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ABSTRACT

With the development of Large Language Models (LLMs), numerous benchmarks
have been proposed to measure and compare the capabilities of different LLMs.
However, evaluating LLMs is costly due to the large number of test instances
and their slow inference speed. In this paper, we propose a collaborative fil-
tering–inspired method that estimates model performance on a benchmark using
only a small subset of test instances. Specifically, we treat ”LLM–instance” inter-
actions as ”user-item” interactions and design a two-stage approach. Our method
first selects a small set of representative instances for a given task and then pre-
dicts the overall task-level performance from the model’s results on these selected
instances. These two stages correspond to the cold-start problem and the rat-
ing prediction problem in recommendation systems, respectively. Experiments
on multiple LLMs and benchmarks demonstrate that our method achieves perfor-
mance estimation 3% error using 10% of test data, reducing evaluation cost by an
order of magnitude while maintaining high accuracy.

1 INTRODUCTION

ChatGLM-4
Avg Score: 57.8

abab-6.5
Avg Score: 57.8

Language

KnowledgeReasoning

Math

Code Agent

Figure 1: OpenCompass Score of
ChatGLM-4 and abab-6.5. Although
they share the same average score, the
LLMs exhibit substantial performance
differences across individual tasks.

Large Language Models (LLMs) have garnered
widespread attention, with numerous LLMs (Bai et al.,
2023; Touvron et al., 2023a;b; Zeng et al., 2023) be-
ing released and rapidly iterated. Due to their powerful
general capabilities, these LLMs are expected to per-
form a diverse and broad range of tasks (Zhou et al.,
2023; Pham et al., 2024; Gao et al., 2023; Qin et al.,
2023). To fairly assess and compare different LLMs’
capabilities, many benchmarks for evaluating LLMs
have emerged and developed continuously (Liu et al.,
2024; Hendrycks et al., 2021; Li et al., 2024a; Zhong
et al., 2024; Liang et al., 2023). A well-designed bench-
mark often requires a large number of test instances,
because it is constructed to comprehensively and accu-
rately evaluate the diverse capabilities of LLMs. Such benchmarks typically cover a wide range of
tasks (or scenarios), with each task corresponding to a sub-dataset. Moreover, even within a specific
task, such as code generation (Lu et al., 2021), multiple programming languages may be involved,
each with its own sub-dataset.

Given the large number of test instances and the relatively slow inference speed of LLMs, it is
costly to let LLMs infer on all instances to obtain their performance. For example, running HELM
benchmark can entail spending $10K+ or 4K+ GPU hours for evaluating a single model (Liang
et al., 2023), and may even surpass those of pretraining (Biderman et al., 2023) when evaluating
checkpoints. To address this, we aim to accurately evaluate the capabilities of an LLM on each
individual task at a low cost.

Some previous works (Bommasani et al., 2021; Prabhu et al., 2024; Polo et al., 2024) have made
some attempts to address this problem, which only require inference on a subset of all test instances
to estimate the overall performance of target models. However, most existing studies focus primarily
on the overall performance and ranking of LLMs across the entire benchmark, while overlooking
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their performance and ranking on individual tasks. As shown in Figure 1, evaluating only the overall
performance fails to comprehensively and fairly assess the capabilities of LLMs, as models with
similar overall scores may still exhibit significant differences across specific tasks. And in practical
applications, we often focus more on an LLM’s task-level capabilities rather than overall capabilities.
This highlights the need for a low-cost, task-aware evaluation method that can effectively capture
the capabilities of LLMs across diverse tasks.

1.Sample and Test

2.Predict

Real Performance

Estimated PerformanceGap

Task 
Dataset

Figure 2: Comparison between Meth-
ods (left) and Problem Setting (right).
Left: red line is real performance of tar-
get model, gray area is performance gap.
Right: goal is to select subsets to mini-
mize estimation error.

To estimate the performance of LLMs on each task with
low cost, we propose a two-stage method inspired by
Collaborative Filtering (CF) in Recommendation Sys-
tems (RS). This method is tested on benchmarks con-
taining various tasks and achieves more accurate esti-
mates of model performance on each individual task at
a low cost compared to previous methods (Prabhu et al.,
2024; Polo et al., 2024). Figure 2 shows an example
from a randomly selected task in a benchmark along
with the workflow of our method, where it can be seen
that our method consistently outperforms the others.

In our method, we treat LLMs as users and instances as
items. The two-stage process focuses on determining
the value of all items for a new user by utilizing both the interaction history of other users with
items and the new user’s interaction history with some items. In the first stage, we draw inspiration
from the cold-start problem in recommendation systems. When user information is insufficient, a
common strategy is to recommend popular items to observe user preference patterns. Similarly, we
select a small set of representative instances based on importance scores, for example, about 10%
of instances in each scenario, and obtain the target model’s results on these instances as the basis
for the subsequent stage. In the second stage, we view performance prediction as rating predic-
tion problem in RS to predict the target LLM’s behavior on unselected instances. Specifically, we
predict performance using CF, based on the results of similar LLMs on remaing 90% unselected in-
stances and the results of the target LLM on selected instances and synthesized instances by optimal
transport (Peyré & Cuturi, 2019). Our contributions are as follows:

• We propose an efficient evaluation method based on the idea of collaborative filtering, which can
efficiently give the performance of LLMs on different tasks.

• We analyze the similarities and differences between efficient evaluation and Recommendation
Systems, which inspire us to apply methods of RS to address the efficient evaluation problem.

• Experiments on various benchmarks demonstrate the effectiveness of our method.

2 RELATED WORK (MORE IN APPENDIX A)

Efficient Evaluation Methods of PFMs. With the rise of Pre-trained Foundation Models (PFMs),
many benchmarks have been proposed to quantify and compare model capabilities. However, grow-
ing model and dataset sizes have made evaluation increasingly costly. To address this, various
efficient evaluation methods (Perlitz et al., 2024; Liang et al., 2023; Vivek et al., 2024; Polo et al.,
2024; Prabhu et al., 2024; Zhou et al., 2025; Pacchiardi et al., 2024) have been proposed.

Data Selection for LLM. Some previous work (Schoch et al., 2023; Xie et al., 2023b;a) has at-
tempted to select training data for LLM during the training phase to reduce the impact of low-quality
training instances on model performance and improve training speed and efficiency. In this work,
unlike data selection methods that select data during the training phase, we primarily focus on in-
stance selection during the testing phase of large language models.

Collaborative filtering (CF), as a core technique in recommendation systems, infers preferences by
leveraging user-item interaction data (Goldberg et al., 1992; Schafer et al., 2007; Su & Khoshgoftaar,
2009), with various methods including memory-based (Wang et al., 2006), matrix factorization (Luo
et al., 2014), and neural network approaches (He et al., 2017; Wang et al., 2019). We find that the
CF paradigm can also be effectively applied to efficient evaluation, with detailed similarities and
differences discussed in Appendix B.

2
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Figure 3: The Paradigms of Original and Efficient LLM Evaluation.. Left part implies the eval-
uation process of Original LLM Benchmark. Right part shows the process of efficient evaluation
method, which consists of two main components: the Instance Selection Function g and the Perfor-
mance Estimation Function h. The goal of efficient evaluation methods is to design effective g and
h to minimize the difference between real performance p and predicted performance p̂.

3 PRELIMINARY

Here we will introduce the process of original LLM evaluation and the paradigm of task-level ef-
ficient evaluation methods, as shown in Figure 3. We will also present the evaluation metrics for
comparing these methods and insights from a simple baseline.

3.1 EVALUATION FOR LLMS

Assume an LLM Benchmark dataset T = {T1, . . . , TN} with N task-specific datasets, where Ti =

(xj
i , y

j
i )

|Ti|
j=1 contains instance–label pairs. The LLM f takes xj

i as input and outputs a prediction ŷji
after post-processing. The performance on task Ti is computed via:

pi =
1

|Ti|

|Ti|∑
j=1

ME(ŷji , y
j
i ), (1)

with ME being a metric like Exact Match (Rajpurkar et al., 2016) or ROUGE (Lin, 2004). This yields
a performance vector p = [p1, . . . , pN ]. After evaluating all the LLMs in the model zoo, we can also
obtain the ranking r = [r1, · · · , rN ] of the LLM f . We need |T | =

∑N
i=1 |Ti| forward inferences

to evaluate the LLM f on LLM Benchmark T . With each inference taking an average of t seconds,
the total evaluation time is |T | × t. Given the numerous test instances in LLM Benchmark and the
relatively slow inference speed of LLMs, both |T | and t tend to be high, significantly increasing the
time and computational resources required for evaluation. Our work aims to reduce the number of
forward inferences |T |.

3.2 EFFICIENT EVALUATION METHOD FOR LLMS

Following the notation established in the previous section, LLMs can be ordered as [f1, f2, f3, . . . ]
by release date. We assume evaluation results D ∈ RB×|T | are available for the earliest B LLMs
on all instances of benchmark T , where each entry is ME(·, ·), measuring answer quality. Higher
values in D indicate better performance. We refer to these B LLMs as the initial model set FB .
We now focus on evaluating a new LLM on the Benchmark, mainly on its absolute performance
and its ranking relative to the initial LLMs for each task. Previous methods require testing on all
instances to compute ground-truth pi and ri (see Equation 1), whereas efficient evaluation seeks
accurate estimates using only a subset of instances.

A well-designed efficient evaluation method consists of two core components: the instance selec-
tion function g and the performance prediction function h. The instance sampling function g
leverages the evaluation results of initial LLMs FB on all instances for each task to select the impor-
tant test instances. More specifically, for the i-th task Ti, a submatrix Di ∈ RB×|Ti| containing only
the evaluation results for the current samples can be extracted from D. The function g then uses Di

to select a subset T s
i from Ti:

T s
i = g(Di, Ti), |T s

i | ≪ |Ti|, T s
i ⫋ Ti. (2)

3
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Given the subset benchmark T s = {T s
1 , . . . , T

s
N}, the performance prediction function h estimates

the new model’s performance p̂i on task i using Di and T s
i :

p̂i = h(Di, T
s
i ). (3)

Once p̂i is obtained, it can be compared with the initial LLMs’ performance Di to determine the
new model’s ranking r̂i on each task.

Different efficient evaluation methods adopt different designs for the instance selection function
g and the performance prediction function h. To compare their effectiveness, we use the Mean
Absolute Error (MAE) between predicted performances p̂ = [p̂1, · · · , p̂N ] and true performances p:

MAE(p, p̂) =
1

N

N∑
i=1

|pi − p̂i|. (4)

Similarly, we compute the MAE between the predicted rankings r̂ and the ground-truth rankings r.
To ensure fairness, all methods are evaluated with the same number of selected instances |T s|. A
lower MAE indicates higher accuracy of the efficient evaluation method. Note that we also report
additional metrics, such as Top-k Recall and NDCG, which are presented in Appendix G.

A well-designed efficient evaluation method should satisfy the following criteria: 1) High Effi-
ciency. It should generate accurate predictions quickly to meet the low-cost requirements in sec-
tion 1. 2) Low Overhead. The method should be easy to deploy, requiring minimal additional re-
sources for application to new scenarios. 3) Commonness. To estimate overall model performance
with few samples, the method should reduce MAE (see Equation 4) by filtering out redundant in-
stances and selecting informative ones. 4) Personalization. A good benchmark OpenCompass
(2023); HuggingFace (2024) should reflect both absolute and relative performance (e.g., ranking r),
so the method should consider the differences of each model to give an accurate ranking between
models. 5) Complementation. Since some tasks share similar capabilities, the method should
leverage information from other tasks.

3.3 INSIGHTS FROM A SIMPLE BASELINE

In this subsection, we offer a simple but effective efficient evaluation method as a baseline. Consid-
ering that most benchmark questions are readily accessible and their semantic representations can be
directly obtained using models such as Sentence-BERT (Reimers & Gurevych, 2019), we conduct
a toy experiment based on this simple baseline. The results show that naively leveraging semantic
information does not lead to performance gains.

In this baseline, we assume that the model produces consistent responses for similar samples. Specif-
ically, for task Ti, we implement the instance selection function g by applying K-means clustering
on instance embeddings, and identifying the sample closest to the center of each cluster as the se-
lected sample. This helps us identify groups of similar samples {Ci1, ..., CiK} along with their most
representative instances {xi1, ..., xiK}. For the performance prediction function h, we assume that
the model produces consistent responses for samples within the same cluster, and use the following
weighted sum to get the estimated performance p̂i for task Ti:

p̂i =

∑K
j=1 |Cij |f(xij)∑K

j=1 |Cij |
(5)

Here, |Cij | is the number of instances in the j-th cluster of task i, and xij is the instance closest to
the cluster center.

Table 1: Embedding Performance
Method Perf. MAE ↓ Rank MAE ↓

Historical 0.035 2.9
Semantic 0.210 6.7

We implement two common instance embedding
methods for clustering: semantic embeddings
from Sentence-BERT (Reimers & Gurevych,
2019), and the historical evaluation results of
initial LLMs (i.e., Di from subsection 3.2). A
toy experiment on a subset of the OpenCompass
Benchmark (OpenCompass, 2023) compares the two methods, with results shown in Table 1. The
method using historical evaluation results outperforms that using semantic embeddings. We hypoth-
esize that semantic embeddings are less aligned with the evaluation space, while historical results

4
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better capture instance difficulty, making it easier to predict the performance on unselected instances.
Experimental details can be viewed in Appendix C.

Beyond the weaker performance, using semantic embeddings presents several challenges: High
computational cost: At least one embedding model infers on all the instances causing high con-
sumption. Large storage requirements: Semantic embeddings and embedding model require more
space to store than historical evaluation data. Privacy concerns: Some benchmarks only release par-
tial datasets, and asking model developers to submit their models raises fairness and security issues.
Based on the above considerations, our method relies solely on historical evaluation results rather
than semantic embeddings.

4 METHOD

This section introduces a two-stage method based on Collaborative Filtering (CF), demonstrating
its advantages over prior approaches. By treating LLMs as users and test instances as items, we
construct features from their interactions to compute similarities—both between LLMs and between
instances. In the first stage, we leverage these similarities to select discriminative instances. In the
second stage, we use the selected instances to predict target model’s performance on each task. Fig-
ure 4 illustrates the overall workflow of our method, and the pseudo-code is provided in Appendix E.

4.1 STAGE 1: SELECT TEST INSTANCES VIA CF

As described in subsection 3.2, the instance selection function g aims to select important instances
for each task. We first define the importance score, and then design an iterative sampling process for
each task to select a small but discriminative subset of test instances, as shown in Figure 4.

4.1.1 DEFINITION OF IMPORTANT SCORE

We first define the importance score of test instance x for a given model set F = {f1, · · · , fM}.
Inspired by educational testing (der Linden & Glas, 2000), instances that are either too easy or
too difficult offer little value, as most test takers tend to perform similarly. To effectively differ-
entiate model capabilities, we prioritize instances where model performance varies significantly.
Intuitively, the most valuable instances are those where some LLMs perform well while others per-
form poorly—leading to high variance in performance across the model set F . This idea is captured
by the following definition of the importance score v(x|F ):

v(x|F ) =
1

M − 1

M∑
m=1

(
ME(ŷ(fm), y)−ME(ŷ, y)

)2

. (6)

where ŷ(fm), y and ME indicate the m-th LLM’s answer, ground truth answer and average perfor-
mance for instance x, respectively. The score represents the variability in the LLM’s responses for a
single instance. A higher value of this score indicates greater discriminative power of the instance.

4.1.2 PROCESS FOR INSTANCE SAMPLING

To select important instances, two criteria should be met: (1) They should evaluate all LLMs, i.e.,
have high importance scores v(x|FB ∪ ft); (2) They should distinguish the target LLM ft from its
similar models FS , reflected by high scores v(x|FS ∪ ft).

To meet the above requirements, we design an iterative process. As Figure 4 left shows, given target
LLM ft, the i-th task Ti, initial models FB = {f1, · · · , fB} and evaluation results of initial models
Di ∈ RB×|Ti|, the process can select important instances with three steps.

In the first step, we construct a Probe Set P by selecting instances from Ti with high importance
scores. For the j-th instance, its importance score v(xj

i |FB) can be computed with the help of Di

following Equation 6. This identifies instances that best differentiate the initial model performance.

In the second step, we let the target model ft infer on the Probe Set P , obtaining a result vector
dPt ∈ R|P |. We then extract Di,P ∈ RB×|P |, the evaluation results of initial LLMs on P . By
computing cosine similarities between dPt and each row of Di,P , we select the top-n most similar

5
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Figure 4: Steps in the Instance Selection Process and Performance Prediction Process. In the
Instance Selection Process, we select instances that can easily distinguish models through an iterative
process. In the Performance Prediction Process, we predict model performance based on optimal
transport and collaborative filtering.

LLMs to form FS , with index set S = {k|fk ∈ FS}. The importance score v(xj
i |FS) of instance

xj
i on FS can be calculated following Equation 6. This helps identify instances that best distinguish

the target model from its most similar peers.

In the third step, we combine v(xj
i |FB) and v(xj

i |FS) to compute the final importance score like
Equation 7 thus meeting two conditions talked above.

v(xj
i ) = α · v(xj

i |FB) + (1− α) · v(xj
i |FS). (7)

We then select the top-q instances by v(xj
i ) to expand the Probe Set P , and repeat steps 2 and 3

until |P | reaches the target size |T s
i |, thereby obtaining the selected instance subset T s

i for task Ti.
In this formula, the first term is fixed across target LLMs, while the second varies with different FS ,
enabling personalized instance selection.

4.1.3 RELATIONSHIP WITH RECOMMENDATION SYSTEMS

The cold start problem in recommendation systems arises from insufficient interaction data for new
users and items. A common solution is to initially recommend popular items to collect data (Luo
et al., 2025; Jeon et al., 2024; Chaimalas et al., 2023), then apply collaborative filtering to personalize
recommendations.

Similarly, we treat LLMs as users and instances as items. Our evaluation matrix DB , reflecting LLM
performance on instances, parallels the user-item interaction matrix but measures response quality
rather than preferences. To recommend discriminative instances to a new LLM, we first construct a
Probe Set of highly discriminative instances based on historical models’ performance, analogous to
recommending popular items. Based on the new LLM’s results on the Probe Set, we identify similar
models and select additional discriminative instances from them for further evaluation, following a
user-based collaborative filtering approach.

4.2 STAGE 2: PREDICT LLM’S PERFORMANCE

After getting the subset benchmark T s = {T s
1 , · · · , T s

N}, we need to design the performance pre-
diction function h to predict the performance pi and ranking ri of the new LLM.

4.2.1 PURPOSE OF PERFORMANCE PREDICTION

For performance prediction, a direct approach is to use the new LLM’s accuracy psi on the sampled
subset T s

i . However, since selected instances exclude those too easy or hard, psi may not reflect the
true performance pi. To correct this, we revisit the formulation of pi in Equation 8.

pi =
asi + ansi
|T s

i |+ |Tns
i |

. (8)

Here, asi and ansi are the sums of correct predictions on selected (T s
i ) and unselected (Tns

i ) instances.
We know asi , |T s

i |, and |Tns
i |, so predicting ansi allows us to estimate pi accurately.

6
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4.2.2 PROCESS FOR PERFORMANCE PREDICTION

In collaborative filtering methods, a certain amount of historical interactions between new users and
items is required to effectively estimate a new user’s preferences for other items. However, in the ef-
ficient evaluation setting, where |T s

i | ≪ |Tns
i |, collaborative filtering cannot be directly applied. To

address this, we employ the Optimal Transport (OT) method to perform oversampling based on the
selected instances from similar tasks, without relying on semantic information (see subsection 3.3).
After oversampling, we subsequently apply collaborative filtering to obtain performance estimates
of target model on unselected instances, thereby deriving estimated performance for each task.

For the first step in Figure 4 right, we first perform oversampling with OT to obtain oversampled
instances, in order to expand the selected instances for subsequent collaborative filtering. Specifi-
cally, for the i-th task Ti, let Di ∈ RB×|Ti| denote the evaluation results of initial LLMs FB , and
dt ∈ R1×|T s

i | denote the performance of target model ft on T s
i . We can get the mean performance

vector vi =
∑|Ti|

j=1 D·j
i

|Ti| of FB for each task and calculate cosine similarity matrix Cs ∈ RN×N .
With the help of Cs and threshold value τ0, similar tasks can be found and we can combine the
selected data from similar tasks to get T st

i and D
(st)
i ∈ RB×|T st

i |. We can also extract a subma-
trix D

(ns)
i ∈ RB×|Tns

i | which represents unselected samples from Di. We then solve the Optimal
Transport (OT) problem:

argmin
P≥0

⟨Cc, P ⟩ s.t.
∑
j

Pjk =
1

|Tns
i |

,
∑
k

Pjk =
1

|T st
i | (9)

where Cc is a cost matrix defined by Euclidean distances between columns of D(st)
i and D

(ns)
i . With

P , we can get oversampled data T o
i and corresponding matrix D

(o)
i = D

(st)
i P . By combining real

target model responses on T s
i and oversampled data T o

i , we effectively expand the interaction space
of ft, thereby enhancing the performance of subsequent collaborative filtering

Now we proceed to the second step in Figure 4 right, where, for a specifical task Ti, we apply
collaborative filtering to estimate the new model’s performance on the unselected instances, thereby
obtaining the estimated performance for each task. For simplicity, we treat oversampled data as
selected instances: Ti := T s

i ∪ Tns
i ∪ T o

i and T s
i := T s

i ∪ T o
i . Let D(s)

i ∈ RB×|T s
i | and D

(ns)
i ∈

RB×|Tns
i | denote the feature matrices of selected and unselected instances.

To estimate the target model ft’s performance on the unselected instances Tns
i , we divide them into

two parts based on instance importance (see in subsubsection 4.1.1) and similarity. This enables us
to obtain a fine-grained estimation ĉnsi for the target performance ansi in Equation 8 on task Ti.

We use the importance scores to identify the first part and obtain the estimated performance of ft
on it directly from the historical models FB . Specifically, we assign importance scores in Equation 7
to D

(ns)
i based on the average important score v from D

(s)
i , and use the average performance of FB

as prediction ĉnsi0 for instances below the threshold v
τ1

:

ĉnsi0 =
1

B

B∑
k=1

∑
j∈S

D
(ns)kj
i , Tns

i := Tns
i − S, D

(ns)
i := D

(ns)
i − S (10)

where S = {k | v(ns)ki < v
τ1
}. As noted in subsubsection 4.1.1, these instances are excluded as they

lack discriminative value.

For the second part, we compute the cosine similarity matrix Ci ∈ R|Tns
i |×|T s

i | between D
(ns)
i and

D
(s)
i . For each unselected instance, we identify the top 3 most similar selected ones and calculate

their average similarity cji . Using a threshold τ3, we split the unselected instances into two sets:
• For instances with cij ≥ τ3, we estimate performance using ft’s results on the top-3 similar

selected instances, yielding ĉnsi1 .
• For the rest, we use average results of LLMs similar to ft, yielding ĉnsi2 .

Finally, we approximate ansi by ĉnsi = ĉnsi0 + ĉnsi1 + ĉnsi2 in Equation 8, obtaining the estimated
performance p̂i, which outperforms psi in experiments. To predict LLM ranking, we compare p̂i of
the target LLM ft with the performances of initial LLMs to get the predicted ranking r̂i.

7
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4.2.3 RELATIONSHIP WITH RECOMMENDATION SYSTEMS

The cold start problem in recommendation systems arises from insufficient interaction data for new
users and items. A common solution is to transfer users’ historical interaction data from other
domains via cross-domain learning (Li et al., 2024b; Zhao et al., 2020; Guan et al., 2023), enabling
personalized recommendations before enough local data is collected.

Similarly, our approach uses Optimal Transport (OT) to adapt new models’ performance across
tasks, effectively leveraging cross-domain information. We also incorporate both model-level and
sample-level similarity, analogous to collaborative filtering based on user–item similarity.

4.3 COMPARISON WITH PREVIOUS METHODS

Table 2: Comparison of Evaluation Methods
Aspect Ours Clust. S&S Tiny

Efficiency ✓ ✓ ✓ ✓
Low Overhead ✓ ✓ ✓ ✗
Commonness ✓ ✓ ✓ ✓

Personalization ✓ ✗ ✓ ✗
Complementation ✓ ✗ ✗ ✓

As shown in Table 2, our method meets the cri-
teria described in subsection 3.2 which was not
achievable with previous approaches. Specifi-
cally, our method only requires instances that are
discriminative for models, which makes it effi-
cient and personalized. For instances that are
too simple or too difficult, our method uses the
average results of the initial models for estima-
tion. This ensures that our approach meets the commonness criterion. In addition, our method uses
OT to leverage information from other tasks for prediction, meeting the complementation criterion.

5 EXPERIMENTS

Setups. Our experiment focuses on efficiently evaluating new LLMs on Benchmarks using the re-
sults of some initial LLMs. This aligns with real-world scenarios. Based on release dates, we choose
early LLMs for each Benchmark as initial models. As discussed in section 1, overall performance
cannot capture task-level performance, so we assess whether the method can accurately predict per-
task results. To compare the adaptability of the efficient evaluation method to different sample sizes,
we set 5 ratios ([0.1, 0.2, 0.3, 0.4, 0.5]) to select corresponding subsets from each task’s dataset.

Benchmark. We select three widely used LLM benchmarks. (1) HuggingFace Open LLM Leader-
board evaluates open-source LLMs on tasks such as understanding, generation, and reasoning. Fol-
lowing TinyBenchmark (Polo et al., 2024), we use results from 395 models, split 3:1 by release
date. (2) MMLU, a popular 57-task multiple-choice QA benchmark. We use the same 395 models
and splits, reflecting its prevalence in evaluations. (3) OpenCompass OpenCompass (2023) covers
diverse tasks; we use 32 models across 187 scenarios, also split 3:1 by release date.

Baselines. We compare against four baselines: Random Sampling, Baseline with Clustering, Tiny-
Benchmark, and Sort&Search. Baseline with Clustering is described in subsection 3.3 and omitted
here. Random Sampling selects instances randomly from each task’s dataset to form subsets. LLM
performance on these subsets estimates its performance on the full dataset, and LLMs are ranked
accordingly. For TinyBenchmark (Polo et al., 2024) and Sort&Search (Prabhu et al., 2024), the tar-
get LLM’s estimated performance is compared with actual performances of other LLMs to produce
rankings. For stochastic methods, we repeat the experiment 5 times and report the mean.

Task-level Evaluations. For each task, we calculate the Mean Absolute Error (MAE) between
the predicted performance and the actual performance for each model. Then, we take the mean of
MAE for all tasks as the final performance of the Efficient Evaluation Method. For example, for
the MMLU Benchmark, we should calculate the average MAE for 395 test models on 57 tasks. To
emphasize strong models, we also compute a weighted MAE using 1

ri
based on true rankings ri.

Metrics like Top-k Recall and NDCG are also reported in Appendix G.

Results Analysis. Figure 5 shows the Mean Absolute Error (MAE) and Weighted Mean Abso-
lute Error (Weighted MAE) between the performance metrics (performance scores and rankings) of
large language models (LLMs) estimated by different efficient evaluation methods and their actual
metrics. Smaller values indicate more accurate estimations. As shown in Figure 5, our method
achieves the most accurate estimates on Open LLM Leaderboard and MMLU. On the OpenCom-

8
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Figure 5: Mean Absolute Error (MAE) and weighted MAE between estimated and actual LLM
performance by different methods. Three rows show results on MMLU, LB, and OpenCompass.

pass benchmark, no single method significantly outperforms the others. This is due to the relatively
small number of models, which limits the availability of effective historical information and results
in relatively small variations in the evaluation metrics. However, we still observe that our proposed
method outperforms the others in terms of accuracy. In summary, our method performs comparably
to other approaches when the number of historical models is limited, and outperforms them when
more historical models are available. This makes it a promising method.

Table 3: Comparison of Time Between Methods
Method DT (s) ST (s) PT (s) TT (s)

Random 0 0.0015 0.0008 0.0023
Sort&Search 0 6.05 0.0167 6.07

Clustering 0 26.8 0.232 27.0
Tiny Benchmark 309 26.8 3.36 30.2

Ours 0 0.713 24.5 25.2

Running Time Analysis. Runtime is an
important metric for evaluating efficiency.
Assuming LLM inference time is constant
across instances, we compare methods on
evaluating one model on MMLU with a 0.1
sampling ratio. Table 3 reports Deployment
Time, Selection Time, Prediction Time and
Total Time (sum of Selection Time and Pre-
diction Time). Our method achieves lower total time than TinyBenchmark and Clustering with better
performance. Although slower than Random and Sort&Search, the modest time increase is justified
by significantly better performance.

Ablation Study. We conduct an ablation study on the components and parameters of the method
described in section 4. The specific roles and details of the parameters can be found in Appendix H.
The experimental results show that optimal transport is an indispensable module in our method. The
similarity-based collaborative filtering approach used in this paper achieves a good balance between
accuracy and efficiency. Our method demonstrates strong robustness to different parameter settings.
In addition, the experiments reveal that the performance reported in section 5 is not yet optimal,
suggesting that our method still has further potential for improvement.

6 CONCLUSION

In this work, we focus on designing an efficient evaluation method to evaluate the target LLM’s task-
level capacities at a low cost. We re-examine the issue from the perspectives of collaborative filtering
in recommendation systems and propose a two-stage method, which includes instance selection
stage and performance estimation stage. The experimental results across multiple LLMs and datasets
demonstrate the effectiveness of our method.
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are intended for advancing research on parameter-efficient fine-tuning of large language models. Potential so-
cietal impacts are consistent with those of general LLM research, including both positive applications (e.g.,
lowering computational cost and energy consumption) and risks of misuse (e.g., generating harmful or mis-
leading text). We encourage responsible use of our methods and adherence to ethical guidelines in AI research
and deployment.
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In the Appendix, we introduce more details about the Experiments.

A DETAILS OF RELATED WORK

Efficient Evaluation Methods of PFMs. With the rise of Pre-trained Foundation Models (PFMs), many
benchmarks have been proposed to quantify and compare model capabilities. However, growing model and
dataset sizes have made evaluation increasingly costly. To address this, various efficient evaluation methods
have been proposed. (Perlitz et al., 2024) observes that while dataset diversity is important in HELM (Liang
et al., 2023), using fewer examples suffices. It proposes a coarse-to-fine tournament to estimate LLM rankings.
(Vivek et al., 2024) accelerates classification evaluation by grouping samples based on model confidence. Tiny-
Benchmark Polo et al. (2024) applies psychometric modeling to assess LLMs using a small subset of standard
benchmarks. Lifelong Benchmark Prabhu et al. (2024), targeting vision models, proposes Sort&Search to rank
instance difficulty using previous predictions for selective evaluation. Zhou et al. (2025) proposes UCBE,
a multi-armed bandit method that allocates more evaluation budget to higher-performing models to improve
estimation accuracy. However, it focuses on selecting the best model while ignoring suboptimal ones, making
it closer to model selection than efficient evaluation—thus beyond the scope of this work. Pacchiardi et al.
(2024) incorporates not only historical model information but also model and input text embeddings, resulting
in higher storage and computational costs. However, since strong performance can already be achieved using
only historical information shown in section 5, we consider text embeddings unnecessary and omit them in
this work. In this paper, we design an efficient evaluation method for LLMs based on the idea of collaborative
filtering, which has superior performance.

Data Selection for LLM. Some previous work has attempted to select training data for LLM during the train-
ing phase to reduce the impact of low-quality training instances on model performance and improve training
speed and efficiency. (Schoch et al., 2023) proposes TS-DSHAPLEY to utilize Shapley Values to filter out
harmful training data, thereby improving the performance after model fine-tuning. (Xie et al., 2023b) designs
Data Selection with Importance Resampling (DSIR) to select a tailored subset from the pretraining dataset for a
specific target instance distribution, aiming to maximize the performance of the pre-trained model while adher-
ing to a fixed compute budget. DSIR estimates importance weights in a reduced feature space for tractability
and selects data with importance resampling according to these weights. (Xie et al., 2023a) leverages distribu-
tionally robust optimization (DRO) to tune the domain weights without knowledge of downstream tasks. These
domain weights decide the mixture proportions of pretraining data domains. In this work, we primarily focus
on instance selection during the testing phase of large language models.

Collaborative Filtering (CF) is a foundational technique in recommender systems, leveraging user-item inter-
action histories to infer preferences Goldberg et al. (1992); Schafer et al. (2007); Su & Khoshgoftaar (2009).
Traditional methods include memory-based approaches (e.g., user-based Wang et al. (2006) and item-based
CF) and model-based approaches such as Matrix Factorization (MF) Luo et al. (2014), which learn latent rep-
resentations of users and items. Neural Collaborative Filtering (NCF) He et al. (2017) extends MF with deep
networks to capture non-linear interactions. More recently, Graph Neural Networks (GNNs) have been applied
to CF Wang et al. (2019), utilizing the user-item bipartite graph to model higher-order relations. In summary,
Collaborative Filtering (CF) is a mature and effective method in recommendation systems. We find that it
can be applied to efficient evaluation, and Appendix B illustrates the similarities and differences between two
scenarios.

B COMPARISON OF COLLABORATIVE FILTERING IN RECOMMENDATION
SYSTEMS AND EFFICIENT EVALUATION

B.1 SIMILARITIES

In collaborative filtering, the underlying assumption is typically that similar users exhibit similar behaviors on
the same items. In other words, if two users show similar interests or preferences for certain items, they are
likely to have similar preferences for other items as well. This assumption forms the theoretical foundation of
collaborative filtering methods, enabling them to infer the unknown preferences of users based on the behaviors
of known users, thus facilitating effective personalized recommendations.

To validate the applicability of this assumption in efficient evaluation scenarios, we conducted a series of
experimental analyses on each sub-task of the MMLU benchmark. Specifically, for each sub-task Ti and
evaluation results of all LLMs Di, we can compute the correlation coefficient ρjki between rows j and k in Di,
which reflects the similarity between models j and k on task Ti. Similarly, we can concatenate the results of all
sub-tasks except for Ti, and obtain the similarity ρ̂jki between models j and k across all other tasks excluding
Ti. Figure 6 below shows the results of one representative scenario.
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Figure 6: The Scatter Plot of Pearson Correlation Coefficient. Each point represents a pair of
models. The x-axis denotes the Pearson correlation coefficient between the model pair on task i,
while the y-axis denotes the Pearson correlation coefficient on tasks other than i. We observe a clear
linear relationship between the x and y axes, indicating that similar models tend to produce similar
responses.

From Figure 6, we can observe a clear linear relationship between the correlation coefficients, indicating that
the basic assumptions of collaborative filtering in recommendation systems are also applicable in efficient
evaluation.

B.2 DIFFERENCES

In recommendation systems, the number of historical users is significantly higher than that in efficient eval-
uation tasks. However, we still believe that methods used in recommendation systems, such as collaborative
filtering, remain applicable in the context of efficient evaluation. The reasons for this are as follows:

In recommendation systems, user-item interactions are typically sparse. This means that each user only interacts
with a small subset of the available items. To make accurate recommendations, a large number of users is
required, ensuring that the system can learn meaningful patterns and signals from the data effectively. The
method employed must be capable of leveraging these interactions to understand users’ preferences and predict
future behavior.

On the other hand, in efficient evaluation tasks, interactions between historical models and evaluation instances
are not sparse. This is because a historical model is usually evaluated on all the available evaluation instances,
rather than just a small subset. Consequently, the number of models required in efficient evaluation is sig-
nificantly lower compared to the number of users needed in recommendation systems. This difference arises
because, in efficient evaluation, all instances can be assessed directly, whereas in recommendation systems, the
model must generalize from limited interactions and data.

Therefore, while the scale and setup differ, the core assumptions of methods like collaborative filtering are still
relevant and applicable in both contexts.

C EXPERIMENTS FOR CLUSTERING BASELINE

C.1 EXPERIMENT SETTINGS

We sample 187 tasks Zellers et al. (2019); Clark et al. (2018); Bisk et al. (2020); Mihaylov et al. (2018);
Lai et al. (2017); Xu et al. (2021; 2020); Huang et al. (2023) from OpenCompass OpenCompass (2023), a
large language model evaluation benchmark. We collect the evaluation results of 32 widely used LLMs (e.g.
LLAMA (Touvron et al., 2023a), Qwen (Bai et al., 2023), ChatGLM (Zeng et al., 2023), Gemma (Mesnard
et al., 2024)). We select the first 21 LLMs based on their release dates as the initial LLMs and use the remaining
11 LLMs as the new LLMs to be tested.

We do the toy experiment with ratio 0.1, which is described in section 5.
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C.2 HYPOTHESES TESTING

To verify the hypothesis that there is a gap between the semantic embedding space and the evaluation results
space, we plot Figure 7 on one task of the MMLU benchmark. The details of plotting Figure 6 are as follows:

First, we select the k-nearest neighbors in the semantic space for each sample in a specific sub-scenario and
compute the distances between them.

Next, we calculate the distances between the corresponding sample pairs in the performance space.

Finally, we use these two distances as the x and y coordinates to plot a scatter plot.

Figure 7 is a scatter plot for a randomly selected sub-scenario. We can observe that the scatter plots for almost
all sub-scenarios form a dense cluster without any clear relationship, which proves that it is not effective to
directly use the semantic information of pre-trained models for efficient evaluation.

Figure 7: Distances in Two Spaces for Nearest Neighbor in Semantic Space. Each point repre-
sents a nearest-neighbor pair in the semantic space. The vertical coordinate indicates the distance
between the nearest neighbors in the semantic embedding space, while the horizontal coordinate
represents the distance between the corresponding samples in the evaluation results space.

D SOMETHING FOR BINARY EVALUATION MATRIX

If the ME in subsection 3.1 yields binary results of 0 or 1, in other words, the evaluation results matrix Di

in subsection 3.2 is a binary matrix, then some equations can be calculated using alternative methods or may
require further steps.

D.1 ANOTHER WAY TO CALCULATE IMPORTANT SCORE

With the ME yields binary results of 0 or 1, we can alternatively calculate v(x|F ) in subsection 4.1 using the
quantity difference between 0 and 1 values shown in Equation 11.

v(x|F ) =
1

|
∑M

m=1[I(ŷ(fm) = y)− I(ŷ(fm) ̸= y)]|
. (11)

where I(·) denotes the indicator function, which takes the value 1 if the condition inside the parentheses is true,
and 0 otherwise.

D.2 FURTHER STEPS FOR OPTIMAL TRANSPORT

If Di in subsection 4.2 is a binary matrix, further steps should be done after getting matrix D
(sy)
i in subsec-

tion 4.2. Specifically, the elements in D
(sy)
i should be divided into 0-1 by 0.5 as the threshold.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E THE PSEUDO-CODE OF OUR METHOD

Stage 1 An iterative sampling process for a specific task
Inputs: Task Ti, initial LLMs FB , target LLM ft, evaluation results Di of FB , desired sample
size |T s

i |, number of similar models n, and instance increment per iteration d
Output: A selected subset T s

i ⊆ Ti

P ← initialize probe set using Equation 6
while |P | < |T s

i | do
dPt ← evaluate ft on P
Di,P ← extract from Di the results corresponding to P
FS ← retrieve top-n models most similar to ft based on Di,P

Pd ← select d new instances not in P using Equation 7
P ← P ∪ Pd

end while
T s
i ← P

return T s
i

Stage 2 Performance prediction process for a specific task
Inputs: Task Ti, initial LLMs FB , target LLM ft, all evaluation results {D1, ..., DN} of FB , a
subset benchmark {T s

1 , ..., T
s
N}

Output: Estimated performance p̂i for task Ti

{v1, ...,vN} ← task Ti’s mean performance vector
T st
i , Dst

i ← Ti’s most similar tasks and corresponding selected instances
T o
i , D

o
i ← task Ti’s oversampled instances using Equation 9

cnsi0 ← get ft’s estimated performance on low importance instances using Equation 10
cnsi1 , c

ns
i2 ← get ft’s estimated performance on remaining instances using collaborative filtering

ĉnsi ← ĉnsi0 + ĉnsi1 + ĉnsi2
p̂i ← compute by replacing ansi in Equation 8 as ĉnsi
return p̂i

F INSTANCE SAMPLING DETAILS
Table 4: Methods at Different Ratios.

Ratio Method tok-k NDCG

Our 0.5839 0.9983
0.1 Tinybenchmark 0.5942 0.9979

Sort&Search 0.4548 0.9959

Our 0.6161 0.9984
0.2 Tinybenchmark 0.6135 0.9981

Sort&Search 0.5323 0.9967

Our 0.6903 0.9987
0.3 Tinybenchmark 0.6471 0.9983

Sort&Search 0.6532 0.9985

Our 0.7306 0.9989
0.4 Tinybenchmark 0.6845 0.9986

Sort&Search 0.6952 0.9987

Our 0.7484 0.9992
0.5 Tinybenchmark 0.7345 0.9989

Sort&Search 0.7161 0.9991

Assume |Ti| is the number of test instance in
the dataset for the i-th task, and let α be the
sampling ratio, then α × |Ti| represents the
number of sampled instances. To ensure an ac-
curate estimation of LLM performance, we set
a minimum sample size of 20 for each dataset.
When |Ti| is less than 20, we will use all sam-
ples from the current dataset. When |Ti| is
greater than or equal to 20 but α × |Ti| is less
than 20, we will set the number of sampled in-
stances for the current dataset to 20.

G OTHER METRICS

We calculated the Top-k Recall and NDCG
metrics based on the accuracy of both historical
models and new models on each sub-scenario
and then averaged the results. For historical
models, we directly used their actual accuracies, while for new models, we used the estimated accuracies.

We present the detailed results on the LB benchmark, as shown in Table 4, which demonstrate that our method
still holds a significant advantage.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

H ABLATION STUDY

H.1 OPTIMAL TRANSPORT MODULE

We plot the MAE metric on different ratios on MMLU. Figure 8 shows the result that our method with optimal
transport is consistently better than that without optimal transport. All in all, introducing information from
other tasks into efficient evaluation methods can improve method performance.
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Figure 8: The MAE and Weighted MAE of Method with OT and Method without OT.

H.2 TRADE-OFF BETWEEN PERFORMANCE AND COST

The collaborative filtering method used in this paper is the simplest similarity-based approach. As introduced
in section 2, there are many other collaborative filtering methods, such as matrix factorization, neural collab-
orative filtering, and graph neural network-based collaborative filtering. While these methods can certainly be
incorporated into our framework, they typically require significantly more computation time compared to the
similarity-based approach. We do matrix factorization which is the same as the method called UCBE-LRF Zhou
et al. (2025) on lb benchmark with 0.1 ratio. The result is shown in Table 5.

Table 5: Comparisons under Ratio 0.1.
Method Ratio MAE Acc Weighted MAE Acc MAE Rank Weighted MAE Rank Total Time (s)

UCBE-LRF 0.1 0.0253 0.0177 20.68 13.73 ≥5400
OUR 0.1 0.0288 0.0177 25.79 15.72 25.2

We can observe that while the MAE Acc improves by only 0.003, the total time increases by at least dozens of
times, which is unacceptable.

H.3 HYPERPARAMETER Table 6: Roles of Different Hyperparameters.
Hyperparameter Roles

|S| The number of similar models for a
new target model.

α A hyperparameter that determines
the importance score of the sample.

Number of iterations The number of iterations in the
instance selection process.

τ0 A hyperparameter used to select
similar tasks.

τ1 A hyperparameter used to
determine unimportant instances.

τ2 A hyperparameter used to
determine the prediction mode.

q Another hyperparameter used in
prediction mode decision.

Next, we will analyze the hyper-
parameters involved in the method
in section 4. They are |S|, α, num-
ber of iterations in subsection 4.1
and τ0, τ1, τ2, q in subsection 4.2.
Here τ2 and q are hyperparame-
ters related to τ3 in subsection 4.2.
Specifically, τ3 = max(τ2, [ci]q).
Here [ci]q refers to the q quantile of
ci and ci a vector formed by the av-
erage similarities of different tasks.

The specific roles of these hyperpa-
rameters are shown in Table 6.

Figure 9 shows the MAE and
weighted MAE with different hyperparameters on the MMLU benchmark. Each row of the figure represents
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Figure 9: The MAE and Weighted MAE with Different Hyperparameters. Each row represents
a hyperparameter, and each column corresponds to a metric of efficient evaluation methods. Our
method is robust to hyperparameter variations.

the performance change if only one hyperparameter is changed and the rest are unchanged. From top to bottom,
they represent the |S|, number of iterations, α, q, τ2, τ1 and τ0, respectively. From the figure, we can find that
our method is robust to different hyperparameters.

I THE USE OF LARGE LANGUAGE MODELS

We used a large language model (LLM) solely as a writing assistant to improve the clarity and readability
of the manuscript (e.g., polishing grammar and phrasing). The LLM was not involved in research ideation,
experimental design, implementation, or analysis. All scientific contributions and results are entirely the work
of the authors.
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