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Abstract

Existing multi-modal image fusion methods fail to address the compound degra-
dations presented in source images, resulting in fusion images plagued by noise,
color bias, improper exposure, etc. Additionally, these methods often overlook
the specificity of foreground objects, weakening the salience of the objects of
interest within the fused images. To address these challenges, this study proposes a
novel interactive multi-modal image fusion framework based on the text-modulated
diffusion model, called Text-DiFuse. First, this framework integrates feature-level
information integration into the diffusion process, allowing adaptive degradation
removal and multi-modal information fusion. This is the first attempt to deeply
and explicitly embed information fusion within the diffusion process, effectively
addressing compound degradation in image fusion. Second, by embedding the com-
bination of the text and zero-shot location model into the diffusion fusion process,
a text-controlled fusion re-modulation strategy is developed. This enables user-
customized text control to improve fusion performance and highlight foreground
objects in the fused images. Extensive experiments on diverse public datasets show
that our Text-DiFuse achieves state-of-the-art fusion performance across various
scenarios with complex degradation. Moreover, the semantic segmentation experi-
ment validates the significant enhancement in semantic performance achieved by
our text-controlled fusion re-modulation strategy. The code is publicly available at
https://github.com/Leiii-Cao/Text-DiFuse.

1 Introduction

Due to constraints in imaging principles and hardware technology, single-modal images fall short of
accurately and comprehensively describing scenes, thereby limiting their utility in subsequent tasks.
Hence, image fusion technology emerges as essential in this context [60, 28]. It aims to integrate
useful information from multi-modal images, producing high-quality visual results that enhance both
human and machine perception of scenes. Currently, image fusion technology has been integrated into
various tasks, significantly advancing performance in related fields such as autonomous driving [47],
intelligent security [57, 25], and disease diagnosis [14].

Over recent decades, rapid advancements in deep learning have propelled significant progress in image
fusion. Deep learning-based methods have surpassed traditional approaches in fusion performance by
a considerable margin. In the historical context, the evolution of image fusion closely aligns with the
∗Equal Contribution
†Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Leiii-Cao/Text-DiFuse


Figure 1: Our proposed explicit coupling paradigm of multi-modal information fusion and diffusion.

advancements in network paradigms. Autoencoders (AE) [19, 20], convolutional neural networks
(CNN) [54, 49], generative adversarial networks (GAN) [29, 31], and Transformers [32, 44] represent
a coherent axis of progress in image fusion. This phenomenon arises because there is no ground
truth to supervise fusion learning. Therefore, fusion performance depends heavily on the continuous
enhancement of the feature expression potential of neural network paradigms [55].

However, these methods falter in scenes with degradation, especially composite degradation, which we
refer to as the composite degradation challenge. Essentially, current methods prioritize multi-modal
information integration without considering effective information restoration from degradation [62,
26]. Last few years, the emergence of diffusion models has impressed many with their remarkable
performance in visual restoration tasks [8, 16]. This prompts a natural question: Can diffusion models
be utilized to tackle the challenge of multi-modal image fusion in scenes with complex degradation?
According to the research status of diffusion model-based image fusion, two factors have hindered the
implementation of this intuitive idea. First, visual restoration using diffusion models requires pairs of
degraded and clean images, but in image fusion tasks, there is no clean fused image as ground truth
due to the unsupervised nature of the task. Second, breaking through the paradigm that explicitly
couples information fusion and diffusion is yet to be achieved.

Moreover, current fusion methods fail to account for the specificity of objects in the scene (e.g.,
pedestrians, vehicles), applying the same fusion rules indiscriminately to both foreground and
background. This lack of differentiation, termed the under-customization objects limitation, is
unreasonable and may compromise the delineation of crucial objects [53, 64, 51]. Undoubtedly,
maintaining the salience of foreground objects is crucial to satisfy both human and machine interest
in them. This necessitates fusion models to possess the capability of interacting with users, achieving
a “what you are interested in is what you get” approach.

To address the challenges of composite degradation and under-customization objects in multi-
modal image fusion, we propose a novel interactive multi-modal image fusion framework based on
the text-modulated diffusion model (Text-DiFuse). On the one hand, Text-DiFuse customizes a new
explicit coupling paradigm of multi-modal information fusion and diffusion, eliminating complex
degradation like color casts, noise, and improper lighting, as shown in Fig. 1. Specifically, it first
applies independent conditional diffusion to data with compounded degradation, enabling degradation
removal priors to be embedded into the encoder-decoder network. A fusion control module (FCM) is
then embedded between the encoder and decoder to manage the integration of multi-modal features.
This involves fusing multiple diffusion processes at the feature level, continuously aggregating multi-
modal information while removing degradation during T-step sampling. To our knowledge, this is the
first time information fusion is deeply and explicitly embedded in the diffusion process, effectively
addressing compound degradation in image fusion tasks. On the other hand, to interactively enhance
focus on objects of interest during diffusion fusion, we design a text-controlled fusion re-modulation
strategy. This strategy incorporates text and a zero-shot location model to identify the objects of
interest, thereby performing secondary modulation with the built-in prior to enhance their saliency.
Thus, both the visual quality and semantic attributes of the fused image are significantly improved.

In summary, we make the following contributions:

•We propose a novel explicit coupling paradigm of information fusion and diffusion, solving the
compound degradation challenge in the task of multi-modal image fusion.
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• A text-controlled fusion re-modulation strategy is designed, allowing users to customize fusion
rules with language to enhance the salience of objects of interest. This interactively improves the
visual quality and semantic attributes of fused images.
•We evaluate our Text-DiFuse on extensive datasets and verify its advantages over state-of-the-art
methods in terms of degradation robustness, generalization ability, and semantic properties.

2 Related Work

Deep Multi-modal Image Fusion. As mentioned earlier, the progress in deep multi-modal image
fusion is closely tied to updates in neural network paradigms. Initially, AE-based fusion meth-
ods [19, 20] utilize pre-trained encoders and decoders alongside hand-crafted fusion rules, resulting
in performance bottlenecks. Subsequent methods introduce CNN [6, 5] and Transformer [37, 58]
for end-to-end fusion guided by specific unsupervised loss, yielding improved performance. The
introduction of GAN is groundbreaking due to their inherently unsupervised nature, enabling the
preservation of important multi-modal features [29, 56]. However, the instability of the adversarial
game often leads to non-equilibrium appearances in fused images [30]. Furthermore, the diffusion
model is highly anticipated for solving image fusion and is used in two main ways: injecting features
into CNNs for separate fusion and diffusion [52], or treating multi-modal images as conditions for
implicit fusion [63]. However, both methods fail to utilize the diffusion model’s degradation removal
capabilities and struggle with complex degradation. In contrast, our Text-DiFuse embeds feature
fusion into the diffusion process, ensuring robustness and aggregation of multi-modal information.
Additionally, we use text combined with a zero-shot location model for user-customized fusion,
enhancing object salience.

Diffusion Model. The impressive performance of the diffusion model [41, 13] makes it top-notch
in visual generation. It constructs a Markov chain by progressively adding noise forward, and
then estimates the underlying data distribution and uses inverse sampling to generate images. This
natural property of degradation removal has made the diffusion model excel in visual restoration
tasks [46, 61]. However, the practical application of the diffusion model is hindered by its slow
T-step continuous sampling. Recent efforts have focused on enhancing sampling efficiency and
sample quality [50]. For example, DDIM [42] extends the original denoising diffusion probability
model to non-Markovian scenarios, requiring only discrete time steps during sampling to reduce
costs. Furthermore, iDDPM [35] introduces an enhanced denoising diffusion probability model,
parameterizing backward variance through linear interpolation and training with mixed objectives to
acquire knowledge of backward variance. This approach increases log-likelihood and accelerates
sampling rates without compromising sample integrity. Therefore, our method employs iDDPM to
expedite sampling while upholding the quality of fused images.

Zero-shot Location. Establishing connections between unseen and seen categories using semantic
information [18], zero-shot location models [27, 33] can understand unseen images to identify
and locate designated objects. Representative zero-shot location models include GLIP [22], OWL-
VIT [33], and Grounding DINO [27]. Additionally, methods like DiffSeg [40], PADing [12], and
SAM [17] achieve finer pixel-level object localization. These powerful zero-shot location techniques
provide a solid foundation for the implementation of our text-controlled fusion re-modulation.

3 Methodology

3.1 Problem Statement and Modeling

Let us formally define the research problem of this work: achieving multi-modal image fusion under
degraded scenes while supporting text-controlled fusion re-modulation of objects of interest. The
multi-modal image pair captured under degraded conditions is formulated [{X,Y }|Ω], in which
{X,Y } denotes clean multi-modal images (e.g., infrared and visible images), and Ω indicates
composite degradation (e.g., color casts, noise, and improper lighting). We aim to process degraded
multi-modal images to obtain a clean fused image: Z = Γ([{X,Y }|Ω]). The function Γ must handle
two tasks: degradation removal R and information fusion F . There are two routes: concatenation
(Γ = R+ F ) and coupling (Γ = R

⊎
F ). Concatenation overlooks the intrinsic connection between

degradation removal and fusion, leading to limited performance (see comparative experiments).
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Figure 2: The pipeline of our Text-DiFuse. (a) The text-controlled diffusion fusion process; (b)
training diffusion model for degradation removal; (c) the detailed structure of fusion control module.

Therefore, we choose the coupling route and introduce the diffusion model for degradation removal.
Then, the key question becomes how to integrate the diffusion model with information fusion.
Notably, the diffusion operates as a continuous process with multi-step sampling, making it difficult to
incorporate fusion. To address this, we propose a novel explicit coupling paradigm of information
fusion and diffusion, as illustrated in Fig. 2 (a). Specifically, the diffusion model is initially
trained on data with compound degradation, incorporating the degradation removal prior into the
encoder εbE and decoder εbD. During T-step reverse sampling, the multi-modal encoded features
are continuously passed to the FCM for fusion, aiding in the reconstruction of the final fused
image by the decoder. This essentially consolidates multiple diffusion processes into a single one,
effectively integrating degradation removal and information fusion. However, the above methodology
has not yet addressed the re-modulation of objects of interest in image fusion. To this end, we
further develop a text-controlled fusion re-modulation strategy to highlight the objects of interest,
thereby enhancing subsequent semantic decision performance. This strategy can be formulated as
Z = Γ([{X,Y }|Ω], L), where L represents the user-defined language command. Specifically, we
utilize text combined with the zero-shot location module to identify and locate the objects of interest.
This knowledge triggers the re-modulation of diffusion fusion to enhance the saliency of the objects
with in-built contrast-enhancement prior, thereby significantly improving perceptual quality for both
humans and machines.

3.2 Explicit Coupling Paradigm of Information Fusion and Diffusion

Diffusion for Degradation Removal. Embedding the degradation removal prior into the encoder-
decoder network of the diffusion model forms the foundation for diffusion fusion. We consider
three primary types of degradation: color casts, noise, and improper lighting. They cover both
nighttime and daytime negative imaging conditions and can be considered comprehensive to a certain
extent. In our model, we separate brightness and chrominance components, and perform independent
diffusion for them. Here, we describe and represent these two diffusion processes consistently. For
clean components s (brightness or chrominance), the corresponding degraded versions Ω(s) involve
composite degradation like color casts, noise, and improper lighting. These degraded components
are fed into the encoder-decoder network as conditions. As shown in Fig. 2 (b), in the forward
diffusion process, the original clean component s, denoted as s0 at step 0, is progressively added
with Gaussian noise over T steps to obtain sT . In the reverse sampling process, the encoder-
decoder network is guided to estimate the mean µθ(st,Ω(s), t) and variance ∑

θ(st,Ω(s), t) of st−1,
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progressively approaching the clean component with the conditions Ω(s). Drawing upon iDDPM [35],
the optimization can be defined as:

∇θ ‖ εt − εθ(st,Ω(s), t) ‖2 +λDKL(q(st−1|st, s0,Ω(s))||pθ(st−1|st,Ω(s))), t > 1 (1a)

∇θ ‖ εt − εθ(st,Ω(s), t) ‖2 −λ log pθ(s0|s1,Ω(s)), t = 1 (1b)

where∇θ means optimization by gradient descent, εt denotes the added noise in the forward diffusion
process, DKL is the regularization term based on KL divergence, and q and pθ represent the prior and
posterior probability distributions, respectively. εθ is the noise predictor.

Fusion Control Module for Information Fusion. For information fusion, we design an FCM to
aggregate encoded features during the diffusion process, as shown in Fig. 2 (c). It primarily consists
of convolution layers with CBAM [45]. In them, integrating spatial and channel attention mechanisms
helps perceive the importance of multi-modal features on a wider scale, promoting rational feature
fusion. To reduce the solution space, FCM generates weight coefficients for fusion rather than directly
predicting fused features, allowing faster convergence in multi-step sampling of the diffusion process.

Diffusion Fusion. Everything is ready, and now we can seamlessly integrate information fusion
with diffusion, termed diffusion fusion. Given the degraded multi-modal image pairs [{X,Y }|Ω], we
assumeX is a color image and Y is a grayscale image. This assumption aligns with most multi-modal
image fusion scenarios, such as visible and infrared image fusion, and MRI and PET image fusion.
By separating components, we obtain the brightness component [Xb|Ω] and chrominance component
[Xc|Ω]. First, using the trained diffusion model εcθ, we remove the degradation in the chrominance
component [Xc|Ω], obtaining a clean and reasonable chrominance component Xc

0 .

Then, the processing of paired [{Xb, Y }|Ω] involves diffusion fusion, which achieves simultaneous
degradation removal and information fusion. Specifically, given randomly sampled Gaussian noise
ZbT ∼ N(0, I), [{Xb, Y }|Ω] are regarded as the condition input to the shared encoder εbE in another
diffusion model, obtaining features [{ΦXb

t ,ΦYt }|Ω] at step t:

[{ΦX
b

t ,ΦYt }|Ω] = εbE(Zbt , [{Xb, Y }|Ω], t), t ∈ {T, · · · 0}. (2)

The FCM generates weight coefficients {ωXb

t , ωYt } for fusing these multi-modal features:

[Φft |Ω] = [{ΦX
b

t ,ΦYt }|Ω]� {ωX
b

t , ωYt }, (3)

where [Φft |Ω] is the fused feature with residual degradation at step t, and � denotes the Hadamard
product. Subsequently, the fused feature is fed into the decoder εbD to predict the contained noise
εθ(t) at step t, and the relevant variable υθ(t) for learning the variance:

εθ(t), υθ(t) = εbD([Φft |Ω], t). (4)

Then, the mean and variance of Zbt−1 can be obtained according to:

µθ(Z
b
t , [{Xb, Y }|Ω], t) =

1
√
αt

(Zbt −
1− αt√
1− αt

εθ(t)), (5)∑
θ(Z

b
t , [{Xb, Y }|Ω], t) = exp(υθ(t) log βt + (1− υθ(t)) log β̃t), (6)

where βt represents the variance associated with the forward diffusion process, using the notation
αt = 1− βt and αt =

∏t
s=0 αs . Additionally, we parameterize the variance between βt and β̃ in

the logarithmic domain using the technique of iDDPM [35], where β̃ = 1−αt−1

1−αt
βt. Then, Zbt−1 can

be computed according to:

Zbt−1 = µθ(Z
b
t , [{Xb, Y }|Ω], t) +

√∑
θ(Z

b
t , [{Xb, Y }|Ω], t) · z, (7)

where z denotes the randomly sampled Gaussian noise z ∼ N(0, I) when t > 1, otherwise z = 0.
According to Eqs. (4)-(7), each sample will derive an Ẑb0:

Ẑb0(Zbt , εθ(t)) =
Zbt −

√
1− αεθ(t)√
α

. (8)
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Notably, Ẑb0(Zbt , εθ(t)) indicates the corresponding fake final fused image that is derived from the
results of any step of sampling. Therefore, we construct constraints to guide the FCM in retaining
beneficial information during the diffusion fusion process. Considering pixel intensity and gradient
as two basic elements that describe images, we specify intensity loss Lint and gradient loss Lgrad to
emphasize the preservation of significant contrast and rich texture:

Lint =‖ |Ẑb0(Zbt , εθ(t))| −max{|Xb|, |Y |} ‖, (9)

Lgrad =‖ ∇Ẑb0(Zbt , εθ(t))−max{∇Xb,∇Y } ‖, (10)

where max is the maximum function,∇ is the Sobel gradient operator, Xb and Y are clean source
components after diffusion. The total loss is summarized as:

Ldiff−fusion = γintLint + γgradLgrad, (11)

where γint and γgrad control the balance of these terms, set to 1 and 0.2, respectively. After
optimization, we obtain the clean fused brightness component Zb = Zb0. The purified chrominance
component Xc is used as the fused image’s chrominance component: Zc = Xc

0 . Finally, stitching
Zb and Zc yields the final fused image Z with accurate colors, minimal noise, and proper lighting.
Through these designs, information fusion and diffusion have been fully and explicitly coupled,
achieving multi-modal image fusion while removing compound degradation.

3.3 Text-controlled Fusion Re-modulation Strategy

The above diffusion fusion constitutes the basic version of our method. Now, we aim to expand it
into a modulatable version, allowing users to re-modulate the fusion process based on personalized
needs, enhancing the perception of objects of interest. Firstly, we use state-of-the-art zero-shot
localization models to identify and locate objects of interest based on text commands. Specifically,
we introduce OWL-VIT [33] for detecting objects of interest with open-word input. Then, SAM [17]
provides pixel-level positioning of these objects, obtaining the mask M . Subsequently, M is fed
into the re-modulation block to generate fusion modulation coefficients {κXb

, κY }. This block
incorporates a built-in contrast-enhancement prior, aiming to maximize the contrast between the
object area and the background in the fused image, thus improving the salience of the objects.
Consequently, the multi-modal feature fusion in the diffusion process changes from Eq. (3) to:

[Φf−modut |Ω] = [{ΦX
b

t ,ΦYt }|Ω]� {ωX
b

t , ωYt } � {κX
b

, κY }. (12)

In non-object areas, the original distribution of diffusion fusion should be maintained:

{Zbt }re−modu = (1−M) · Zbt +M · {Zbt }mod. (13)

The modulated fused image enhances the saliency of objects compared to the before, making it more
suitable for subsequent advanced tasks. We prove this in the re-modulation verification section.

4 Experiments

Configuration. We evaluate our method on two typical multi-modal image fusion scenarios: in-
frared and visible image fusion (IVIF) and medical image fusion (MIF). For IVIF, we use the MSRS
dataset [43], with 485 training and 100 testing image pairs. For MIF, we use the Harvard medicine
dataset3 with 160 training and 50 testing image pairs, covering CT-MRI, PET-MRI, and SPECT-MRI.
Data augmentation like random flipping and cropping increases the training pairs to 12, 888 for IVIF
and 6, 408 for MIF. Besides, generalization is evaluated on 60 pairs from LLVIP [15] and 25 pairs
from RoadScene [49]. Competitors include 9 methods: RFN-Nest [20], GANMcC [31], SDNet [53],
U2Fusion [49], TarDAL [25], DeFusion [23], LRRNet [21], DDFM [63], and MRFS [58]. Five
metrics are used: EN [39], AG [3], SD [38], SCD [2], and VIF [11]. The Adam optimizer with a
learning rate of 2e−5 is used for parameter updates. Experiments are conducted on an NVIDIA RTX
3090 GPU and a 3.80 GHz Intel i7-10700K CPU.

3https://www.med.harvard.edu/AANLIB/home.html
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Figure 3: Visual comparison of image fusion methods.

Table 1: Quantitative comparison of image fusion methods. Blod: the best; underline: second best.
Methods MSRS DataSet Havard Medicine Dataset

EN ↑ AG ↑ SD ↑ SCD ↑ VIF ↑ EN ↑ AG ↑ SD ↑ SCD ↑ VIF ↑
RFN-Nest (InF’21) 5.89 1.84 26.03 1.41 0.63 5.34 4.07 63.65 1.58 0.43
GANMcC (TIM’21) 6.03 1.91 25.58 1.37 0.65 5.38 5.13 55.00 1.11 0.43

SDNet (IJCV’21) 4.90 2.33 16.35 0.91 0.49 5.56 6.22 46.64 0.48 0.38
U2Fusion (TPAMI’22) 5.19 2.46 24.82 1.21 0.52 5.22 6.08 53.20 1.03 0.41

TarDAL (CVPR’22) 3.30 2.04 18.52 0.63 0.15 5.66 5.13 41.94 1.12 0.18
DeFusion (ECCV’22) 6.22 2.31 32.34 1.36 0.75 4.96 4.47 55.45 0.93 0.48
LRRNet (TPAMI’23) 5.89 2.19 26.64 0.75 0.52 5.34 5.39 45.89 0.59 0.40

DDFM (ICCV’23) 5.81 2.65 24.98 1.37 0.62 5.00 5.04 63.53 1.59 0.48
MRFS (CVPR’24) 6.91 2.67 40.95 1.23 0.75 7.24 4.41 70.75 1.53 0.41
Ours (Text-DiFuse) 7.08 3.31 47.44 1.44 0.76 6.44 7.31 80.19 1.69 0.49

Comparative Experiments. We first compare the basic version of our Text-DiFuse with current
state-of-the-art fusion methods, and the qualitative results are shown in Fig. 3. The first two rows
depict IVIF results, demonstrating our method’s ability to correct color casts, restore scene information
under low-light conditions, and suppress noise. The last three rows display MIF results, which show
that our method can highlight physiological structure information while maintaining functional
distribution. In contrast, competitors are unable to achieve such information recovery and still suffer
significantly weakened appearance. The quantitative results in Table 1 demonstrate our method’s
advantages over other fusion techniques. For further fairness, we introduce state-of-the-art low-light
enhancement (CLIP-LIT [24]), denoising (SDAP [36]), and white balance (AWB [1]) algorithms as
the pre-processing steps for these competitors, with results presented in Fig. 4 and Table 2. Clearly,
our method still outperforms these comparative methods. This is because these added pre-processing
steps for information recovery are entirely independent of information fusion, so they cannot mine
habits that are more conducive to modal complementarity, leading to limited performance.

Generalization Evaluation. Next, we directly test the model trained on the MSRS dataset on the
LLVIP and RoadScene datasets to evaluate the generalization ability of the proposed method. We
select a daytime scene with overexposure and a low-light nighttime scene, and the qualitative results
are shown in Fig. 5. It can be observed that our Text-DiFuse still maintains high-quality degradation
removal and information fusion capabilities. In particular, it has two-way information recovery
functions such as overexposure correction and low-light enhancement, producing visually satisfying
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Figure 4: Visual comparison of enhancement plus image fusion methods.

Table 2: Quantitative comparison of enhancement plus image fusion methods.
Methods MSRS Dataset Havard Medicine Dataset

EN ↑ AG ↑ SD ↑ SCD ↑ VIF ↑ EN ↑ AG ↑ SD ↑ SCD ↑ VIF ↑

CLIP-LIT
SDAP
AWB

RFN-Nest 6.43 2.23 27.17 1.38 0.60 5.72 4.11 77.46 1.64 0.35
GANMcC 6.25 2.06 24.55 1.31 0.57 5.80 5.28 66.37 1.19 0.31

SDNet 5.84 2.99 20.26 1.08 0.52 5.91 6.00 60.83 1.15 0.30
U2Fusion 6.55 3.55 29.08 1.32 0.58 5.68 6.09 71.59 1.56 0.32
TarDAL 5.29 4.42 25.22 1.00 0.35 6.11 4.81 36.54 0.69 0.23

DeFusion 6.31 2.07 25.52 1.16 0.59 6.08 4.27 67.77 1.38 0.35
LRRNet 6.55 2.68 31.19 1.13 0.54 5.86 5.23 62.91 1.34 0.21
DDFM 6.39 2.43 26.40 1.16 0.60 5.70 4.48 77.40 1.64 0.35
MRFS 6.84 2.86 32.28 1.28 0.58 7.18 4.19 87.53 1.50 0.31

Ours (Text-DiFuse) 7.08 3.31 47.44 1.44 0.76 6.44 7.13 80.19 1.69 0.49

Figure 5: Visual results of generalization evaluation.

fused results. By comparison, other competitors lose useful information masked by overexposure or
low light. We further prove the good generalization ability of our method in Table 3. In general, these
results indicate that our Text-DiFuse can be applied more reliably in real scenarios.

Re-modulation Verification. We verify the performance gains brought by our text-controlled
fusion re-modulation strategy on the MFNet dataset [10]. We select 6 state-of-the-art RGB-T segmen-
tation methods for comparison, i.e., MFNet [10], FEANet [4], EGFNet [7], CMX [59], GMNet [65],
and MDRNet [48]. Besides, we train SegNext [9] on infrared images, visible images, the fused
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Table 3: Quantitative comparison of generalization ability.

Methods LLVIP Dataset RoadScene Dataset
EN ↑ AG ↑ SD ↑ SCD ↑ VIF ↑ EN ↑ AG ↑ SD ↑ SCD ↑ VIF ↑

RFN-Nest 6.37 2.24 26.66 1.63 0.73 7.37 2.62 46.77 1.66 0.58
GANMcC 6.24 2.09 27.02 1.59 0.65 7.24 3.58 43.68 1.39 0.57

SDNet 6.00 2.74 23.05 1.24 0.62 7.18 4.86 40.63 1.16 0.66
U2Fusion 5.52 2.69 21.12 1.32 0.61 7.32 4.92 43.99 1.49 0.66
TarDAL 3.85 2.59 23.05 0.92 0.22 7.35 11.84 52.30 0.97 0.47

DeFusion 6.46 2.36 29.48 1.48 0.82 6.97 2.85 35.96 0.98 0.59
LRRNet 5.67 2.28 19.49 1.06 0.57 7.19 3.55 44.01 1.47 0.58
DDFM 6.46 3.51 30.64 1.72 0.70 7.30 3.63 44.19 1.57 0.65
MRFS 7.00 2.34 40.90 1.67 0.86 7.18 2.70 46.57 1.20 0.52

Ours (Text-DiFuse) 7.08 3.99 41.78 1.73 0.87 7.46 2.96 52.84 1.67 0.66

Figure 6: Visual results of re-modulation verification.

Table 4: Quantitative verification of re-modulation on semantic segmentation.
Segmentation Source Background Car Person Bike Curve Car Stop Cuardrail Color cone Bump mIoU

MFNet RGB-T 96.26 60.95 53.44 43.14 22.94 9.44 0.00 18.80 23.47 36.49
FEANet RGB-T 98.00 87.41 70.30 62.74 45.33 29.80 0.00 29.07 48.95 55.28
EGFNet RGB-T 98.01 87.84 71.12 61.08 46.48 22.10 6.64 55.35 47.12 54.76
CMX-B2 RGB-T 97.39 84.23 67.12 56.93 41.11 39.56 18.94 48.84 54.42 58.31
GMNet RGB-T 98.00 86.46 73.05 61.72 43.96 42.25 14.52 48.70 47.72 57.34

MDRNet RGB-T 97.90 87.07 69.81 60.87 47.80 34.18 8.21 50.18 54.98 56.78

SegNext-Base

IR 97.79 84.89 70.73 56.29 41.94 24.15 7.60 35.91 48.64 51.99
VI 97.93 88.29 62.42 63.67 35.34 36.95 5.77 51.20 47.74 54.37

Our basis 98.11 88.66 70.00 64.30 43.07 30.25 11.95 55.14 56.27 57.53
Our modulatable 98.18 88.32 72.23 65.02 44.79 33.11 13.76 56.32 55.97 58.63

Infrared                   Visible                  DeFusion                  LRRNet                DDFM                   MRFS                Ours basis     Our modulatable

Figure 7: Visual verification in detection scenario.

images generated by the basic version of our method, and the modulatable version respectively to
achieve segmentation. It can be seen from Fig. 6 that different language commands derive customized
fused results, which promote the completeness and accuracy of semantic segmentation while visu-
ally highlighting the objects of interest. The quantitative results in Table 4 further prove that our
re-modulation strategy can improve the semantic attributes, achieving the best segmentation scores.

Semantic Verification on Detection. We further verify the semantic gain brought by text modula-
tion on the object detection task. Specifically, the MSRS dataset [43] is used, which includes pairs
of infrared and visible images with two types of detection labels: person and car. Therefore, the
text instruction is formulated as: “Please highlight the person and car”, which guides our method
to enhance the representation of these two types of objects in the fused image. Then, we adopt the
YOLO-v5 detector to perform object detection on infrared images, visible images, and fused images
generated by various image fusion methods. The visual results are presented in Fig. 7, in which
more complete cars and people can be detected from our fused images while showing higher class
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Table 5: Quantitative verification in detection scenario.
Detection IR VIS DeFusion LRRNet DDFM MRFS Our basis Our modulatable
mAP@0.5 71.9 74.8 86.6 86.3 88.6 82.0 87.3 89.7

mAP@[0.5:0.95] 48.4 47.3 60.1 58.9 59.4 53.2 56.3 60.9

Source Image 1                 Source Image 2                              I                                       II       III

IV                                       V                                         VI                                    VII                                VIII (Ours)

IR VIS 

Figure 8: Visual results of ablation studies.

Table 6: Quantitative results of ablation studies.
Index Diff. Lint Lgrad FCM EN AG↑ SD↑ SCD↑ VIF↑

I 3 3 3 7/max 5.71 1.90 25.66 1.30 0.49
II 3 3 3 7/add 6.08 1.99 20.14 1.11 0.58
III 3 3 3 7/mean 5.60 1.49 20.71 1.15 0.56
IV 3 3 3 7/variance 5.91 1.90 27.59 0.91 0.46
V 3 3 7 3 6.20 2.75 33.78 1.42 0.73
VI 3 7 3 3 6.67 3.25 45.60 1.43 0.76
VII 7/AE 3 3 3 6.37 2.26 37.48 1.42 0.69
VIII 3 3 3 3 7.08 3.31 47.44 1.44 0.76

confidence. Furthermore, we provide quantitative detection results in Table 5. It can be seen that
the highest average accuracy is obtained from our fused images, demonstrating the benefits of text
modulation. Overall, these results indicate that text control indeed provides significant semantic
gains, benefiting downstream tasks.

Ablation Studies. We conduct ablation studies to verify the effectiveness of specific designs,
involving eight variants: I: removing FCM with using maximum rule; II: removing FCM with using
addition rule; III: removing FCM with using mean rule; IV: removing FCM with using variance-
based rule [34]; V: removing Lgrad; VI: removing Lint; VII: removing diffusion with using AE
route; VIII: our full model. The visual results in Fig. 7 show that removing any of these designs
results in a reduction of visual satisfaction. The quantitative scores in Table 5 also support this view.
Overall, these designs in our Text-DiFuse collectively guarantee advanced fusion performance.

5 Conclusion

This paper proposes a new interactive multi-modal image fusion framework based on the text-
modulated diffusion model. On the one hand, it is the first to develop an explicit coupling paradigm
for information fusion and diffusion models, achieving the integration of multi-modal beneficial
information while removing composite degradation. On the other hand, a text-controlled fusion
re-modulation strategy is designed. It incorporates text combined with the zero-shot location module
into the diffusion fusion process, supporting users’ language control to enhance the perception of
objects of interest. Extensive experiments demonstrate that our method achieves better performance
than current methods, effectively improving the visual quality and semantic attributes of fused results.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes] .
Justification: The main claims of this work are to solve the problem of multi-modal image
fusion in degraded environments and to interactively achieve attention and enhancement
of objects of interest. These claims correspond to our contributions and are verified in the
methodological and experiment sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: We discuss the limitations of this work in the supplementary material. Specifi-
cally, our proposed method has lower efficiency, which originates from the slow sampling
process of the diffusion model. In the future, we will study the acceleration strategy of the
diffusion model and further improve its integration in multi-modal image fusion to increase
operating efficiency.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .

Justification: This paper does not include theoretical results. Actually, it is a pioneering
paradigm in which diffusion theory is explicitly embedded in multi-modal image fusion,
achieving compound degradation removal while high-quality cross-modal information
integration.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: This paper aims to propose a new multi-modal image fusion algorithm that
can adapt to degraded scenes. It is completely reproducible. First, we describe in detail the
experimental conditions of this work in the experimental configuration section, including
datasets, training details, and computing hardware. Second, we provide a URL link to
the code of our method in the abstract section, including all the necessary functions for
training and inference. We also provide a README file within it to outline the necessary
environment configuration for running, as well as detailed usage instructions. Together these
ensure the experimental result reproducibility in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes] .
Justification: In the abstract section, we provide a URL link to the code of our Text-DiFuse,
in which all the necessary functional code for training and inference is included. Besides,
we also provide a README file within it to outline the configuration of the environment
required for running, as well as detailed usage instructions. In addition, all datasets used in
this work are publicly available and we have provided accurate citations for them. We also
describe the processing and partitioning of these datasets in the experimental configuration
section.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] .
Justification: We describe in detail the experimental conditions of this work in the experi-
mental configuration section, including datasets, training details, and computing hardware.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .

Justification: The experimental results reported in this paper are the average of a large
number of test results in the dataset. Therefore, they are statistically significant, being able
to support and validate the contributions and claims of this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: In the experimental configuration section, we provide the computing resources
required to reproduce the experiments in this paper, including an NVIDIA RTX 3090 GPU
and a 3.80 GHz Intel i7-10700K CPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .
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Justification: All data, codes, and methodologies involved in this paper comply with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .

Justification: We discuss the potential impacts of this work in the supplementary material.
Specifically, this paper is devoted to solving the problem of multi-modal image fusion
under degraded scenes to provide high-quality fused results suitable for human and machine
perception. Therefore, it can be expected that this work will demonstrate positive social
impacts in many fields. For example, it can help drivers better perceive the road conditions
ahead in environments with poor visibility through information fusion, such as at night,
to improve driving safety. For another example, it can help poor areas that only have
low-quality medical imaging equipment to enhance the perception of the body’s condition
through information recovery and fusion, thereby assisting in disease diagnosis and treatment.
As far as we know, this work does not appear to have any negative social impacts and the
risks are extremely low.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: This paper poses no such risks.

Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification: All data covered in this paper are publicly available, and we provide accurate
citations for them.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes] .
Justification: The code for our work is provided as a zip file, which already contains an MIT
License.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA] .
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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