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Abstract

Electronic structure theory calculations offer an understanding of matter at the quantum level,
complementing experimental studies in materials science and chemistry. One of the most widely
used methods, density functional theory, maps a set of real interacting electrons to a set of
fictitious non-interacting electrons that share the same probability density. Ensuring that the
density remains the same depends on the exchange-correlation (XC) energy and, by a derivative,
the XC potential. Inversions provide a method to obtain exact XC potentials from target electronic
densities, in hopes of gaining insights into accuracy-boosting approximations. Neural networks
provide a new avenue to perform inversions by learning the mapping from density to potential. In
this work, we learn this mapping using physics-informed machine learning methods, namely
physics informed neural networks and Fourier neural operators. We demonstrate the capabilities of
these two methods on a dataset of one-dimensional atomic and molecular models. The capabilities
of each approach are discussed in conjunction with this proof-of-concept presentation. The
primary finding of our investigation is that the combination of both approaches has the greatest
potential for inverting the Kohn—Sham equations at scale.

1. Introduction

Modern, high-performance computational resources have enabled large-scale electronic structure
simulations of molecules, materials, and other systems of interest across biology, chemistry, physics, and
beyond. Kohn—Sham (KS) density functional theory (DFT) [1, 2] is the most widely used method due to its
accuracy and computational efficiency. KS-DFT has helped solve major scientific and technological problems
such as simulating chemical reactions, computing material properties, finding new catalysts, discovering
drugs, and modeling microscopic environmental processes.

The electronic structure problem is typically tackled by solving the non-relativistic Schrédinger equation
for the molecular Hamiltonian within the Born-Oppenheimer approximation. KS-DFT simplifies this
process by transforming the many-body problem into an effective single-particle problem, utilizing the
one-to-one correspondence of the external potential and the electronic density [1]. The crux of KS-DFT is
producing an electronic density that matches the one obtained from solving the interacting many-body
problem [2]. This is accomplished through an effective single-particle potential known as the KS potential,
which is comprised of the external potential, the Hartree potential that accounts for electrostatic repulsion,
and an exchange-correlation (XC) potential compensating for all interactions beyond the Hartree potential.

© 2024 The Author(s). Published by IOP Publishing Ltd
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While an exact expression for the XC potential (vy. = §Ey/dn) is not known, useful approximations
exist. These approximations are categorized based on increasing complexity and accuracy [3]. They include,
for example, the local density approximation [2, 4, 5], which is derived from the interacting uniform electron
gas [6]; generalized gradient approximations (GGAs) [4, 7-9], relying on density gradients; meta-GGAs [10,
11], which consider the kinetic energy density; and hybrid functionals, [4, 12, 13] incorporating a
dependence on Hartree—Fock orbitals. More sophisticated approximations beyond hybrid functionals
include the random phase approximation [14—19] and double hybrid [20-23] methods.

Despite the usefulness of existing approximations for various applications in chemistry and materials
science, developing more accurate XC approximations is an active area of research. [24] New paths for
finding and optimizing such approximations are required for describing complex molecular systems of
upcoming interest [25]. Some advances in functional construction leverage machine learning (ML)
techniques [26, 27]. These methods share the common goal of learning the XC energy functional from
accurate data on molecular systems [28-51].

Another promising approach to constructing approximations to the XC functional is by
reverse-engineering the XC potential from systems that can be solved exactly. This procedure takes the
electronic density as input and finds the corresponding XC potential by inverting the KS equations. Though
straightfoward to describe, this process is an example of an inverse problem. Inverse problems are
encountered in various scientific fields, such as image reconstruction, a fundamental method in MRI and CT
scans; inverse scattering, commonly used in seismology and radar imaging; and tomography, frequently
employed in CT scans. In each case, as in our case, observed data is used to reconstruct the structure of an
object that gives rise to the initial data [52]. Inverse problems are often ill-posed, meaning they are highly
sensitive to small changes in the observed data and noise. This sensitivity makes them challenging to
solve [53].

Various algorithmic and numerical schemes for inverting the KS equations exist in the literature [54—60].
These have provided valuable insights [61-66] into the properties of the XC potential, such as the appearance
of the derivative discontinuity or the dynamical step structures in time-dependent DFT, and have guided the
construction of XC approximations [67]. However, traditional inversion methods are often plagued by the
numerical errors and instabilities [55] common in the solution of inverse problems, as well as from those
specific to the density-to-potential problem.

Recent research has demonstrated numerous examples of utilizing ML, particularly neural networks, to
address inverse problems, with a focus on medical image processing applications. The primary objective is to
learn stable mappings that can be effectively applied to noisy data in a general context [68, 69]. The fusion of
physics with ML offers innovative solutions to complex problems, leading to the evolution of
physics-informed machine learning (PIML) techniques [70]. Instead of solely relying on data, PIML
incorporates governing physical laws, typically differential equations, into the learning process. This results
in data-efficient learning and equips the model with the capability to generalize within physically consistent
bounds. This is especially relevant in cases with sparse or noisy data where conventional ML methods might
not perform well due to overfitting or by producing non-physical outcomes.

In this work, we employ two recent advances in PIML, namely physics-informed neural networks
(PINNSs) [71] and Fourier neural operators (FNOs) [72], to tackle the inverse problem in KS-DFT. PINNs
have the unique ability to learn from the underlying physics described by partial differential equations,
leading to improved generalizability with less data and training time compared to conventional methods.
This characteristic proves highly advantageous in computational sciences where data availability is limited
and generating extensive training sets is costly. PINNs have demonstrated their effectiveness and versatility in
various scientific domains for inversions, including materials and fluid dynamics models [73-75].

Neural operators (NOs) are a class of models that map function-to-function spaces, as opposed to the
finite-dimensional vector space mappings of neural networks. This is especially useful for inverse PDE
problems where experimental or simulation data is available. FNOs are a type of NO which represent
operator weights in Fourier space. The main advantages of FNOs are that they generalize well across function
spaces, and being resolution-invariant, they can be used for inference on higher resolution grids than the
training set grids. FNOs have also been used for forward and inverse PDE problems in various domains [72,
76].

In the following, we construct both a PINN and an FNO to predict the XC potential based on input
electronic densities. We demonstrate the implementation of these computational workflows and compare
both approaches in terms of efficiency and accuracy for their applicability as KS inverters. We observe higher
levels of accuracy and ease of use for FNOs and more predictable errors and greater extrapolation power for
PINNS.
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2. Methods

2.1.KS DFT
In the framework of KS-DFT, we solve a set of effective single-particle equations known as the KS equations
(which we present here using atomic units [77] for clarity and simplicity of notation),

[_V;M(r)] Bi(r) =i 6:(r), (1)

where ¢;(r) represents the KS eigenfunctions and ¢; denotes the KS eigenvalues. These KS equations
constitute an auxiliary system designed to replicate the electron density of an interacting many-body system,
expressed as

n(r)=> li(r)[, (2)

i=1

where the summation index corresponds to the total number of electrons, denoted as N.
The correspondence of the density defined in equation (2) with the density of an interacting many-body
system is established through the KS potential which mimics the inter-electronic interaction and is defined as

Vs (1) = Voo () + v (1) + 15 (1) - (3)

Here, v,,(r) is the external potential, v, (r) is the Hartree potential (i.e. the electrostatic potential due to an
electronic density interacting with itself) and v (r) is the XC potential. Both the external and Hartree
potentials are known exactly in terms of the density. The only unknown is the XC potential. While solving
the set of KS equations with the exact XC potential yields the exact density of the many-body system, in
practice, approximations to the XC energy need to be used. A plethora of approximations is available in the
literature [2, 4—13] and more accurate approximations are continuously being developed.

Usually, the KS equations are solved iteratively. This means that a system is defined and an XC
approximation is selected. An initial guess of the ground-state density is made, which in turn provides
guesses for the Hartree and XC potentials. Equations (1) and (2) are solved, generating a new density, which
can be used to calculate new Hartree and XC potentials. This cycle will continue until the density converges
to within a chosen criterion. In the end, the resulting density is an accurate approximation of the interacting
many-body system, which can be used to calculate electronic properties.

Conversely, equations (1) and (2) can be solved to find the exact KS potential that results in a given target
density. In this case, no approximation is made to the XC potential, only an initial guess. Then, by solving
equations (1) and (2), the guess for the XC potential can be updated. This process is much less stable than the
‘direct’ one described above because the potential is sensitive to small changes in the density.

We use the iDEA code [78, 79] for generating data and as benchmark for inversion. In iDEA, the
density-to-potential inversion is done iteratively:

Vs — Vs + 1% [T’l (r)P — Ny (r)P] ) (4)

where 1y (r) represents the target density, while 1 and p serve as convergence parameters.

2.2. Model system

Model systems in one dimension are a useful tool for the development of DFT approximations [59] for two
reasons. First, it is simpler to obtain highly accurate or exact data from a one-dimensional system. Second,
these model systems can be finely tuned to mimic a wide range of well-understood physical phenomena.
Therefore, we leverage one-dimensional models to demonstrate the utility of our inversion method. We
define two model systems: a one-dimensional atom and a one-dimensional diatomic molecule, as illustrated
in figure 1. A one-dimensional atom is defined by the external potential

Z
7| +a’

(5)

Ve (1) = —

where Z is the charge of the atomic well and a is softening parameter to ensure that the potential is defined at
all points in space. This simple model can readily be extended to a one-dimensional model of a diatomic
molecule by incorporating two potential wells through an additional parameter, d, which represents the
bond length in terms of the separation distance between the two wells:

Z Z
r—4+a |r+%l+a

(6)

Vext (r) = -
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Figure 1. Illustration of the model systems: one-dimensional atom (blue) and a one-dimensional diatomic molecule (orange)
with variable parameters charge Z, Z;, and Z, and bond length 4.

This idea can be extended by defining additional wells to move from an atomistic view to a material or
crystalline structure in one dimension.

All data used to train the presented models were generated using external potentials defined in this
manner. The electronic densities and KS eigenfunctions were generated using the iDEA code [78, 79]. For the
one-dimensional atom of varying charge, Z was varied between the values of two and six in steps of 0.1,
resulting in a dataset with 41 individual data points which was split into a train, test, and validation set.
These sets had 32, 5, and 4 individual data points each, respectively. For the one-dimensional diatomic
molecule, Z,, Z,, and d were all varied within the range of one to five, in steps of 0.5. All combinations of the
three variables were generated, resulting in a data set with 729 data points. The dataset was split such that the
training set had 590 points, the test set had 73, and the validation set had the remaining 66. The dataset can be
downloaded from the HZDR Data Repository Rodare via the link https://rodare.hzdr.de/record/2720 [80].

2.3. Physics-informed neural networks

As a subset of neural networks, PINNs use equations and conditions of the underlying physics to enable a
neural network to predict physically relevant information. Consider a general partial differential equation of
the form

u(xt) + N Al =0, (7)

where u is the solution, x € {2 a D-dimensional spatial coordinate with € a subset of R”, ¢ € [0, T] the time
variable, A a nonlinear operator, and \ the set of parameters that describe a physical system. If a neural
network is used to represent the solution u, as #, this gives rise to

u(x,t) + N[ A :=f(x,1) . (8)

The function f must only equal zero when the network accurately represents the solution to the differential
equation for the given parameters A. If trained on a wide set of physical data, it should be able to predict
solutions to the differential equation within that set more generally.
Based on equation (1), we derive the following model and loss functions within the framework of PINNs:
VZ

f(r) =€ ¢i(r) + BN ¢i(r) —vs(r) ¢i(r) %)

Lo = MSE(,0) = I\IIfo ‘f(x;')

2
, (10)

where the loss function L,y is computed in terms of a mean squared error (MSE) MSE(f,0), with x} denoting
one of the Ny collocation points where the solution is provided.

Here, our focus is to invert the KS equation, wherein we have the set of solutions, {¢;}, and our goal is to
get the network to predict the parameters, v;, that lead to an appropriate set of solutions. If the network can
correctly predict v, then the function f should return a value of zero. What distinguishes this approach from
conventional data-driven ML is that the network does not receive the solution set as input for prediction.
Instead, it receives only the weighted sum of the solutions in the form of the electronic density calculated
using equation (2).
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Figure 2. PINN architecture for predicting the KS potential based on an input electronic density.

In figure 2, we illustrate our implementation of a PINN that predicts the KS potential for an input
density. The network takes the density as an input and processes it through a series of convolutions. The
output of each convolution as well as the initial density is used as an input into a dense network. The network
is then asked to predict the KS potential on each point in space given this set of features, as well as the first
and second derivative of the density.

Convolutional neural networks are a common ML technique for image recognition [81-84]. They
observe both local and non-local features in input data to predict what is present in an image. The
convolution of two functions f and g is defined as

(Frg) (1) = / f(r) gt—) dr (1)

and can be described as sum of the overlap of two functions at each point in #. In our convolutional PINN,
this is accomplished by using a set of convolutions in series and in parallel. Back propagation is used to learn
functions g that emphasize input features crucial for predicting a class. Increasing the number of
convolutions in series results in the passing of additional non-local information to the features.

It is widely known [1, 4] that the XC potential is a nonlocal functional of the electronic density.
Consequently, training a network to correctly predict an XC potential based only on the electronic density at
a single point in space is ill-advised. Our PINN model uses convolutions to account for some of the
non-locality of the XC potential. Each step through the convolutions indicates a larger regime of non-locality
that has been included in its output features.

2.4. FNOs
Neural operators (NOs) [85, 86] are an extension of neural networks that take functions as inputs and return
functions as outputs. While traditional neural networks map finite-dimensional vectors to
finite-dimensional vectors, neural operators work on infinite-dimensional function spaces. A neural network
can be defined as a mapping f: R” — R"™, whereas a neural operator maps functions to functions, i.e.
G: A — U, where A and U are function spaces. Given that there exists a non-linear map G t: A= U, our
goal is to construct a neural operator that approximates this map, i.e. Gy ~ G t, where Gy : A — U with
parameters 6 in finite dimensional space R?.

The neural operator is trained on point-wise (in function space) observations of the form {(a;,u;) }\_,,
where (a; € A;a;(x) € R,x € R), (u; € U;ui(x) € R,x € R) and u; = GT(a;). The goal is to find the
parameters 0 that minimize the loss

2
. (12)
u

0crRr N

N
1 ,
0* = min — E Hu(l) —gg (Lli)
i=1
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Analogous to the neural networks being defined as multi-layer compositions of linear and non-linear
operations, we can define a neural operator Gy(a) as multi-layer compositions of linear and non-linear
operators acting directly in function space:

o (a) = Q(ve (vi1 (-7 (P(a))))) , (13)

where the layer v, ; is defined as

Vg1 (x) = o1y (Wi (x) + (Ki (a3 M) i) (x)) - (14)

Here, the non-local kernel integral operator K; is defined as

(K1 (a: N v (x) = /Q 1 (x,yra(x),a () () dy (15)

over the domain €.

The kernel function k;(x, y,a(x),a(y)) is a function of x, y, and the input functions a(x) and a(y). The
kernel function, parametrized by A, and the local linear operator W;, a matrix of weights, are learned during
training. o(.4) is a local non-linear activation function. The local operator P(a) is a pre-processing operator
that transforms the input function a into a higher dimensional representation vy, which is the input to the
first layer. The local operator Q(vy) is a post-processing operator that projects the output of the last layer v,
back into U.

Several methods can be used to approximate the global integral calculation in each layer, such as graph
neural networks with Monte-Carlo sampling [86] and multipole graph neural operators [87]. These
approximations reduce the computational complexity and allow for scalable solutions [76].

FNOs [72] leverage the Fourier transform to work in the frequency domain. Notice that by using a kernel
k(x — y), equation (15) is a convolution operator, and by using the convolution theorem, equation (15)
becomes

(Ki(a; ) v) (x) = F 1 (F (k1) - F () () (16)
N—1
f(x)=z X, -e T =X, (17)
n=0
—1
F'(X) = %Z Xe-e W =, (18)
n=0

where F is the Fourier transform and F ! is its inverse. The kernel x; is parametrized in Fourier space. Here
the parameterization is finite-dimensional determined by the number of Fourier modes kmax. By working in
frequency domain, the kernels can be computed efficiently using the fast-Fourier tranform and the model
can capture global patterns more effectively.

A distinction has to be made between the solving approach (PINNs) and the learning approach (NOs)
for PDE problems. PINNs are useful for obtaining numerical solutions for specific initial and boundary
conditions and PDE parametrizations. In contrast, learning a PDE via neural operators aims to learn the
underlying operator itself, enabling the prediction of solutions for various conditions without re-solving the
PDE. PINNs can be used to solve PDEs if the PDEs are defined, even in the absence of training data, while
NOs can be used to approximate undefined PDEs with training data. NOs are resolution-invariant and can
also be used for zero-shot super-resolution [72]. A rigorous mathematical definition and analysis for NOs is
provided in [76]. The strengths of FNOs in this context lie in their inherent capability to capture non-local
dependencies and their resolution invariance.

Given the non-local dependence of the XC potential on the electronic density, the non-locality of FNO
layers make them well-suited for the inverse problem in KS-DFT. The input in this case is a grid of electronic
density values and the output is the XC potential at the corresponding spatial grid points. The loss function
is simply the MSE between true and predicted XC potential:

1 2
N+

i=1

Lrno = MSE (chﬂ?xc) = V>((lc) - 1~’)(<lc) (19)

where ¥y denotes the predicted XC potential for system i. The architecture we implemented is shown in
figure 3.
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Figure 3. FNO architecture for predicting the KS potential based on an input electronic density.

2.5. Similarity measures
We evaluate the complexity of the datasets using two different similarity measures, namely the cosine
similarity and Euclidean distance. The cosine similarity between two vectors X and Y in R” is defined as

XY

s (0) = XN

(20)
which returns values in the range [—1, 1], namely —1 if the vectors point in opposite directions, 1 if they
point in the same direction, and 0 if they are orthogonal to each other. The Euclidean distance between the
same vectors is defined as

D(X,Y) =[X—-Y|. (21)

This measure has a lower bound of zero but no upper limit. The value returned is 0 only if the vectors X and
Y are the same vector. Then, as two vectors continue to move further apart, the value moves further away
from zero. The Euclidean distance includes some details related to the cosine similarity, but it also describes
the difference in magnitude of the values found in the two vectors. This is a significant piece of information
that the cosine similarity measure misses. Both of these measures provide insight into the complexity of each
dataset and the network architecture’s capacity to work on each of them.

We illustrate the similarity for both the atomic and the molecular model systems in figure 4. As expected,
the diatomic system is more complex than the atomic system, which is evident from the broader range of
values in the diatomic case, versus the atomic case, for both cosine similarity and Euclidean distance
measures. In the cosine similarity plots for the diatomic system, a block pattern emerges. The largest blocks
shift with a change in the bond length. Descending to the bottom or moving to the right of the plot
corresponds to an increase in the separation between two atomic centers. The greatest dissimilarity is noted
at the two extremes of separation. Interestingly, at larger separations, the vectors show slightly less
self-similarity compared to those at lower separations, as indicated by the darker shading of the bottom right
block compared to the top left. The Euclidean distance plot yields similar trends, although it does not show
this distinction within varying separation distances.

3. Results

We next present our findings for the two PIML approaches, comparing results using the PINN model as well
as the FNO model. We trained both models on the same datasets and evaluate the model performance via the
accuracy of the returned eigenvalues when solving the KS equations with the predicted XC potentials. We
assess the ability of both PIML approaches as inverters for the KS equations in terms of the two
aforemorentioned model systems: the one-dimensional atom with varying charge and the diatomic molecule
with varying charges and bond length. Both the PINN model and the FNO model were trained on model
systems with a grid resolution of 301 in real space. The performance was measured for systems with
resolutions of 301 and 501, as well as for 301-grid systems with parameters outside the training range
(extrapolation).

In all model systems, we consider the first six eigenstates, where each model is occupied with two
same-spin fermions. Additionally, we consider four virtual KS orbitals. The set of occupied and virtual

7
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Figure 4. Similarity measures — cosine similarity (left) and Euclidean distance (right) — of the two model systems. The top panel
shows the similarity measures for the one-dimensional atom with varying charge, while the bottom panel shows the similarity
measures for the one-dimensional diatomic molecule with varying charge and bond length. The similarity measures illustrate the
greater degree of complexity in the molecular model system. The axes are labeled by the system index.

eigenstates defines the shape of the KS potential. The lowest-energy eigenvalue indicates how well networks

predict the cusp of the atoms, while the highest value signifies how well they predict the tail of the potential.
We evaluate each model for ten neural networks with different random seeds. The error is quantified

using the mean absolute error (MAE) and the mean absolute percentage error (MAPE) of the eigenvalues

defined as
1<h .
MAE,‘J = an::l |€i,j,n — 6i,j| (22)
1| Eijin — €4
MAPE; ; = Nﬂ; | 100%, (23)

where €; ; , denotes the predicted eigenvalues and each predicted eigenvalue is indexed by i,, n, with
denoting the level index, j the system index, and 7 the network index, with each neural network having a
different random seed.

3.1. Inversions with physics-informed neural networks

3.1.1. Atom with varying charge

Figure 5 illustrates the performance of the PINN model for a one-dimensional atom with a variable
parameter Z corresponding to its charge, plotting the MAE for a set of fixed charges. Each data point
represents the mean of ten neural network predictions that were generated using varying network
initializations and random seeds. The data points are color-coded to indicate ground and excited states in the
order of blue, orange, red, green, purple, and brown. This order is maintained in the following discussion of
the results.

The performance of the PINN model is best when the well charge Z is small. The error systematically
increases with the charge, particularly for the lowest-lying eigenvalue. The overall MAE averaged over the test
systems is 1.77x 10~ Ha (denoted by a gray horizontal line in figure 5). The PINN model is competitive
with the chemical accuracy criterion of being within 1 kcal mol~! or 0.0016 Ha, as marked by the red
horizontal line in our figures.

We have also displayed the the MAPE of the individual eigenvalues in figure 6. The greatest error is in the
first two eigenvalues of the systems, with both lying above the total average MAPE of around 0.13%, while
the next four lie below this threshold.

We have also explored the relationship between the performance of the PINN model and the resolution
of the spatial grid. We suspect that the source of the errors observed in figure 5 is related to the resolution of
the grid used to train the PINN model, which depends on the accuracy of the KS orbitals and their second
derivatives. We anticipate that as the grid resolution improves, the accuracy of the second derivatives will also
improve, particularly at the sharp cusp-like feature in the KS potential. Our findings indicate that errors
diminish with the enhancement of grid resolution. This correlation presents a methodical approach for
reducing the error in the PINN model. The improvements are reported in table 1, which showcases the
systematic enhancement in performance with increasing grid resolution (see Atom 501).

8
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Figure 5. MAE of eigenvalues predicted by the PINN model on a logarithmic scale for the one-dimensional atom. The MAE is
averaged over 10 network initializations. The red horizontal line denotes chemical accuracy, while the gray horizontal line depicts
the MAE averaged over all test systems. The colors label the eigenstates in increasing order as follows: blue, orange, red, green,
purple, and brown.
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Figure 6. The MAPE resolved for the first six eigenvalues of the one-dimensional atom with varying charges predicted by the
PINN model. The red error bars denote three standard deviations away from the mean, while the gray horizontal line depicts the
MARPE averaged over all eigenvalues.

3.1.2. Diatomic molecule with varying charges and bond length

When switching to the diatomic molecule, the learning task becomes much more complex, as both the
charges (Z; and Z,) and the bond length (d) are variable parameters. This is exemplified in the roughly
10-fold increase in errors within the predicted eigenvalues. The MAE is shown in figure 7. Compared to the
atomic test system, which had an overall MAE averaging around 1.77 x 10~ Ha, the overall MAE has
increased to 1.25 x 1072 Ha (refer to the gray horizontal line in figure 7). In the atomic test system, the
largest errors were observed in the ground, first, and second states of the KS spectrum. All eigenvalues exhibit
some errors above the limit of chemical accuracy. This suggests that the PINN model has difficulty predicting
the tails of the XC potential, but not to the same extent as placing and accurately estimating the well depth.
The relative ordering of errors on the states remains consistent.

We have further broken down the error analysis into individual eigenvalues in figure 8. We display the
MAPE for the first six eigenvalues, which exhibits the larger errors for the ground and first excited states
observed in the MAEs plot. The overall MAPE averages around 0.575% (denoted by a gray horizontal line in
figure 8).

3.1.3. Extrapolation for diatomic molecule

Purely data-driven neural network approaches rapidly degrade in predictive performance when provided
with data outside the training set. However, using physics-based approaches such as PINNs and also FNOs,
higher extrapolation performance can be expected. Compared to data-driven learning, the neural network in
the PINN model represents the solution to a given PDE, allowing accurate predictions within the specific
scope of that PDE. We evaluate the PINN model’s extrapolation ability by asking it to predict on a set of
densities outside the training set.
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Figure 7. MAE of eigenvalues predicted by the PINN model on a logarithmic scale for the one-dimensional diatomic molecule.
The MAE is averaged over 10 network initializations. The red horizontal line denotes chemical accuracy, while the gray horizontal
line depicts the MAE averaged over all test systems. The colors label the eigenstates in increasing order of energy as described in
figure 5.
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Figure 8. The MAPE resolved for the first six eigenvalues of the one-dimensional diatomic molecule with varying charges and
bond length predicted by the PINN model. The red error bars denote three standard deviations away from the mean, while the
gray horizontal line depicts the MAPE averaged over all eigenvalues.
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Figure 9. Extrapolation with the PINN model for the one-dimensional diatomic molecule with varying charges and bond length.
The test set includes molecules with charges and bond length that are outside the parameter ranges of the training dataset. The
MAE of the predicted eigenvalues is shown on a logarithmic scale. The MAE is averaged over 10 network initializations. The red
horizontal line denotes chemical accuracy, while the gray horizontal line depicts the MAE averaged over all test systems. The
colors labels the eigenstates in increasing order of energy as described in figure 5.

The outcome of this analysis is illustrated in figure 9, which shows the MAE. The errors have increased as
anticipated, resulting in an overall MAE of 2.48 x 10~2 Ha indicated by the gray horizontal line. The error
has doubled in comparison to the interpolation task featured in figure 5. While this is not a catastrophic
failure, the higher error suggests the intricacy of extrapolation. The challenge of extrapolation is evident in
figure 10, where we illustrate the MAPE resolved over the first six eigenvalues with an overall MAPE of
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Figure 10. Extrapolation with the PINN model for the one-dimensional diatomic molecule. The MAPE is resolved for the first six
eigenvalues. The red error bars denote three standard deviations away from the mean, while the gray horizontal line depicts the
MARPE averaged over all eigenvalues.

0.73%, denoted by a gray line. Although no significant or sudden rise in error is observed with increasing
eigenvalues, the overall MAPE is noticeably higher, as is the standard deviation shown by the red error bars.

3.2. Data-driven inversions with FNOs

In contrast to the PINN model, the density-to-potential mapping data is explicitly used in the loss function
to train the data-driven FNOs, as outlined in section 2.4. The network takes the density grid as input and
produces the corresponding potential grid as output. FNOs have several benefits, including learning the
mapping in the functional space, which enables them to generalize effectively over varying input densities.
Additionally, the network is resolution-invariant, allowing it to assess higher resolution grids than those
present in the training dataset.

3.2.1. Atom with varying charge

In the case of the one-dimensional atom with varying charge Z, the FNO model demonstrates exceptional
performance over the range of charge values. The error plots for the eigenvalues, as shown in figure 11,
indicate that the predicted eigenvalues closely align with the true values. We resolve the error analysis over
the spectrum of eigenvalues by showing the MAPE for the first six eigenvalues in figure 12. The red error bars
denote three standard deviations away from the mean, demonstrating that the MAPE is within 0.15% in this
range of eigenvalues. The range of MAPE:s is lowest for the ground state and shows a slight increasing trend
with higher energy levels. This increase can be attributed to the magnitude of the eigenvalues decreasing as
the energy level increase. Higher energy states, with their inherently lower magnitudes, offer a smaller
margin for absolute error, thus demanding greater accuracy. The model achieves this to a lesser degree,
although the level of error is still well within the range of chemical accuracy. The overall MAE averaged over
all model systems is 2.22 x 10~* Ha and the corresponding averaged MAPE over all eigenvalues is
3.18x102% denoted by gray horizontal lines in figures 11 and 12. This underscores the FNO model’s ability
to accurately capture the potential-density mapping.

3.2.2. Diatomic molecule with varying charges and bond length

After demonstrating improved performance over the PINNs model for the one-dimensional atom, we
investigate the FNO model’s abilities for the one-dimensional diatomic molecule. Variations in both charges
(Z1 and Z,) and bond length d pose a different set of challenges for the FNO model. As depicted in figure 13,
the plots for eigenvalue errors indicate a slightly higher margin of error in comparison to the atomic model
system. The eigenvalue errors consistently remain within chemical accuracy, except for a particular outlier.
Figure 14 shows the MAPE range for each eigenvalue. There is a clear trend of increasing MAPE range from
the ground state to excited states. Nevertheless, the overall MAE of 2.27 x 10~* Ha and MAPE of
1.90x1072% (denoted by gray horizontal lines) align with the results of the atomic model system,
confirming the FNO model’s adaptability and accuracy across this more challenging set of system
parameters.

3.2.3. Extrapolation for diatomic molecule
The true test of a predictive model lies in its ability to generalize beyond the parameters of the systems in the
training dataset. Figure 15 showcases the eigenvalue error plots for this dataset, which include systems with
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line depicts the MAE averaged over all test systems. The colors label the eigenstates in increasing order of energy, as described in

70

charges (Z; and Z,) and bond lengths (d) that are outside the previous datasets. The errors recorded were
marginally higher than those for the training dataset, and about half the eigenvalues are predicted within
chemical accuracy. The percentage errors are within 2%, as depicted in figure 16. The FNO model yields
overall an MAE of 5.4 x 10~ Ha and MAPE of 0.25% (denoted by gray horizontal lines). This demonstrates
the FNO model’s robustness and potential for broader applicability in solving the KS inversion problem.
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Figure 15. Extrapolation with the FNO model for the one-dimensional diatomic molecule. The test set includes molecules with
charges and bond length that are outside the parameter ranges of the training dataset. The MAE of the predicted eigenvalues is
shown on a logarithmic scale. The MAE is averaged over 10 network initializations. The red horizontal line denotes chemical
accuracy, while the gray horizontal line depicts the MAE averaged over all test systems. The colors labels the eigenstates in
increasing order of energy as described in figure 5.
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Figure 16. Extrapolation with the FNO model for the one-dimensional diatomic molecule. The MAPE is resolved for the first six
eigenvalues. The red error bars denote three standard deviations away from the mean, while the gray horizontal line depicts the
MAPE averaged over all eigenvalues.

4. Discussion

We summarize and contrast our results for the PINN and FNO models in table 1 for both atomic and
molecular model systems. Our performance metrics are the MAE expressed in Hartree (Ha) and the MAPE.
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Table 1. Performance comparison of PINN and FNO models on both model systems, showing the MAE (in Ha) and MAPE (%) and
denoting the maximum absolute errors and the maximum percentage errors in braces. The labels 301 and 501 indicate the grid
resolutions and E denotes extrapolation.

Model Atom (301) Atom (501) Molecule (301) Molecule (301 E)
0.0018 Ha 0.0007 Ha 0.0125 Ha 0.0248 Ha

PINN (0.0110 Ha) (0.0034 Ha) (0.1000 Ha) (0.1200 Ha)
0.13% 0.06% 0.58% 0.73%
(0.30 %) (0.15%) (2.37%) (3.25%)
0.0002 Ha 0.0002 Ha 0.0002 Ha 0.0054 Ha

NO (0.0009 Ha) (0.0010 Ha) (0.0051 Ha) (0.0584 Ha)
0.03% 0.03% 0.02% 0.25%
(0.15%) (0.19%) (0.46%) (3.51%)

Table 2. Computational timings for inversions (in seconds), comparing a conventional method (iDEA) with the PINN and FNO models.

Model Atom (301) Molecule (301) Molecule (501)
iDEA 135429 305+ 262 806 + 447
PINN 0.0016 £0.0011 0.0026 £0.0013 N/A

FNO 0.0022 £ 0.0009 0.0020 £ 0.0003 0.0037 £ 0.0004

Overall, the FNO outperforms the PINN model, providing chemical accuracy (MAE < 0.0016 Ha) for
almost all model systems.

For atoms, the PINN model shows an MAE of 0.0018 Ha, corresponding to a relative error of 0.13%,
while the FNO model shows an MAE of 0.0002 Ha, corresponding to a relative error of 0.03%. The PINN
model significantly improves its accuracy when the grid resolution is increased to 501, while the FNO model
shows consistent accuracy over different grid resolutions.

When applied to molecules, the error of the PINN model increases significantly, especially for the
extrapolation task, with an MAE reaching 0.0248 Ha and a relative error up to 0.73%. The FNO model
maintains a lower error rate and remains within the chemical accuracy except for the extrapolation task,
where its MAE increases to 0.0054 Ha and a relative error of 0.25%. Despite the increase in error, the FNO
model is still highly accurate. The values in parentheses represent additional metrics, namely the maximum
absolute error and the maximum percentage error, which indicate the maximum spread of errors to evaluate
the robustness of the models. Of additional note is the fact that FNOs are resolution invariant, indicated by
the N/A in table 2. Here we trained the FNO on data from a set with a grid resolution of 301 points, which
could be used to infer on a density generated on a grid with 501 points. The convolutional PINNs presented
in this paper are not able to do this.

Having established the accuracy of the PIML methods, we turn to analyze the computational efficiency.
To this end, table 2 shows the computational timings of the PINN and FNO models against a conventional
inversion method (iDEA code) across the different model systems. Timing results are given in seconds, with
standard deviations to indicate variability in computational performance. For atoms, the conventional
inversion method shows a mean computation time of 135 % 29 seconds, which is significantly higher than
both PINN and FNO models, which show mean computation times of 0.0016 + 0.0011 seconds and
0.0022 £ 0.0009 seconds, respectively. The difference is even more pronounced for the molecular systems,
where the conventional method requires 305 + 262 seconds, while PINN and FNO remain in the millisecond
range. In particular, for the molecular system with larger grid resolution (501 grid points), the
computational time of the conventional method continues to increase, while FNO maintains an efficient
computational evaluation in the millisecond range. These results highlight the substantial improvements in
computational speed offered by the PINN and FNO models over conventional methods, with FNO showing
slightly faster times and lower variability than PINN in the scenarios tested, suggesting a robustness that
could be particularly beneficial for larger and more complex systems.

Looking beyond the main scope of this work, the PIML inversion scheme provides an alternative route to
forward-direction self-consistent DFT calculations. In figure 17, our FNO models for the one-dimensional
molecular system have been implemented inside of a self-consistent field cycle. This implementation exhibits
rapid convergence to reference densities in six iterations, even starting from an initial density missing all the
characteristic features found in the reference. Similar results are found for other example systems, shown in
the Supplementary Material. This application of our results illustrates a pragmatic approach to using this or
other reliable inversion methods in practical calculations.
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Figure 17. Example of self-consistent calculation for a molecular system with d = 4.5,z; = 2.0,z, = 4.5. Starting with a constant
initial density, the calculations are iteratively carried out using the FNO model to calculate the vy at each iteration. For (a) and
(b), the dotted light blue line is the initial density/potential, solid light blue line represents intermediate stages and the solid dark
blue line is the converged density/potential. The dashed orange line is the exact density/potential obtained from iDEA. The
bottom plot shows the absolute difference between the converged SC quantity and reference quantity.

5. Conclusion

In summary, this work has demonstrated the potential of PIML techniques, specifically PINNs and FNOs, to
address the inverse problem in KS-DFT. The PINN model uses the underlying KS differential equation to
predict the KS potential from given electron densities. FNOs, on the other hand, use data from known
density-to-potential mappings. They exhibit superior performance in both accuracy and computational
efficiency as PINNs across a range of grid resolutions and complexity of model systems. In particular, FNOs
maintain chemical accuracy in most cases, underscoring their ability to handle the density-to-potential
mapping effectively. The computational times for both PIML approaches significantly outperform
conventional methods, in both direct and self-consistent calculations, offering a promising alternative for
large-scale electronic structure inversions.

A promising avenue for future work is to combine the strengths of both PINNs and FNOs. This could be
realized by a hybrid model with a two-component loss term: one part based on the density-to-potential
mapping characteristic of the FNO model, and another part derived from the underlying KS differential
equation represented by the PINN model. During training, both the FNO and PINN components would be
optimized simultaneously. This approach is expected to yield an efficient PIML model that not only exploits
the data-driven robustness of the FNO component, but also requires less data and exhibits broader
generalizability due to the PINN-derived loss. Such models, referred to as physics-informed neural operators
(PINOs), have been tested on various PDE benchmarks [88, 89]. A test of the robustness of the PINO
approach would be applying it to KS inversion for real systems.

Our results indicate that the integration of machine learning, in particular PIML techniques, can
significantly improve the efficiency and accuracy of electronic structure inversions. These advances offer
promising prospects for elucidating the XC potential of materials from experimental electron density data
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and for advancing the development of XC functionals within DFT, providing a reliable computational tool
for accurate density-to-potential inversions.
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