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Abstract

In this demo, we extend our previous work, MuseControlLite, which represents
the state-of-the-art approach for controlling time-varying conditions in text-to-
music models, to the task of singing accompaniment generation. Given a vocal
track with MIDI and audio, MuseControlLite generates a corresponding backing
track by conditioning on extracted melody, rhythm, structure, along with the
local key information. This enables the system to produce musically coherent
accompaniments that align with the input vocals. The demo is publicly available at:
https://musecontrollite.github.io/web/.

1 Introduction

Text-to-music models [Borsos et al., 2023 |Agostinelli et al., 2023 |Copet et al., 2024, [Evans et al.}
2025, Tsai et al., 2024} [Lee et al., [2025]] have gained significant popularity over the past two years,
enabling both amateurs and professionals to create music directly from text prompts. Despite their
success, these models often lack precise controllability over specific musical attributes. To address
this limitation, Music ControlNet [Wu et al., [2024]] was the first to introduce the use of the well-
known ControlNet framework [Zhang et al., [2023]], allowing text-to-music models to incorporate
time-varying controls. Building upon this idea, MuseControlLite [Tsai et al., 2025] further enhanced
controllability with a substantially more efficient design, using a set of adapters that is 6.75 times
smaller, thereby lowering the entry barrier for users. In this demo, we explore the application of
MuseControlLite to the task of singing accompaniment generation (SAG).

Recent research has also investigated generating instrumental accompaniments conditioned on input
vocals. SingSong [[Donahue et al., 2023 employed source separation models [Kim et al.} 2021]] to
produce aligned vocal—-instrumental pairs, which were then used to train AudioLM [Borsos et al.,
2023|] to generate backing tracks conditioned on vocals. More recently, FastSAG [[Chen et al.|
2024]] proposed a non-autoregressive diffusion-based approach to accelerate inference. Their method
introduced semantic and prior losses to ensure rthythmic coherence between the vocals and the
generated accompaniment.

However, these approaches typically require training large models from scratch. Consequently, they
either suffer from slow training speed [Donahue et al., 2023] or are limited to generating short clips
of only about 10 seconds. To address these challenges, we propose decomposing the vocal input into
multiple time-varying conditions, enabling the model to focus on only the most relevant factors for
SAG. This design provides more efficient control while preserving musical coherence.

2 Adapting MuseControlLite for SAG

We prepare a large dataset of Chinese pop music and apply Mel-band RoFormer [Wang et al., [2023]]
to separate the vocals from the backing tracks. We then extract the essential time-varying conditions
for singing-accompaniment generation, which will be discussed in Section
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Figure 1: Model overview.

2.1 Condition Extraction

Vocal Melody. Following [2025]), we first extract the CQT with 128 bins for both the left
and right channels, and then apply an argmax operation to retain the four most prominent pitches per
frame in each channel. With this vocal melody information, the model can achieve better melody
harmonization.

Structure. Structural information provides hints for tension, intensity, and instrumentation, which
should be considered in order to generate plausible accompaniment. We use All-in-one [Kim and|
2023] to obtain the structural information for every song in our dataset.

Local Key. We use Key-CNN [Schreiber and Miiller, 2019 to detect the local key of each song. The
local key condition further helps the model harmonize the vocal melody more effectively.

Beat and Downbeat Timesteps. To synchronize rhythm, we use BeatNet [Heydari et al.| 2021] to
annotate beats and downbeats on the training backing tracks. During inference—when no backing
track is available—we extract beats and downbeats from the vocal-track MIDI. BeatNet
cannot detect beats and downbeats directly from the vocal input.

2.2 Training and Inference

We follow the training procedure in MuseControlLite 2025 and train the model for 7
days on a single NVIDIA RTX 3090. We drop each condition with a probability of 5%. For inference,
we use 50 denoising steps to generate accompaniment for 47-second vocal tracks: the vocal audio is
used to extract the melody, and the MIDI file provides the beat information. The structure and key
information can be specified by the user or simply set to be the same as the vocal input.

2.3 Limitations

It is worth noting that our method differs slightly from other SAG approaches. Specifically, our
framework requires access to the MIDI representation of the vocal input, from which we can extract
beat and downbeat information. Thus, our method is more suitable for integration with singing voice
synthesis (SVS) systems. In contrast, prior SAG methods operate directly on raw vocal audio without
relying on MIDL
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