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Abstract

We introduce DafnyBench, the largest benchmark of its kind for training and
evaluating machine learning systems for formal software verification. We test the
ability of LLMs such as GPT-4 and Claude 3 to auto-generate enough annotations
for the Dafny formal verification engine to successfully verify over 750 programs
with about 53,000 lines of code. The best model and prompting scheme achieved
68% success rate, and we quantify how this rate improves when retrying with error
message feedback and how it deteriorates with the amount of required code and
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annotations. We hope that DafnyBench will enable rapid improvements from this
baseline as LLMs and verification techniques grow in quality.

1 Introduction

Rapidly improving Large Language Models (LLMs) Bubeck et al. (2023); Anthropic (2024); Team
et al. (2023) are helping accelerate software development through co-pilots and other program
synthesis tools. But how can we ensure that LLM-generated code meets our specifications and
reliably does precisely what it is supposed to do? Indeed, this remains a persistent problem even
with human-written code: major code-testing efforts failed to prevent e.g. bugs causing an Ariane-V
rocket explosion European Space Agency (1996) and embarrassing security vulnerabilities in ssh
Heartbleed (2024) and the Bash shell Wikipedia contributors (2024b). The latter was built into the
Unix operating system for 25 years before being discovered.

Although formal verification can guarantee perfect reliability, providing rigorous mathematical proof
that software meets specification, it has yet to gain widespread adoption because it is costly. Formally
verifying code is often a significant burden on the developer (Huang et al., 2024; Orenes-Vera et al.,
2023). Moreover, existing formal-verification tools tend to involve a major learning curve above and
beyond just learning to code, greatly reducing the pool of people able to do this work.

Machine learning methods have the potential to minimize a common pain point of formal methods,
i.e., writing and verifying formal specifications. There is a growing body of work that demonstrates
the effectiveness of LLMs on the analogous problem of automated theorem proving. In this related
setting, AI produces formal proofs not about code but about mathematical theorems. Fueled by
the advent of benchmarks totaling over 100,000 theorems, AI tools have during the past few years
improved their proof success fraction to over 82% (Polu & Sutskever, 2020; Lample et al., 2022).

Unfortunately, formal verification sorely lacks correspondingly large benchmarks: the largest of
their kind are Clover (Sun et al., 2024) and dafny-synthesis (Misu et al., 2024), containing 66 and
153 programs, respectively. There is room for expanding not only their size, but also their level of
difficulty: For example, Clover is limited to single-function programs, and sometimes the formal
specification for the program directly repeats the implementation of the algorithm (see Appendix
G). To support automation of formal verification, the goal of the present paper is to provide such
a benchmark expansion. We do so by assembling a suite of formally verified programs written in
Dafny, a formal verification language that was developed for easy adoption by programmers due to
its similarity with popular imperative programming languages such as Python and C++ (Leino,
2023). In order for formal verification to succeed, most of these programs require supplementary
text constituting “annotations” to the automated theorem prover.

The rest of this paper is organized as follows. We summarize related work in Section 2, describe our
benchmark construction in Section 3, and quantify the ability of current LLMs to solve benchmark
verification tasks in Section 4. We summarize our results and discuss promising opportunities for
further work in Section 5 . We provide further details on the benchmark construction and evaluation
in appendices.
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2 Related Work

The verification of software systems relies on a variety of approaches and frameworks. For proving
full correctness, Hoare logic represents one of the most widespread formal frameworks (Huang et al.,
2024). To prove the full correctness of a program using Hoare logic, one must give a specification for
a program. Consider the program LinearSearch(A, P), which finds the first element in the array
A with some property P. The specification for this program consists of an optional precondition–
which is a property of x in its original state, at the time of the function call– and a postcondition,
which expresses a property of the program’s result. In Figure 1, we define multiple postconditions
for LinearSearch by using ensures statements on lines 2-4: (line 2) the returned index value from
this function will be within the array bounds of A, (line 3) the value in A[n] has the desired property
P and otherwise n is set to the length of A, (line 4) n is the first index at which P applies in the
array A. We call this combination of precondition(s) and postcondition(s) the specification of the
program. Verifying the program means proving that the implementation of the program matches
its specification. Leino et al have designed a language for writing formally verifiable code, called
Dafny (Leino, 2023), and this is the language in which we have written LinearSearch in Figure 1.
In Dafny, a programmer declares specifications for methods using ensures and requires clauses.
Programs in Dafny will only compile if an underlying SMT solver can find a proof showing that
the program implementation matches its specification. Often the SMT solver requires additional
annotations, like loop invariants and assert statements in the body of the program, to find a proof
linking the program implementation to its specification.

method LinearSearch <T >(a: array <T>, P: T -> bool) returns (n: int)
ensures 0 <= n <= a. Length
ensures n == a. Length || P(a[n])
ensures forall i :: 0 <= i < n ==> !P(a[i])

{
n := 0;
while n != a. Length

invariant 0 <= n <= a. Length
invariant forall i :: 0 <= i < n ==> !P(a[i])

{
if P(a[n]) {

return ;
}
n := n + 1;

}
}

Figure 1: An example ground_truth program that is fully verified with Dafny. To create the
fill_verification_conditions task, we would remove the invariant lines from the program
above.

As summarized in Table 1 below, there is a striking lack of training data for formal verification:
while there are hundreds of thousands of training examples for proving mathematical theorems
and over ten thousand training examples for synthesizing programs, there is far less training
data for formal verification — for example, there are only 66 + 153 = 219 for proving program
correctness in the Dafny language. This motivates our work in the current paper to expand
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the benchmarks from Clover and dafny-synthesis and build DafnyBench. Mathematical theorem
proving datasets focus on logical reasoning, but are disconnected from real-world programming
applications. DafnyBench, as a formal verification benchmark, tests a model’s capabilities in both
formal reasoning and programming. Program synthesis benchmarks usually ask a model to generate
code from specifications or descriptions of what the code is supposed to achieve, but they lack the
correctness guarantee that verifies the generated code is correct. In contrast, DafnyBench asks a
model to generate annotations from specifications and code, where “annotations” are supplementary
text that can help Dafny verifier prove that a property claimed to be true is indeed true.

Table 1: Summary of popular machine-learning benchmark datasets for proving mathematical
theorems, synthesizing programs, and formally verifying programs. Size is measured by the number
of samples in each dataset. In the formal reasoning datasets, each sample is usually a math problem
or a theorem. In the program synthesis and verified software programming benchmarks, each sample
corresponds to a program.

Category Dataset Size
CoqGym (Yang & Deng, 2019) 71,000 proofs

Mathematical LeanDojo (Yang et al., 2023) 98,734 proofs

theorem proving PISA (pis, 2021) 138,000 proofs
Natural Proofs (Welleck et al., 2021) 15,000 proofs
Archive of Formal Proofs (Blanchette et al., 2015) 1 million lines

of code
APPS (Hendrycks et al., 2021) 10,000 programs

Unverified HumanEvalX (Zheng et al., 2023b; Chen et al., 2021) 165 programs

program synthesis MBPP (Austin et al., 2021) 974 programs
SWEBench (Jimenez et al., 2023) 2,294 programs
LiveCodeBench (Jain et al., 2024) grows weekly

Formal software Clover (Sun et al., 2024) 66 programs
verification Dafny-synthesis (Misu et al., 2024) 153 programs

The 66 programs in the Clover benchmark are human-written. In contrast, dafny-synthesis translates
153 MBPP problems from Python to Dafny using GPT-4. While this method is more efficient than
manual translation, it could potentially skew the distribution of represented problems away from
real-world Dafny problems that may be too hard for GPT-4 to verify on its own (Misu et al., 2024).
Our dataset counterbalances this potentially skewed distribution by introducing problems verified
by human programmers on GitHub.

Clover proposes the most sophisticated benchmark evaluation strategy to date for formally verifiable
software: the authors suggest a six-way consistency check between code, docstrings, and annotations.
We do not yet implement the full Clover evaluation scheme in DafnyBench, and instead deem a
benchmark program “solved” if a model can make it pass the Dafny verifier without modifying the
requires and ensures statements in the program and without using {:verify false} or assume
false (see Appendix F for further details).
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3 DafnyBench Construction

3.1 Sourcing Ground Truth Programs

In total, our DafnyBench benchmark contains 782 ground_truth stand-alone Dafny programs that
compile. These problems come from the following sources:

• GitHub Scrape: We scraped all publicly available Dafny files on GitHub published on the
before the end of 2023. The relevant files were returned from the GitHub API using the
language:Dafny search command. We adapted a deduplication script from (Mou et al.,
2023) to retain a unique set of scraped Dafny files from Github. The de-duplication process
reduced the number of .dfy files from ∼15,000 to ∼5,000. We then attempted to verify
each of these remaining files using the dafny verify command with a local installation
of Dafny 4.3.0, and removed any files that did not verify. At this stage, we removed all of
the files from the Clover repository Sun et al. (2024), which had already been formatted
as benchmark files. This left 1,112 files. We found that 374 of these files lacked ensures
statements, and 459 of lacked assert and invariant clauses. We removed the union of
these sets, which left us with 556 ground_truth files. Out of these files, 113 verify without
any compiler annotations. To mitigate data contamination, models run on our benchmark
should ideally not be trained on data from the repositories listed in Appendix E.

• Clover: We added 62 ground truth textbook Dafny programs provided by the Clover
dataset (Sun et al., 2024). We formatted these to fit our benchmark style and removed their
compiler annotations. Out of these files, 23 verify without any compiler annotations.

• Dafny-synthesis: Finally, we included 164 Dafny programs provided by the dafny-synthesis
benchmark. These problems have been translated from the MBPP benchmark (Misu et al.,
2024). Out of these files, 72 verify without any compiler annotations.

The ground_truth programs in our dataset have on average 2.04 methods, 0.98 functions, and 1.31
lemmas. This places the mean complexity of our examples at a level higher than Clover alone, which
has only one stand-alone method per example.

3.2 Task Design: Fill Annotations

DafnyBench evaluates LLMs on the fill_annotations task. For this task, we took a ground_truth
program, removed all of its annotations (i.e., all of the assert and invariant statements in the
body of the code), and asked LLM to fill annotations back in so that the resulting program could be
verified with Dafny.

We do not demarcate from where these annotations have been removed, i.e., we do not insert /*
TODO */ after we remove each annotation, which would make the task easier and not reflective of
models utility in real-world use cases.

In the context of our running example of the LinearSearch program from Figure 1, completing the
fill_annotations task would mean adding back the loop invariants– or some equivalent phrasing
of them– on lines 8 and 9. Without these loop invariants, the program will not compile because
Dafny cannot find a proof that it matches its specification.
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(a) (b) (c)

(d) (e)

Figure 2: Distributions of method (a), function (b), lemma (c), character (d), annotation character
(e) counts in DafnyBench.

Evaluation Metric An LLM’s attempt to fill annotations back in for a test program is counted
as a success if all following conditions are satisfied: 1) The reconstructed program is verified with
Dafny; 2) LLM preserves all preconditions (requires statements) and postconditions (ensures
statements); and 3) LLM does not use {:verify false} or {assume false} to “cheat.”

4 Experiments

In this section, we report success rates for different models on the fill_annotations task, as well
as provide some insight into current LLMs’ capabilities at writing annotations for formal verification.

4.1 Prompts & Hyperparameters

We tried to keep prompts and hyperparameters mostly the same across models in order to reduce the
difference between model performances that is caused by hyperparameters. However, the prompts
are not fully identical. For example, when we ask LLM to simply return the annotations-filled
program without any explanation, Claude 3 tends to add explanations that interfere with Dafny
compilation. Thus, we had to adjust some prompts slightly to fit each model’s peculiarities.

For hyperparameters, we set max_tokens = 4096, which corresponds to the lowest max output token
limit among all the evaluated models, and we set temperature = 0.3. We gave each model up to
n = 10 attempts at a given file. If it succeeded on an attempt before the nth, it would be early
stopped. If the model failed on any of the intermediate attempts, it received the Dafny error message
and was asked to fill in the annotations again with the error message taken into consideration. If it
failed on all n attempts, it was considered to fail on that specific test program.
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Figure 3: Overview of evaluating LLM on a DafnyBench test program.

4.2 Basic Results

We tested GPT-4o, GPT-4 Turbo OpenAI et al. (2024), GPT-3.5 Turbo Brown et al. (2020), Claude
3 Opus Anthropic (2024), and CodeLlama-7b-Instruct-hf hug (2022) on the 782-program benchmark.
Table 2 shows that Claude 3 Opus performed best, achieving a success rate ∼ 68%.

4.3 Difficulty Utilizing Dafny Error Messages

Figure 4 shows how the cumulative success rate improved with more attempts n. We see that
the best models succeeded on the first try about 54%, with rapidly diminishing returns after that,
approaching a plateau about 65% for n ∼ 5. This suggests that the LLMs are not great at taking
Dafny error messages into consideration, or struggle to cope with the underlying task.
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Model % Success
No LLM 26.9
GPT-3.5 Turbo 44.0 ± 1.8
GPT-4 Turbo 59.8 ± 1.8
GPT-4o 59.3 ± 1.8
Claude 3 Opus 67.8 ± 1.7
CodeLlama-7b-Instruct-hf 28.0 ± 1.6

Table 2: Models’ success rates at writing
annotations for DafnyBench, with n = 10
attempts given. Dafny succeeds in auto-
verifying some programs even without an-
notations, corresponding to the “No LLM”
26.9% success rate baseline.

Figure 4: Success rate vs. number of
attempts given.

4.4 Difficulty Grows with Program Size & Annotation Quantity

Figure 5a show that the success rate drops with program size. An obvious explanation could be
that there is more to verify and more annotations needed. Also, as a program gets longer, there
may be more dependencies among variables, functions, methods, and classes, increasing the overall
verification difficulty level.

Figure 5b shows that the success rate drops with the annotation quantity, defined as the number
of characters in the lines of compiler annotations. In other words, the success rate drops with the
amount of work that the LLM needs to do (the amount of text that it needs to insert in the right
places).

4.5 Models’ Common Failure Types

To analyze where LLMs failed on the benchmark, we categorized failures into nine types, including
verification logic error, code logic error, type error, resolution error, syntax issue, altered specification,
timeout, trivial verification, and others. For a test program that a model failed at, we: 1) checked
for timeout, cheating by altering specification, and cheating by trivial verification; and 2) passed
Dafny error message from the failed program to Claude and asked it to classify the failure type.
Table 3 explains each failure type, and Figure 6 gives by-model statistics of failure types.

5 Discussion & Conclusions

We have assembled the largest machine learning benchmark to date for formal software verification and
made it publicly available on GitHub at https://anonymous.4open.science/r/DafnyBench-839D.

5.1 Opportunities for Larger Benchmarks

It will be valuable to further expand formal verification benchmarks, which still remain more than
two orders of magnitude smaller than corresponding benchmarks for mathematical theorem proving.
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(a) (b)

Figure 5: Mean success rate of each bin vs. program length (a), and mean success rate
of each bin vs. annotation quantity (b). The vertical lines indicate the bin boundaries used,
where the bins have an almost uniform distribution of the programs. Note that the bins are different
for the two metrics. For better visual clarity, the scales are adjusted for both plots and their x-axes
do not start at 0 character.

Table 3: Examples of failure types. Note that the examples are samples, not a complete list, for
each failure type.

Failure Type Examples
Code logic error Index out of range / Target object might be null
Verification logic error Cannot prove termination / Assertion might not hold
Syntax issue lbrace/rbrace expected / Semicolon expected / Unresolved identifier
Type error Value does not satisfy the subset constraints of ’nat’
Resolution error Boogie program had... resolution errors
Timeout Verification timeout
Trivial verification Cheating by using {:verify false} or assume false
Altered specification Cheating by altering provided specification
Other Failure type not belonging to any listed category above

One convenient way to expand the number of available problems may involve incorporating Dafny
programs from GitHub that have dependencies spread across multiple files (while DafnyBench
encompasses increasingly complex multi-step programs, its programs each fit in a single file, avoiding
the intricacies associated with distributed files or the integration of external libraries).

Perhaps models that perform especially well on this initial benchmark can later be used to expand
it by translating existing Python benchmark problems into Dafny, Rust Klabnik & Carol Nichols
(2021) or other popular formal verification languages.
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Figure 6: Counts of failures by failure type and by model. Note that a model could have
multiple failures for a single test program (for example, it might have both verification logic error
and syntax issue). Also note that the closed-source models had most of their failures at verification
logic, while the open-source model had most of its failures at syntax issues and cheating by altering
specification.

A subset of the programs we scraped from GitHub do not have appropriate docstrings. By building
a benchmark with better code documentation, models may be able to leverage helpful contextual
information to better constructing verification annotations.

5.2 Benchmark Evaluation Limitations

Data contamination emerges as a potentially significant limitation for evaluating LLMs on Dafny-
Bench. Scraping data from platforms such as GitHub introduces risks of leveraging previous models’
training data into the benchmark evaluation, potentially inflating the abilities of certain models. To
help relieve this concern, future work can augment the programs in DafnyBench by doing program
transformations (e.g., by changing variable names in the programs, adding spurious code blocks,
and changing order of lines that do not depend on each other), or expand the dataset by asking
LLMs that are good at Dafny or fine-tuned on datasets like DafnyBench to generate synthetic data.

Another limitation emerges in that DafnyBench does not assess a model’s competence in translating
natural language into concise formal specifications. Arguably, this conversion is a demanding and
crucial skill we seek from language models: the capacity to validate, beyond merely verifying code.
The pivotal question is whether a model can assist in identifying the essential properties an algorithm
must fulfill. This provides an exciting frontier for future work, which we begin to brainstorm in
Appendix B.

5.3 Opportunities for Improved LLM Results

We evaluated the models with a fixed temperature setting and a max output token limit of 4096,
and we used prompts that were manually but not very systematically tuned for effectiveness (see
Appendix A) — all of these choices probably leave room for improvement.
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We do not yet provide an official training dataset or models custom-trained to do well on the
DafnyBench evaluation set. However, we do provide the full json file produced by the GitHub scrape,
and we separately provide the names of the files we use for the evaluation benchmark. Hence, it is
possible for researchers to use files from the Github scrape that are not used in the benchmark as
training data, though we cannot at this time provide strong guarantees on similarity between such
training problems and the benchmark problems.

We also see opportunities for LLM-related innovation on the algorithmic side: out-of-the-box LLMs
provide a floor but not a ceiling for possible performance on this benchmark. For example, fine-tuning
or search-based inference-time algorithms might boost models’ performances on this benchmark
(Brandfonbrener et al., 2023).

5.4 The Potential of Better LLM-Powered Verifiers

LLMs also have potential to improve formal verification in more profound ways than mentioned
above, when used in combination with other AI tools. For example, they can help automate the
identification of sub-goals and annotations, reducing the search space for automated theorem provers
and SAT solvers. A software developer is likely able to specify the high level assurance properties of
a piece of code, but may lack familiarity with the complexities of proof sub-goals and annotations.
LLMs offer a way to bridge this gap between software developers and formal verification.

Bigger, more general benchmarks can be used to train LLMs to specify sub-goals and annotations
in formats most useful to the presently available provers and solvers. Benchmarks covering broad
ground, from cryptography, lambda calculus, embedded systems, and avionics, in a variety of widely
used programming languages suitable for verification, will help create LLMs that can take real-world
software, automatically process and serve it to verification tools, and inform the developer in near
real time about the correctness of the code. The problem is analogous to that solved by existing
automated theorem provers and model checkers in the domain of mathematics. For a survey on the
application of deep learning to automated theorem proving, see Li et al. (2024).

For further discussion on LLM’s potential for auto-verifying program synthesis, see Appendix C.
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A Prompt Engineering for Annotation Reconstruction

We based our prompts on the prompts used in the Clover benchmark (Sun et al., 2024), one of
the previously largest such benchmarks, since they provide a fairly rigorous precedent. We tried
to keep prompts mostly the same across models in order to reduce the difference between model
performances that is caused by prompts. However, the prompts are not fully identical. For example,
when we ask LLM to simply return the annotations-filled program without any explanation, Claude
3 tends to add explanations that interfere with Dafny compilation. Thus, we had to adjust some
prompts slightly to fit each model’s peculiarities.

A.1 GPT Model Famly Prompts

SYSTEM_PROMPT = ‘‘You are an expert in Dafny. You will be given tasks dealing
with Dafny programs including precise annotations.’’

USER_PROMPT = ‘‘Given a Dafny program with function signature, preconditions,
postconditions, and code, but with annotations missing.
Please return a complete Dafny program with the strongest
possible annotations (loop invariants, assert statements,
etc.) filled back in. Do not explain. Please use exactly the
same function signature, preconditions, and postconditions.
Do not ever modify the given lines. Below is the program:’’

A.2 Claude 3 Opus Prompts

SYSTEM_PROMPT = ‘‘You are an expert in Dafny. You will be given tasks dealing
with Dafny programs including precise annotations. You should
only return code body in all circumstances. No text is allowed.’’
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USER_PROMPT = ‘‘Given a Dafny program with function signature, preconditions,
postconditions, and code, but with annotations missing.
Please return a complete Dafny program with the strongest
possible annotation (loop invariants, assert statements,
etc.) filled back in. Do not explain or output any text. If
you have to explain, put all explanations in comments form.
There should only be code body in your output. Please use
exactly the same function signature, preconditions, and
postconditions. Do not ever modify the given lines. Below
is the program:\n‘‘‘dafny\n’’

A.3 CodeLlama-7b-Instruct-hf Prompts

The prompts for CodeLlama-7b-Instruct-hf are the same as those in A.2.

B Proposals for Evaluating Strength of Generated Specifications

The evaluation of models’ capability to generate formal specifications might be enhanced by integrat-
ing the process with the creation of positive and negative test cases for each Dafny implementation.
This approach proposes a reward system where models are evaluated based on the number of positive
test cases their formal specifications support and the number of negative test cases they successfully
reject. However, this method introduces a new challenge: ensuring the test cases accurately reflect
the comprehensive meaning intended in the natural language descriptions. The consistency and
validity of these test cases become critical, raising questions about the methods used to generate
and verify them.

C Further Discussion

C.1 The Potential of Auto-Verifying Program Synthesis

Above we discussed the challenge of verifying existing pre-programs. Another potential of LLMs is
to use program-synthesis techniques that produce both programs and proofs of their correctness,
all at the same time. This makes intuitive sense, since when a human programmer writes code,
they typically have an informal proof in their head for why this code is correct. In other words, in
addition to bridging the gap from low level implementation to high level specification in the upward
direction, LLMs can offer assistance in generating provably correct low level code from high level
specifications via program synthesis.

Current approaches to program synthesis enable engineers to encode a desired specification in a high
level language, and then through a (hopefully) verified correct compiler generate correct low level
code in a language like VHDL Committee & Subcommittee (2019) or Verilog Thomas & Moorby
(2008) for hardware synthesis. Program synthesis is limited by the need for a special purpose
language or compiler to be constructed and verified correct in its own right. For example, ReWire, a
domain specific language defined as a subset of Haskell Procter et al. (2015), was manually verified
correct using the Coq Interactive Theorem Prover. In order to add a new high-to-low path, a new
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language or compiler will need to be defined and verified. If an engineer needs to synthesize correct
Verilog rather than VHDL, they would likely need to first learn Caisson Li et al. (2011).

LLMs offer a way to generalize this approach. Starting with a high level language, an engineer
might be able to specify a system and then leverage a LLM to generate low level code with the
corresponding loop invariants, weakest pre-conditions, strongest post-conditions, etc, included. Early
results indicate that an LLM that is able to converse with a human when producing a program
can reduce the error rate against a simple programming benchmark by half Austin et al. (2021).
If instead of receiving feedback from a human, the LLM were to interact with a suite of formal
verification tools, we expect further improvements. The LLM should be capable of generating code
that is appropriately annotated for theorem proving, which is exactly the skill assessed by test
benches like that described here.

D The Minhash Deduplication Algorithm

We can think about deduplicating a set of files by finding groups of “similar”files and then choosing
only one file representative from each group to form our final deduplicated set of files. To do this,
we can use the Jaccard similarity metric to decide whether one document is a duplicate of another.

The Jaccard similarity metric provides a way to quantify the similarity of two sets. It is defined as
(Wikipedia contributors, 2024c):

J(A, B) = |A ∩ B|
|A ∪ B|

In the application to code files, we could consider each file to be a set of n-grams, where an n-gram
is defined as a sequence of n adjacent symbols in a particular order (Wikipedia contributors, 2024a),
and then apply the Jaccard score as a similarity metric for our files. To directly calculate this
Jaccard score, we would need to run string comparison on every n-gram, which would have time
complexity O

(
nm2)

if we have n n-grams each with max length m characters. This turns out to be
an inefficient method for representing each code file as a set. Instead, the minhash deduplication
algorithm approximates the Jaccard similarity between two documents by shingling the documents
and comparing the minhash representation of each set of shingles (i.e. we compare fingerprints
of documents instead of full documents). The minhash representation of a document is a way to
represent a text document as a set of numbers that is faithful to the structure of its content but
with a fixed set size that is smaller than the total number of n-grams in the document (i.e. the
minhash representation of the document is a form of numerical fingerprint of the document). In
Figure 7 below, we provide the pseudocode for the minhash algorithm used, based entirely on the
script in (Mou et al., 2023):

Note that the probability two files have the same min hash value under the same hash function is
equivalent to their Jaccard similarity. Concretely, for file A and file B:

Pr [ min hi(A) = min hi(B) ] = J(A, B)

where min hi() denotes taking the minimum hash value under hash function hi. This makes
sense because, assuming negligible hash collision, Pr [min hi(A) = min hi(B)] is equivalent to the
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function minhash_deduplication (documents , num_permutations , threshold ):
# Preprocess the documents
for each document in documents :

tokenize the document into n- grams ( shingles )
hash each n-gram using a hash function (e.g., xxHash or SHA -1)
store the hashed n- grams in a set

# Generate permutations
for i from 1 to num_permutations :

generate random coefficients a and b
create a permutation function : (a * x + b) % prime_modulus

# Create minhash signatures
signatures = []
for each document in documents :

signature = []
for each permutation function :

min_hash = INFINITY
for each hashed n-gram in the document :

permuted_hash = apply permutation function to hashed n-gram
min_hash = min(min_hash , permuted_hash )

append min_hash to signature
append signature to signatures

# Perform Locality - Sensitive Hashing (LSH)
# We use 250 permutations , so to achieve Jaccard similarity threshold of 0.5
# We really only need one band (i.e. one hash table )
num_bands = choose number of bands
rows_per_band = num_permutations / num_bands
candidate_pairs = []
for each band:

create an empty hash table
for each document signature :

band_signature = subset of signature for the current band
hash_bucket = hash( band_signature )
add document to the corresponding hash bucket

for each hash bucket :
if number of documents in the bucket > 1:

generate all pairs of documents in the bucket
add pairs to candidate_pairs

# Use a union -find datastructure to track groups of duplicates
duplicates = UnionFind ()
for each band:

for each row in hashtable :
for each hash_bucket :

if size( hash_bucket ) <= 1:
continue

else:
cluster_id = min( hash_bucket )
for x in hash_bucket :

duplicates . union (x, cluster_id )

# Perform deduplication
deduplicated_documents = []
for each document in documents :

if duplicates . find_root ( document ) = document :
add document to deduplicated_documents

return deduplicated_documents

Figure 7: Pseudocode for the minhash deduplication algorithm (continued).
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probability that the first n-gram hash of A under hi is equal to the first n-gram hash of B under hi.
If hi is a good hash function, then it uniformly distributes the hash values of the original n-gram
hashes over the range of hi. Let c denote the number of n-grams with equivalent hashes; let a denote
the number of n-grams from A with smaller hash values than the hash value of corresponding n-gram
from B; let b denote the reverse of the previous category. Then, Pr [min hi(A) = min hi(B)] = c

a+b+c ,
given the uniformity of h1. Note that c

a+b+c = |A∩B|
|A∪B| = J(A, B).

E Repositories of Scraped Dafny Code

We provide a full list of all repositories whose data we used in the scraped portion of DafnyBench
in Tables 4, 5, 6. When reporting the license information, “Renamed so N/A” implies that the
original repository we scraped in December 2023 no longer exists under that name. Otherwise, the
repositories have either Microsoft open-source licenses, MIT licenses, GNU General Public License
v3.0 licenses, Creative Commons Zero v1.0 Universal, Apache 2.0 licenses, or “Other” (which is
secretly an MIT License in a strange format, which has been checked manually). In light of this,
we release our derivative DafnyBench repository under an Apache 2.0 license and a GNU General
Public License v3.0. We note explicitly here that all files from repositories with the Apache 2.0
license have been modified from their original form.

F Dafny Verification Examples

We take one example test program from DafnyBench, and consider four possible results for the
corresponding LLM-reconstructed program: successfully verifies, fails to verify, cheats by including
assume false, and cheats by including {:verify false}. The last three cases are all considered a
fail by the DafnyBench evaluation metric.

F.1 Successful Example

Figure 8 shows a Dafny program that is considered to have successfully verified without cheating.

Dafny verifier message: Dafny program verifier finished with 3 verified, 0 errors.

F.2 Failed Example

Figure 9 shows a Dafny program that fails to be verified.

Dafny verifier message: (20,11): Error: index out of range. (30,4): Error: a postcondition could
not be proved on this return path. (11,28): Related location: this is the postcondition that could
not be proved. Dafny program verifier finished with 2 verified, 2 errors.

F.3 Cheat Example

Figure 10 shows that a Dafny program cheats by including assume false, which DafnyBench
evaluation would count as a fail.

Dafny verifier message: Dafny program verifier finished with 3 verified, 0 errors.
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Table 4: Repositories from which DafnyBench utilizes scraped code (no particular order).

Repository Name License
dafl No license provided
Dafny-Grind75 No license provided
feup-mfes MIT License
Dafny GNU General Public License v3.0
nitwit MIT License
Dafny-experiences No license provided
Formal_Verification_With_Dafny No license provided
SENG2011 No license provided
M2 No license provided
assertive-programming-assignment-1 No license provided
t1_MF No license provided
dafny-exercise Other
dafny-learn No license provided
software-specification-p1 No license provided
FMSE-2022-2023 The Unlicense
fv2020-tms No license provided
type-definition No license provided
laboratory No license provided
dafny GNU General Public License v3.0
TFG GNU General Public License v3.0
SiLemma MIT License
dafny-training No license provided
FormalMethods No license provided
dafny_misc MIT License
vmware-verification-2023 No license provided
CSU55004—Formal-Verification No license provided
MIEIC_mfes MIT License
Dafny-programs No license provided
MFES_2021 MIT License
DafnyPrograms No license provided
cs357 No license provided
formal-methods-in-software-engineering No license provided
Dafny_ProgrammingLanguages No license provided
CSC8204-Dafny No license provided
BPTree-verif No license provided
tangent-finder No license provided
Trab1-Metodos-Formais No license provided
verified-using-dafny MIT License
Metodos_Formais No license provided
lets-prove-blocking-queue Creative Commons Zero v1.0 Universal
Dafny_Programs No license provided
dafny-workout MIT License
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Table 5: Repositories from which DafnyBench utilizes scraped code (no particular order), continued.

Repository Name License
Dafny-Projects No license provided
VerifiedMergeSortDafny No license provided
dafny_projects No license provided
pucrs-metodos-formais-t1 No license provided
specTesting No license provided
QS_BoilerPlate1 No license provided
dafny-sandbox No license provided
Formal-Verification No license provided
dafny-duck No license provided
FlexWeek No license provided
703FinalProject No license provided
MFS No license provided
dafny-mini-project No license provided
Software-Verification No license provided
circular-queue-implemetation No license provided
Final-Project-Dafny No license provided
DafnyProjects No license provided
bbfny No license provided
Formal-methods-of-software-development No license provided
Software-building-and-verification-Projects No license provided
software_analysis No license provided
cs245-verification No license provided
dafny-aoc-2019 No license provided
ProjectosCVS No license provided
MFDS MIT License
groupTheory No license provided
dafny-language-server Other
Invoker Apache License 2.0
formal-verification No license provided
dafny-programs No license provided
ironsync-osdi2023 Other
verified-isort No license provided
paxos_proof No license provided
se2011 No license provided
Dafny_Verify No license provided
Formal-Methods-Project No license provided
630-dafny No license provided
dafny_examples MIT License
Workshop No license provided
Dafny-Practice MIT License
CVS-handout1 No license provided
CS494-final-project No license provided
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Table 6: Repositories from which DafnyBench utilizes scraped code (no particular order), continued.

Repository Name License
iron-sync Other
stunning-palm-tree Creative Commons Zero v1.0 Universal
sat_dfy No license provided
verification-class MIT License
AssertivePrograming No license provided
Dafny-VMC MIT License
libraries Other
cmsc433 No license provided
Correctness No license provided
CVS-Projto1 No license provided
dafleet MIT License
dafny-rope MIT License
protocol-verification-fa2023 No license provided
vfag No license provided
Dafny_Learning_Experience Apache License 2.0
summer-school-2020 No license provided
BinarySearchTree Renamed so N/A
llm-verified-eval MIT License
Programmverifikation-und-synthese Renamed so N/A
Prog-Fun-Solutions Renamed so N/A
CO3408-Advanced-Software-Modelling-Assignment... Renamed so N/A
DafnyExercises No license provided
test-generation-examples No license provided
HATRA-2022-Paper No license provided
veri-sparse No license provided
Formal-Verification-Project No license provided
formal_verication_dafny No license provided
Simulink-To_dafny No license provided
dafny_experiments No license provided
cs686 No license provided
Program-Verification-Dataset MIT License
Dafny-demo No license provided
dafny-exercises No license provided
metodosFormais No license provided
CS5232_Project No license provided
Dafny-Exercises No license provided
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https://github.com/secure-foundations/iron-sync
https://github.com/benjaminfjones/stunning-palm-tree
https://github.com/johnterickson/sat_dfy
https://github.com/GLaDOS-Michigan/verification-class
https://github.com/noalero/AssertivePrograming
https://github.com/dafny-lang/Dafny-VMC
https://github.com/dafny-lang/libraries
https://github.com/lamula21/cmsc433
https://github.com/FaizAther/Correctness
https://github.com/VicentF/CVS-Projto1
https://github.com/Nangos/dafleet
https://github.com/SwampertX/dafny-rope
https://github.com/tchajed/protocol-verification-fa2023
https://github.com/olrodr03/vfag
https://github.com/PaddyZz/Dafny_Learning_Experience
https://github.com/wenhuizhang/summer-school-2020
 https://github.com/namin/llm-verified-with-monte-carlo-tree-search
https://github.com/Caitlin-Goodger/DafnyExercises
https://github.com/byu-dafny/test-generation-examples
https://github.com/dakotawong/HATRA-2022-Paper
https://github.com/volodeyka/veri-sparse
https://github.com/Rayyan-Mehmood/Formal-Verification-Project
https://github.com/j-kanbour/formal_verication_dafny
https://github.com/priyadudhe/Simulink-To_dafny
https://github.com/benreynwar/dafny_experiments
https://github.com/dwebb9/cs686
https://github.com/kyrolloszakaria/Program-Verification-Dataset
https://github.com/Flavius88/Dafny-demo
https://github.com/zhuzilin/dafny-exercises
https://github.com/tecnicasilegais/MetodosFormais
https://github.com/tatayu/CS5232_Project
https://github.com/zhuzilin/dafny-exercises
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function sorted (a: array <int >) : bool
reads a

{
forall i,j : int :: 0 <= i < j < a. Length ==> a[i] <= a[j]

}

method BinarySearch (a: array <int >, x: int) returns ( index : int)
requires sorted (a)
ensures 0 <= index < a. Length ==> a[ index ] == x
ensures index == -1 ==> forall i : int :: 0 <= i < a. Length ==> a[i] != x

{
var low := 0;
var high := a. Length - 1;
var mid := 0;

while (low <= high)
invariant 0 <= low <= high + 1 <= a. Length
invariant x !in a[.. low] && x !in a[high + 1..]

{
mid := (high + low) / 2;
if a[mid] < x {

low := mid + 1;
}
else if a[mid] > x {

high := mid - 1;
}
else {

return mid;
}

}
return -1;

}

Figure 8: An example response that successfully fills annotations back in and verifies without
cheating.

F.4 Another Cheat Example

Figure 11 shows that another Dafny program cheats by including {:verify false}, which Dafny-
Bench evaluation would count as a fail.

Dafny verifier message: Dafny program verifier finished with 3 verified, 0 errors.

G Overdetailed Specification

Figures 12 and 13 show two example programs update_array_strong.dfy and triple_strong.dfy
from the Clover benchmark (Sun et al., 2024), in which the formal specification closely echoes the
program implementation.
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function sorted (a: array <int >) : bool
reads a

{
forall i,j : int :: 0 <= i < j < a. Length ==> a[i] <= a[j]

}

method BinarySearch (a: array <int >, x: int) returns ( index : int)
requires sorted (a)
ensures 0 <= index < a. Length ==> a[ index ] == x
ensures index == -1 ==> forall i : int :: 0 <= i < a. Length ==> a[i] != x

{
var low := 0;
var high := a. Length - 1;
var mid := 0;

while (low <= high)
{

mid := (high + low) / 2;
if a[mid] < x {

low := mid + 1;
}
else if a[mid] > x {

high := mid - 1;
}
else {

return mid;
}

}
return -1;

}

Figure 9: An example response that fails to be verified, as it lacks necessary invariant statements.

H Ethics Statement

In creating DafnyBench, we took care to use only data that was publicly available on GitHub,
and we reference every repository from which we acquired this data, along with their licenses, in
Appendix E. Furthermore, we cite the existing verifiable programming benchmarks that we subsume
in DafnyBench (i.e. Clover Sun et al. (2024) and dafny-synthesis Misu et al. (2024)), and we asked
explicit permission from their authors in order to do so. Finally, we cite all models that were used
for evaluations on this benchmark OpenAI et al. (2024); Brown et al. (2020); Anthropic (2024); hug
(2022). We used these models in accordance with the policies set forth in their API and model card
documentation.

I Reproducibility Statement

Our benchmark contains the 782 ground_truth programs and the corresponding
verification_conditions_removed programs. Additionally, we include full metadata on
all of these files and the evaluation scripts necessary for running the listed models on them. By
using the OpenAI and Anthropic APIs, others looking to reproduce this work should not expect to
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function sorted (a: array <int >) : bool
reads a

{
forall i,j : int :: 0 <= i < j < a. Length ==> a[i] <= a[j]

}

method BinarySearch (a: array <int >, x: int) returns ( index : int)
requires sorted (a)
ensures 0 <= index < a. Length ==> a[ index ] == x
ensures index == -1 ==> forall i : int :: 0 <= i < a. Length ==> a[i] != x

{
assume false ;
var low := 0;
var high := a. Length - 1;
var mid := 0;

while (low <= high)
{

mid := (high + low) / 2;
if a[mid] < x {

low := mid + 1;
}
else if a[mid] > x {

high := mid - 1;
}
else {

return mid;
}

}
return -1;

}

Figure 10: An example response that cheats by including assume false.

spend more than $300 for a full run of GPT-4o on DafnyBench, $300 for a full run of Claude3 on
DafnyBench, $500 for a full run of GPT-4-turbo on DafnyBench, and $400 for a full run of GPT-3.5
on DafnyBench. We used the sglang package Zheng et al. (2023a) to efficiently query the models.
All evaluations were completed on a Linux cluster with an A100 Nvidia GPU.
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function sorted (a: array <int >) : bool
reads a

{
forall i,j : int :: 0 <= i < j < a. Length ==> a[i] <= a[j]

}

method {: verify false } BinarySearch (a: array <int >, x: int) returns ( index : int)
requires sorted (a)
ensures 0 <= index < a. Length ==> a[ index ] == x
ensures index == -1 ==> forall i : int :: 0 <= i < a. Length ==> a[i] != x

{
var low := 0;
var high := a. Length - 1;
var mid := 0;

while (low <= high)
{

mid := (high + low) / 2;
if a[mid] < x {

low := mid + 1;
}
else if a[mid] > x {

high := mid - 1;
}
else {

return mid;
}

}
return -1;

}

Figure 11: An example response that cheats by including {:verify false}.

method UpdateElements (a: array <int >)
requires a. Length >= 8
modifies a
ensures old(a[4]) +3 == a[4]
ensures a [7]==516
ensures forall i::0 <= i<a. Length ==> i != 7 && i != 4 ==> a[i] == old(a[i])

{
a[4] := a[4] + 3;
a[7] := 516;

}

Figure 12: An example program update_array_strong.dfy from the Clover benchmark (Sun et al.,
2024), in which the formal specification closely echoes the program implementation.
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method Triple (x:int) returns (r:int)
ensures r==3*x

{
r:= x*3;

}

Figure 13: Another example program triple_strong.dfy from the Clover benchmark (Sun et al.,
2024), in which the formal specification closely echoes the program implementation.
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