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Abstract

This work aims to understand how, in terms of training dynamics, scaling up
language model size yields predictable loss improvements. We find that these
improvements can be tied back to loss deceleration, an abrupt transition in the
rate of loss improvement, characterized by piece-wise linear behavior in log-log
space. Notably, improvements from increased model size appear to be a result of
(1) improving the loss at which this transition occurs; and (2) improving the rate
of loss improvement after this transition. As an explanation for the mechanism
underlying this transition (and the effect of model size on loss it mediates), we
propose the zero-sum learning (ZSL) hypothesis. In ZSL, per-token gradients
become systematically opposed, leading to degenerate training dynamics where the
model can’t improve loss on one token without harming it on another; bottlenecking
the overall rate at which loss can improve. We find compelling evidence of ZSL, as
well as unexpected results which shed light on other factors contributing to ZSL.

1 Explaining scaling laws in terms of training dynamics

Increasing language model size empirically improves cross-entropy loss with power-law scaling,
accurately extrapolated across several orders of magnitude with scaling laws [KMH+20]. Despite
their predictive capabilities, scaling laws offer limited explanatory power as to the underlying
mechanism [SP12]; i.e. they do not explain how scaling improves loss. This question is of particular
interest because, by identifying and understanding such a mechanism, we may be able to target it
directly to improve models independent of scale, or achieve better improvements from scaling.

While several recent works have sought to explain scaling laws (e.g. in terms of asymptotic behavior
[BDK+24] or data distribution properties [MLGT23]), these are typically based on some notion
of intrinsic model capacity. In contrast, our work attempts to explain scaling in terms of its effect
on training dynamics, which could in turn be targeted directly and independent of scale. First, we
find that the effect of scaling on loss can be quantified in terms of its effect on loss deceleration, a
measurable transition early in training where loss improvements abruptly slow down (Section 2).
This leads us to propose the zero-sum learning (ZSL) hypothesis (Section 3) as an explanation for
loss deceleration and how it mediates, in terms of training dynamics, the effect of scaling on loss.
We test and validate ZSL against alternate hypotheses, based on the original setup of [KMH+20],
shedding light on and finding promising preliminary evidence of ZSL. In the interest of conserving
space, we use the Appendix for background (A), methods (B), and additional results (C) sections.
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2 Loss deceleration in language models
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Fig. 1: Loss across model sizes and train
steps, with BNSL fit of loss deceleration. We
also include the OLMo 1B and 7B models
from [GBW+24] to confirm loss deceleration
occurs measurably at larger scales.

In Fig. 1, we observe that LM loss curves exhibit an abrupt
slow down in the rate of loss improvement early during
training. This transition, which we refer to as loss decel-
eration, is characterized by piecewise linear behavior in
log-log space, and can be parametrically described with
smoothly broken power laws such as BNSL [CGRK23]:

L(t)− a =
(
bt−c0

) (
1 + (t/d1)

1/f1
)−c1f1

(1)

Crucially, by fitting a one-break BNSL (Eqn. 1), we can
measure and characterize deceleration with quantities from
which an estimate L̂T of the final loss can be recovered:

td : d1, the step at which deceleration occurs.
Ld : bd1

-c0 , the loss at which deceleration occurs.
rd : c0 + c1, the log-log loss slope after deceleration.

L̂T : log (LT ) ≈ log(L̂T ) = log (Ld)− rd log (T/td)

In Appendix C.1, we show improvements in LT from scal-
ing can be largely attributable to improvements in Ld and
rd, suggesting that scaling improves performance by mit-
igating deceleration, i.e. reaching a better loss Ld before
deceleration, and converging to a better log-log rate of loss
improvement rd after deceleration. Therefore, to under-
stand how scaling improves performance, we instead aim
to understand the mechanism that underlies loss deceler-
ation and the mitigating effect of scale on deceleration.

3 The zero-sum learning hypothesis

In this section, we present the zero-sum learning (ZSL) hypothesis as a mechanism for (1) how loss
deceleration arises and (2) how scaling improves loss by mitigating deceleration. We formalize this
hypothesis with three claims that we evaluate against alternative explanations: loss deceleration
is caused by ZSL (3.1); ZSL is caused by opposing gradients (3.2); and scale mitigates gradient
opposition and ZSL (3.3). If true, these claims imply that improvements from scaling model size
are at least in part due to a mitigating effect on gradient opposition and ZSL. Crucially, gradient
opposition and ZSL can potentially be targeted directly and independent of scale to improve language
models. As a first step in this direction, we conduct a series of experiments that corroborate the ZSL
hypothesis and shed light on the interplay of scaling and learning dynamics in language models.

Zero-sum learning: degenerate training dynamics where loss improvements in one
set of examples are offset by a similar deterioration of loss in another set of examples,
bottlenecking the rate at which overall loss can improve with additional training steps.

3.1 Claim #1: Loss deceleration is caused by ZSL
D(x) = 1− |∑i xi| /

∑
i |xi| (2)

M(x) =
∑N

i |xi| / N (3)

|∆L| = M(∆ℓ)(1−D(∆ℓ)) (4)

During loss deceleration, the change in loss ∆t2
t1L

between steps t1, t2 abruptly decreases in magnitude.
For a dataset D with per-example losses ℓi, we have
∆t2

t1L =
∑

i ∆
t2
t1ℓi/|D| such that deceleration can occur

for two possible reasons: (1) per-example changes in
loss ∆t2

t1ℓi can increasingly cancel one another out (i.e. ZSL); or (2) ∆t2
t1ℓi can shrink in magnitude

across examples. To quantify these, we define general metrics that, given a set of measurements
x over samples i, x = [x1, . . . , xN ], measure destructive interference D(x) between samples, and
average magnitude M(x) across samples (Eqns.2 and 3). Importantly, we can express the absolute
change in loss |∆L| in terms of these two quantities with Eqn. 4, allowing us to disentangle the
effects of destructive interference D(∆ℓ) on loss deceleration, relative to magnitude M(∆ℓ).
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We first measure2 D(∆2t
t ℓ) throughout training and find it rises rapidly during deceleration (Fig. 2a),

consistent with our hypothesis. Furthermore, in Fig. 2b we plot model training trajectories with
respect to D(∆2t

t ℓ), M(∆2t
t ℓ) and Eqn. 4, to quantify the relative contribution of ZSL to deceleration.

Notably, we see that during and after deceleration, reductions in |∆2t
t L| are largely attributable to

increases in D rather than M . Concretely, we know from Eqn. 4 that the observed reduction in M
during deceleration, from 0.75 to 0.5, corresponds to a 1.5x reduction in |∆2t

t L|. In contrast, the
increase in D observed in that same period, from 0.5 to 0.95, corresponds to a 10x reduction in
loss improvements. More generally, we see that as D increases and approaches 1.0, the required
increase in M to maintain |∆2t

t L| explodes such that ZSL effectively bottlenecks loss improvements.
These results corroborate that ZSL (rather than the alternate hypothesis of magnitude) explain loss
deceleration, and in the next section we aim to understand and explain the underlying cause of ZSL.
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(a) ZSL arises with loss deceleration
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(b) Reductions in loss improvements are primarily driven by ZSL

Fig. 2: ZSL results in loss deceleration by bottlenecking the rate at which loss can improve

3.2 Claim #2: ZSL is caused by opposing gradients
There exist several potential explanations for ZSL, i.e. for why loss improves for one set of examples
but degrades for another. Given a small enough weight update ∆θ, changes in overall and per-token
losses are approximable by first-order Taylor expansions (Eqn. 5) such that destructive interference
and ZSL can arise if ∆θ · ∇θℓi is positive for some examples and negative for others (Eqn. 6).

∆L ≈ ∆̃L := ∆θ · ∇θL =
∑

i ∆̃ℓi , ∆ℓi ≈ ∆̃ℓi := ∆θ · ∇θℓi (5)

D(∆̃ℓ) = D(∆θ · ∇θℓ) = 1− |∑i ∆θ · ∇θℓi| /
∑

i |∆θ · ∇θℓi| (6)

Alternatively, if this approximation does not hold, ZSL might be caused by progressive sharpening
[CKL+22, RR23] where ∆θ overshoots local minima for some examples but not others. While
these explanations are not mutually exclusive, we hypothesize that the principal cause of ZSL during
loss deceleration is systematic gradient opposition. Concretely, we take this to mean near-complete
destructive interference in gradients where D(∇θℓ) ≈ 1 across parameters.

First, we verify our hypothesis under the assumption that Eqn. 5 is a valid approximation.
We show in Appendix C.4 that D(∇θℓ) ≈ 1 demonstrably results in D(∆̃ℓ) ≈ 1. In other words,
for an optimizer step ∆θ, systematic gradient opposition fundamentally results in ZSL for ∆̃ℓ.
Consistent with our hypothesis, we find in Fig. 3a that systematic gradient opposition occurs with
loss deceleration across model sizes, with D(∇̃θℓ) ≈ 1 across non-embedding parameter tensors
(where D(∇̃θℓ) is a tractable proxy approximating D(∇θℓ) as described in Appendix B.4).

2We checkpoint models every 2x steps and use ∆2t
t in line with deceleration being observed in log-space.
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(b) Single-step ZSL occurs with gradient opposition

Fig. 3: Increases in gradient opposition correlate increases in single-step ZSL and loss deceleration

In Fig. 3b, we measure actual destructive interference D(∆ℓ) after an optimizer step, for both Train
batches used to compute the optimizer step (right), and separate Eval batches (left)3. Consistent with
our hypothesis, we observe a close correspondence between increases in gradient opposition in Fig. 3a
and increases in single-step ZSL in Fig. 3b. We also find important qualitative differences between
Train batches (for which single-step ZSL converges with deceleration before decreasing), and Eval
batches (for which single-step ZSL converges well before deceleration and does not decrease). The
underlying cause of this difference is not clear, but likely relates to increased alignment between ∆θ
and gradients of the samples used in computing ∆θ. Furthermore, the discrepancies with multi-step
behavior observed in Fig. 2a suggest that interactions across multiple batches and updates play an
important role in loss deceleration, not accounted for by local first-order gradient information.
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Fig. 4: Correlation between actual and ap-
proximated changes in loss during training
corroborate validity of Eqn. 5 approximation.

Second, we assess the validity of the first-order Taylor
approximation underlying our hypothesis.
Our hypothesis relies on the assumption that destructive
interference in ∆̃ℓ and Eqn. 5 is reflective of destructive
interference in ∆ℓ and Fig. 3b; causally linking gradient
opposition to ZSL from first principles. To verify this as-
sumption, in Fig. 4, we measure and plot the Pearson corre-
lation coefficient between actual and approximate changes
in loss ∆ℓ, ∆̃ℓ throughout training. However, computing
∇θℓi and the corresponding ∆̃ℓi = ∆θ · ∇θℓi for each
token is intractable, so we empirically measure ∆̃ℓi using
a linearization of loss landscape cross-sections as shown in
Fig. 7 and described in Appendix B.3. Consistent with our
hypothesis, we find strong correlation between ∆ℓ and ∆̃ℓ,
particularly after deceleration. In Appendix C.5, we plot
a sample of 1000 per-token loss landscapes across train
steps and model sizes, finding that they are generally linear
in the vicinity of weight updates. Taken together, these
results support our hypothesis that gradient opposition and
first-order training dynamics account for single-step ZSL.

Third, we rule out the alternate hypothesis that ZSL occurs because of progressive sharpening.
In addition to Appendix C.5 which suggests that first order rather than second order gradient informa-
tion dominates per-sample loss landscapes and is responsible for ZSL, we rule out the occurrence
of progressive sharpening in the overall loss as a contributing factor. In Appendix C.6 we find that
progressive sharpening does not occur with deceleration. Surprisingly, and perhaps counter to con-
ventional wisdom, we find that loss landscapes instead become significantly flatter with deceleration;
following an initial phase of high sharpness before deceleration.

3Note that unless otherwise stated, results throughout the paper are based on Eval batches.
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3.3 Claim #3: Scale mitigates gradient opposition and ZSL
In 3.1 and 3.2, we presented evidence across model scales that loss deceleration is a result of ZSL,
and that ZSL is a result of systematic gradient opposition. In this section, we re-examine our results to
characterize the effects of model size and present speculative explanations for how scaling improves
performance by mitigating ZSL and gradient opposition. At a high level, we hypothesize that
increasing the number of parameters increases the degrees of freedom in which per-token gradients
can co-exist without systematic opposition, resulting in (1) greater improvements before deceleration
(and corresponding improvements in deceleration loss Ld); and (2) reduced ZSL after deceleration
(and corresponding improvements in post-deceleration log-log rates of loss improvement rd).

Scaling reduces gradient opposition before loss deceleration In Fig. 3a, we observe that, leading
up to deceleration, increasing model size results in reduced gradient opposition across more layers.
However, during this period, destructive interference is typically similar or worse with increased
model size (Figs. 2a, 3b). Improvements in loss before deceleration seem instead to be primarily
attributable to the magnitude of per-token loss improvements M(∆ℓ) in the first 100 steps (Fig. 5). In
Appendix C.5 and C.6, we can see this is likely a result of steeper loss landscapes along weight updates,
leading to greater loss improvements per step despite smaller stepsizes in larger models. ∆̃ℓi =
∥∆θ∥∥∇θℓi∥ cos(∆θ,∇θℓi) such that ∆̃ℓi is a function of update-gradient norms ∥∆θ∥∥∇θℓi∥, and
update-gradient alignments cos(∆θ,∇θℓi). In Fig. 6, we find tentative evidence that reduced gradient
opposition increases early-stage loss improvements by increasing update-gradient alignments.

Scaling reduces ZSL and mitigates gradient opposition after loss deceleration In Fig. 2 we ob-
serve that post-deceleration loss improvements are bottlenecked by ZSL (as measured by D(∆2t

t ℓ)),
and that increased model sizes consistently reduce D(∆2t

t ℓ) after deceleration. The exact reason
for this reduction remains unclear, however our findings suggest an underlying relation to mitigated
gradient opposition. Even after deceleration, where all models converge to D(∆̃ℓ) ≈ 1, larger models
with more parameters intrinsically have more degrees of freedom for a similar level of destructive
interference, in effect mitigating systematic gradient opposition. 99.9% gradient destructive interfer-
ence in a 1B parameter model is not equivalent to the same value in a 10M model. This may explain
why, in Fig. 3, Train batch samples exhibit reduced destructive interference in loss improvements
when increasing model size. Furthermore, in Appendix C.5 and Appendix C.6, we see that increasing
model size results in flatter loss landscapes after loss deceleration, which may also mitigate the effect
of gradient opposition by e.g. reducing oscillations between training steps.

While we find evidence that increasing model size reduces gradient opposition as well as single
and multi-step ZSL, the connection between these cannot be fully explained by our hypothesis and
results. In particular, our findings suggest that interactions across multiple updates and batches
play an important role that must be clarified in order to obtain a more precise understanding of loss
deceleration and how it is mitigated by scaling model size.

4 Conclusion and outlook

Our results corroborate that ZSL and gradient opposition occur with and can explain loss deceleration.
Notably, we show the causal relationship between these is mechanistically plausible based on first
principles and empirical measurements. Furthermore, we find evidence that the effect of model
size on loss is indeed mediated by these factors, although our results suggest several non-trivial
interactions with training dynamics beyond gradient opposition that need to be understood to more
comprehensively explain loss deceleration. We believe our hypothesis remains to be more rigorously
tested with targeted interventions, especially considering our original motivation of improving loss by
directly mitigating gradient opposition and ZSL. More generally, the extent to which loss deceleration
can be a function of training dynamics independent of model scale, while clearly upper-bounded,
also remains to be more rigorously characterized. Beyond ZSL and loss deceleration, we believe the
interplay between alignment, orthogonality and opposition of per-token gradients has until now been
underexplored and can provide important insights into learning dynamics, scaling and generalization.
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A Related Works

Explaining scaling laws Several works have proposed different explanations for neural scaling
laws such as [KMH+20, HBM+22, CGRK23, HBK+24, TWW24, EXW+24]. Notably, [BDK+24]
explain scaling laws in terms of asymptotic behavior, identifying variance-limited regimes based on
concentration around infinite limits, and resolution-limited regimes based on distances between train
and test data points on their manifold (see also [SK20]). [AZVP24] analytically explain power-law
scaling in high-dimensional ridge regression with tools from random matrix theory. [MLGT23]
propose a "quantization model of neural scaling", whereby power law scaling is a result of (1)
language models improving loss by learning discrete capabilities from their demonstration in data,
(2) larger models being able to learn more capabilities, and (3) rarer capabilities improve loss by
smaller and smaller amounts due to their vanishing frequency. Similarly, [Hut21] show how power
law scaling with data can arise from long-tail feature distributions.

Improving language models independently of scaling Recent work on e.g. data pruning
[MUP+23, SGS+22] model distillation [AZL23, TRP+24] and model pruning [RRR+24] show
that improvements predicted from scaling can (up to a point) be realized without scaling. This
suggests that scaling may indirectly improve loss by its effect on training dynamics, and that similar
effects/improvements can be obtained without necessarily scaling.

Gradient opposition From the perspective of training dynamics, [RR23] discuss the effect of outlier
samples with opposing gradients. In the context of multi-task learning, several works have proposed
approaches to mitigate gradient opposition between tasks, e.g. [PNO+20, YKG+20, LLJ+21].
Gradient opposition between tokens in language modeling has, to the best of our knowledge, not
been characterized. Related but distinct, is the work of [MLR24] characterizes opposition within
token gradients rather than between.

Loss deceleration and learning curves To the best of our knowledge, the loss deceleration
transition we identify and characterize in this work has not been previously established or explained.
We refer the reader to [VL22] for a comprehensive review of learning curve shapes, as well as [Hut21]
and [YO20] as examples of attempting to explain features in a learning curve.
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B Methodology

B.1 Language model pretraining

We train variants of OLMo with the same training data as OLMo-7B-0724 [GBW+24]. Model
dimensions and learning rates are based on [KMH+20] and shown in Table 1, labeled with (rounded)
total parameter counts. For pretraining, we again adapt the experimental setup of [KMH+20], training
with a batch size of 0.5M tokens for 218 steps. However, instead of a cosine learning rate decay,
we adopt the trapezoidal learning rate from [HBK+24] with a learning rate warmup to the values in
Table 1 in the first 2,000 steps and no cooldown in the 218 steps considered. Note that the OLMo-1B
and OLMo-7B models are those trained by [GBW+24] and could not included in our analysis of ZSL
because of insufficient checkpointing frequency before deceleration.

Table 1: Model and Optimizer Parameters for Different Runs

Model size 14M 37M 78M 144M 285M 472M OLMo-1B OLMo-7B
d_model 256 512 768 1024 1536 2048 2048 4096
mlp_dim 256 512 768 1024 1536 2048 16384 22016
n_heads 4 8 12 16 16 16 16 32
n_layers 4 8 12 16 16 16 16 32
peak_lr 1.3E-3 9.7E-4 8.0E-4 6.8E-4 5.7E-4 4.9E-4 4.0E-4 3.0E-4

B.2 Analysis of ZSL and gradient opposition

During training, we checkpoint the model and optimizer every 2i steps with i ∈ [0, 18]. Our analyses
of ZSL and gradient opposition are done on these checkpoints after pretraining. Methodological
details regarding e.g. precision or batch size are kept consistent with pretraining to obtain representa-
tive results. All of our evaluations are conducted on the C4 validation set from [MBH+23], using
the allenai_eleuther-ai-gpt-neox-20b-pii-special tokenizer from [GBW+24], consistent
with pretraining.

B.3 Measuring first-order Taylor approximation of per-token changes in loss

To empirically measure first-order Taylor approximations of loss changes, we compute 1D cross-
sections of per-token loss landscapes (Fig. 7) by evaluating models along increments of a given
weight update ∆θ, with θ(α) = θ+α∆θ/∥∆θ∥, α ∈ [−10, 10]. This allows us to tractably measure
∆̃ℓ as a linearization around α = 0 where ∆̃ℓ(α) = α (ℓθ+ϵ − ℓθ/∥ϵ∥).
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B.4 Computing destructive interference in token-level gradients

Computing per-prediction gradients in transformer language models is intractable due to the combina-
torial nature of self-attention. However, we can tractably compute per-token gradients along the hidden
state dimension (similar to [YSS+21]) where for any module M(x) = y, M : S ×D1 7→ S ×D2

with sequence length S and hidden dimensions D1, D2; we define ∇θ ℓ̃i =
∑

M(δL/δyi)(δyi/δθM)
for the ith token in a sequence. In the PyTorch code block below, we illustrate how the backward
pass of a linear layer with weights W is modified to compute gradient destructive interference across
samples: δL

δW =
∑

i
δL
δyi

δyi

δW

1

2

3 import torch
4 from torch import nn, autograd , functional as F
5

6 def compute_gdi(W: nn.Parameter):
7 gdi = 1 - W.sum_grads.abs()/W.sum_abs_grads
8 return gdi.mean()
9

10

11 class GDILinearFunction(autograd.Function):
12 @staticmethod
13 def forward(ctx , x, W):
14 ctx.save_for_backward(x, W)
15 y = F.linear(x,W)
16 return y
17

18 @staticmethod
19 def backward(ctx , dLdy):
20 x, W = ctx.saved_tensors
21 if ctx.needs_input_grad [1]:
22

23 # instantiate metrics if not present
24 if not hasattr(W, 'sum_grads '):
25 W.sum_grads = torch.zeros_like(W)
26 W.sum_abs_grads = torch.zeros_like(W)
27

28 # accumulate sum of gradients
29 W.sum_grads.add_(
30 torch.einsum(
31 'B...d,B...p->pd', x, dLdy
32 )
33 )
34 # accumulate sum of absolute gradients
35 W.sum_abs_grads.add_(
36 torch.einsum(
37 'B...d,B...p->pd', x.abs(), dLdy.abs()
38 )
39 )
40 # compute and return input gradient for backprop
41 if ctx.needs_input_grad [0]:
42 dLdx = torch.einsum(
43 'B...p,pd ->B...d', dLdy , W
44 )
45 else:
46 dLdx = None
47

48 return dLdx , None

Code 1: Illustrative example computing gradient destructive interference in PyTorch
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C Additional results

C.1 BNSL fit of loss deceleration

To fit a two-segment BNSL in Section 2, we adapt the methodology and code from [CGRK23].
Similar to [KMH+20], we do not fit data from the initial transient phase of training (i.e. the first
100 steps). Furthermore, we force a in the BNSL to be 0, which we found helpful for preventing
instability and explosions in parameters. To validate the quality of the BNSL fit, we use root standard
log error as in [CGRK23] and report it along with the fitted parameters in Table 2.

Table 2: Summary of loss deceleration quantities and root standard log error (RSLE) for BNSL fit.

Model Ld rd dt L̂T /LT RSLE

14M 4.05 0.012 5400 3.86/3.90 0.012
37M 3.60 0.016 5400 3.38/3.42 0.015
78M 3.38 0.019 5300 3.13/3.17 0.015
144M 3.25 0.023 5400 2.97/3.01 0.014
285M 3.13 0.023 4600 2.85/2.88 0.014
472M 3.15 0.033 4100 2.77/2.78 0.014

OLMo-1B 2.89 0.034 3100 2.39/2.38 0.008
OLMo-7B 2.66 0.054 3800 2.03/2.02 0.008

C.2 Magnitudes of loss improvements
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(a) Multi-step magnitudes
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Fig. 5: Magnitude of loss improvements across training and model sizes, for multiple and single steps
In both single and multi-step settings, magnitude is typically greater in larger models in the beginning of training.
Deceleration also correlates with a decrease in magnitude in both settings, although this is more pronounced for
multi-step. Magnitude is also systematically larger for samples in Train batches compared to Eval batches, but
generally exhibit similar behavior in contrast to Fig. 3b.
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C.3 Contributions of update-gradient norms and alignment to early loss improvements
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Fig. 6: Relative contributions of update-gradient alignment (left) and norm (right) to loss improvements.
Per-token loss improvements are approximated by ∆̃ℓi = ∥∆θ∥∥∇θℓi∥ cos(∆θ,∇θℓi). Early-stage loss
improvements with increasing model size appear attributable to both increased alignment and norms. Notably,
relative improvements in norm remain constant throughout training, while improvements in alignment occur
only in the early-stage phase associated with pre-deceleration loss improvements.
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C.4 Decomposition of destructive interference

For a weight update vector u and for token-level gradient vectors gi and overall gradient G =
∑

i gi,
the resulting change in loss can be approximated by a first-order Taylor expansion:

∆̃L = u ·G =
∑

i ∆̃ℓi =
∑

i u · gi (7)

Based on Eqn. 2, we can express destructive interference in this sum as follows:

D(∆̃ℓ) = D(u · g) = 1− |∑i u · gi|∑
i |u · gi|

= 1− |u ·G|∑
i |u · gi|

(8)

Our goal is to isolate the effect of gradient destructive interference in Eqn. 8, as measured by D(gj)

across parameters θj , or D⃗(g) in vector form. However, this is non-trivial because directions of high
opposition in g may be orthogonal to the weight update vector u such that gradient opposition does
not cause ZSL. Conversely, two gradients gi, gk with no coordinate-wise destructive interference
may result in ZSL if e.g. u is aligned with gi − gk. In other words, we need to disentangle ZSL due
to systematic gradient opposition and destructive interference in the canonical basis; as opposed to
potentially incidental gradient opposition along u resulting from suboptimal updates.

We will quantify these contributions as Cg for ZSL due to gradient opposition, and Cu for ZSL
due to update directions. To do this we need to isolate D⃗(g) and account for its alignment with
respect to u. First, note that the denominator

∑
i |u · gi| =

∑
i∥u∥∥gi∥ |cos(u,gi)| in Eqn. 8 is

independent of coordinate-level gradient opposition, while the contribution of destructive interference
in gradients is captured by G = ±M⃗(g)(1 − D⃗(g)), where for compactness we use ±M⃗(g) to
denote sign(G)M⃗(g), allowing us to rewrite Eqn. 8 as:

D(∆̃ℓ) = 1− Cu + Cg (9)

Cu =
∥±M⃗(g)∥| cos(u,±M⃗(g))|∑

i∥gi∥| cos(u,gi)|
∈ [0, 1]

Cg =
∥±M⃗(g)D⃗(g)∥| cos(u,±M⃗(g)D⃗(g))|∑

i∥gi∥| cos(u,gi)|
∈ [0, Cu]

Intuitively, Cu captures destructive interference from summing along the canonical basis coordinates
when projecting gradients onto u, assuming no coordinate-level gradient opposition (i.e. G =

±M⃗(g)). Note that if gi all lie on the same line such that ∀i, | cos(u,gi)| = | cos(u,G)| =

| cos(u,±M⃗(g))| and ∥M⃗(g)∥ = ∥∑i |gi|∥ =
∑

i∥gi∥, then we can see that Cu becomes 1,
indicating no destructive interference. In contrast, Cg captures destructive interference from D⃗(g),
i.e. from summing along examples, while taking into account its alignment with u. As a result, Cg

is at most Cu, approaching this upper limit as D⃗(g) approaches complete destructive interference
along u. However, because the values of D⃗(g) are bounded between 0 and 1, in the case of complete
destructive interference across all coordinates, as observed in Fig. 3a, the alignment with u becomes
irrelevant as expected. In other words, D(∇θℓ) ≈ 1 will result in D(∆̃ℓ) ≈ 1 as described in 3.2.
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C.5 Per-token loss landscape cross-sections
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Fig. 7: Sampled per-token loss landscape cross-sections across model sizes and train steps
Across model sizes (columns) and train steps (rows), we randomly sample 1000 tokens and plot a cross-
section of their loss landscape along the weight update ∆θ for step t, at increments of 0.1. For consistent
axes across model sizes and train steps, we plot ∆L rather than L, which has the same geometry but allows
more easily distinguishing loss improvements from degradations. The point corresponding to the actual
stepsize is indicated with a dotted vertical line. Lines are colored in green or red depending on whether the
loss (respectively) improved or deteriorated at the actual stepsize. Visually, it appears that per-token losses
are (mostly) well approximated by first-order gradient information in the vicinity of optimizer updates.
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Fig. 8: Sampled per-token loss landscape cross-sections across model sizes at the start of training
We plot the same data as in Fig. 7, but focused on the beginning of training (before deceleration).
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C.6 Overall loss landscape cross-sections throughout training
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Fig. 9: Overall loss landscapes (cross section along ∆θ), visualized throughout training
We plot overall loss landscape cross sections across model sizes and train steps. Similar to Appendix C.5,
we plot ∆L which has equivalent geometry to L but allows better distinguishing loss improvements from
loss degradations. ∆L is additionally indicated with a symlog colorscale, with loss improvements being red.
Loss deceleration is approximately indicated with two lines at t = 4096 and t = 8192. We observe that loss
landscapes sharpen leading up to deceleration, but flatten significantly afterwards; with this trend being more
pronounced in larger models. Furthermore, loss landscapes along ∆θ appear much sharper in the beginning of
training for larger models.
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Fig. 10: Overall loss landscapes (cross section along ∆θ), visualized throughout training (zoomed in) We
plot the same data as in 9, but zoomed into a narrower range.
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