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ABSTRACT

Diffusion models have demonstrated great potential in generating high-quality
content for images, natural language, protein domains, etc. However, how to
perform user-preferred targeted generation via diffusion models with only black-
box target scores of users remains challenging. To address this issue, we first
formulate the fine-tuning of the inference phase of a pre-trained diffusion model
as a sequential black-box optimization problem. Furthermore, we propose a
novel stochastic adaptive sequential optimization algorithm to optimize cumulative
black-box scores under unknown transition dynamics. Theoretically, we prove
a O( d2

√
T
) convergence rate for cumulative convex functions without smooth and

strongly convex assumptions. Empirically, we can naturally apply our algorithm
for diffusion black-box targeted generation. Experimental results demonstrate the
ability of our method to generate target-guided images with high target scores.

1 INTRODUCTION

Diffusion models have shown great success in generating high-quality content in various domains,
such as image generation (Rombach et al., 2022; Ramesh et al., 2022), video generation (Ho et al.,
2022), speech generation (Kim et al., 2022b; Kong et al., 2020), and natural language generation (Hu
et al., 2023; He et al., 2023). Thanks to the super-promising power of the diffusion models, guided
sampling via diffusion models to achieve desired properties recently emerged and shown fantastic
potential in many applications, e.g., text-to-image generation (Kim et al., 2022a), image-to-image
translation (Tumanyan et al., 2023), protein design (Lee et al., 2023; Gruver et al., 2023).

Despite the popularity and success of diffusion models, how to employ diffusion models to generate
user-preferred content with black-box target scores while avoiding re-training from scratch is still
challenging and unexplored. One direct idea is to treat this problem as a black-box optimization
problem and employ black-box optimization techniques (Audet & Hare, 2017; Alarie et al., 2021;
Doerr & Neumann, 2019) to perform the fine-tuning of a pre-trained diffusion model with only
black-box target scores. However, naively applying black-box optimization methods to optimize
diffusion model parameters faces high-dimensional optimization challenges, which are prohibitive to
achieving a meaningful solution in a feasible time.

More importantly, current black-box optimization techniques, e.g., Bayesian optimization tech-
niques (Srinivas et al., 2010; Gardner et al., 2017; Nayebi et al., 2019), Evolution strategies (ES)
or stochastic zeroth-order optimization (Back et al., 1991; Hansen, 2006; Wierstra et al., 2014; Lyu
& Tsang, 2021; Liu et al., 2018; Wang et al., 2018) and genetic algorithms (Srinivas & Patnaik,
1994; Mirjalili & Mirjalili, 2019), are designed for single objective without considering the dynamic
nature of sequential functions. As a result, we can not directly apply them to diffusion models due to
ignoring the sequential nature of the generation process of diffusion models.

In this paper, we dig into the transition dynamic of the inference of diffusion models. By leveraging
the relationship between the inference of diffusion models and the Stochastic Differential Equation
(SDE) solver (Song et al., 2020; Lu et al., 2022a), we naturally formulate the fine-tuning of the
inference of diffusion models as a black-box sequential optimization problem.

To solve the black-box sequential optimization problem, we propose a novel stochastic adaptive
black-box sequential optimization algorithm by explicitly handling the history trajectory dependency
in the cumulative black-box target functions. Our method performs full covariance matrix adaptive
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updates that can take advantage of second-order information to deal with ill-conditioned problems.
Theoretically, we prove a O( d2

√
T
) convergence rate for convex functions without smooth and strongly

convex assumptions. Thus, our method can handle non-smooth problems. Our contributions are
listed as follows:

• We formulate the fine-tuning of the inference of the diffusion model as a black-box sequential
optimization problem for black-box diffusion targeted generation.

• We proposed a novel stochastic adaptive black-box sequential optimization (SABSO) algo-
rithm. Our SABSO can perform a full covariance matrix update to exploit the second-order
information. Theoretically, we prove a O( d2

√
T
) convergence rate for convex functions with-

out smooth and strongly convex assumptions. Thus, our theoretical analysis can handle
non-smooth problems. The convergence analysis of full matrix adaptive black-box op-
timization for convex functions without the smooth and strongly convex assumptions is
technically challenging. Technically, we add a γt enlargement term in the gradient update.
This technique enables us to construct feasible solution sets of the adaptive update matrix
during the whole algorithm running process to ensure convergence. To the best of our
knowledge, our SABSO algorithm is the first full covariance matrix adaptive black-box
optimization method that achieves a provable O( d2

√
T
) convergence rate for convex functions

without smooth and strongly convex assumptions.
• Empirically, we can naturally apply our algorithm for diffusion black-box targeted generation.

Experimental results demonstrate the ability of our method to generate target-guided images
with high black-box target scores.

2 PRELIMINARY BACKGROUND

2.1 DIFFUSION MODEL SAMPLING

The sampling phase of the diffusion model from noise to image can be implemented by solving the
stochastic differential equation (SDE) (Song et al., 2020; Kingma et al., 2021) as in Eq.(1):

dxs = [f̂(s)xs +
g(s)2

σs
ϵϕ(xs, s)]ds+ g(s)dw̄s (1)

where w̄s is the reverse-time Wiener process, s denotes time changing from K to 0, ϵϕ(xs, s)
denotes the diffusion model noise prediction with input xs and time s. And σs denotes the standard
deviation of the diffusion noise scheme at time s. And f̂(s) := d logαs

ds , where αs denotes the scaling

parameter scheme in the diffusion model. And g(s)2 :=
dσ2

s

ds − 2f̂(s)σ2
s (Kingma et al., 2021).

Recently, Lu et al. (2022a;b) proposed a DPM solver for solving the diffusion SDE with a small
number of samples. The first-order SDE DPM solver is given in Eq.(2).

xs =
αs

αs′
xs′ − 2σs(e

h − 1)ϵϕ(xs′ , s
′) + σs

√
e2h − 1z (2)

where z∼N (0, I), h=λs−λs′ , and λs = log(αs/σs) and λs′ = log(αs′/σs′). And αs, αs′ denote
the scaling parameter at step s and s′ in diffusion model, respectively.

2.2 BLACK-BOX OPTIMIZATION

Given a proper function f(x) : Rd → R such that f(x) > −∞, black-box optimization is to
minimize f(x) by using function queries only. Instead of optimizing the original problem directly,
ES or stochastic zeroth-order optimization methods optimize a relaxation of the problem J(θ) :=
Ep(x;θ)[f(x)] w.r.t. the parameter θ of the sampling distribution of the relaxed problem.

Evolution strategies (Rechenberg & Eigen, 1973; Nesterov & Spokoiny, 2017; Liu et al., 2018) employ
a Gaussian distribution N (µ, σ2I) with a fixed variance for candidate sampling. The approximate
gradient descent update is given as

µt+1 = µt −
β

Nσ

N∑
i=1

ϵif(µt + σϵi), (3)
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where ϵi ∼ N (0, I) and β denotes the step-size, and µt denotes the mean parameter of the Gaussian
distribution for candidate sampling at tth black-box optimization iteration.

The ES methods only perform the first-order approximate gradient update, the convergence speed is
limited. Wierstra et al. (2014) proposed the natural evolution strategies (NES), which perform the
approximate natural gradient update, in which A Gaussian distribution N (µ,Σ) is employed for
sampling. Besides the updating of parameter µ, the covariance matrix Σ) is also updated. Lyu &
Tsang (2021) proposed an implicit natural gradient optimizer (INGO) for black-box optimization,
which provides an alternative way to compute the natural gradient update. In INGO update rule,
the inverse covariance matrix Σ−1 is updated instead of the covariance matrix Σ. Moreover,
CMAES (Hansen, 2006) provides a more sophisticated update rule and performs well on a wide
range of black-box optimization problems. Despite the success of these methods, all these methods
ignore the dynamic nature of the target function.

The recent work (Krishnamoorthy et al., 2023) introduces Denoising Diffusion Optimization Models
(DDOM) for solving offline black-box optimization tasks using diffusion models. This method can
also be naturally extended to black-box targeted generation tasks. The DDOM relies on an offline
conditional model trained with reweighted data sampling. The generation is performed conditioned
on a high target score. The pre-collected data set has a crucial influence on DDOM generation.

3 NOTATION AND SYMBOLS

Denote ∥ · ∥2 and ∥ · ∥F as the spectral norm and Frobenius norm for matrices, respectively. Define
tr(·) as the trace operation for matrix. Notation ∥ · ∥2 will also denote l2-norm for vectors. Symbol
⟨·, ·⟩ denotes inner product under l2-norm for vectors and inner product under Frobenius norm for
matrices. For a positive semi-definite matrix C, define ∥x∥C :=

√
⟨x, Cx⟩. Denote S+ and as the

set of positive semi-definite matrices. Denote Σ
1
2 as the symmetric positive semi-definite matrix such

that Σ = Σ
1
2Σ

1
2 for Σ ∈ S+. Denote x̄k = [x⊤

1 , · · · ,x⊤
k ]

⊤ ∈ Rkd , where xi ∈ Rd, d denotes the
dimension of the data. Denote µ̄k = [µ⊤

1 , · · · ,µ⊤
k ]

⊤ and Σ̄k = diag(Σ1, · · · ,Σk) ∈ Rkd×kd as
the mean and diagonal block-wise covariance matrix for Gaussian distribution, respectively. Denote
θ̄k := {µ̄k, Σ̄k} as the parameter of the distribution for candidate sampling in black-box optimization
and θk := {µk,Σk} as its kth component. Denote θ̄tk := {µ̄t

k, Σ̄
t
k} as the parameter at tth iteration.

4 METHOD

4.1 BLACK-BOX OPTIMIZATION FOR DIFFUSION TARGETED GENERATION

Diffusion model sampling can be implemented by solving Diffusion SDEs (Song et al., 2020). From
SDE solvers in Eq.(2) , the inference phase of the diffusion SDE model can be rewritten as

xk = µ̂ϕ(xk−1, k − 1) + σ̃kN (0, I) (4)

for k ∈ {1, · · · ,K}, k = K−s, and x0 ∼ N (0, I), σ̃k denotes the coefficient of the SDE solver.
And µ̂ϕ(xk−1, k − 1) is the prediction of a pre-trained diffusion model with fixed parameter ϕ. The
concrete µ̂ϕ(xk−1, k − 1) depends on the solver type.

To perform guided sampling from the diffusion model with the black-box target score function F (x)
(e.g., CLIP model evaluates on the input image x), we generalize the inference of SDE solver as

xk = µ̂ϕ(xk−1, k − 1) + σ̃kN (µk,Σk) (5)

for k ∈ {1, · · · ,K}, and fine-tuning the parameter θk := {µk,Σk} for k ∈ {1, · · · ,K}. This
naturally leads to a black-box optimization of the cumulative target score as

J̃(θ̄K) := Ex0:K∼pθ̄K

[ K∑
k=1

F (xk)
]

(6)

where xk transition as xk = µ̂ϕ(xk−1, k−1)+σ̃kϵk with ϵk ∼ N (µk,Σk), and θ̄K := {µ̄K , Σ̄K},
F (xk) denotes the score function evaluated on input data xk. It is worth to remark that xk depends on
the output state xk−1. Problem (6) is essentially a sequential optimization problem. The strategy of
choosing θk:={µk,Σk} depends on the strategy of choosing {θk−1, θk−2,· · ·, θ1} in a nested manner.
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Instead of directly optimizing the objective Eq.(6), we optimize an augmented objective Eq.(7) in the
noise space.

J(θ̄K) := Ex0∼N (0,I)Eϵ̄K∼N (µ̄K ,Σ̄K)

[ K∑
k=1

fk(ϵ̄k)
]

(7)

where ϵ̄k = [ϵ⊤1 , · · · , ϵ⊤k ]⊤ for k ∈ {1, · · · ,K}, and fk(ϵ̄k) = Fk(xk) for xk transitioned as
xk = µ̂ϕ(xk−1, k − 1) + σ̃kϵk with the trajectory [ϵ1, · · · , ϵk]. Fk(xk) performs a deterministic
sampling process xk+1 = µ̂ϕ(xk, k) + σ̃k+1µk+1 for the future steps to achieve a predicted xK and
evaluate on the predicted xK .

The objective Eq.(7) can be rewritten as

J(θ̄K) =

K∑
k=1

Jk(θ̄k) =

K∑
k=1

Ex0∼N (0,I)Eϵ̄k∼N (µ̄k,Σ̄k)[fk(ϵ̄k)] (8)

where Jk(θ̄k) = Ex0∼N (0,I)Eϵ̄k∼N (µ̄k,Σ̄k)[fk(ϵ̄k)].

4.2 CLOSED-FORM UPDATE RULE

In this section, we derive the update rule of the parameter to optimize Eq.(7). Without loss of
generality, we assume minimization in this paper.

Given a parameter θ̄tK at tth iteration, we aim to find a new parameter θ̄t+1
K by minimizing the

objective difference as
min
θ̄K

J(θ̄K)− J(θ̄tK) (9)

However, it is challenging to solve the optimization (9) directly. We thus optimize an approximation
by first order Taylor expansion. We add a KL-divergence regularization to ensure qθ̄K and qθ̄t

K
close,

thus to keep the approximation accurate. The new optimization problem is given as

min
θ̄K

J(θ̄K)− J(θ̄tK) + KL(qθ̄K |qθ̄t
K
) =

K∑
k=1

Jk(θ̄k)− Jk(θ̄
t
k) + KL(qθ̄K |qθ̄t

K
) (10)

≈
K∑

k=1

〈
θ̄k − θ̄tk, βk∇θ̄t

k
Jk(θ̄

t
k)
〉
+ KL(qθ̄K |qθ̄t

K
) (11)

where qθ̄K := N (µ̄K , Σ̄K) and qθ̄t
K
:= N (µ̄t

K , Σ̄t
K).

Note that the problem (11) is convex w.r.t. θ̄K := {µ̄K , Σ̄K}, by setting the derivative to zero, we
can achieve a closed-form update as

µt+1
k = µt

k −
K∑
i=k

βiEx0∼N (0,I)EN (µ̄i,Σ̄i)[
(
ϵi − µt

i

)
fi(ϵ̄i)] (12)

Σt+1
k

−1
=Σt

k
−1

+

K∑
i=k

βiEx0∼N (0,I)EN (µ̄i,Σ̄i)[(Σ
t
i
−1(

ϵi − µt
i

)(
ϵi − µt

i

)⊤
Σt

i
−1−Σt

i
−1

)fi(ϵ̄i)]

(13)
Detailed derivation can be found in Appendix B.

To compute the update in Eq.(12) and Eq.(13), we perform Monte Carlo sampling by taking N i.i.d.
sequence {xj

0, ϵ
j
1, · · · , ϵ

j
K} for j ∈ {1, · · · , N}, where xj

0 ∼ N (0, I) and ϵjk ∼ N (µt
k,Σ

t
k) for

k ∈ {1, · · · ,K}. This leads to unbiased estimators of the RHS of Eq.(12) and Eq.(13) as follows:

µt+1
k = µt

k − 1

N

K∑
i=k

βi

N∑
j=1

[
(
ϵji − µt

i

)
(fi(ϵ̄

j
i )− fi(µ̄

t
i))] (14)

Σt+1
k

−1
=Σt

k
−1

+
1

N

K∑
i=k

βi

N∑
j=1

(
Σt

i
−1(

ϵji − µt
i

)(
ϵji − µt

i

)⊤
Σt

i
−1 −Σt

i
−1
)
(fi(ϵ̄

j
i )− fi(µ̄

t
i))

(15)
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Algorithm 1 BDTG
Input: Number of Batch Size N , step-size β, a pre-trained diffusion model µ̂ϕ(xk, k), number of
sampling step K, SDE solver coefficient σ̃k for k ∈ {1, · · · ,K}. Number of total iteration T .
Initialization: Initialize µ1

k = 0,Σ1
k = I , and set βk = βσ̃k for k ∈ {1, · · · ,K}.

for t = 1, · · · , T do
Take i.i.d. samples x1

0, · · · ,xN
0 ∼ N (0, I).

for k = 1, · · · ,K do
Take i.i.d. samples ϵ1k, · · · , ϵNk ∼ N (µt

k,Σ
t
k)

Set xj
k = µ̂ϕ(x

j
k−1, k−1) + σ̃kϵ

j
k for all j ∈ {1, · · · , N}.

Query black-box target function score fk(ϵ̄
1
k) = Fk(x

1
k), · · · , fk(ϵ̄Nk ) = Fk(x

N
k ).

end for
Update µt+1

k for all k ∈ {1, · · · ,K} using Eq. (16)
Update Σt+1

k for all k ∈ {1, · · · ,K} using Eq. (17)
end for

where the offset term fi(µ
t
i) is employed to reduce variance.

In practice, to avoid the numeric scale problem, we normalize the score by h(fi(ϵ̄
j
i )) =

fi(ϵ̄
j
i )−µ̂i

σ̂i
,

where µ̂i and σ̂i denote mean and standard deviation of function values [fi(ϵ̄1i ), · · · , fi(ϵ̄Ni )]. We
thus obtain the following update rule for practical updates.

µt+1
k = µt

k − 1

N

K∑
i=k

βi

N∑
j=1

[
(
ϵji − µt

i

)fi(ϵ̄ji )− µ̂i

σ̂i
] (16)

Σt+1
k

−1
=Σt

k
−1

+
1

N

K∑
i=k

βi

N∑
j=1

(
Σt

i
−1(

ϵji − µt
i

)(
ϵji − µt

i

)⊤
Σt

i
−1
)fi(ϵ̄ji )− µ̂i

σ̂i
(17)

Note that ϵji = µt
i +Σt

i

1
2 zj

i for zj
i ∼ N (0, I), Eq. (17) can be rewritten as

Σt+1
k

−1
=Σt

k
− 1

2 (I+βHt
k)Σ

t
k
− 1

2 (18)

where Ht
k is constructed as Eq. (19).

Ht
k =

1

N

K∑
i=k

βi

β

N∑
j=1

zj
i z

j
i

⊤ fi(ϵ̄
j
i )− µ̂i

σ̂i
(19)

The property of Ht
k has a crucial impact on the convergence speed.

We summarize our algorithm for black-box diffusion target generation algorithm (BDTG) into
Algorithm 1. In Algorithm 1, the user preference can be incorporated via the black-box target score.
In addition, σ̃k is the SDE solver coefficient. For example, when DPM solver (Lu et al., 2022a) is
employed, σ̃k = σk

√
e2h−1. More details about different solvers can be found in (Lu et al., 2022b).

5 CONVERGENCE ANALYSIS

In this section, we provide the convergence analysis of our general algorithm framework. Without
loss of generality, we focus on minimizing the following sequential optimization problem:

F̂ (x̄K) =

K∑
k=1

fk(x̄k) (20)

Remark: The black-box function fk(x̄k) with x̄k = [x⊤
1 , · · · ,x⊤

k ]
⊤ explicitly shows the de-

pendency of the whole history trajectory [x1, · · · ,xk]. The sequential black-box optimization in
Eq.(20) is general enough to include many interesting scenarios as special cases. One particular
interesting problem is fk(x̄k) = F (yk) where yk is obtained by an unknown transition dynamic
yk = Q(yk−1,xk).
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Algorithm 2 SABSO Framework
Input: Batch-size N . Parameter βt, αt, γt,and ωt. Number of total iteration T and the step K.
Initialization: Initialize µ1

k = 0,Σ1
k = τI for k ∈ {1, · · · ,K}.

for t = 1, · · · , T do
for k = 1, · · · ,K do

Take i.i.d. samples z1
k, · · · , zN

k ∼ N (0, I)

Set xj
k = µt

k +Σt
k

1
2 zj

k for j ∈ {1, · · · , N}
Query black-box objective function value fk(x̄

1
k), · · · , fk(x̄N

k ).
Construct unbiased estimator ĝk1, · · · , ĝkk as Eq. (22).
Compute µ̂k, σ̂k as the mean and std of {fk(x̄1

k), · · · , fk(x̄N
k )}.

end for
for k = 1, · · · ,K do

Construct Ht
k = c1

1
N

∑K
i=k

∑N
j=1 z

j
i z

j
i

⊤ fi(x̄
j
i )−µ̂i

σ̂i
+ c2I with constants c1 > 0, c2 > 0

such that Ht
k ⪯ 1

αt
(βt+1

βt
− ωt)I + βt+1γt

αt
Σt

k and νI ⪯ Ĝt
k = Σt

k
− 1

2Ht
kΣ

t
k
− 1

2

Set Ĝt
k = Σt

k
− 1

2Ht
kΣ

t
k
− 1

2 .
Set µt+1

k = µt
k − βtΣ

t
k

(
γtµ

t
k + (

∑K
i=k ĝik)

)
Set Σt+1

k

−1
= ωtΣ

t
k
−1

+ αtĜ
t
k.

end for
end for

Instead of directly optimizing problem (20), we optimize an auxiliary problem (21) as

J(µ̄K , Σ̄K) =

K∑
i=1

Ji(µ̄i, Σ̄i) =

K∑
i=1

Ex̄i∼N (µ̄i,Σ̄i)[fi(x̄i)] (21)

where Ji(µ̄i, Σ̄i) = Ex̄i∼N (µ̄i,Σ̄i)[fi(x̄i)].

Denote gradient estimator ĝtik for the ith objective w.r.t. the kth component µk at tth iteration as

ĝtik =
1

N

N∑
j=1

ĝtjik =
1

N

N∑
j=1

Σt
k
− 1

2 zj
k

(
fi(µ̄

t
i + Σ̄

t 1
2

i z̄i
j)− fi(µ̄

t
i)
)
, (22)

where ĝtjik is the gradient estimator using jth i.i.d. sample:

ĝtjik = Σt
k
− 1

2 zj
k

(
fi(µ̄

t
i + Σ̄

t 1
2

i z̄i
j)− fi(µ̄

t
i)
)
, (23)

where zj
1, · · · , z

j
i ∼ N (0, Id) and z̄i

j = [z⊤
1 , · · · , z⊤

i ]⊤ for i ≥ k.

We show our Stochastic Adaptive Black-box Sequential Optimization algorithm (SABSO) in Algo-
rithm 2. Our SABSO can perform full matrix updates to take advantage of second-order information.
We add a γtµ

t
k term in the update step of µt+1

k in Algorithm 2. The sequence γt = O( 1√
t+1

)

decreasing to zero.

We now list the assumptions employed in our convergence analysis. All the assumptions are common
in the literature. The assumptions are weak because neither smooth assumptions nor strongly convex
assumptions are involved. Thus, our algorithm can handle non-smooth cases. More importantly,
we do not add any additional assumptions of the auxiliary problem (21). This is important for
practical use because we can not check whether the auxiliary problem satisfies the assumptions given
a black-box original problem. To the best of our knowledge, our algorithm is the first full matrix
adaptive black-box optimization algorithm that achieves a provable O(d

2K4
√
T

) convergence for convex
functions without smooth and strongly convex assumptions, and any assumptions of the auxiliary
problems.
Assumption 5.1. f1(x̄1), · · · , fK(x̄K) are all convex functions.
Assumption 5.2. fi(x̄i) is a Li-Lipschitz continuous function for ∀i ∈ {1, · · · ,K}, i.e., |fi(x̄i)−
fi(ȳi)| ≤ Li∥x̄i − ȳi∥2.
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Assumption 5.3. The initialization θ̄1K := {µ̄1
K , Σ̄1

K} is bounded, i.e.,
∑K

k=1 ∥µ1
k − µ∗

k∥2Σ1
k
−1 ≤ R

and Σ̄1
K ∈ S+, and τI ⪯ Σ̄1

K ⪯ τ̄I for τ̄ ≥ τ > 0, and
∑K

k=1 ∥µ∗
k∥22 ≤ B.

Theorem 5.4. Suppose the assumptions 5.1 5.2 5.3 holds. Set βt = tβ with β > 0, αt =
√
t+ 1α

with α > 0, and γt =
αν

β
√
t+1

, and ν > 0, and ωt = 1. Initialize Σ1
k such that ∥Σ1

k∥
−1
2 ≥ 5

3αν for
∀k ∈ {1, · · · ,K}. Then, running Algorithm 2 with T -steps, we have

1

T

T∑
t=1

K∑
k=1

fk(µ̄
t
k)−

K∑
k=1

fk(µ̄
∗
k) ≤

∑K
k=1 ∥µ1

k−µ∗
k∥2Σ1

k
−1

2βT
+
2
√
T+1C1

T
+
4(T+1)

1
4C2

T
+

√
T+2C3

T

(24)

≤ O(
d2K4

√
T

) (25)

where µ̄t
k = [µt⊤

1 , · · · ,µt⊤
k ]⊤ and µ̄∗

k = [µ∗⊤
1 , · · · ,µ∗⊤

k ]⊤. And C1 =
3β

∑K
i=1 KL2

i (id+1)2

2αν and

C2 =
∑K

i=1

√
3idLi√

αν
, C3 = ανB

β .

Detailed proof can be found in Appendix D. In Theorem 5.4, the error term
√
T+2C3

T in Eq.(24)

is due to the γt-enlargement. Error term 4(T+1)
1
4 C2

T results from the covariance matrix term Σ̄K

in Gaussian-smooth relaxation of the original problem. The first two error terms result from the
stochastic gradient update.

Note that for a convex function f(x), we have f( 1
T

∑T
t=1 xt) ≤ 1

T

∑T
t=1 f(xt). Then, we can

directly obtain the solution of the original problem (20) by averaging the auxiliary variable µt
K for

the auxiliary problem (21).
Corollary 5.5. Suppose the assumptions 5.1 5.2 5.3 holds. Set βt = tβ with β > 0, αt =

√
t+ 1α

with α > 0, and γt =
αν

β
√
t+1

, and ν > 0, and ωt = 1. Initialize Σ1
k such that ∥Σ1

k∥
−1
2 ≥ 5

3αν for

∀k ∈ {1, · · · ,K}. Then, running Algorithm 2 with T -steps, set x̄T
K = 1

T

∑T
t=1 µ̄

t
K , we have the

cumulative regret as:
K∑

k=1

fk(x̄
T
k )−

K∑
k=1

fk(µ̄
∗
k) ≤

∑K
k=1 ∥µ1

k−µ∗
k∥2Σ1

k
−1

2βT
+
2
√
T+1C1

T
+
4(T+1)

1
4C2

T
+

√
T+2C3

T

(26)

≤ O(
d2K4

√
T

) (27)

where x̄T
k = [xT⊤

1 , · · · ,xT⊤
k ]⊤ and µ̄∗

k = [µ∗⊤
1 , · · · ,µ∗⊤

k ]⊤. And C1 =
3β

∑K
i=1 KL2

i (id+1)2

2αν and

C2 =
∑K

i=1

√
3idLi√

αν
, C3 = ανB

β .

Remark: Note that for convex problems, the optimum {µ̄∗
K , 0} of the auxiliary problem (21) is

also the optimum of the original problem (20), i.e., J(µ̄∗
K , 0) = F̂ (µ̄∗

K). Thus, the solution x̄T
k

achieve a O(d
2K4
√
T

) cumulative regret of the original problem (20). In addition, our algorithm can
handle non-smooth problems without expert designing of proximal operators for different types of
non-smooth functions. This can be remarkably interesting when the unknown function involves
compositions of lots of different types of non-smooth functions, in which case human experts can not
derive the operators explicitly.

6 EXPERIMENTS

6.1 EMPIRICAL STUDY ON NUMERICAL TEST PROBLEM

We first evaluate our algorithm on minimizing the numerical cumulative summation problem
F̂ (x̄K) =

∑K
i=1 f(xk) with black-box transition dynamic xk = xk−1 +0.1. We test two cases: L2-

norm Ellipsoid f(x) :=
∑d

m=1 10
6(m−1)

d−1 x2
m and L1-norm Ellipsoid f(x) :=

∑d
m=1 10

6(m−1)
d−1 |xm|
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(a) Cumulative L2-norm Ellipsoid problem
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(b) Cumulative L1-norm Ellipsoid problem
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(c) Diffusion model Black-box Fine-tuning

Figure 1: Target score v.s. the number of update steps on different problems

Table 1: Black-box function scores for each method evaluated on 2700 generated images
Mean Std 50%ile 80%ile 95%ile

Dataset 0.0000 1.0000 0.0511 0.7876 1.7414
Conditional model 3.5048 0.6672 3.5065 4.0601 4.5863

DDOM 3.6571 0.6252 3.6764 4.1807 4.6631
Fine-tune (steps=1596) (ours) 4.0998 0.5976 4.1259 4.6083 5.0468
Fine-tune (steps=2646) (ours) 4.2287 0.5642 4.2739 4.7069 5.0797

Extend dataset (ours) 4.7948 0.4897 4.8166 5.2222 5.5511

The plot of the target score is shown in Figure 1 (a) and (b), respectively. We can see our converge
fast in the sequential optimization test problem.

6.2 EMPIRICAL STUDY ON BLACK-BOX DIFFUSION TARGET GENERATION

Black-box Target Score: We employ the CLIP model1 (Radford et al., 2021) to compute the black-
box target score. Specifically, we compute the cosine distance between the latent embedding of the
generated image and the latent embedding of the target text and employ the normalized cosine distance
y−µy

σy
as the black-box target score, where µy and σy denotes the mean and standard deviation of the

cosine distances between the target and the images in the dataset. We chose ”a close-up of a man with
long hair” as our target text to compute the black-box target score. The larger the score is the better.

Baselines: We compare our methods with the DDOM generation (Krishnamoorthy et al., 2023), the
conditional model generation conditioned on the pre-computed max score from the dataset, and the
trivial max score from the dataset as baselines. In addition to our black-box methods optimization for
diffusion fine-tuning, we employ the generated images from our fine-tuned diffusion model to extend
the dataset and employ the extended dataset to retrain a conditional model.

Dataset and Implementation: In our experiments, we use the dataset CelebA-HQ2 that contains
30,000 face images. We employ DPM-Solver++ (Lu et al., 2022a) as the sampler for all experiments
in both the training and evaluation phases. In all experiments, we set the number of sampling steps as
K = 14. More implementation details can be found in the Appendix E.

For each method, we generate 2700 images and evaluate the normalized scores. The mean, std,
50%-Percentile score, 80%-Percentile score and 95%-Percentile score of each method are shown in
Table 1. We can observe that both our fine-tuning method and extended dataset retraining method
achieve significantly higher scores compared with baselines consistently across all metrics. Moreover,
we can see that re-training with our extended dataset achieves the highest scores among all the
compared methods, which demonstrates the ability and potential of our method for target generation.
In addition, all the methods obtain significantly higher scores compared with the training dataset.

We further show the plot of the relationship between the black-box function score value and the
number of update steps of our method in Figure 1 (c). We observe that the score increases almost
linearly with the number of update steps, which demonstrates the potential of our optimization method
in diffusion target generation.

1https://huggingface.co/sentence-transformers/clip-ViT-L-14
2https://huggingface.co/datasets/huggan/CelebA-HQ
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Figure 2: Generated Images of all methods

We further visualize the images generated by different methods with the same initialized noise x0 in
Figure 2. We observe that our method trades off optimizing the score at the cost of image quality.
This issue may be mitigated by incorporating quality measurement into the black-box function. We
leave it to future work.

7 CONCLUSION

In this paper, we formulated the fine-tuning of the diffusion model for black-box target generation as
a sequential black-box optimization problem. We proposed a novel stochastic adaptive sequential
black-box optimization(SASBO) algorithm to address this problem. Theoretically, we prove a
O(d

2K4
√
T

) convergence rate of SASBO without smooth and strongly convex assumptions. Thus, our
theoretical results hold true for all non-smooth/smooth convex function families that are of great
challenge for full matrix adaptive black-box algorithms to converge. Empirically, our method enables
the fine-tuning of the diffusion model to generate targeted images with a high black-box target score.
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APPENDIX

A ADDITIONAL EXPERIMENTS

A.1 TARGETED IMAGE GENERATION

We evaluate our revised method on two targeted image generation cases: (1) ”long hair man”
(2)”Asian face”. The ”Asian face” is rare in the dataset. As a result, the targeted generation focuses
more on out-of-distribution generation, which is more challenging than the ”long hair man” case. For
the ”long hair man” case, we keep the target text as ”a close-up of a man with long hair”, which is the
same as in our previous submission version. For the ”Asian face” case, we set the target text as ”a
high quality close up of an asian”.

For both cases, we set the number of iterations T of our method as T = 120. The experimental results
reported are at T = 120. We perform independent draws to generate 3, 000 images for evaluation.
The same set consists of 3, 000 i.i.d. sampled initial noise x0 ∼ N (0, I) is employed for all the
methods to generate images for comparison.

A.1.1 TARGETED IMAGE GENERATION: LONG HAIR MAN

In this experiment, the target text is set as ”a close-up of a man with long hair”. Figure 3 shows the
comparison of generated images. Figure 4 shows 64 randomly generated images by our method.
Table 2 shows the score values.

Figure 3: Comparison of different methods on ”long hair man”

Table 2: Score values evaluated on 3000 generated images on ”long hair man”
Mean Std 50%ile 80%ile 95%ile

Dataset 0.0000 1.0000 0.0511 0.7876 1.7414
Conditional model 3.5673 0.6762 3.5672 4.1299 4.6761

DDOM 3.7062 0.6372 3.7110 4.2618 4.7319
Our method 3.9727 0.5902 3.9937 4.4598 4.9197

A.1.2 TARGETED IMAGE GENERATION: ASIAN FACE

In this experiment, the target text is set as ”a high quality close up of an asian”. Figure 5 shows the
comparison of generated images. Figure 6 shows 64 randomly generated images by our method.
Table 3 shows the score values.

Table 3: Score values evaluated on 3000 generated images on ”Asian Face”
Mean Std 50%ile 80%ile 95%ile

Dataset 0.0000 1.0000 0.0511 0.7876 1.7414
Conditional model 2.8784 0.5654 2.8870 3.3682 3.7874

DDOM 3.2397 0.4824 3.2693 3.6346 4.0078
Our method 3.2435 0.5453 3.2733 3.7074 4.0789
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Figure 4: 64 images generated by our method for ”long hair man”

Table 4: Normalized maximum score on Design Bench evaluated on 5 independent runs
SUPERCON. CHEMBL

Conditional model 0.4824 ± 0.0466 0.6345 ± 0.0026
DDOM 0.4777 ± 0.0350 0.6344 ± 0.0027

Our method 0.5123 ± 0.0145 0.6392 ± 0.0055

We can see that the visual quality of our method’s generated images is better than DDOM’s on the
”Asian face” cases. DDOM employs a reweighed sampling of training samples to train a conditional
diffusion model from scratch. This training scheme focuses on the tail of the distribution, which is
more vulnerable to overfitting, especially for out-of-distribution target generation cases where the
target image is rare in the training set.

A.2 DESIGN-BENCH: SUPERCONDUCTOR

We compare our method with the DDOM’s on the design-bench tasks. We train our model for
T = 200 iterations. We follow Krishnamoorthy et al. (2023) to perform 5 independent runs with
different seed, and report the normalized maximum score along with standard deviation. The
normalization method is the same as Krishnamoorthy et al. (2023). We experiment on two tasks,
Superconductor and ChEMBL. Experimental results are shown in Table 4. Our method outperforms
the DDOM on both tasks, which shows the potential of our method on different domains beyond the
targeted image generation.

13



Under review as a conference paper at ICLR 2024

Figure 5: Comparison of different methods on ”Asian Face”

Figure 6: 64 images generated by our method for ”Asian Face”

B DERIVATION OF UPDATE RULE

The minimization can be rewritten as

K∑
k=1

〈
θ̄k − θ̄tk, βk∇θ̄t

k
Jk(θ̄

t
k)
〉
+ KL(qθ∥qθt) = Ex0∼N (0,I)

K∑
k=1

βkµ̄
⊤
k ∇µ̄t

k
Eqθ̄t

k

[fk(x̄k)]+

K∑
k=1

βktr(Σ̄k∇Σ̄t
k
Eqθ̄t

k

[fk(x̄k)])+
1

2

[
tr(Σ̄t

K

−1
Σ̄K) + (µ̄K−µ̄t

K)⊤Σ̄t
K

−1
(µ̄K−µ̄t

K) + log
|Σ̄t

K |
|Σ̄K |

−d
]
,

(28)
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where ∇µ̄t
k
Eqθ̄t

k

[fk(x̄k)] and ∇Σ̄t
k
Eqθ̄t

k

[fk(x̄k)] denotes the derivative w.r.t µ̄k and Σ̄k taking at

µ̄k = µ̄t
k and Σ̄k = Σ̄k

k. The above problem is convex with respect to µ̄K = [µ⊤
1 , · · · ,µ⊤

K ]⊤ and
Σ̄K = diag(Σ1, · · · ,ΣK). Taking the derivative w.r.t µ̄K and Σ̄K and setting them to zero, for kth
component , we can obtain that

Ex0∼N (0,I)

K∑
i=k

βi∇µt
k
Eqθ̄t

i

[fi(x̄i)] +Σt
k
−1

(µk − µt
k) = 0 (29)

Ex0∼N (0,I)

K∑
i=k

βi∇Σt
k
Eqθ̄t

i

[fi(x̄i)] +
1

2
[Σ−1

k −Σt
k
−1

] = 0. (30)

for k ∈ {1, · · · ,K}.

Set µt+1
k = µk and Σt+1

k

−1
= Σ−1

k in the above equation. We then have the update rule as

µt+1
k = µt

k − Ex0∼N (0,I)

K∑
i=k

βiΣ
t
k∇µt

k
Eqθ̄t

i

[fi(x̄i)] (31)

Σt+1
k

−1
= Σt

k
−1

+ Ex0∼N (0,I)

K∑
i=k

2βi∇Σt
k
Eqθ̄t

i

[fi(x̄i)]. (32)

for k ∈ {1, · · · ,K}.

In addition, note that the gradient has the following closed-form (Wierstra et al., 2014)

∇µt
k
Eqθ̄t

i

[fi(x̄i)] = Σt
k
−1Eqθ̄t

i

[(xk − µk)fi(x̄i)] (33)

∇Σt
k
Eqθ̄t

i

[fi(x̄i)] =
1

2
Eqθ̄t

i

[
(
Σt

k
−1(

xk − µk

)(
xk − µk

)⊤
Σt

k
−1 −Σt

k
−1
)
(fi(x̄i))] (34)

Then, we have that

µt+1
k = µt

k −
K∑
i=k

βiEx0∼N (0,I)Eqθ̄t
i

[(xk − µk)fi(x̄i)] (35)

Σt+1
k

−1
= Σt

k
−1

+

K∑
i=k

βiEx0∼N (0,I)Eqθ̄t
i

[
(
Σt

k
−1(

xk − µk

)(
xk − µk

)⊤
Σt

k
−1 −Σt

k
−1
)
(fi(x̄i))].

(36)

C TECHNICAL LEMMAS

In this section, we introduce the following technical lemmas for convergence analysis.

Lemma C.1. Given a positive definite matrix Σ, we have ∥Σ(x+y)∥2Σ−1 ≤ 2(∥Σx∥2Σ−1+∥Σ 1
2y∥22)

Proof.

∥Σ(x+ y)∥2Σ−1 =
〈
Σ−1Σ(x+ y),Σ(x+ y)

〉
(37)

= ⟨(x+ y),Σ(x+ y)⟩ (38)

= ∥Σ 1
2x+Σ

1
2y∥22 (39)

≤ 2(∥Σ 1
2x∥22 + ∥Σ 1

2y∥22) (40)

Note that ∥Σ 1
2x∥22 =

〈
x,Σx

〉
=
〈
Σ−1Σx,Σx

〉
= ∥Σx∥2Σ−1 , we achieve that

∥Σ(x+ y)∥2Σ−1 ≤ 2(∥Σx∥2Σ−1 + ∥Σ 1
2y∥22) (41)
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Lemma C.2. Suppose the gradient estimator ĝtik for the ith objective w.r.t. the kth component µk at
tth iteration as

ĝtik = Σt
k
− 1

2 zk
(
fi(µ̄

t
i + Σ̄

t 1
2

i z̄i)− fi(µ̄
t
i)
)
, (42)

where z1, · · · , zi ∼ N (0, Id) and z̄i = [z⊤
1 , · · · , z⊤

i ]⊤, i ≥ k. Suppose assumptions 5.2 hold, using

the parameter setting in Theorem 5.4, and the covariance matrix update Ĝt
k = Σt

k
− 1

2Ht
kΣ

t
k
− 1

2 are
positive semi-definite matrix that satisfies νI ⪯ Ĝt

k. Apply the update rule Σt+1
k

−1
= ωtΣ

t
k
−1
+αtĜ

t
k,

we have

(a) ĝtik is an unbiased estimator of gtik = ∇µk
Ex̄∼N (µ̄t

i,Σ̄
t
i)
[fi(x̄)].

(b) ∥Σt+1
k ∥2 ≤ 1

∥Σt
k∥

−1
2 +

√
t+1αν

≤ · · · ≤ 3
2αν

1

(t+1)
3
2 + 3

2

≤ 3
2αν

1

(t+1)
3
2

.

(c) E
∑K

k=1 ∥Σt
k(
∑K

i=k ĝik)∥2Σt
k
−1 ≤ 3

∑K
i=1 KL2

i (id+1)2

2t
3
2 αν

For the average of i.i.d. sampled unbiased gradient estimators (each one has the same form as
Eq.(42)), the results (a),(b),(c) still hold true.

Proof. (a). We first show that ĝtik is an unbiased estimator of ∇µk
Ex̄∼N (µ̄t

i,Σ̄
t
i)
[fi(x̄)].

Ez̄i
[ĝtik] = Ez̄i

[Σt
k
− 1

2 zkfi(µ̄
t
i + Σ̄

t 1
2

i z̄i)]− Ez̄i
[Σt

k
− 1

2 zkfi(µ̄
t
i)] (43)

= Ez̄i
[Σt

k
− 1

2 zkfi(µ̄
t
i + Σ̄

t 1
2

i z̄i)] (44)

= Ex̄∼N (µ̄t
i,Σ̄

t
i)
[Σt

k
−1

(xk − µt
k)fi(x̄)] (45)

Note that Σ̄t
i = diag(Σt

1, · · · ,Σt
i) is a block-wise diagonal matrix, and µ̄i = [µ⊤

1 , · · · ,µ⊤
i ]

⊤,
i ≥ k , we then have that

Ez̄i
[ĝtik] = Ex̄∼N (µ̄t

i,Σ̄
t
i)
[Σt

k
−1

(xk − µt
k)fi(x̄)] = ∇µk

Ex̄∼N (µ̄t
i,Σ̄

t
i)
[fi(x̄)]. (46)

For N i.i.d. sampled unbiased gradient estimator, the average is still an unbiased gradient estimator.

Proof. (b) We now prove the decay of the spectral norm of covariance matrix.

From the update rule of Σt
k, we know that

Σt+1
k

−1
= ωtΣ

t
k
−1

+ αtĜ
t
k (47)

Note that νI ⪯ Ĝt
k, we have that

λmin
(
Σt+1

k

−1)
= λmin

(
ωtΣ

t
k
−1

+ αtĜ
t
k

)
(48)

≥ ωtλmin
(
Σt

k
−1)

+ αtν (49)

Note that ∥Σt+1
k ∥2 = 1

λmin

(
Σt+1

k

−1
) and αt =

√
t+ 1α, ωt = 1 , we have that

∥Σt+1
k ∥2 ≤ 1

ωtλmin
(
Σt

k
−1)

+ αtν
=

1

∥Σt
k∥

−1
2 +

√
t+ 1αν

(50)

It follows that
λmin

(
Σt+1

k

−1) ≥ λmin
(
Σt

k
−1)

+
√
t+ 1αν (51)

≥ λmin
(
Σt−1

k

−1)
+

√
tαν +

√
t+ 1αν (52)

≥ λmin
(
Σ1

k
−1)

+ (

t∑
i=1

√
i+ 1)αν (53)

≥ λmin
(
Σ1

k
−1)

+
2αν

3
((t+ 1)

3
2 − 1) (54)
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Note that the initialization such that λmin
(
Σ1

k
−1)

= ∥Σ1
k∥

−1
2 ≥ 5

3αν, we have that

λmin
(
Σt+1

k

−1) ≥ 2αν

3
(t+ 1)

3
2 + αν =

2αν

3

(
(t+ 1)

3
2 +

3

2

)
(55)

Note that ∥Σt+1
k ∥2 = 1

λmin

(
Σt+1

k

−1
) , we then have that

∥Σt+1
k ∥2 ≤ 3

2αν

1

(t+ 1)
3
2 + 3

2

(56)

Proof. (c). We now prove the upper bound of E
∑K

k=1 ∥Σt
k(
∑K

i=k ĝik)∥2Σt
k
−1 .

Note that ĝtik = Σt
k
− 1

2 zk
(
fi(µ̄

t
i + Σ̄

t 1
2

i z̄i)− fi(µ̄
t
i)
)
, we have that

∥Σt
k(

K∑
i=k

ĝik)∥2Σt
k
−1 = ∥Σt

kΣ
t
k
− 1

2 zk(

K∑
i=k

(
fi(µ̄

t
i + Σ̄

t 1
2

i z̄i)− fi(µ̄
t
i)
)
)∥2

Σt
k
−1 (57)

= ∥Σt
k

1
2 zk(

K∑
i=k

(
fi(µ̄

t
i + Σ̄

t 1
2

i z̄i)− fi(µ̄
t
i)
)
)∥2

Σt
k
−1 (58)

= ∥zk(
K∑
i=k

(
fi(µ̄

t
i + Σ̄

t 1
2

i z̄i)− fi(µ̄
t
i)
)
)∥22 (59)

=
( K∑
i=k

(
fi(µ̄

t
i + Σ̄

t 1
2

i z̄i)− fi(µ̄
t
i)
))2∥zk∥22 (60)

Note that fi(x̄) is Li-Lipschitz continuous function, we then have that

( K∑
i=k

(
fi(µ̄

t
i + Σ̄

t 1
2

i z̄i)− fi(µ̄
t
i)
))2 ≤ (K − k + 1)(

K∑
i=k

(
fi(µ̄

t
i + Σ̄

t 1
2

i z̄i)− fi(µ̄
t
i)
)2
) (61)

≤ (K−k+1)(

K∑
i=k

L2
i ∥µ̄t

i + Σ̄
t 1
2

i z̄i − µ̄t
i∥22) (62)

≤ (K−k+1)(

K∑
i=k

L2
i ∥Σ̄

t 1
2

i ∥22∥z̄i∥22) (63)

= (K−k+1)(

K∑
i=k

L2
i ∥Σ̄t

i∥2∥z̄i∥22) (64)

Plug Eq.(64) into Eq.(60), we have that

∥Σt
k(

K∑
i=k

ĝik)∥2Σt
k
−1 ≤ (K−k+1)∥zk∥22(

K∑
i=k

L2
i ∥Σ̄t

i∥2∥z̄i∥22) (65)
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It follows that

K∑
k=1

∥Σt
k(

K∑
i=k

ĝik)∥2Σt
k
−1 ≤

K∑
k=1

(K−k+1)∥zk∥22(
K∑
i=k

L2
i ∥Σ̄t

i∥2∥z̄i∥22) (66)

=

K∑
i=1

i∑
k=1

(
(K−k+1)∥zk∥22L2

i ∥Σ̄t
i∥2∥z̄i∥22

)
(67)

=

K∑
i=1

L2
i ∥Σ̄t

i∥2∥z̄i∥22
( i∑

k=1

(K−k+1)∥zk∥22
)

(68)

≤
K∑
i=1

L2
i ∥Σ̄t

i∥2∥z̄i∥22K∥z̄i∥22 (69)

=

K∑
i=1

KL2
i ∥Σ̄t

i∥2∥z̄i∥42 (70)

In addition, note that for z ∼ N (0, σ2), we have E[z4] = 3σ4. It follows that

E∥z̄i∥42 =

id∑
j=1

E[z4j ] +
id∑

j1=1

id∑
j2 ̸=j1

E[z2j1z
2
j2 ] = 3id+ id(id− 1) = i2d2 + 2id (71)

We then have that

E
K∑

k=1

∥Σt
k(

K∑
i=k

ĝik)∥2Σt
k
−1 ≤

K∑
i=1

KL2
i ∥Σ̄t

i∥2E∥z̄i∥42 (72)

≤
K∑
i=1

KL2
i ∥Σ̄t

i∥2(id+ 1)2 (73)

Note that Σ̄t
i = diag(Σt

1, · · · ,Σt
i) is a block-wise diagonal matrix, we have ∥Σ̄t

i∥2 ≤
maxk∈{1,··· ,i} ∥Σt

k∥2. Then we know that

E
K∑

k=1

∥Σt
k(

K∑
i=k

ĝik)∥2Σt
k
−1 ≤

K∑
i=1

KL2
i ∥Σ̄t

i∥2(id+ 1)2 (74)

≤ max
k∈{1,··· ,K}

∥Σt
k∥2

K∑
i=1

KL2
i (id+ 1)2 (75)

From Lemma C.2 (b), we know that ∥Σt
k∥2 ≤ 3

2αν
1

t
3
2

for ∀k ∈ {1, · · · ,K}. Then, we have

E
K∑

k=1

∥Σt
k(

K∑
i=k

ĝik)∥2Σt
k
−1 ≤ max

k∈{1,··· ,K}
∥Σt

k∥2
K∑
i=1

KL2
i (id+ 1)2 (76)

≤
3
∑K

i=1 KL2
i (id+ 1)2

2t
3
2αν

(77)
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Note that the square norm ∥ · ∥2
Σt

k
−1 is a convex function, then for the average of N i.i.d. sampled

gradient estimator ĝjik, j ∈ {1, · · · , N}, we have

E
K∑

k=1

∥Σt
k(

K∑
i=k

1

N

N∑
j=1

ĝjik)∥
2
Σt

k
−1 ≤ 1

N

N∑
j=1

E
K∑

k=1

∥Σt
k(

K∑
i=k

ĝjik)∥
2
Σt

k
−1 (78)

=
N

N
E

K∑
k=1

∥Σt
k(

K∑
i=k

ĝik)∥2Σt
k
−1 (79)

≤
3
∑K

i=1 KL2
i (id+ 1)2

2t
3
2αν

(80)

Lemma C.3. Denote Gt
i = ∇Σ̄i=Σ̄t

i
Ji(µ̄

t
i, Σ̄

t
i). Suppose assumption 5.2 holds, using the parameter

setting in Theorem 5.4, and the covariance matrix update Ĝt
k = Σt

k
− 1

2Ht
kΣ

t
k
− 1

2 are positive semi-
definite matrix that satisfies νI ⪯ Ĝt

k. Apply the update rule Σt+1
k

−1
= ωtΣ

t
k
−1

+ αtĜ
t
k, for

k ∈ {1, · · · ,K}. Then we have

tr(Gt
iΣ̄

t
i) ≤ |tr(Gt

iΣ̄
t
i)| ≤

Liid

2t
3
4

√
3

αν
(81)

Proof.

tr(Gt
iΣ̄

t
i) = tr(Σ̄t 1

2
i Gt

iΣ̄
t 1
2

i ) (82)

=
1

2
tr
(
Σ̄

t 1
2

i EN (µ̄t
i,Σ̄

t
i)

[
(Σ̄t

i

−1
(x̄i − µ̄t

i)(x̄i − µ̄t
i)

⊤Σ̄t
i

−1 − Σ̄t
i

−1
)fi(x̄i)

]
Σ̄

t 1
2

i

)
(83)

=
1

2
tr
(
EN (µ̄t

i,Σ̄
t
i)

[
(Σ̄t

i

−1
2 (x̄i − µ̄t

i)(x̄i − µ̄t
i)

⊤Σ̄t
i

−1
2 − I)fi(x̄i)

])
(84)

=
1

2
tr
(
Ez̄∼N (0,I)

[
(z̄z̄⊤ − I)fi(µ̄

t
i + Σ̄

t 1
2

i z̄)
])

(85)

=
1

2
tr
(
Ez̄∼N (0,I)

[
(z̄z̄⊤ − I)(fi(µ̄

t
i + Σ̄

t 1
2

i z̄)− fi(µ̄
t
i))
])

(86)

=
1

2
Ez̄∼N (0,I)

[
(

id∑
j=1

(z2j − 1))(fi(µ̄
t
i + Σ̄

t 1
2

i z̄)− fi(µ̄
t
i))
]

(87)

where zj denotes the jth element in z̄.

From Cauchy–Schwarz inequality |E[XY ]| ≤
√
E[X2]E[Y 2], we know that

|tr(Gt
iΣ̄

t
i)| =

1

2
|Ez̄∼N (0,I)

[
(

id∑
j=1

(z2j − 1))(fi(µ̄
t
i + Σ̄

t 1
2

i z̄)− fi(µ̄
t
i))
]
| (88)

≤ 1

2

√√√√Ez̄∼N (0,I)

[
(

id∑
j=1

(z2j − 1))2
]
Ez̄∼N (0,I)

[
(fi(µ̄t

i + Σ̄
t 1
2

i z̄)− fi(µ̄t
i))

2
]

(89)
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We first check the term Ez̄∼N (0,I)

[
(
∑id

j=1(z
2
j − 1))2

]
.

Ez̄∼N (0,I)

[
(

id∑
j=1

(z2j − 1))2
]
=

id∑
j=1

E(z2j − 1)2 +

id∑
j1=1

id∑
j2 ̸=j1

E(z2j1 − 1)(z2j2 − 1) (90)

=

id∑
j=1

E(z4j − 2z2j + 1) +

id∑
j1=1

id∑
j2 ̸=j1

E(z2j1 − 1)E(z2j2 − 1) (91)

=

id∑
j=1

E(z4j − 2z2j + 1) =

id∑
j=1

[3− 2 + 1] = 2id (92)

We now check the term Ez̄∼N (0,I)

[
(fi(µ̄

t
i + Σ̄

t 1
2

i z̄) − fi(µ̄
t
i))

2
]
. Note that fi(x) is Li-Lipschitz

continuous function, we then have that

Ez̄∼N (0,I)

[
(fi(µ̄

t
i + Σ̄

t 1
2

i z̄)− fi(µ̄
t
i))

2
]
≤ L2

iEz̄∼N (0,I)

[
∥Σ̄t 1

2
i z̄∥22

]
(93)

≤ L2
i ∥Σ̄

t 1
2

i ∥22Ez̄∼N (0,I)∥z̄∥22 (94)

= L2
i ∥Σ̄t

i∥2id (95)

From Lemma C.2 (b) we know that

∥Σ̄t
i∥2 = max

k∈{1,··· ,i}
∥Σt

k∥2 ≤ 3

2αν

1

t
3
2

(96)

Together with Eq.(95) and Eq.(96 ), we know that

Ez̄∼N (0,I)

[
(fi(µ̄

t
i + Σ̄

t 1
2

i z̄)− fi(µ̄
t
i))

2
]
≤ 3L2

i id

2t
3
2αν

(97)

Plug Eq.(97) and Eq.(92) into Eq.(89), we have that

|tr(Gt
iΣ̄

t
i)| ≤

Liid

2t
3
4

√
3

αν
(98)

Lemma C.4. Given a convex function f(x), for Gaussian distribution with parameters θ := {µ,Σ 1
2 },

let J̄(θ) := Ep(x;θ)[f(x)]. Then J̄(θ) is a convex function with respect to θ.

Proof. For λ ∈ [0, 1], we have

λJ̄(θ1) + (1− λ)J̄(θ2) = λEz∼N (0,I)[f(µ1 +Σ
1
2
1 z)] + (1− λ)Ez∼N (0,I)[f(µ2 +Σ

1
2
2 z)] (99)

= E[λf(µ1 +Σ
1
2
1 z) + (1− λ)f(µ2 +Σ

1
2
2 z)] (100)

≥ E[f
(
λµ1 + (1− λ)µ2 + (λΣ

1
2
1 + (1− λ)Σ

1
2
2 )z

)
] (101)

= J̄(λθ1 + (1− λ)θ2) (102)

Lemma C.5. Given a convex function f(x), let J(µ,Σ) := Ex∼N (µ,Σ)[f(x)]. Then, we have

f(µ)− f(µ∗) ≤ J(µ,Σ)− J(µ∗,0) (103)

Proof. From the definition of J(µ,Σ), we know that f(µ∗) = J(µ∗,0).

Note that f(x) is a convex function, we have that

f(µ) = f(Ex∼N (µ,Σ)[x]) ≤ Ex∼N (µ,Σ)[f(x)] = J(µ,Σ) (104)

It follows that

f(µ)− f(µ∗) ≤ J(µ,Σ)− J(µ∗,0) (105)
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D PROOF OF THEOREM 5.4

In this section, we prove our main Theorem 5.4. We decompose the proof into two parts. The proof
of Theorem D.1 and the proof of Theorem D.2. Together with Theorem D.1 and the Theorem D.2,
we achieve our main Theorem 5.4.

Theorem D.1. Suppose the assumptions 5.1 5.2 5.3 holds. Set βt = tβ with β > 0, αt =
√
t+ 1α

with α > 0, and γt =
αν

β
√
t+1

, and ν > 0, and ωt = 1. Initialize Σ1
k such that ∥Σ1

k∥
−1
2 ≥ 5

3αν for

∀k ∈ {1, · · · ,K}. Suppose the constraints Ht
k ⪯ 1

αt
(βt+1

βt
− ωt)I + βt+1γt

αt
Σt

k and νI ⪯ Ĝt
k =

Σt
k
− 1

2Ht
kΣ

t
k
− 1

2 always have feasible solutions. Then, running Algorithm 2 with T -steps, we have

1

T

T∑
t=1

K∑
k=1

fk(µ̄
t
k)−

K∑
k=1

fk(µ̄
∗
k) ≤

∑K
k=1 ∥µ1

k−µ∗
k∥2Σ1

k
−1

2βT
+
2
√
T+1C1

T
+
4(T+1)

1
4C2

T
+

√
T+2C3

T

(106)

≤ O(
d2K4

√
T

) (107)

where µ̄t
k = [µt⊤

1 , · · · ,µt⊤
k ]⊤ and µ̄∗

k = [µ∗⊤
1 , · · · ,µ∗⊤

k ]⊤. And C1 =
3β

∑K
i=1 KL2

i (id+1)2

2αν and

C2 =
∑K

i=1

√
3idLi√

αν
, C3 = ανB

β

Proof. For ∀k ∈ {1, · · · ,K}, we have

∥µt+1
k − µ∗

k∥2Σt
k
−1

= ∥µt
k − βt Σ

t
k((

K∑
i=k

ĝtik)+γtµ
t
k)− µ∗

k∥2Σt
k
−1 (108)

= ∥µt
k−µ∗

k∥2Σt
k
−1 − 2βt

〈
Σt

k((

K∑
i=k

ĝtik)+γtµ
t
k),µ

t
k−µ∗

k

〉
Σt

k
−1

+ β2
t ∥Σt

k((

K∑
i=k

ĝtik)+γtµ
t
k)∥2Σt

k
−1

(109)

= ∥µt
k−µ∗

k∥2Σt
k
−1 − 2βt

〈
γtµ

t
k+

K∑
i=k

ĝtik,µ
t
k − µ∗

k

〉
+ β2

t ∥Σt
k((

K∑
i=k

ĝtik)+γtµ
t
k)∥2Σt

k
−1 (110)

Note that

γt
〈
µt

k,µ
t
k − µ∗

k

〉
=

γt
2
∥µt

k − µ∗
k∥22 −

γt
2
∥µ∗

k∥22 +
γt
2
∥µt

k∥22 (111)

Plug Eq.(111) into Eq.(110), we have that

∥µt+1
k − µ∗

k∥2Σt
k
−1

= ∥µt
k − µ∗

k∥2Σt
k
−1 −2βt

〈 K∑
i=k

ĝtik,µ
t
k − µ∗

k

〉
− βtγt(∥µt

k−µ∗
k∥22−∥µ∗

k∥22+∥µt
k∥22) + β2

t ∥Σt
k((

K∑
i=k

ĝtik)+γtµ
t
k)∥2Σt

k
−1

(112)

From Lemma C.1, we then have that

∥µt+1
k − µ∗

k∥2Σt
k
−1 ≤ ∥µt

k − µ∗
k∥2Σt

k
−1 −2βt

〈 K∑
i=k

ĝtik,µ
t
k − µ∗

k

〉
− βtγt(∥µt

k−µ∗
k∥22−∥µ∗

k∥22+∥µt
k∥22)

+ 2β2
t ∥Σt

k((

K∑
i=k

ĝtik)∥2Σt
k
−1 + 2β2

t ∥γtΣt
k

1
2µt

k∥22 (113)
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From Lemma C.2 (b), we know that ∥Σt
k∥2 ≤ 3

2αν
1

t
√
t+3/2

, together with the setting βt = tβ and
γt =

αν
β
√
t+1

, we know that

−γt∥µt
k∥22 + 2βt∥γtΣt

k

1
2µt

k∥22 = −γt∥µt
k∥22 + 2βtγ

2
t ∥Σt

k

1
2µt

k∥22 (114)

≤ −γt∥µt
k∥22 + 2βtγ

2
t ∥Σt

k

1
2 ∥22∥µt

k∥22 (115)

= −γt∥µt
k∥22 + 2βtγ

2
t ∥Σt

k∥2∥µt
k∥22 (116)

= γt∥µt
k∥22(−1 + 2βtγt∥Σt

k∥2) (117)

≤ γt∥µt
k∥22(−1 + 2tβ

αν

β
√
t+ 1

3

2αν

1

3/2 + t
√
t
) (118)

= γt∥µt
k∥22(−1 +

3t
3
2

√
(t+ 1) + t

√
t(t+ 1)

) (119)

We now check the term (−1 + 3t
3
2

√
(t+1)+t

√
t(t+1)

). For t = 1 and t = 2, it is easy to see the term

(−1 + 3t
3
2

√
(t+1)+t

√
t(t+1)

) ≤ 0. For t ≥ 3, we have that

3

2

√
(t+ 1) + t

√
t(t+ 1)− 3t ≥ 3

2

√
(t+ 1) + t2 − 3t ≥ 0 (120)

It follows that (−1 + 3t
3
2

√
(t+1)+t

√
t(t+1)

) ≤ 0. Thus, we have that

−γt∥µt
k∥22 + 2βt∥γtΣt

k

1
2µt

k∥22 ≤ 0 (121)

Plug the inequality (121) into inequality (113), we know that

∥µt+1
k − µ∗

k∥2Σt
k
−1 ≤ ∥µt

k − µ∗
k∥2Σt

k
−1 −2βt
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ĝtik,µ
t
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− βtγt(∥µt
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k∥22)

+ 2β2
t ∥Σt

k((

K∑
i=k

ĝtik)∥2Σt
k
−1 (122)

It follows that
K∑

k=1

∥µt+1
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k∥2Σt
k
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〉
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k∥22) (123)

Then, we have that

E
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k
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k
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βtγt(E∥µt
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k∥22) (124)

Note that µ̄t
k = [µt⊤

1 , · · · ,µt⊤
k ]⊤ and µ̄∗

k = [µ∗⊤
1 , · · · ,µ∗⊤

k ]⊤, together with Lemma C.2 (a), we
have that

E
K∑
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〈
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= E
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〉
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i

〉
(125)

where gti = ∇µ̄t
i
Ex∼N (µ̄t

i,Σ̄
t
i)
[fi(x)] = ∇µ̄t

i
Ji(µ̄

t
i, Σ̄

t
i)
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From Eq. (125) and Eq. (124), we have that
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From Lemma C.4, we know that for ∀i ∈ {1, · · · ,K}, Ji(µ̄i, Σ̄i) is convex function w.r.t. µ̄i and

Σ̄
1
2
i . Then, we have that
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(127)

Denote Gt
i = ∇Σ̄i=Σ̄t
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t
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= 2
〈
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i, Σ̄
t
i

〉
= 2tr(Gt

iΣ̄
t
i) (129)

Plug Eq.(129) into Eq. (127), we have that
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It follows that
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Plug Eq.(126) into Eq.(131), we have that
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In addition, we have that
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= E
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Because of Ht
k ⪯ 1
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k in algorithm 2, we have that
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Plug Eq.(139) into Eq.(134), we know that
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Telescope with Eq.(132), we have that
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We now show the upper bound of term
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We now show the upper bound of term 2
∑T

t=1

∑K
i=1 tr(Gt

iΣ̄
t
i).

From Lemma C.3, we know that

2

T∑
t=1

K∑
i=1

tr(Gt
iΣ̄

t
i) ≤ 2

T∑
t=1

K∑
i=1

Liid

2t
3
4

√
3

αν
(143)

=

T∑
t=1

C2
1

t
3
4

(144)
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We now show the upper bound of the term 1
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Plug Eq.(142) and Eq.(145) into Eq.(141), we have that
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From Lemma C.5, we then have that
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Finally, divide T on both sides of Eq.(149), we have that
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Theorem D.2. Set βt = tβ with β > 0, αt =
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It is equivalent to show that the inequality (152) always holds true.
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Then, it is equivalent to show that the inequality (153) always holds true.
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)Σt
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αt
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We first check the left hand side of the inequality (153).

Note that the setting βt = tβ with β > 0, αt =
√
t+ 1α with α > 0, and γt =

αν
β
√
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, and ν > 0,
and ωt = 1. We can achieve that
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We now check the right hand side of the inequality (153).

25



Under review as a conference paper at ICLR 2024

1

αt
(
βt+1

βt
− ωt) =

1

αt
(
(t+ 1)β

tβ
− 1) =

1

αtt
> 0 (156)

Thus, the inequality (153) always hold true. As a result, the constraints set always have feasible
solutions.

E DETAILS OF DIFFUSION TARGET GENERATION EXPERIMENTS

E.1 BLACK-BOX TARGET FUNCTION

CLIP (Contrastive Language-Image Pre-Training) (Radford et al., 2021) is trained on various (image,
text) pairs to capture their similarity. Let the generated image be x, the target text be y, and the
image and text encoders of CLIP be ϕimage and ϕtext, respectively. These encoders share an aligned
embedding space, allowing us to measure similarity using cosine distance. The black-box function is
defined as:

f(x; y) =
ϕimage(x)

Tϕtext(y)

∥ϕimage(x)∥∥ϕtext(y)∥

We then employ the normalized cosine distance y−µy

σy
as the black-box target score, where µy and σy

denotes the mean and standard deviation of the cosine distances between the target and the images in
the dataset.

For our implementation, we choose to use the pre-trained publicly available CLIP model ViT-L/143.

E.2 SAMPLER: DPM-SOLVER++

We choose to use DPM-Solver++ (Lu et al., 2022a) as our sampler for all experiments in both the
training and evaluation phases. We use the 2nd-order SDE solver and the data evaluation formulation.
For all experiments, we use K = 14 sampling steps.

E.3 DATASET: CELEBA-HQ

We use dataset CelebA-HQ in our experiments, it contains 30,000 face images. It is public avaliable
at https://huggingface.co/datasets/huggan/CelebA-HQ

E.4 BASELINE: CLASSIFIER-FREE CONDITIONAL DIFFUSION MODEL

Denotes the dataset as X = {x1, x2, ..., xn}. We evaluate the black-box function target score value,
that is Y = {f(xi) | ∀xi ∈ X}, and denotes the mean and standard deviation as µy and σy . We then
obtain the normalized target score value as Ỹ = {yi−µy

σy
| ∀yi ∈ Y}.

We use the dataset and normalized score value X × Ỹ to train a classifier-free conditional diffusion
model µ̂ϕ(x, t, y).

An unconditional diffusion model trained on the CelebA-HQ dataset is provided by the authors of
latent diffusion 4. In practice, instead of training the model from scratch, we load the weights of the
unconditional layers from the pre-trained model and continue training from there. This approach can
speed up the training time.

3https://huggingface.co/sentence-transformers/clip-ViT-L-14
4https://ommer-lab.com/files/latent-diffusion/celeba.zip
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E.5 BASELINE: DDOM

The recent work (Krishnamoorthy et al., 2023) introduces Denoising Diffusion Optimization Models
(DDOM) for solving offline black-box optimization tasks using diffusion models. This method can
also be naturally extended to black-box targeted generation tasks.

During the pre-processing phase, the black-box function score yi = f(xi) is evaluated for each
sample xi ∈ D. The offline dataset D is then partitioned into NB bins of equal width based on y.
Each bin is assigned a weight proportional to both the number of points in the bin and the average
score value of the bin. Specifically, the weight of the i-th is given by:

wi =
|Bi|

|Bi|+ C
exp

(
− |ŷ − ybi |

τ

)
(157)

where ŷ is the best function value in the offline dataset D, |Bi| denotes the number of points in the
i-th bin, and ybi is the midpoint of the interval corresponding to the bin Bi. The parameters K and τ
are hyper-parameters.

During training, this weight is used to compute the weighted loss, which is given by:

E
t

[
λ(t) E

x0,y

[
w(y) E

xt|x0

[
∥ϵθ (xt, t, y)−∇x log pt (xt | x0)∥22

]]]
(158)

where w(y) = wi if y ∈ Bi. In practice, the score values are normalized to fit a standard normal
distribution to ensure that the yi values are well behaved.

The authors demonstrate DDOM for solving black-box optimization (BBO) tasks. Since DDOM uses
a diffusion model, it can also be naturally implemented for image generation tasks. In our experiment,
we implement the DDOM for black-box targeted image generation tasks. In the weight function
defined in equation (157), we set the hyper-parameters C = 0.01, τ = 0.1, NB = 64.

E.6 OUR METHOD: FINE-TUNE THE CLASSIFIER-FREE CONDITIONAL DIFFUSION MODEL

We use our method to improve the baseline conditional diffusion model. Instead of fine-tune the
parameters for all time steps, we only apply it for the second half of the time steps. The rationale is
that we should place more emphasis on the time steps closer to the final output image xK . That is,
we have the fine-tuning parameter sets θk = {µk,Σk} for k ∈ {1, ...,K}.

We revise the sequential black-box objective
∑K

k=1 fk(ϵ̄k). In our previous experiments, we set
fk(ϵ̄k) = F (xk) for k ∈ {1, · · · ,K}, which call CLIP to evaluate the input (noised) image xk at
each diffusion sampling step k. This scheme is not effective enough because we care more about the
generated image at the last step, i.e., xK , than the generated image at the inner steps. Thus, we set
the black-box function at the inner step as fk(ϵ̄k) = Fk(xk) for k ∈ {1, · · · ,K − 1}. The black-box
function Fk(xk) takes the noised image xk at the inner step as input and performs a deterministic
sampling process xk+1 = µ̂ϕ(xk, k) + σ̃k+1µk+1 for the future steps to achieve a predicted xK , and
call CLIP to evaluate the predicted xK .
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