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ABSTRACT

We study several problems in differentially private domain discovery, where each
user holds a subset of items from a shared but unknown domain, and the goal is
to output an informative subset of items. For set union, we show that the simple
baseline Weighted Gaussian Mechanism (WGM) has a near-optimal ℓ1 missing
mass guarantee on Zipfian data as well as a distribution-free ℓ∞ missing mass
guarantee. We then apply the WGM as a domain-discovery precursor for existing
known-domain algorithms for private top-k and k-hitting set and obtain new utility
guarantees for their unknown domain variants. Finally, experiments demonstrate
that all of our WGM-based methods are competitive with or outperform existing
baselines for all three problems.

1 INTRODUCTION

Modern data analysis often requires working in data domains like queries, reviews, and purchase
histories that are a priori unknown or impractically large (e.g., the set of all strings up to a fixed
length). For these datasets, domain discovery is a critical first step for efficient downstream applica-
tions. Differential privacy (Dwork et al., 2006) (DP) enables privacy-preserving analysis of sensitive
data, but it complicates domain discovery.

In the basic problem of set union, for example, each user has a set of items, and the goal is simply
to output as many of these items as possible. This is a necessary step before further analysis, so
set union (also known as key selection or partition selection) is a core component of several indus-
trial (Wilson et al., 2020; Rogers et al., 2021; Amin et al., 2023) and open source (OpenDP, 2025)
DP frameworks. For similar reasons, there are by now many DP set union algorithms in the liter-
ature. However, there are almost no provable utility guarantees (see Section 1.1). This makes it
difficult to understand how well existing algorithms work, or how much they can be improved.

Our Contributions. We prove utility guarantees for several problems in DP domain discovery.
First, by reframing DP set union in terms of mass instead of cardinality (i.e., the fraction of all
items recovered, rather than the number of unique items), we prove utility guarantees for the simple
and scalable Weighted Gaussian Mechanism (Gopi et al., 2020) (WGM). We first show that the
WGM has near-optimal ℓ1 missing mass on Zipfian data (Theorem 3.3). We then prove a similar but
distribution-free ℓ∞ missing mass guarantee (Theorem 3.6).

Next, we build on these results by considering unknown domain variants of top-k and k-hitting set
and obtain further utility guarantees for simple algorithms that run WGM to compute a baseline do-
main and then run a standard known-domain algorithm afterward. Relying on Theorem 3.6 enables
us to prove utility guarantees for both top-k (Theorem 4.3) and k-hitting set (Theorem 4.5).

Finally, we evaluate our algorithms against the existing state of the art on six real-world datasets
from varied domains (Section 5). These experiments demonstrate that, in addition to their theoretical
guarantees, our WGM-based methods obtain strong empirical utility.

1.1 RELATED WORK

DP Set Union. Early work by Korolova et al. (2009) introduced the core idea of collecting a bounded
number of items per user, constructing a histogram of item counts, and releasing items whose noisy
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counts exceed a carefully chosen threshold. Desfontaines et al. (2022) developed an optimal algo-
rithm for the restricted setting where each user contributes a single item. Gopi et al. (2020) adapted
noisy thresholding in the Weighted Gaussian Mechanism (WGM) by scaling contributions to unit
ℓ2 norm. Swanberg et al. (2023) investigated a repeated version of WGM, and Chen et al. (2025)
further built on these ideas by incorporating adaptive weighting to determine user contributions, and
proved that the resulting algorithm dominates the WGM (albeit by a small margin, empirically). A
separate line of work has studied sequential algorithms that attempt to choose user contributions
adaptively, obtaining better empirical utility at the cost of scalability (Gopi et al., 2020; Carvalho
et al., 2022).

We note that, as the utility results of Desfontaines et al. (2022) and Chen et al. (2025) are stated
relative to other algorithms, our work is, to the best of our knowledge, the first to prove absolute
utility guarantees for DP set union.

DP Top-k. While several algorithms have been proposed for retrieving a dataset’s k most frequent
items given a known domain (Bhaskar et al., 2010; McKenna & Sheldon, 2020; Qiao et al., 2021;
Gillenwater et al., 2022), to the best of our knowledge only Durfee & Rogers (2019) provide an
algorithm for the unknown domain setting (see discussion in Section 5.2). They also provide a
utility guarantee in terms of what Gillenwater et al. (2022) call k-relative error, which bounds the
gap between the smallest-count output item and the kth highest-count item. In contrast, we prove a
utility result for the more stringent notion of missing mass (see discussion in Section 4.1).

DP k-Hitting Set. In k-hitting set, the objective is to output a set of k items that maximizes the
number of users whose subset intersects with it. This problem can also be viewed as an instance
of cardinality-constrained submodular maximization. Previous works on private submodular maxi-
mization by Mitrovic et al. (2017) and Chaturvedi et al. (2021) establish approximation guarantees in
the known-domain setting. However, they are not directly applicable when the domain is unknown.

2 PRELIMINARIES

2.1 NOTATION

Let X denote a countable universe of items. A dataset W of size n is a collection of subsets
{Wi}i∈[n] where Wi ⊂ X and |Wi| < ∞. We will use N =

∑
i |Wi| to denote the total num-

ber of items across all users in the dataset and M := |
⋃

i Wi| to denote the number of unique items
across W . For an element x ∈

⋃
i Wi, we let N(x) :=

∑
i 1{x ∈ Wi} denote its frequency. For

a number r ∈ [M ], we use N(r) to denote the r’th largest frequency after sorting {N(x)}x∈⋃
i Wi

in decreasing order. We will use N (0, σ2) to denote a mean-zero Gaussian distribution with stan-
dard deviation σ. Finally, we use the notation Õk (·) to suppress poly-logarithmic factors in k and
likewise for Ω̃k and Θ̃k.

2.2 DIFFERENTIAL PRIVACY

We say that a pair of datasets W,W ′ are neighboring if W ′ is the result of adding or removing a
single user from W . In this work, we consider randomized algorithms A : (2X )⋆ → 2X which
map a dataset W to a random subset S ⊆ X . We say that A is (ϵ, δ)-differentially private if its
distribution over outputs for two neighboring datasets are “close.”
Definition 2.1 (Dwork et al. (2006)). A randomized algorithmA is (ϵ, δ)-differentially private if for
all pairs of neighboring datasets W,W ′, and all events Y ⊆ 2X ,

PS∼A(W ) [S ∈ Y ] ≤ eϵPS′∼A(W ′) [S
′ ∈ Y ] + δ.

We only consider approximate differential privacy (δ > 0) since we will often require thatA(W ) ⊆⋃
i Wi, which precludes pure differential privacy (δ = 0).

2.3 PRIVATE DOMAIN DISCOVERY AND MISSING MASS

In private domain discovery, we are given a dataset W of n users, each of which holds a subset
of items Wi ⊆ X such that |Wi| < ∞ and X is unknown. Given W , our is goal is to extract
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an informative subset S ⊆
⋃

i Wi that captures the “domain” of W while preserving differential
privacy. In this paper, we often measure quality in terms of the missing mass of S.
Definition 2.2. Given dataset W and output set S, the missing mass of S with respect to W is

MM(W,S) :=
∑

x∈
⋃

i Wi\S

N(x)

N
.

Smaller values of MM(W,S) indicate the that S better captures the high-frequency items in
⋃

i Wi.
A useful perspective to the MM is that it is the ℓ1 norm of the vector (N(x)/N)x∈

⋃
i Wi\S . This

view yields a generalization of the MM objective by taking the p’th norm of the vector of missing
frequencies. That is, for p ≥ 0, define

MMp(W,S) :=

∥∥∥∥∥
(
N(x)

N

)
x∈

⋃
i Wi\S

∥∥∥∥∥
p

(1)

where || · ||p : R⋆ → R denotes the ℓp norm. The usual missing mass objective corresponds to
setting p = 1. However, it is also meaningful to set p ̸= 1. For example, when p = ∞, the
objective corresponds to minimizing the maximum missing mass. When p = 0, we recover the
cardinality-based objective studied by existing work (see Related Work).

3 PRIVATE SET UNION

In general, we consider algorithms that satisfy the following “soundness” property: an item only
appears in the output if it also appears in the input dataset.
Assumption 1. For every algorithm A : (2X )⋆ → 2X and dataset W , we require A(W ) ⊆

⋃
i Wi.

Assumption 1 is standard across works in the unknown domain setting. However, even with this
assumption, it is difficult to obtain a meaningful trade-off between privacy and missing mass without
assumptions on W .

To see why, fix some n ∈ N, and consider the singleton dataset W where each user has a single,
unique item, such that Wi = {xi} and xi ̸= xj for i ̸= j. Fix j ∈ [n] and consider the neighboring
dataset W ′ obtained by removing Wj from W. Since we require thatA(W ′) ⊆

⋃
i W

′
i , we have that

P [xj ∈ A(W ′)] = 0. Since A is (ϵ, δ)-differentially private, we know that P [xj ∈ A(W )] ≤ δ.
Since j ∈ [n] was picked arbitrarily, we know that this is true for all j ∈ [n] and hence,
ES∼A(W ) [MM(A, S)] ≥ 1 − δ. As δ is usually picked to be o

(
1
n

)
, it is not possible to signifi-

cantly minimize MM for these datasets.

Fortunately, in practice, these sorts of pathological datasets are rare. Instead, datasets often exhibit
what is known as Zipf’s or Power law (Zipf, 1949; Gabaix, 1999; Adamic & Huberman, 2002;
Piantadosi, 2014). This means that the frequency of items in a dataset exhibit a polynomial decay.
Hence, one natural way of measuring the complexity of W is by how “Zipfian” it is.

Definition 3.1 ((C, s)-Zipfian). Let C ≥ 1 and s ≥ 0. A dataset W is (C, s)-Zipfian if N(r)

N ≤ C
rs

for all r ∈ [M ], where N(r) is the r’th largest frequency and N is the total number of items in W .

In light of the hardness above, we first restrict our attention to datasets that are (C, s)-Zipfian for
s > 1. When s ≤ 1, the hard dataset previously outlined becomes a valid Zipfian dataset. We
note that this restriction only impacts how we define the utility guarantee of the algorithm, and not
its privacy guarantee; differential privacy is still measured with respect to the worst-case pair of
neighboring datasets.

As s increases, the empirical mass gets concentrated more and more at the highest frequency item.
Accordingly, any upper bound on missing mass should ideally decay as s increases. Another im-
portant property of (C, s)-Zipfian datasets W is that they restrict the size of any individual set Wi.
Lemma 3.1, whose proof is in Appendix C.1, makes this precise.
Lemma 3.1. Let W be any (C, s)-Zipfian dataset . Then, maxi |Wi| ≤ (CN)1/s.

The rest of this section uses these two properties of Zipfian-datasets to obtain high-probability upper
bounds on the missing mass. Our main focus will be on a simple mechanism used in practice known
as the Weighted Gaussian Mechanism (WGM) (Gopi et al., 2020).
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3.1 THE WEIGHTED GAUSSIAN MECHANISM

The WGM is parameterized by a noise-level σ > 0, threshold T ≥ 1, and user contribution bound
∆0 ≥ 1. Given a dataset W , the WGM operates in three stages. In the first stage, the WGM
constructs a random dataset by subsampling without replacement from each user’s itemset to ensure
that each user has at most ∆0 items. In the second, stage the WGM constructs a weighted histogram
over the items in the random dataset. In the third stage, the WGM computes a noisy weighted
histogram by adding mean-zero Gaussian noise with standard deviation σ to each weighted count.
Finally, the WGM returns those items whose noisy weighted counts are above the threshold T .
Pseudocode appears in Algorithm 1.

Algorithm 1 Weighted Gaussian Mechanism
Input: Dataset W , noise level σ, threshold T , and user contribution bound ∆0.

1 Construct random dataset W̃ such that for every i ∈ [n], W̃i ⊆ Wi is a random sample (without
replacement) of size min{∆0, |Wi|} from Wi.

2 Compute weighted histogram H̃ :
⋃

i W̃i → R such that, for each x ∈
⋃

i W̃i,

H̃(x) =

n∑
i=1

(
1

|W̃i|

)1/2

1{x ∈ W̃i}.

3 For each x ∈
⋃

i W̃i, sample Zx ∼ N (0, σ2) and compute noisy H̃ ′(x) := H̃(x) + Zx.

4 Keep items with large noisy weighted counts S =
{
x ∈

⋃
i W̃i : H̃

′(x) ≥ T
}

.
Output: S

The following theorem from Gopi et al. (2020) verifies the approximate DP guarantee for the WGM.

Theorem 3.2 (Theorem 5.1 (Gopi et al., 2020)). For every ∆0 ≥ 1, ϵ > 0 and δ ∈ (0, 1), if σ, T > 0
are chosen such that

Φ

(
1

2σ
− ϵσ

)
− eϵΦ

(
− 1

2σ
− ϵσ

)
≤ δ

2
and T ≥ max

1≤t≤∆0

(
1√
t
+ σΦ−1

((
1− δ

2

) 1
t

))
then the WGM run with (σ, T ) and input ∆0 is (ϵ, δ)-differentially private.

In Appendix C.2.1, we prove that the smallest choice of σ and T to satisfy the constraints in Theo-
rem 3.2 gives that σ = Θ

(
1
ϵ

√
log(1/δ)

)
and T = Θ̃δ,∆0

(max{σ, 1}). This result will be useful
for deriving asymptotic utility guarantees involving the WGM.

3.2 UPPER BOUNDS ON MISSING MASS

Our main result in this section is Theorem 3.3, which provides a high-probability upper bound on
the missing mass for the WGM in terms of the Zipfian parameters of the input dataset.

Theorem 3.3. For every s > 1, C ≥ 1 and (C, s)-Zipfian dataset W , if the WGM is run with noise
parameter σ > 0, threshold T ≥ 1, and user contribution bound ∆0 ≥ 1, then with probability at
least 1− β over S ∼WGM(W,∆0), we have that

MM(W,S) = Õβ,C,N

(
C

1
s

s− 1

(
maxi |Wi|
N
√
q⋆

) s−1
s

(T + σ)
s−1
s

)
.

where q⋆ := min{maxi |Wi|,∆0}.

Note that in Theorem 3.3 the missing mass decays as the total number of items N grows. Moreover,
as C decreases or s increases, the upper bound on missing mass decreases when N is sufficiently
large compared to σ and T . This matches our intuition, as decreasing C and increasing s results in
datasets that exhibit faster decays in item frequencies so relatively more of the mass is contained in
high-mass items.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The proof of Theorem 3.3 relies on three helper lemmas. Lemma C.2 provides an upper bound on
the missing mass due to the subsampling stage. Lemma C.3 guarantees that a high-frequency item
in the original dataset will remain high-frequency in the subsampled dataset. Finally, Lemma C.4
provides a high-probability upper bound on the frequency of items that are missed by the WGM
during the thresholding step. We provide the full proof in Appendix C.2.2.

Theorem 3.3 bounds the overall missing mass of the WGM mechanism. As corollary, note that
if ∆0 ≥ maxi |Wi| then the missing mass contributed by the subsampling step vanishes. By
Theorem 3.2 and Lemma C.1, for every user contribution bound ∆0 ≥ 1, we need to pick
σ = Θ

(
1
ϵ

√
log(1/δ)

)
and T = Θ̃∆0,δ(max{σ, 1}) to to achieve (ϵ, δ)-differential privacy. Substi-

tuting these values into Theorem 3.3 gives the following corollary.
Corollary 3.4. In the setting of Theorem 3.3, if we choose the minimum σ and T to ensure (ϵ, δ)-DP,
then with probability at least 1− β, we have that

MM(W,S) ≤ Õβ,δ,∆0,C,N

(
C

1
s

s− 1

(
maxi |Wi|
ϵN
√
q⋆

) s−1
s

)
,

where q⋆ = min{∆0,maxi |Wi|}.

Corollary 3.4 shows that the error due to subsampling can dominate the missing mass. Accordingly,
one should aim to set ∆0 as close as possible to maxi |Wi|. In fact, if one has apriori public knowl-
edge of maxi |Wi|, then one should set ∆0 = maxi |Wi|. By Lemma 3.1, for any (C, s)-Zipfian
dataset W , maxi |Wi| ≤ (CN)1/s and hence the loss due to setting ∆0 will only be logarithmic in
N. However, Corollary 3.4 omits logarithmic factors in ∆0, so one should avoid ∆0 ≫ maxi |Wi|.
Theorem 3.5, whose proof is in Appendix D.1, shows that the dependence of ϵ and N in our upper
bound from Corollary 3.4 can be tight.
Theorem 3.5. Let A be any (ϵ, δ)-differentially private algorithm satisfying Assumption 1. For
every s > 1, C ≥ 1, there exists a (C, s)-Zipfian dataset W ⋆ such that

ES∼A(W⋆) [MM(W ⋆, S)] = Ω

(
C1/s

s− 1

(
1

ϵN

)(s−1)/s

ln

(
1 +

eϵ − 1

2δ

)(s−1)/s
)
.

The proof of Theorem 3.5 exploits Assumption 1 by showing that any private algorithm that satisfies
Assumption 1 cannot output low-frequency items with high-probability. We end this section by
noting that our proof technique in Theorem 3.3 can also give us bounds on the ℓ∞ missing mass (see
Equation 1). Note that unlike Theorem 3.3, Theorem 3.6, whose proof is in Appendix C.2.3, does
not require the dataset to be Zipfian.
Theorem 3.6. Let W be any dataset. For every ϵ > 0, δ ∈ (0, 1), and user contribution bound

∆0 ≥ 1, picking σ = Θ
(

1
ϵ

√
log(1/δ)

)
and T = Θ̃∆0,δ(max{σ, 1}) gives that the WGM is

(ϵ, δ)-differentially private and with probability at least 1− β over S ∼WGM(W,∆0), we have

MM∞(W,S) ≤ Õ∆0,δ,β

(
maxi |Wi|
ϵN
√
q⋆

)
,

where q⋆ = min{∆0,maxi |Wi|}.

Upper bounds on the ℓ∞ norm missing mass will be useful for deriving guarantees for the top-k
selection (Section 4.1) and k-hitting set (Section 4.2) problems.

4 APPLYING THE WEIGHTED GAUSSIAN MECHANISM

This section applies WGM to construct unknown domain algorithms for top-k and k-hitting set. For
both problems, we spend half of the overall privacy budget running WGM to obtain a domain D, and
then spend the other half of the privacy budget running a known-domain private algorithm, using
domain D, for the problem in question. By basic composition, the overall mechanism satisfies the
desired privacy budget. Pseudocode for this approach is given in Algorithm 2.
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Algorithm 2 Meta Algorithm
Input: Dataset W , noise-level and threshold (σ, T ), output size k, user contribution bound ∆0 ≥ 1,

known-domain mechanism B
5 Let D ←WGM(W,∆0) be the output of WGM with noise-level and threshold (σ, T ) and input ∆0

6 Let S ← B(W,D, k) be the output of B on input W and domain D
Output: S

In the next two subsections, we introduce the top-k selection and k-hitting set problems, summarize
existing known-domain algorithms, and provide the specification of all algorithmic parameters. An
important difference between the results in this section and that of Section 3, is that by using MM∞
bounds, we no longer require our dataset to be Zipfian in order to get meaningful guarantees.

4.1 PRIVATE TOP-k SELECTION

In the DP top-k selection problem, we are given some k ∈ N and our goal is to output, in decreasing
order, the k largest frequency items in a dataset W . Various loss objective have been considered for
this problem, but we focus on missing mass.
Definition 4.1. For a dataset W , k ∈ N, q ≤ k and ordered sequence of domain elements S =
(x1, ..., xq), we denote the top-k missing mass by

MMk(W,S) =

∑k
i=1 N(i) −

∑q
i=1 N(xi)

N
.

We let the sequence S have length q ≤ k because we will allow our mechanisms to output less than
k items, which will be crucial for obtaining differential privacy when the domain X is unknown.
Note that MM(W,S) = MMk(W,S) if one takes k = |

⋃
i Wi|. As before, our objective is to

design an approximate DP mechanism B which outputs a sequence S ⊆
⋃

i Wi of size at most k
that minimizes MMk(W,S) with high probability.

To adapt Algorithm 2 to top-k, we need to specify a known-domain private top-k algorithm. We use
the peeling exponential mechanism (see Algorithm 3) for its simplicity, efficiency, and tight privacy
composition. Its privacy and utility guarantees appear in Lemmas 4.1 and 4.2 respectively.

Algorithm 3 Peeling Exponential Mechanism
Input: Dataset W , domain D, noise-level λ, output size k ≤ |D|

1 Let N(x) =
∑n

i=1 1{x ∈Wi} for x ∈ D.

2 Let Ñ(x) = N(x) + Zx for x ∈ D where Zx ∼ Gumbel(λ).

Output: Ordered sequence (x1, . . . , xk) such that Ñ(xi) = Ñ(i) for all i ∈ [k].

Lemma 4.1 (Lemma 4.2 (Gillenwater et al., 2022)). For every ϵ > 0, δ ∈ (0, 1) and k ≥ 1, if

λ = Õδ

(√
k
ϵ

)
, then Algorithm 3 is (ϵ, δ)-differentially private.

Lemma 4.2. For every dataset W , domain D, λ ≥ 1 and k ≤ |D|, if Algorithm 3 is run with
noise-level λ, then with probability 1− β over its output S, we have that

1

N

 ∑
x∈Tk(W,D)

N(x)−
∑
x∈S

N(x)

 ≤ O

(
kλ

N
log
|D|
β

)
,

where Tk(W,D) ⊆ D is the true set of top-k most frequent items in D.

We provide the exact λ to achieve (ϵ, δ)-differential privacy for Lemma 4.1 in Lemma B.1. The
proof of Lemma 4.2 appears in Appendix C.3 and relies on Gumbel concentration inequalities.
With Lemmas 4.2 and 4.1 in hand, using the same choice of (σ, T ) as in Theorem 3.2 for WGM
yields our main result. The proof of Theorem 4.3 can be found in Appendix C.3.
Theorem 4.3. Fix ϵ > 0, δ ∈ (0, 1), and user contribution bound ∆0 ≥ 1. For every dataset W

and k ≥ 1, if one picks σ = Θ
(

1
ϵ

√
log(1/δ)

)
, T = Θ̃∆0,δ/2(max{σ, 1}) from Theorem 3.2, and

6
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λ = Θ̃δ/2

(√
k
ϵ

)
from Lemma 4.1, then Algorithm 2, run with Algorithm 3, is (ϵ, δ)-differentially

private and with probability 1− β, its output S satisfies

MMk(W,S) ≤ Õβ,δ,∆0

(
k

N

(
maxi |Wi|

ϵ
√
q⋆

+

√
k log(M)

ϵ

))
,

where q⋆ := min{∆0,maxi |Wi|}.

We end this section by proving that a linear dependence on k
ϵ on the top-k missing mass is unavoid-

able for algorithms satisfying Assumption 1 when ϵ ≤ 1.

Corollary 4.4. Let ϵ ≤ 1 and δ ∈ (0, 1). Let A be any (ϵ, δ)-differentially private algorithm
satisfying Assumption 1. Then, for every k ≥ 1, there exists a dataset W such that

ES∼A(W,k)

[
MMk(W,S)

]
≥ Ω̃δ

(
k

ϵN

)
.

The proof of Corollary 4.4 is in Appendix D.2 and is largely a consequence of Lemma D.1, which
was used to prove the lower bound for set union (Theorem 3.5).

4.2 PRIVATE k-HITTING SET

In the k-hitting set problem, our goal is to output a set S of items of size at most k which inter-
sects as many user subsets as possible, which is useful for data summarization and feature selection
(Mitrovic et al., 2017). More precisely, our objective is to design an approximate DP mechanism
which maximizes the number of hits Hits(W,S) :=

∑n
i=1 1{S ∩Wi ̸= ∅}. Since this problem is

also NP-hard without privacy concerns (Karp, 1972), we will measure performance relative to the
optimal solution, i.e., show that with high probability, our algorithm output S satisfies

Hits(W,S) ≥ γ ·Opt(W,k)− err(ϵ, δ, k)

where Opt(W,k) := argmaxS⊆X ,|S|≤k Hits(W,S) is the optimal value, err(ϵ, δ, k) is an additive
error term that depends on problem specific parameters, and γ ∈ (0, 1) is the approximation factor.

Like our algorithm for top-k selection, our mechanism for the k-hitting problem will follow the
general structure of Algorithm 2. We will take the known-domain algorithm B to be the privatized
version of the greedy algorithm for submodular maximization, as in Algorithm 1 from Mitrovic
et al. (2017). This mechanism repeatedly runs the exponential mechanism (equivalently the Gumbel
mechanism) to pick an item that hits a large number of users. After each iteration, we remove all
users who contain the item output in the previous round and continue until we either have output k
items, run out of items, or run out of users, and return the overall set of items. We call this algorithm
the User Peeling Mechanism and its pseudo-code is given in Algorithm 4 in Appendix C.4.

By combining this with the same WGM choice of (σ, T ) as in Theorem 3.2 for the first step of
Algorithm 2, we get the main result of this section.
Theorem 4.5. Fix ϵ > 0 and δ ∈ (0, 1). For every dataset W , k ≥ 1, and user contribution

bound ∆0, if one picks σ = Θ
(

1
ϵ

√
log(1/δ)

)
, T = Θ̃∆0,δ/2(max{σ, 1}) from Theorem 3.2, and

λ = Θ̃δ/2

(
1
ϵ

√
k
)

from Lemma 4.1, then Algorithm 2, run with Algorithm 4, is (ϵ, δ)-differentially
private and with probability 1− β, its output S satisfies

Hits(W,S) ≥
(
1− 1

e

)
Opt(W,k)− Õβ,δ,∆0

(
k ·maxi |Wi|

ϵ
√
q⋆

+
k3/2

ϵ
log (Mk)

)
,

where q⋆ := min{∆0,maxi |Wi|} and M = |
⋃

i Wi|.

Theorem 4.5, proved in Appendix C.4, gives that if k is not very large (i.e., ln(Mk)
ln(M) ≤ maxi

√
|Wi|),

then with high probability, the additive sub-optimality gap is on the order of

Õ∆0,δ,β,k

(
k3/2 ·maxi |Wi| · log(M)

ϵ
√
q⋆

)
.
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When |X | ≫ M , this provides an improvement over Theorem 1 in Mitrovic et al. (2017) whose
guarantee is in terms log(|X |) and not log(M).

As in the lower bound proof for top-k selection, we again rely on the work behind Theorem 3.5 to
show that one must lose k

ϵ from the optimal value by restricting the algorithm A to output a subset
of
⋃

i Wi.

Corollary 4.6. Let ϵ ≤ 1, δ ∈ (0, 1) and A be any (ϵ, δ)-differentially private algorithm satisfying
Assumption 1. Then, for every k ≥ 1, there exists a dataset W such that

ES∼A(W,k) [Hits(W,S)] ≥ Opt(W,k)− Ω̃δ

(
k

ϵ

)
.

5 EXPERIMENTS

We empirically evaluate our methods on six real-life datasets spanning diverse settings. Informally,
Reddit (Gopi et al., 2020), Amazon Games (Ni et al., 2019), and Movie Reviews (Harper & Konstan,
2015) are “large”, while Steam Games (Steam, 2025), Amazon Magazine (Ni et al., 2019), and
Amazon Pantry (Ni et al., 2019) are “small” (see Appendix E for details). All experiments use a total
privacy budget of (1, 10−5)-DP; additional experiments using (0.1, 10−5)-DP appear in Appendix F,
but are not significantly qualitatively different. Dataset processing and experiment code can be found
in the Supplement.

5.1 SET UNION

Datasets. We evaluate the WGM and baselines on all six datasets, relegating experiments on the
small datasets to the Appendix F.1.1 for space.

Baselines. The baselines are the Policy Gaussian mechanism from Gopi et al. (2020) and the Policy
Greedy mechanism from Carvalho et al. (2022), as these have obtained the strongest (though least
scalable) performance in past work. As suggested in those papers, we set the policy hyperparameter
α = 3 throughout.

Results. Figure 1 plots the average MM across 5 trials, for all three mechanisms as a function of ℓ0
bound ∆0 ∈ {1, 50, 100, 150, 200, 300}. Across datasets, we find that the WGM obtains MM within
5% of that of the policy mechanisms, in spite of their significantly more intensive computation. This
contrasts with previous empirical results for cardinality, where sequential methods often output ≈
2X more items (see, e.g., Table 2 in Swanberg et al. (2023)). Plots for the small datasets (Appendix
F.1.1) show a similar trend.

(a) Reddit (b) Amazon Games (c) Movie Reviews

Figure 1: Set Union MM as a function of ∆0. Note that lower is better.

5.2 TOP-k

Datasets. All methods achieve near 0 top-k missing mass across all values of number of selected
items k ∈ {5, 10, 20, 50, 100, 200} on the three large datasets, as most mass is concentrated in a
small number of heavy items. We therefore focus on the three small datasets.

8
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Baselines. We compare our WGM-then-top-k mechanism to the limited-domain top-k mechanism
from Durfee & Rogers (2019). Unlike our algorithm, the limited-domain mechanism has a hyperpa-
rameter k̄. As such, for each k ∈ {5, 10, 20, 50, 100, 200}, we take as baselines the limited-domain
algorithm with k̄ ∈ {k, 5k, 10k,∞}. When k̄ < ∞, we set ∆0 = ∞ for the limited-domain
algorithm. Otherwise, when k̄ =∞, we set ∆0 = 100 for the limited-domain algorithm, as recom-
mended in Section 3 of Durfee & Rogers (2019).

Results. Figure 2 compares our method against the limited-domain method across different choices
for k. Note that each line for the limited-domain method uses a different k̄. We find that across all
datasets, our method consistently obtains smaller top-k MM than all limited-domain baselines, and
its advantage grows with k. Plots in Appendix F.2 demonstrate similar trends for a more stringent
ℓ1 loss.

(a) Steam Games (b) Amazon Magazine (c) Amazon Pantry

Figure 2: Top-k MM as a function of k, using ∆0 = 100.

5.3 k-HITTING SET

Datasets. We use the same datasets as in the top-k experiments, for the same reason: a small number
of items covers nearly all users in the large datasets.

Baselines. To the best of our knowledge, there are no existing private algorithm for the k-hitting set
problem for unknown domains. Hence, we consider the following baselines: the non-private greedy
algorithm and the private non-domain algorithm from Mitrovic et al. (2017) after taking

⋃
i Wi to be

a public known-domain. Note that the latter baseline is not a valid private algorithm in the unknown
domain setting since, in reality,

⋃
i Wi is private.

Results. Figure 3 plots the average number of users hit, along with its standard error across 5 trials,
as a function of k ∈ {5, 10, 20, 50, 100, 200}, fixing ∆0 = 100. We find that our method performs
comparably with both baseline methods, neither of which is fully private. In particular, for the Steam
Games and Amazon Magazine datasets, our method outperforms the known-domain private greedy
algorithm that assumes public knowledge of

⋃
i Wi. This is because our method’s application of

WGM for domain discovery produces a domain that is smaller than
⋃

i Wi while still containing
high-quality items. This makes an easier problem for the peeling mechanism in the second step.

(a) Steam Games (b) Amazon Magazine (c) Amazon Pantry

Figure 3: Number of missed users as a function of k, using ∆0 = 100.
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6 FUTURE DIRECTIONS

We conclude with some possible future research directions. First, our upper and lower bounds for
top-k and k-hitting set do not match, so closing these gaps is a natural problem. Second, all of
our methods enforce ℓ0 bounds by uniform subsampling without replacement from each user’s item
set. Recent work by Chen et al. (2025) employs more involved and data-dependent subsampling
strategies to obtain higher cardinality answers. Extending similar techniques to missing mass may
be useful.
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A USEFUL CONCENTRATION INEQUALITIES

In this section, we review some basic concentration inequalities that we use in the main text. The
first is the following Gaussian concentration equality.
Lemma A.1 (Gaussian concentration (Vershynin, 2018)). Let X1, . . . , Xn be an iid sequence of
mean-zero Gaussian random variables with variance σ2. Then, for every δ ∈ (0, 1), with probability
at least 1− δ, we have that

max
i
|Xi| ≤ σ

√
2 log

(
2n

δ

)
.

The second is for the concentration of a sequence of Gumbel random variables. While this result is
likely folklore, we provide a proof for completeness.
Lemma A.2. Let X1, . . . , Xn be an iid sequence of Gumbel random variables with parameter λ.
Then, for every δ ∈ (0, 1), with probability at least 1− δ, we have that

max
i
|Xi| ≤ λ · ln

(
2n

δ

)
.

Proof. Consider a single Xi, and recall that the CDF of a Gumbel distribution with parameter λ is
F (x) = exp(− exp(−x/λ)). Then

P [|Xi| > T ] = P [Xi > T ] + P [Xi < −T ]
= 1− exp(− exp(−T/λ)) + exp(− exp(T/λ))

≤ exp(−T/λ) + exp(− exp(T/λ))

where the inequality uses 1− e−x ≤ x. Substituting in T = λ log(2n/δ) yields

P [|Xi| > t] ≤ δ

2n
+ exp(−2n/δ) ≤ δ

n
since for n ≥ 1 and δ ∈ (0, 1), 2n

δ ≥ ln
(
2n
δ

)
. Union bounding over the n samples completes the

result. ■
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B PRIVACY ANALYSIS OF PEELING EXPONENTIAL MECHANISM

Lemma B.1 (Lemma 4.2 in Gillenwater et al. (2022)). For every ϵ > 0, δ ∈ (0, 1) and k ≥ 1, if
λ = 1

ϵ0
, where

ϵ0 := max

{
ϵ

k
,

√
8 log

(
1
δ

)
+ 8ϵ

k
−

√
8 log

(
1
δ

)
k

}
,

then Algorithm 3 is (ϵ, δ)-differentially private.

C MISSING PROOFS

C.1 PROOF OF LEMMA 3.1

Proof. Let W be a (C, s)-Zipfian dataset . Let r⋆ = maxi |Wi|. Then, it must be the case that
N(r⋆) ≥ 1. Since W is (C, s)-Zipfian, we also know that N(r⋆) ≤ CN

(r⋆)s . Hence, we have that

(r⋆)s ≤ CN implying that r⋆ ≤ (CN)1/s. ■

C.2 PROOFS FOR THE WGM

C.2.1 PROOF OF σ AND T

Lemma C.1. For every ϵ > 0, δ ∈ (0, 1), and ∆0 ≥ 1, there exists σ = Θ

(√
log( 1

δ )
ϵ

)
and

T = Θ̃δ,∆0
(max{σ, 1}) which satisfy the conditions in Theorem 3.2.

Proof. Starting with σ, it suffices to find the smallest σ such that

Φ

(
1

2σ
− ϵσ

)
≤ δ

2
.

By monotonicity of Φ−1(·), we have that

Φ

(
1

2σ
− ϵσ

)
≤ δ

2
⇐⇒ 1

2σ
− ϵσ ≤ Φ−1

(
δ

2

)
.

Hence, it suffices to find the smallest σ that satisfies

2ϵσ2 + 2Φ−1

(
δ

2

)
σ − 1 ≥ 0.

Using the quadratic formula we can deduce that we need to take

σ ≥
−Φ−1

(
δ
2

)
ϵ

=
Φ−1

(
1− δ

2

)
ϵ

= Ω


√
log
(
1
δ

)
ϵ

 ,

where the last inequality follows from the fact that Φ−1(p) ≤
√

2 log
(

1
1−p

)
for p > 1

2 . Now for

T , we have

1 + σΦ−1

((
1− δ

2

) 1
∆0

)
≥ max

1≤t≤∆0

(
1√
t
+ σΦ−1

((
1− δ

2

) 1
t

))
.

Hence, it suffices to upper bound

1 + σΦ−1

((
1− δ

2

) 1
∆0

)
.
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By Bernoulli’s inequality and monotonicity of Φ−1(·), we have that

Φ−1

((
1− δ

2

) 1
∆0

)
≤ Φ−1

(
1− δ

2∆0

)
.

Since δ ≤ 1 and ∆0 ≥ 1, we have that

Φ−1

(
1− δ

2∆0

)
≤

√
2 log

(
2∆0

δ

)
.

Hence, it suffices to take

T = 1 + σ

√
2 log

(
2∆0

δ

)
= Θ̃δ,∆0

(max{σ, 1}) ,

This completes the proof. ■

C.2.2 PROOF OF THEOREM 3.3

Before we prove Theorem 3.3, we present three helper lemmas, Lemma C.2, C.3, and C.4, which
correspond to three different “good” events. Lemma C.2 provides an upper bound on the miss-
ing mass due to the subsampling stage. Lemma C.3 guarantees that a high-frequency item in the
original dataset will remain high-frequency in the subsampled dataset. Lemma C.4 provides a
high-probability upper bound on the frequency of items that are missed by the WGM during the
thresholding step. The proof of Theorem 3.3 will then follow by combining Lemmas C.2, C.3, and
C.4.
Lemma C.2. Let W be a (C, s)-Zipfian dataset for C ≥ 1 and s > 1. Fix a user contribution bound
∆0 ≥ 1. Let W̃ be the random dataset such that W̃i ⊆Wi is a random sample without replacement
of size min{∆0,Wi}. Then, for every β ∈ (0, 1), with probability 1− β, we have that

MM(W,∪iW̃i) ≤
C1/s

s− 1

(
1

p⋆N
log

(
(CN)1/s

β

)) s−1
s

where p⋆ := min
(
1, ∆0

maxi |Wi|

)
.

Proof. Let pi := min
(
1, ∆0

|Wi|

)
and p⋆ := mini pi. Fix an item x ∈

⋃
i Wi. Then

P

[
x /∈

⋃
i

W̃i

]
=

∏
i:x∈Wi

(1− pi) ≤ exp

(
−
∑

i:x∈Wi

pi

)
≤ e−p⋆N(x),

where N(x) =
∑

i 1{x ∈Wi}. Fix β ∈ (0, 1) and consider the threshold

Q :=
1

p⋆
log

(
(CN)1/s

β

)
.

Note that Q⋆ ≥ 1 by definition of p⋆. Since W is (C, s)-Zipfian, for any r ∈ [M ] with N(r) > Q,

it must be the case that r ≤
(

CN
Q

)1/s
by rs ≤ CN

N(r)
. Hence, there are at most

(
CN
Q

)1/s
“heavy”

items whose frequencies are above Q. By the union bound, we get that

P

[
∃x ∈

⋃
i

Wi \ W̃i and N(x) > Q

]
≤
(
CN

Q

)1/s

e−p⋆Q ≤ β

so with probability at least 1− β, we have that N(x) > Q =⇒ x ∈
⋃

i W̃i for all x ∈
⋃

i Wi.

Under this event, we have that

MM(W,∪iW̃i) ≤
1

N

∑
x:N(x)≤Q

N(x) ≤ 1

N

∑
r≥r0

N(r)
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where r0 = max
{(

CN
Q

)1/s
, 1
}
. Using the fact that N(r) ≤ CNr−s and s > 1 (by assumption),

we get that

1

N

∑
r≥r0

N(r) ≤ C
∑
r≥r0

r−s ≤ C

∫ ∞

r0−1

x−sdx =
C

s− 1
(r0 − 1)1−s ≤ C

s− 1
r1−s
0 .

Since r0 ≥
(

CN
Q

)1/s
, we get MM(W,∪iW̃i) ≤ C1/s

s−1

(
Q
N

) s−1
s

. Using Q = 1
p⋆ log

(
(CN)1/s

β

)
completes the proof. ■

Lemma C.3. In the same setting as Lemma C.2, for every β ∈ (0, 1), we have that with probability
1− β, for every x ∈

⋃
i Wi,

N(x) ≥ τ2 =⇒ Ñ(x) ≥ 1

2
p⋆N(x),

where p⋆ := min
(
1, ∆0

maxi |Wi|

)
, τ2 := 8

p⋆ log
(

(CN)1/s

β

)
, and Ñ(x) =

∑
i 1{x ∈ W̃i}.

Proof. Fix some x ∈
⋃

i Wi such that N(x) ≥ τ2. Then, Ñ(x) is the sum of independent Bernoulli

random variables with success probability at least p⋆. Thus, we have that E
[
Ñ(x)

]
≥ p⋆N(x) and

multiplicative Chernoff’s inequality gives

P
[
Ñ(x) ≤ 1

2
p⋆N(x)

]
≤ exp

(
−1

8
p⋆N(x)

)
≤ exp

(
−1

8
p⋆τ2

)
.

Now, since W is (C, s)-Zipfian, we have that N(x) ≤ CN
rs for all x ∈

⋃
i Wi, so there can be at

most
(

CN
τ2

)1/s
elements x ∈

⋃
i Wi with N(x) ≥ τ2. A union bound yields

P

[
∃x ∈

⋃
i

Wi : N(x) ≥ τ2, Ñ(x) <
1

2
p⋆N(x)

]
≤ β

(CN)1/s
·
(
CN

τ2

)1/s

≤ β,

which completes the proof. ■

Lemma C.4. For every dataset W , if the WGM is run with noise parameter σ > 0, threshold
T ≥ 1, and user contribution bound ∆0 ≥ 1, then for every β ∈ (0, 1), with probability at least

1−β over S ∼WGM(W,∆0), we have that H̃(x) ≤ T0, ∀x ∈ M̃ , where T0 := T+σ

√
2 log

(
2N
β

)
and M̃ :=

⋃
i W̃i \ S.

Proof. By Line 4 in Algorithm 1, we have that for all x ∈ M̃ , its noisy weighted count is H̃ ′(x) <
T . Hence, by standard Gaussian concentration bounds (see Appendix A), with probability at least
1− β over just the sampling of Gaussian noise in Line 3, we have H̃(x) ≤ T0 for all x ∈ M̃ . ■

We are now ready to prove Theorem 3.3.

Proof. (of Theorem 3.3) Let W̃ be the random dataset obtained by sampling a set W̃i of elements of
size min{∆0, |Wi|}without replacement from each Wi, and let S be the overall output of the WGM.
Let Ñ(x) =

∑n
i=1 1{x ∈ W̃i} be the frequency of item x in the subsampled dataset and note that

Ñ(x) ≤
√
q⋆H̃(x) for all x ∈

⋃
i W̃i, where H̃ is the weighted histogram of item frequencies

from W̃ . Let M̃ =
⋃

i W̃i \ S be the random variable denoting the set of items in
⋃

i W̃i but not

in the algorithm’s output S. Finally, define τ1 := 2
√
q⋆T0

p⋆ and τ2 := 8
p⋆ log

(
3(CN)1/s

β

)
, where

T0 = T + σ

√
2 log

(
2N
β

)
.
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Let E1, E2, and E3 be the events of Lemma C.2, C.3, and C.4 respectively, setting the failure
probability for each event to be β

3 . Then, by the union bound, E1 ∩E2 ∩E3 occurs with probability
1 − β. It suffices to show that E1 ∩ E2 ∩ E3 implies the stated upper bound on MM(W,S). We
can decompose MM(W,S) into two parts, mass missed by subsampling and mass missed by noisy
thresholding:

MM(W,S) = MM(W,∪iW̃i) +
1

N

∑
x∈M̃

N(x). (2)

Under E1, we have that

MM(W,∪iW̃i) ≤
C1/s

s− 1

(
1

p⋆N
log

(
3(CN)1/s

β

)) s−1
s

,

hence for the remainder of the proof, we will focus on bounding 1
N

∑
x∈M̃

N(x). First, we claim

that under E2 and E3, we have that N(x) ≤ max{τ1, τ2} =: τ for all x ∈ M̃. This is because, by
event E3, we have that for every x ∈ M̃ , Ñ(x) ≤

√
q⋆T0. Thus, if there exists an x ∈ M̃ such that

N(x) ≥ τ2, then by event E2, it must be the case that p⋆

2 N(x) ≤ Ñ(x) ≤
√
q⋆T0, which implies

that N(x) ≤ τ1.

Now, define r0 := max
{(

CN
τ

)1/s
, 1
}
. If r ≥ r0, then CN

rs ≤ τ. Since N(x) ≤ τ for every x ∈ M̃ ,
every such item has rank greater than r0. Hence,

1

N

∑
x∈M̃

N(x) ≤ 1

N

∑
r≥r0

N(r) ≤
∑
r≥r0

C

rs
≤ C

∫ ∞

r0−1

t−sdt ≤ Cr1−s
0

s− 1
.

Substituting in the definition of r0 and continuing yields

1

N

∑
x∈M̃

N(x) ≤ C1/s

s− 1

( τ

N

) s−1
s ≤ C1/s

s− 1

max
{

2
√
q⋆T0

p⋆ , 8
p⋆ log

(
3(CN)1/s

β

)}
N


s−1
s

.

Now, we are ready to complete the proof. Using the decomposition of MM(W,S) in Equation 2
along with E1 ∩ E2 ∩ E3 implies that

MM(W,S) ≤ C1/s

s− 1

(
1

p⋆N
log

(
3(CN)1/s

β

)) s−1
s

+
C1/s

s− 1

max
{
2
√
q⋆T0, 8 log

(
3(CN)1/s

β

)}
p⋆N


s−1
s

≤ C1/s

s− 1

(
1

p⋆N

) s−1
s
(
9max

{√
q⋆T0, log

(
3(CN)1/s

β

)}) s−1
s

=
C1/s

s− 1

(
9

p⋆N

) s−1
s

max

{
√
q⋆

(
T + σ

√
2 log

(
6N

β

))
, log

(
3(CN)1/s

β

)} s−1
s

.

The proof is complete after noting that
√
q⋆

p⋆ = maxi |Wi|√
q⋆

. ■

C.2.3 PROOF OF THEOREM 3.6

As in the proof of Theorem 3.3, we start with the following lemma which bounds the maximum
missing mass due to the subsampling step.

Lemma C.5. Let W be any dataset. Fix a user contribution bound ∆0 ≥ 1. Let W̃ be the random
dataset such that W̃i ⊆ Wi is a random sample without replacement of size min{∆0,Wi}. Then,
for every β ∈ (0, 1), with probability 1− β, we have that

MM∞(W,∪iW̃i) ≤
log
(

N
β

)
p⋆N

.

where p⋆ := min
(
1, ∆0

maxi |Wi|

)
.
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Proof. Let W be any dataset, ∆0 ≥ 1 and β ∈ (0, 1). We will follow the same proof strategy as
in the proof of Lemma C.2. Let pi := min

(
1, ∆0

|Wi|

)
and p⋆ := mini pi. Fix an item x ∈

⋃
i Wi.

Then,

P

[
x /∈

⋃
i

W̃i

]
=

∏
i:x∈Wi

(1− pi) ≤ exp

(
−
∑

i:x∈Wi

pi

)
≤ e−p⋆N(x),

where N(x) =
∑

i 1{x ∈Wi}. Fix β ∈ (0, 1) and consider the threshold

Q :=
1

p⋆
log

(
N

β

)
≥ 1.

Since
∑

x∈
⋃

i Wi
N(x) = N , we have that that there are at most N

Q items such that N(x) > Q.
Hence, by the union bound, we get that

P

[
∃x ∈

⋃
i

Wi \ W̃i and N(x) > Q

]
≤ N

Q
e−p⋆Q ≤ β.

Hence, with probability at least 1− β, we have that if x /∈
⋃

i W̃i, then N(x) ≤ Q, giving that

MM∞(W,∪iW̃i) ≤
log
(

N
β

)
p⋆N

,

which completes the proof. ■

Now, we use Lemma C.5 to complete the proof of Theorem 3.6. Since the proof follows almost
identically, we only provide a sketch here.

Proof. (sketch of Theorem 3.6) As in the proof of Theorem 3.3, define q⋆ = min{maxi |Wi|,∆0}

and T0 = T + σ

√
2 log

(
6N
β

)
. Keep τ1 := 2

√
q⋆T0

p⋆ but take

τ2 :=
8

p⋆
log

(
3N

β

)
.

Let E2 be defined identically in terms of T0. That is, E2 is the event that H̃(x) ≤ T0 for all x ∈ M̃ ,

where T0 = T +σ

√
2 log

(
6N
β

)
and M̃ =

⋃
i W̃i \S. Likewise, define E3 in terms of τ2 analogous

to that in the proof of Theorem 3.3. That is, E3 is the event that for all x ∈
⋃

i Wi, either N(x) < τ2
or Ñ(x) ≥ p⋆

2 ·N(x). The fact that E2 occurs with probability at least 1 − β
3 follows identitically

from the proof of Theorem 3.3.. As for event E3, note that we have

P

[
∃x ∈

⋃
i

Wi : N(x) ≥ τ2, Ñ(x) <
1

2
p⋆N(x)

]
≤ N

τ2
· e−

p⋆τ2
8 ≤ β

3
,

which follows similarly by using multiplicative Chernoff’s, the union bound, and the fact that there
can be at most N

τ2
items with frequency at least τ2. Hence, E3 occurs with probability at least 1− β

3 .

Then, by the union bound we have that with probability 1 − 2β
3 , both E2 and E3 occur. When this

happens, we have that N(x) ≤ max{τ1, τ2} for all x ∈ M̃ because either N(x) ≤ τ2, or otherwise
1
2p

⋆N(x) ≤ Ñ(x) ≤
√
q⋆T0, implying that N(x) ≤ τ1. Consequently, under E2 and E3, we have

that

max
x∈∪iW̃i\S

N(x)

N
≤ max{τ1, τ2}

N

By Lemma C.5, the event

MM∞(W,∪iW̃i) ≤
log
(

3N
β

)
p⋆N

.
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occurs with probability 1− β
3 . Hence, under E1 ∩ E2 ∩ E3, we have that

MM∞(W,S) ≤ max
{
MM∞(W,∪iW̃i), max

x∈W̃\S

N(x)

N

}
≤ 8

p⋆N
max

{
log

(
3N

β

)
,
√
q⋆

(
T + σ

√
2 log

(
6N

β

))}
,

which occurs with probability 1 − β. Finally, plugging in σ = Θ

(√
ln(1/δ)

ϵ

)
and T = Θ̃∆0,δ(σ)

completes the claim. ■

C.3 PROOF OF THEOREM 4.3

Since the privacy guarantee follows by basic composition, we only focus on proving the utility
guarantee in Theorem 4.3. First, we provide the proof of Lemma 4.2.

Proof. (of Lemma 4.2) Let I = Tk(W,D) \ S and O = S \ Tk(W,D). Then, |I| = |O| ≤ k and∑
x∈Tk(W,D)

N(x)−
∑
x∈S

N(x) =
∑
x∈I

N(x)−
∑
x∈O

N(x).

Since |I| = |O|, there exists a one-to-one mapping π : I → O that pairs each item in I with an item
in O. Thus, we can write∑

x∈I

N(x)−
∑
x∈O

N(x) =
∑
x∈I

(N(x)−N(π(x))).

By definition of I and O, we have that for every x ∈ I and y ∈ O, Ñ(y) ≥ Ñ(x). Hence, we have
that N(x)−N(y) ≤ Zy − Zx and∑

x∈I

(N(x)−N(π(x))) ≤
∑
x∈I

(Zπ(x) − Zx).

Define R :=
∑

x∈I(Zπ(x) − Zx). Our goal is to get a high-probability upper bound on R via
concentration. By Gumbel concentration (Lemma A.2), with probability 1 − β, we have that
maxx∈D |Zx| ≤ λ · log(2|D|/β). Hence, under this event, we get that

R ≤ 2kλ · log(2|D|/β).

Altogether, with probability 1− β, we have∑
x∈Tk(W,D)

N(x)−
∑
x∈S

N(x) ≤ R ≤ 2kλ · log(2|D|/β).

Dividing by N completes the proof. ■

Combining Lemmas 4.2 and 4.1 then gives the following corollary.

Corollary C.6. For every dataset W , domain D, k ≤ |D|, ϵ > 0, and δ ∈ (0, 1), if Algorithm 3 is

run with λ = Θ̃δ

(√
k
ϵ

)
from Lemma 4.1, then Algorithm 3 is (ϵ, δ)-differentially private and with

probability at least 1− β over its output S, we have that

1

N

 ∑
x∈Tk(W,D)

N(x)−
∑
x∈S

N(x)

 ≤ Õδ,β

(
k3/2 log |D|

ϵN

)
.

With Corollary C.6 in hand, we are now ready to prove Theorem 4.3 after picking the same choice
of (σ, T ) as in Theorem 3.2.
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Algorithm 4 User Peeling Mechanism
Input: Dataset W , domain D, number of elements k, noise-level λ

1 Initialize W 1 ←W , D1 ← D, and output set S0 ← ∅
2 for j = 1, . . . , k do
3 Compute histogram Hj(x) =

∑
i 1{x ∈W j

i } for all x ∈ Dj .

4 Compute noisy histogram H̃j(x) = Hj(x) + Zj
x for all x ∈ Dj where Zj

x ∼ Gumbel(λ).

5 Let xj ∈ argmaxx∈Dj
H̃j(x)

6 Update Sj ← Sj−1 ∪ {xj}, Dj+1 ← Dj \ {xj}, and W j+1 ← {Wi ∈W j : xj /∈Wi}.
7 end

Output: Sk

Proof. (of Theorem 4.3) Recall that by Theorem 3.6, if we set σ = Θ

(√
ln(1/δ)

ϵ

)
and T =

Θ̃∆0,δ/2(max{σ, 1}), then the WGM is (ϵ/2, δ/2)-differentially private and with probability at least
1− β/2 over D ∼WGM(W,∆0), we have that

MM∞(W,D) ≤ Õ∆0,δ/2,β/2

(
maxi |Wi|
ϵN
√
q⋆

)
. (3)

Let Tk(W ) be the true set of top-k elements and Tk(W,D) be the set of top-k elements within the
(random) domain D. Then, under this event, Equation 3 gives that

1

N

 ∑
x∈Tk(W )

N(x)−
∑

x∈Tk(W,D)

N(x)

 ≤ k ·MM∞(W,D) ≤ Õ∆0,δ/2,β/2

(
k ·maxi |Wi|

ϵN
√
q⋆

)
.

(4)
By Corollary C.6, we know that running Algorithm 3 on input W , domain D and λ = Õδ/2

(√
k
ϵ

)
gives (ϵ/2, δ/2)-differentially privacy and that with probability at least 1−β/2, its output S satisfies

1

N

 ∑
x∈Tk(W,D)

N(x)−
∑
x∈S

N(x)

 ≤ Õδ/2,β/2

(
k3/2 log |D|

ϵN

)
. (5)

Adding Inequalities 4 and 5 together and taking |D| ≤ |
⋃

i Wi| =: M gives that with probability
1− β, the output S of Algorithm 2 satisfies

MMk(W,S) ≤ Õβ,δ,∆0

(
k

N

(
maxi |Wi|

ϵ
√
q⋆

+

√
k log(M)

ϵ

))
,

which completes the proof. ■

C.4 PROOF OF THEOREM 4.5

Before we prove Theorem 4.5, we first present the pseudo-code (Algorithm 4) for the user peeling
mechanism described in Section 4.2 along with its privacy and utility guarantees.

The following lemma gives the utility and privacy guarantee of Algorithm 4.
Lemma C.7. For every dataset W , domain D, and k ≤ |D|, if Algorithm 4 is run with noise
parameter λ > 0, then with probability 1− β over its output S, we have that

Hits(W,S) ≥
(
1− 1

e

)
Opt(W,D, k)− 2kλ log

(
2|D|k
β

)
.

where Opt(W,D, k) := argmaxS⊆D,|S|≤k Hits(W,S). If one picks λ = Θ̃δ

(√
k
ϵ

)
from Lemma

4.1, then Algorithm 4 is (ϵ, δ) differentially private and with probability 1− β over its output S, we
have

Hits(W,S) ≥
(
1− 1

e

)
Opt(W,D, k)− Õδ,β

(
k3/2 log (|D|k)

ϵ

)
.
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Since Algorithm 4 also uses the peeling exponential mechanism, the privacy guarantee in Lemma
C.7 follows exactly from Lemma 4.1, and so we omit the proof here. As for the utility guarantee, the
proof is similar to the proof of Theorem 7 in Mitrovic et al. (2017). For the sake of completeness,
we provide a self-contained analysis below.

Proof. Note that there exists at most |D|k random variables Zj
x. Let E be the event that |Zj

x| ≤ α

for all x ∈ D and j ∈ [k], where α = λ ln
(

2|D|k
β

)
. Then, by Gumbel concentration (Lemma A.2),

we have that P(E) ≥ 1 − β. For the rest of this proof, we will operate under the assumption that
event E happens.

Define the function f : 2D → N as f(S) :=
∑n

i=1 1{Wi ∩ S ̸= ∅} = Hits(W,S). Then,
f is a monotonic, non-negative submodular function. For x ∈ D and S ⊆ D let ∆(x, S) :=
f(S ∪ {x})− f(S) ≥ 0. Let S⋆ ∈ argmaxS⊆D,|S|≤k f(S) be the optimal subset of D and denote
Opt := f(S⋆). First, we claim that for every S ⊆ D,

max
x∈S⋆\S

∆(x, S) ≥ Opt−f(S)
k

. (6)

This is because

Opt = f(S⋆) ≤ f(S⋆ ∪ S)

≤ f(S) +
∑

x∈S⋆\S

∆(x, S)

≤ f(S) + k max
x∈S⋆\S

∆(x, S),

where the first two inequalities follows from monotonicity and submodularity respectively. Now, let
x1, . . . , xk be the (random) items selected by the algorithm, and Sj = {x1, . . . , xj} with S0 = ∅.
At round j ∈ [k], define the current domain Dj := D \ Sj−1. Let

x⋆
j ∈ argmax

x∈S⋆\Sj−1

∆(x, Sj−1).

Then, by Equation 6, we have ∆(x⋆
j , Sj−1) ≥ Opt−f(Sj−1)

k . This implies that

∆(xj , Sj−1) ≥
Opt−f(Sj−1)

k
− (∆(x⋆

j , Sj−1)−∆(xj , Sj−1))

=
Opt−f(Sj−1)

k
− (Hj(x⋆

j )−Hj(xj))

where the last equality stems from the fact that for every x ∈ Dj , ∆(x, Sj−1) = Hj(x).

Recall that H̃j(x) := Hj(x) + Zj
x for all x ∈ D. We can upper bound Hj(x⋆

j )−Hj(xj) as

Hj(x⋆
j )−Hj(xj) = (H̃j(x⋆

j )− H̃j(xj)) + (Zj
xj
− Zj

x⋆
j
) ≤ Zj

xj
− Zj

x⋆
j
,

where last inequality is because H̃j(x⋆
j )− H̃j(xj) ≤ 0 by the choice of xj ∈ argmaxx∈Dj H̃

j(x)
and the fact that x⋆

j ∈ S⋆ \ Sj−1 ⊆ Dj . Therefore,

∆(xj , Sj−1) ≥
Opt−f(Sj−1)

k
−
(
Zj
xj
− Zj

x⋆
j

)
. (7)

Let Gj := Opt−f(Sj). Using f(Sj) = f(Sj−1) + ∆(xj , Sj−1), we rearrange Equation 7 to get

Gj ≤
(
1− 1

k

)
Gj−1 + (Zj

xj
− Zj

x⋆
j
).

On the event E, we have that Zj
xj
− Zj

x⋆
j
≤ |Zj

xj
|+ |Zj

x⋆
j
| ≤ 2α, hence

Gj ≤
(
1− 1

k

)
Gj−1 + 2α.
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Recursing for j = 1, . . . , k and using the fact that G0 = Opt and (1− 1
k )

k ≤ e−1, gives

Gk ≤
1

e
Opt+2αk.

Substituting in the definition of Gk and α = λ ln
( 2|D|k

β

)
gives

f(Sk) ≥
(
1− 1

e

)
Opt−2kλ log

(2|D|k
β

)
.

■

The guarantee in Lemma C.7 is with respect to the optimal set of k elements within the domain D.
Since D ⊆

⋃
i Wi, we have that

Opt(W,D, k) ≤ Opt(W,k).

The following simple lemma shows that when the domain D contains high-frequency items from
W , Opt(W,D, k) is not too far away from Opt(W,k).
Lemma C.8. Fix a dataset W , τ ≥ 0, and let D = {x ∈

⋃
i Wi : N(x) ≥ τ}. Then,

Opt(W,D, k) ≥ Opt(W,k)− kτ.

Proof. Recall that f(S) := Hits(W,S) is a monotone, non-negative submodular function. Let
S1 ⊆ X be the subset of X that achieves f(S1) = Opt(W,k) and S2 be the subset of D that
achieves f(S2) = Opt(W,D, k). By submodularity and the definition of X \D we have that

f(S1) ≤ f(S1 ∩D) + f(S1 ∩ X \D) ≤ f(S2) + kτ,

which completes the proof. ■

Lemma C.8 allows us to use the MM∞ upper bound obtained by the WGM in Theorem 3.6 to up-
grade the guarantee provided by Lemma C.7 to be in terms of Opt(W,k) instead of Opt(W,D, k).
By using the same choice of (σ, T ) as in Theorem 3.2, we get the main result of this section. As be-
fore, since the privacy guarantee follows by basic composition, we only focus on proving the utility
guarantee.

Proof. (of Theorem 4.5) Recall that by Theorem 3.6 that if we set σ = Θ

(√
ln(1/δ)

ϵ

)
and T =

Θ̃∆0,δ/2(max{σ, 1}), then the WGM is (ϵ/2, δ/2)-differentially private and with probability at least
1− β/2 over D ∼WGM(W,∆0), we have that

MM∞(W,D) ≤ Õ∆0,δ/2,β/2

(
maxi |Wi|
ϵN
√
q⋆

)
.

By Lemma C.8, under this event we have that

Opt(W,D, k) ≥ Opt(W,k)− Õ∆0,δ/2,β/2

(
k ·maxi |Wi|

ϵ
√
q⋆

)
.

Now, by Lemma C.7, we know that running Algorithm 4 on input W , domain D and λ =

Õδ/2

(√
k
ϵ

)
gives (ϵ/2, δ/2)-differentially privacy and that with probability at least 1 − β/2, its

output S satisfies

Hits(W,S) ≥
(
1− 1

e

)
Opt(W,D, k)− Õδ/2,β/2

(
k3/2

ϵ
log (|D|k)

)
Hence, by the union bound, with probability at least 1− β, both events occur and we have that

Hits(W,S) ≥
(
1− 1

e

)
Opt(W,D)− Õβ,δ,∆0

(
k ·maxi |Wi|

ϵ
√
q⋆

+
k3/2

ϵ
log (Mk)

)
,

where we use the fact that |D| ≤M . ■
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D LOWER BOUNDS

D.1 LOWER BOUNDS FOR MISSING MASS

In this section, we prove Theorem 3.5. The following lemma will be useful.
Lemma D.1. LetA be any (ϵ, δ)-differentially private algorithm satisfying Assumption 1. Then, for
every dataset W and item x ∈

⋃
i Wi, if N(x) ≤ 1

ϵ ln
(
1 + eϵ−1

2δ

)
, then PS∼A(W ) [x ∈ S] ≤ 1

2 .

Proof. Fix some dataset W . LetA be any randomized algorithm with privacy parameters ϵ ≤ 1 and
δ ∈ (0, 1) satisfying Assumption 1. This means that for any item x ∈

⋃
i Wi such that NW (x) = 1,

we have that
PS∼A(W ) [x ∈ S] ≤ δ,

where for a dataset W , we define NW (x) :=
∑

i 1{x ∈ Wi}. Now, suppose x ∈
⋃

i Wi is an item
such that NW (x) = 2. We can always construct a neighboring dataset W ′ by removing a user such
that NW ′(x) = 1. Thus, we have that

PS∼A(W ) [x ∈ S] ≤ eϵPS∼A(W ′) [x ∈ S] + δ ≤ δeϵ + δ = δ(eϵ + 1).

More generally, by unraveling the recurrence, we have that for any x ∈
⋃

i Wi with NW (x) = b,

PS∼A(W ) [x ∈ S] ≤ δ

b−1∑
i=0

(eϵ)i = δ
eϵb − 1

eϵ − 1
.

Since W was arbitrary, for any dataset W and any x ∈
⋃

i Wi with NW (x) = b, we have that

PS∼A(W ) [x /∈ S] ≥ 1− δ
eϵb − 1

eϵ − 1
.

Now, consider the exclusion probability p = 1/2. Our goal is to compute the largest b⋆ such that for
any dataset W , any x ∈

⋃
i Wi with NW (x) ≤ b⋆ has PS∼A(W ) [x /∈ S] ≥ 1

2 . It suffices to solve
for b in the inequality 1− δ eϵb−1

eϵ−1 ≥ 1/2, which yields b ≤ 1
ϵ ln

(
1 + eϵ−1

2δ

)
=: b⋆. ■

Lemma D.1 provides a uniform upper bound on the the probability that any private mechanism can
output a low frequency item. We now use Lemma D.1 to complete the proof of Theorem 3.5.

Proof. (of Theorem 3.5) Let b⋆ = 1
ϵ ln

(
1 + eϵ−1

2δ

)
as in the proof of Lemma D.1. By Lemma D.1,

for any dataset W and item x ∈
⋃

i Wi such that N(x) ≤ b⋆, we have PS∼A(W ) [x /∈ S] ≥ 1
2 .

Consider a dataset W ⋆ of size n, taking n sufficiently large, where N(r)

N = Θ
(
C
rs

)
for all ranks

r ∈ [M⋆], where M⋆ = |
⋃

i W
⋆
i | (note that such a dataset is possible if, for example, one restricts

each user to contribute exactly a single item). We can lower bound the missing mass ofA on W ⋆ as

ES∼A(W⋆) [MM(W ⋆, S)] ≥ 1

N

∑
x∈

⋃
i W

⋆
i ,N(x)≤b⋆

PS∼A(W⋆) [x /∈ S]N(x)

≥ 1

2N

∑
x∈

⋃
i W

⋆
i ,N(x)≤b⋆

N(x).

Our next goal will be to find the smallest rank r⋆ such that N(r⋆) ≤ b⋆. It suffices to solve the

inequality CN
rs ≤ b⋆ for r. Doing so gives that r ≥

⌈(
CN
b⋆

) 1
s

⌉
=: r⋆. Hence, for this W ⋆, we have

that

ES∼A(W⋆) [MM(W ⋆, S)] ≥ 1

2N

∑
x∈

⋃
i W

⋆
i ,N(x)≤b⋆

N(x)

=
1

2N

M⋆∑
r=r⋆

N(r)

= Ω

(
1

N

M⋆∑
r=r⋆

CN

rs

)
.
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Since s > 1, we can take M⋆ (and hence n) to be large enough so that

Ω

(
1

N

M⋆∑
r=r⋆

CN

rs

)
= Ω

(
1

N

∫ ∞

r⋆

CN

rs
dr

)
.

Thus,

ES∼A(W⋆) [MM(W ⋆, S)] = Ω

(
1

N

∫ ∞

r⋆

CN

rs
dr

)
= Ω

(
C

s− 1
(r⋆)1−s

)
= Ω

(
C1/sN (1−s)/s

s− 1
(b⋆)(s−1)/s

)
= Ω

(
C1/sN−(s−1)/s

s− 1

(
1

ϵ
ln

(
1 +

eϵ − 1

2δ

))(s−1)/s
)

= Ω

(
C1/s

s− 1
·
(

1

ϵN

)(s−1)/s

· ln
(
1 +

eϵ − 1

2δ

)(s−1)/s
)
,

which completes the proof. ■

D.2 LOWER BOUNDS FOR TOP-k SELECTION

Proof. (of Corollary 4.4) Define b⋆ = 1
ϵ ln

(
1 + eϵ−1

2δ

)
like in Lemma D.1. Recall from Lemma

D.1, that for any dataset W and any item x ∈
⋃

i Wi such that N(x) ≤ b⋆, we have that

PS∼A(W,k) [x /∈ S] ≥ 1

2
.

Consider any dataset W ⋆ such that |
⋃

i W
⋆
i | = k and N(i) = b⋆ for all i ∈ [k]. Then

∑k
i=1 N(i) =

kb⋆. But, we also have that ES∼A(W,k)

[∑
x∈S N(x)

]
≤ kb⋆

2 . Hence,

ES∼A(W⋆,k)

[
MMk(W ⋆, S)

]
≥ kb⋆

2N
= Ω̃δ

(
k

ϵN

)
,

completing the proof. ■

D.3 LOWER BOUNDS FOR k-HITTING SET.

Proof. (of Corollary 4.6) Define b⋆ = 1
ϵ ln

(
1 + eϵ−1

2δ

)
as in Lemma D.1. Recall from Lemma D.1,

that for any dataset W and any item x ∈
⋃

i Wi such that N(x) ≤ b⋆, we have that

PS∼A(W,k) [x /∈ S] ≥ 1

2
.

This is due to our restriction thatA(W,k) ⊆
⋃

i Wi. Consider any dataset W ⋆ consisting of k unique
items and n = kb⋆ users such that each item hits a disjoint set of b⋆ users. Since the frequency of
each of the k items is at most b⋆, A can output each item with probability at most 1/2. Hence, in
expectation, A outputs at most k/2 distinct items, hitting at most kb⋆

2 users, while the optimal set of
items includes all k items and hits all users. ■

E EXPERIMENT DETAILS

In this section, we provide details about the datasets used in Section 5. Table 1 provides statistics for
the 6 datasets we consider. Reddit (Gopi et al., 2020) is a text-data dataset of posts from r/askreddit.
For this dataset, each user corresponds to a set of documents, and following prior methodology, we
take a user’s item set to be the set of tokens used across all documents. Movie Reviews (Harper &
Konstan, 2015) is a dataset containing movie reviews from the MovieLens website. Here, we group
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movie reviews by user-id, and take a user’s itemset to be the set of movies they reviewed. Amazon
Games, Pantry, and Magazine (Ni et al., 2019) are review datasets for video games, prime pantry,
and magazine subscriptions respectively. Like for Movie Reviews, we group rows by user-id and
take a user’s item set to the set of items they reviewed. Finally, Steam Games (Steam, 2025) is a
dataset of 200k user interactions (purchases/play) on the Steam PC Gaming Hub. As before, we
group the rows by user-id and take a user’s itemset to the be the set of games they purchased/played.

Dataset No. Users No. Items No. Entries

Reddit 245103 631855 18272211
Movie Reviews 162541 59047 25000095
Amazon Games 1540618 71982 2489395
Steam Games 12393 5155 128804

Amazon Magazine 72098 2428 88318
Amazon Pantry 247659 10814 447399

Table 1: Number of users, items, and entries (user-item pairs) for each dataset

E.1 RANK VS. FREQUENCY PLOTS

In order to get meaningful upper bounds on MM, Theorem 3.3 requires that W be (C, s)-Zipfian for
s > 1. Figures 4 and 5 present log-log plots of frequency vs. rank for the large and small datasets
respectively. In all cases, we observe that the real-world datasets we consider are (C, s)-Zipfian
for s > 1 and sufficiently large C. Note that our definition of a Zipfian dataset only requires the
frequency vs. rank plot to be upper bounded by a decaying polynomial.

(a) Reddit (b) Amazon Games (c) Movie Reviews

Figure 4: Log-log plot of frequency vs. rank for large datasets

(a) Steam Games (b) Amazon Magazine (c) Amazon Pantry

Figure 5: Log-log plot of frequency vs. rank for small datasets

E.2 USER ITEM SET SIZE DISTRIBUTIONS

Figures 6 and 7 plot the Empirical CDF (ECDF) of user item set sizes for the large and small datasets
respectively.
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(a) Reddit (b) Amazon Games (c) Movie Reviews

Figure 6: ECDFs of user item set sizes for large datasets.

(a) Steam Games (b) Amazon Magazine (c) Amazon Pantry

Figure 7: ECDFs of user item set sizes for small datasets.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 PRIVATE DOMAIN DISCOVERY

F.1.1 RESULTS FOR SMALL DATASETS

Figure 8 plots the MM as a function of ∆0 for the small datasets. Again, we find that the WGM
achieves comparable performance to the policy mechanism while being significantly more compu-
tationally efficient.

(a) Missing Mass (b) Missing Mass (c) Missing Mass

Figure 8: MM as a function of ∆0 ∈ {1, 50, 100, 150, 200, 300} for the small datasets.

F.1.2 RESULTS FOR ϵ = 0.10

Figures 9 and 10 plot the MM for the large and small datasets respectively when ϵ = 0.1 and
δ = 10−5.
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(a) Steam Games (b) Amazon Magazine (c) Amazon Pantry

Figure 11: Top-k ℓ1 loss vs. k with ϵ = 1.0, δ = 10−5, and ∆0 = 100.

(a) Missing Mass (b) Missing Mass (c) Missing Mass

Figure 9: MM as a function of ∆0 ∈ {1, 50, 100, 150, 200, 300} for large datasets when ϵ = 0.1 and
δ = 10−5.

(a) Missing Mass (b) Missing Mass (c) Missing Mass

Figure 10: MM as a function of ∆0 ∈ {1, 50, 100, 150, 200, 300} for small datasets when ϵ = 0.1
and δ = 10−5.

F.2 TOP-k SELECTION

The top-k ℓ1 loss is defined as

ℓk1(W,S) =

min{|S|,k}∑
i=1

|N(i) −N(Si)|+
k∑

i=min{|S|,k}

N(i),

where S is any ordered sequence of items. Unlike the top-k MM, the top-k ℓ1 loss cares about the
order of items output, and hence is a more stringent measure of utility.

Figure 11 plots the top-k ℓ1 MM for ϵ = 1.0, δ = 10−5, and ∆0 = 100. Similar to Figure 2, we
observe that our method (purple) achieves significantly less Top-k ℓ1 loss compared to all baselines.

Figure 12 plots the top-k MM and top-k ℓ1 loss for the small datasets when ϵ = 0.1 and δ = 10−5.
Like the case when ϵ = 1.0, our method (purple) continues to outperform the baselines across all k
values.
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(a) Top-k MM (b) top-k ℓ1

(c) Top-k MM (d) top-k ℓ1

(e) Top-k MM (f) top-k ℓ1

Figure 12: Top-k MM and Top-k ℓ1 vs. k for k ∈ {5, 10, 20, 50, 100, 200}, with ϵ = 0.1, δ = 10−5

and ∆0 = 100.
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F.3 k-HITTING SET

Figure 13 plots the Number of missed users for the small datasets when ϵ = 0.1, δ = 10−5, and
∆0 = 100. We observe that our method (blue) performs comparably and sometimes outperforms
the case where the domain

⋃
i Wi is public.

(a) Steam Games (b) Amazon Magazine (c) Amazon Pantry

Figure 13: Number of missed users vs. k for k ∈ {5, 10, 20, 50, 100, 200} with ϵ = 0.1, δ = 10−5,
and ∆0 = 100.
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