

δ

1

κ (1 ∧ tη)
dt ≲ κ−1T + κ−1

∫ 1

δ

t−ηdt ≲ κ−1

(
T +

1

1− η

)
≲ κ−1T,

where we take η ≲ 1− T−1.

• Case 2: γ = η = 1

We have the following bound∫ sn+1

sn

∫
X

∣∣∣G(µs(y); µ̂
θ
⌊sn⌋(y))−G(µsn(y); µ̂

θ
⌊s⌋(y))

∣∣∣ ν(dy)ds
≲
(
1 + log

(
1 ∨ (T − sn+1)

−1
))
D

2
κ(sn+1 − sn)

(
1 ∨ (T − sn+1)

−1
)
,

and similarly
N−1∑
n=0

∫ sn+1

sn

∫
X

∣∣∣G(µs(y); µ̂
θ
⌊sn⌋(y))−G(µsn(y); µ̂

θ
⌊s⌋(y))

∣∣∣ ν(dy)ds
≲

N−1∑
n=0

(
1 + log

(
1 ∨ (T − sn+1)

−1
))
D

2
κ(sn+1 − sn)

(
1 ∨ (T − sn+1)

−1
)

≲D2
κ

(
T +

∫ δ−1

1

t−1 log tdt

)
≲ D

2
κ
(
T + log2 δ−1

)
.

However, the number of steps N is now bounded by

N ≲
∫ T

δ

1

κ(1 ∧ t)
dt ≲ κ−1(T + log δ−1).

C.4 OVERALL ERROR BOUND

Theorem C.6. Let ⃗p0:T and q̂0:T be the path measures of the backward process with the stochastic
integral formulation (3.2) and the interpolating process (4.2) of τ -leaping algorithm (Algorithm (1)),
then it holds that

DKL( ⃗p0:T ∥q̂0:T ) ≤ DKL( ⃗p0∥q̂0)+E

[∫ T

0

∫
X

(
µs(y) log

µs(y)

µ̂θ
⌊s⌋(y)

− µs(y) + µ̂θ
⌊s⌋(y)

)
ν(dy)dt

]
,

(C.2)
where the expectation is taken w.r.t. paths generated by the backward process (3.2).

Proof. The result directly follows by the arguments in the proof of Corollary 3.4 in Appendix A.3
and invoking the change of measure formula (Theorem 3.3) w.r.t. the true intensity µs as in (3.2)
and the approximated intensity µ̂θ

⌊s⌋ as in (4.2), Proposition 4.1.
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Now, we are ready to present the proof of Theorem 4.7.

Proof of Theorem 4.7. We first rewrite the integral in (C.3) as∫ sn+1

sn

∫
X

(
µs(y) log

µs(y)

µ̂θ
⌊s⌋(y)

− µs(y) + µ̂θ
⌊s⌋(y)

)
ν(dy)ds

=

∫ sn+1

sn

∫
X

(
µsn(y) log

µsn(y)

µ̂θ
⌊sn⌋(y)

− µsn(y) + µ̂θ
⌊s⌋(y)

+G(µs(y); µ̂
θ
⌊sn⌋(y))−G(µsn(y); µ̂

θ
⌊s⌋(y))

)
ν(dy)ds.

Therefore, the overall error is bounded by

DKL( ⃗p0:T−δ∥q̂0:T−δ)

≲DKL( ⃗p0∥q̂0) + E

[∫ T−δ

0

∫
X

(
µsn(y) log

µsn(y)

µ̂θ
⌊sn⌋(y)

− µsn(y) + µ̂θ
⌊sn⌋(y)

)
ν(dy)dt

]

+

∫ sn+1

sn

∫
X

∣∣∣G(µs(y); µ̂
θ
⌊sn⌋(y))−G(µsn(y); µ̂

θ
⌊s⌋(y))

∣∣∣ ν(dy)ds
≲DKL(pT−δ∥p∞)

+E
[N−1∑

n=0

(sn+1 − sn)

∫
X

(
⃗ssn( ⃗xs−n , y) log

⃗ssn( ⃗xs−n , y)

⃗ŝθsn( ⃗xs−n , y)
− ⃗ssn( ⃗xs−n , y) +

⃗ŝθsn( ⃗xs−n , y)

)
Q̃( ⃗xs−n , y)ν(dy)

]

+

N−1∑
n=0

(logC + logM)D
2
κ(sn+1 − sn)

≲
{
exp(−ρT ) log |X|+ ϵ+D

2
κT, γ < 1,

exp(−ρT ) log |X|+ ϵ+D
2
κ
(
T + log2 δ−1

)
, γ = 1,

where in the last inequality we used results for the first term (Truncation error, cf. Theorem C.1),
the second term (Approximation error, cf. Assumption 4.6) and the third term (Discretization error,
cf. Proposition C.5).

By taking

T = O

(
log
(
ϵ−1 log |X|

)
ρ

)
, κ = O

(
ϵρ

D
2
log (ϵ−1 log |X|)

)
,

deploying the time discretization scheme with γ < η ≲ 1 − T−1 when γ < 1, and η = 1 when
γ = 1, and performing early stopping as

δ =

{
0, γ < 1,

Ω
(
exp(−

√
T )
)
, γ = 1,

we have DKL( ⃗pT−δ∥q̂T ) ≤ DKL( ⃗p0:T−δ∥q̂0:T−δ) ≲ ϵ with

N ≲ κ−1T = O

(
D

2
log2

(
ϵ−1 log |X|

)
ϵρ2

)
steps.
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Theorem C.7. Let ⃗p0:T and q̂0:T be the path measures of the backward process with the stochas-
tic integral formulation (3.2) and the approximated backward process (4.4) of the uniformization
algorithm (Algorithm (2)), then it holds that

DKL( ⃗p0:T ∥q0:T ) ≤ DKL( ⃗p0∥q0) + E

[∫ T

0

∫
X

(
µs(y) log

µs(y)

µ̂θ
s(y)

− µs(y) + µ̂θ
s(y)

)
ν(dy)dt

]
,

(C.3)
where the expectation is taken w.r.t. paths generated by the backward process (3.2).

Proof. The result directly follows by the arguments in the proof of Corollary 3.4 in Appendix A.3
and invoking the change of measure formula (Theorem 3.3) w.r.t. the true intensity µs as in (3.2)
and the approximated intensity µ̂θ

s as in (4.4), Proposition 4.2.

Proof of Theorem 4.9. Due to the equivalence of the stochastic integral formulation (4.4) of the
uniformization scheme and the approximate backward process (A.12) established in Proposition 4.2,
the error for the uniformization scheme is directly bounded by the error (C.3) in Corollary 3.4, i.e.

DKL( ⃗p0:T−δ∥q0:T−δ)

≤DKL( ⃗p0∥q0) + E

[∫ T−δ

0

∫
X

(
µs(y) log

µs(y)

µ̂θ
s(y)

− µs(y) + µ̂θ
s(y)

)
ν(dy)dt

]
≲DKL(pT ∥p∞)

+E

[∫ T−δ

0

∫
X

(
⃗ss( ⃗xs− , y) log

⃗ss( ⃗xs− , y)

⃗ŝθs( ⃗xs− , y)
− ⃗ss( ⃗xs− , y) + ⃗ŝθs( ⃗xs− , y)

)
Q̃( ⃗xs− , y)ν(dy)ds

]
≲|X| exp(−ρT ) + ϵ.

The expectation of the number of steps N is bounded by

E[N ] = E

[
B−1∑
b=0

P
(
λsb+1

(sb+1 − sb)
)]

=

B−1∑
b=0

λsb+1
(sb+1 − sb)

≲
B−1∑
b=0

D(1 ∨ (T − sb+1))
−1(sb+1 − sb)

≲D
(
T +

∫ 1

δ

t−1dt

)
= D(T + log δ−1).

By taking

T = O

(
log
(
ϵ−1 log |X|

)
ρ

)
, δ = Ω(exp(−T ))

we have DKL( ⃗pT−δ∥qT−δ) ≤ DKL( ⃗p0:T−δ∥q0:T−δ) ≲ ϵ with

E[N ] = O

(
D log

(
ϵ−1 log |X|

)
ρ

)
steps.
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