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ABSTRACT

It is clinically crucial and potentially beneficial to analyze and directly model the
spatial distributions of cells in histopathology whole slide images (WSI). How-
ever, existing methods typically analyze WSIs via image representation learning
and ignore the importance of cell distributions. Thus, it remains an open question
whether deep learning models can directly and effectively analyze WSIs from the
semantic aspect of cell distributions. In this work, we argue that each WSI can
be regarded as a collection of cells and propose a new scheme consisting of cell
detection and cell cloud modeling to tackle these challenges. Firstly, we propose
a novel human-in-the-loop label refinement method to finetune the pretrained cell
detection and classification model. Then, a novel hierarchical Cell Cloud Trans-
former (CCFormer) is proposed to model the cell spatial distribution. Specifi-
cally, a Neighboring Information Embedding module is proposed to characterize
the distribution of cells within the cell neighborhood, and a Hierarchical Spatial
Perception module is proposed to learn the spatial relationship among cells in
a bottom-up manner. Clinical analysis indicates that clinical evaluation metrics
directly based on counting cells can effectively assess patients’ survival risk, of-
fering significant potential for analyzing and modeling cell distribution in WSIs.
Besides, extensive experiments on survival prediction and cancer staging show
that CCFormer achieves state-of-the-art performances and evidently outperforms
other competing methods by learning from cell spatial distribution alone. Our
project is available at anonymous link.

1 INTRODUCTION

Analyzing histopathology whole slide images (WSIs) presents a significant challenge in computa-
tional pathology. It requires managing gigapixel images while capturing the features and distribu-
tions of tissues and cells. Significant progress in WSI analysis and related downstream tasks has
been achieved by training models on high-quality WSI datasets, such as those from the Cancer
Genome Atlas Program (TCGA) (Liu et al., 2018). These advancements include tasks like survival
prediction (Chen et al., 2021; Shao et al., 2024), cancer staging (Li et al., 2024; Qiu et al., 2025),
cancer sub-typing (Song et al., 2024), and gene mutation prediction (Xu et al., 2024).

Existing methods (Ilse et al., 2018; Chen et al., 2021; 2022) typically analyze WSIs via conven-
tional image perception frameworks, where the image representation is the cornerstone of down-
stream tasks. Thus, numerous histological foundation models (Xu et al., 2024; Wang et al., 2024;
Chen et al., 2024; Lu et al., 2024a; 2023) have been proposed, pre-trained on large-scale datasets for
general-purpose representations. Heavy reliance on the foundation models results in high compu-
tational costs. Unlike natural images, the analysis of cell spatial distribution within WSIs has been
verified as clinically important, associated with the molecular profile (Saltz et al., 2018), tumor pro-
gression (Corredor et al., 2019), prognostic biomarkers (Page et al., 2023), etc. However, analyzing
WSIs by modeling the cell spatial distribution has been overlooked and remains an open problem in
the deep learning community.

We argue that a WSI can be regarded as a cell cloud, and explicitly modeling cell distribution from
the cell cloud can provide better slide representation from the WSI. As shown in Figure 1, compared
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Figure 1: Patch-based methods extract patch features using pre-trained feature extractors and obtain
slide-level representations by trainable aggregators, while Cell Cloud Transformer (CCFormer) di-
rectly learns the cell spatial distribution. CCFormer outperforms SOTA patch-based methods across
multiple cancers.

with patch-based methods (Ilse et al., 2018; Lu et al., 2021; Li et al., 2021; Shao et al., 2021; Chen
et al., 2021; Li et al., 2024), which aggregate multiple patch features to form a slide representation,
our cell-cloud approach can model the microscopic topological relationships of cells. This cell cloud
formulation can provide better microenvironment modeling and interpretability for clinical analysis.
For example, cell differentiation and aggregation status affect clinical prognosis (Saltz et al., 2018;
Corredor et al., 2019; Page et al., 2023; Diao et al., 2021).

To achieve the above goals, we propose a new scheme consisting of cell detection and cell cloud
modeling. First, we pretrain a network to detect and classify cells within WSIs and propose a
novel Human-in-the-Loop Label Refinement (HLLR) to reduce the costs of high-quality cell labeling
within WSIs in domain-adaptation finetuning. Second, we propose a novel hierarchical cell cloud
Transformer, termed CCFormer, to model cell clouds.

The cell cloud exhibits a significant hierarchical structure, which can be mapped to various kinds of
clinical concepts (Diao et al., 2021): local cell clusters (.e.g, tumor cellularity), larger cell spatial
distribution structures (e.g., cancer-associated stroma), and the tissue microenvironment at the WSI
level that can reflect clinical indicators such as cancer stage and patient survival risk. This motivates
us to design the CCFormer, which consists of two key modules: Neighboring Information Em-
bedding (NIE) and Hierarchical Spatial Perception (HSP). NIE describes the neighborhood cell
distribution pattern of cells at the cell level by evaluating the statistical characteristics of each type
of cell within the cell neighborhood. HSP further progressively perceives and aggregates cell spa-
tial distribution information hierarchically. The clinical analysis based on cell clouds indicates that
the survival risk of patients can be effectively decided by evaluating the proportions of various cell
types, which is difficult to obtain based solely on WSI. Extensive experiments on survival prediction
and cancer staging show that analyzing WSIs via cell clouds is a highly competitive framework. Our
contributions can be summarized as follows:

• Efficient WSI Analysis Based on Cell Clouds: We introduce an innovative approach
for analyzing WSIs that directly and effectively models the pathological microenvironment
through the semantic lens of cell clouds and propose a novel CCFormer to explicitly capture
and learn the intricate microscopic topological relationships among cells.

• Low-Cost and High-Quality Domain-Adaptation Finetuning: We propose a novel
Human-in-the-Loop Label Refinement that substantially reduces the cost of manual cell-
level annotation during domain-adaptation finetuning, further yielding better cell detection
and classification results for downstream clinical endpoints.

• Hierarchical Cell Spatial Distribution Representation: We introduce a novel Neighbor-
ing Information Embedding (NIE) technique to capture neighborhood cell distribution at
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the cell level, along with a Hierarchical Spatial Perception (HSP) method to model cell
spatial distribution information in a bottom-up manner.

• Extensive Experimental Validation: Clinical analysis confirms that cell clouds can be di-
rectly utilized to develop effective clinical indicators. Furthermore, extensive experiments
demonstrate the efficacy of the cell cloud framework and the CCFormer model.

2 RELATED WORK

Patch-Level Methods in Histopathology. Patch-level methods (Ilse et al., 2018; Shao et al., 2021;
Chen et al., 2021; Li et al., 2024; Shao et al., 2024; Chan et al., 2023; Lin et al., 2023; Wu et al.,
2025; Zhang et al., 2025; Dong et al., 2025; Tang et al., 2024) divide WSIs into patches and employs
pre-trained models (He et al., 2016; Lu et al., 2024b; Chen et al., 2024; Lin et al., 2023) to extract
patch features for downstream tasks. Since WSIs are typically giga-pixel images, most existing
methods (Ilse et al., 2018; Shao et al., 2021) are designed with Multi-Instance Learning (MIL),
where WSIs are formulated as a bag of sampled patch features. Although MIL-based methods
can effectively analyze WSIs, these methods only focus on sampled regions of interest, limiting to
learning the spatial and semantic relationship of patches across the WSI. To track this issue, graph of
patches has been introduced into WSI analysis (Chen et al., 2021; Li et al., 2024; Shao et al., 2024;
Chan et al., 2023; Shi et al., 2024). Patch-GCN (Chen et al., 2021) introduces patch-based graph
convolutional networks to model the relationship among patches. Although graph-based methods
can describe the relationships among patches, they are limited at the patch-level and unable to model
the cell spatial distribution. In addition, Ceograph (Wang et al., 2023) propose to analyze cell spatial
organization with graphs. However, Ceograph focuses on learning cell relationships within each
patch and can not percept the cell distribution across the WSI. In this paper, we formulate WSIs as
cell clouds and propose to model cell spatial distribution across the entire WSI.

Point Set Learning. Point set learning aims to understand the spatial relationships between points in
point sets, also known as point clouds. Recently, deep learning approaches for learning point clouds
have been rapidly developed and can be categorized into projection-based (Su et al., 2015; Lang
et al., 2019), voxel-based (Maturana & Scherer, 2015; Choy et al., 2019; Graham et al., 2018; Chen
et al., 2023), point-based (Qi et al., 2017a;b; Ma et al., 2022; Zhao et al., 2019; Wu et al., 2022), and
serialized methods (Wu et al., 2024; Wang, 2023; Liang et al., 2024). Since projection-based and
voxel-based methods are typically designed for 3D point clouds, these methods are difficult to apply
to 2D cell clouds. While point-based methods can be easily extended to 2D cell clouds, existing
methods are not suitable for describing the unique hierarchical spatial relationships among cells. In
addition, serialized methods organize points into sequences based on predefined patterns and lack
flexibility in handling the varied hierarchical structures of cell clouds. In this paper, we propose
CCFormer, which progressively learns the relationships among cells hierarchically.

3 PILOT STUDY - CLINICAL ANALYSIS

Cell-level annotations and statistics hold significant clinical importance (Corredor et al., 2019; Diao
et al., 2021; Saltz et al., 2018). As a pilot study, we construct survival risk evaluation metrics based
on cell clouds and conduct Kaplan-Meier analyses. Based on clinical experience, the survival risk is
highly influenced by the proportion and distribution of neoplastic and inflammatory cells (Page et al.,
2023). Therefore, we construct the Cell Proportion Score (CPS) , which considers the proportions
of various cell types within the WSI:

SCPS = [
Nneo

Ntotal
, 1− Ninf

Ntotal
,
Nneo

Ninf
]α, (1)

where SCPS denotes Cell Proportion Score, α is the weight vector, and Ntotal, Nneo, Ninf are the
number of cells, neoplastic cells, and inflammatory cells within a WSI, respectively. For different
types of cancer, α can be set based on the type of cancer to focus on different components. Pilot
studies on TCGA-COADREAD and TCGA-PAAD show that CPS correctly distinguished between
high-risk and low-risk patients with log-rank p-values of 1.54e-03 and 1.43e-03, respectively.

Conclusion. The pilot study shows that simple cell-level statistics can be utilized to develop effec-
tive clinical indicators, providing strong support for cell cloud–based WSI representations. Building
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Figure 2: Human-in-the-Loop Label Refinement (HLLR). HLLR reduces the annotation cost for
domain-adaptation finetuning by integrating foundation model-based sample selection and expert
labeling of hard samples.

on this, we propose CCFormer to extend cell count–based statistics into hierarchical modeling of
cell spatial distributions, enabling finer-grained learning of topological relationships among cells.

4 CCFORMER

The collection of cells within a WSI is detected and classified via a pretrained model. To gener-
ate better cell clouds for analyzing WSIs, we propose the Human-in-the-Loop Label Refinement
(Figure 2) to generate samples for domain-adaptation finetuning of the pretrained cell detection and
classification model. Then, we propose a hierarchical Cell Cloud Transformer (Figure 4) to model
the cell spatial distribution and further apply it to clinical endpoints.

4.1 HUMAN-IN-THE-LOOP LABEL REFINEMENT

We perform preliminary annotations on WSIs with a model pretrained on PanNuke (Gamper et al.,
2020). Due to the differences in data distribution between PanNuke and the target dataset, such
as TCGA, domain-adaptation finetuning on the target dataset is helpful for better cell classifica-
tion. Finetuning on a large-scale human-annotated dataset incurs substantial annotation cost (Hörst
et al., 2025). Therefore, as shown in Figure 2, we propose a Human-in-the-Loop Label Refinement
(HLLR) that combines foundation-model-based high-confidence screening with expert correction of
hard samples. First, patches whose foundation-model judgments agree with cell-based assessments
are treated as credible and are directly used to finetune the cell detection and classification model.
Specifically, foundation-model decisions are obtained via voting across multiple models (Lu et al.,
2024a; Ikezogwo et al., 2024; Sun et al., 2023), whereas the cell-based assessment is computed
from the predicted proportion of cancer cells within the patch. Second, for the remaining patches,
we sample a subset for manual correction and include the corrected patches in the refinement set
used for finetuning. HLLR markedly reduces manual effort while maintaining effective adaptation
to the target WSIs. By finetuning on the dataset of credible patches and expert-corrected difficult
patches, the pretrained model captures cell morphology in the target domain, yielding better cell
detection and classification results for downstream high-level pathology tasks.

4.2 HIERARCHICAL CELL CLOUD TRANSFORMER

Neighboring Information Embedding. The neighborhood cell distribution patterns at the cell level
are critical characteristics in distinguishing the cells within the same category. For cells similarly
labeled as cancer, whether they are surrounded by a large number of cancer cells or immune cells
have completely different clinical significance (Wang et al., 2023). Thus, we propose NIE to embed
the spatial distribution information of neighboring cells. Specifically, we propose local and global
density features to embed statistical information of neighboring cells.

For each WSI, the mean shortest distance among cells dmean across the dataset is used to adaptively
set the largest local neighborhood radius rmax = λrdmean, where λr is the scale factor. To ob-
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Figure 4: The pipeline and illustration of CCFormer. Given the cell point (coordinate and type)
within the cell cloud, Neighboring Information Embedding supplements the statistical character-
istics of its neighboring cells. Hierarchical Spatial Perception further progressively perceives and
aggregates cell spatial distribution information hierarchically. Finally, the feature of cell spatial dis-
tributions across the entire WSI is applied to clinical endpoints.

tain more precise local spatial information, we introduce a discrete number Nd to uniformly divide
rmax into multiple segments, thereby obtaining a series of radius r = [r(1), r(2), · · · r(Nd)]T . We
denote the number of the t-th type of cell within the j-th radius of the i-th cell as N (i,r(j),t), i ∈
{1, 2, · · · , C}, j ∈ {0, 1, 2, · · · , Nd}, t ∈ {1, 2, · · · , T}, where C is the number of cells and T is
the number of cell types. Specifically, N (i,r(0),t) = 0. Thus, the local relative density feature is
computed as follows:

f
(i,r(j),t)
ld =

N (i,r(j),t) −N (i,r(j−1),t)

N (i,r(Nd),t)
, (2)

where f
(∗)
ld denotes the local density feature of the t-th type of cell within the j-th radius of the i-th

cell. The local density feature vector of i-th cell F (i)
ld = [f

(i,r(1),1)
ld , · · · f (i,r(Nd),T )

ld ]T . Equation 2
measures the relative density of cells within multiple neighborhood radii, thereby quantifying the
proximity between cells and their neighboring cells.

Local density distribution

Global density distribution
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Figure 3: Toy example of NIE. A toy point set
containing three categories is generated. After ex-
tracting features via NIE, we performed K-Means
clustering. The results indicate that features de-
rived from NIE can effectively differentiate points
at different locations (boundaries, core regions,
and outliers).

We further introduce the global density feature
to quantify the statistical distribution of cells
across the entire cell cloud:

f
(i,r(j),t)
gd =

N (i,r(j),t) −N (i,r(j−1),t)

maxi∈{1,2,··· ,C}(N (i,r(Nd),t)))
, (3)

where f (∗)
gd denotes the global density feature of

the t-th type of cell within the j-th radius of the
i-th cell. The global density feature vector of i-

th cell F (i)
gd = [f

(i,r(1),1)
gd , · · · f (i,r(Nd),T )

gd ]T . In
CCFormer, the embedding feature of each cell
Fcell ∈ RT+2NdT is the concatenation of Fld ∈
RNdT , Fgd ∈ RNdT , and the one-hot encoding
of cell type.

We generate toy point sets with the Gaussian
distribution to illustrate NIE. As shown in Fig-
ure 3, NIE not only correctly distinguishes
points of different categories but also further
differentiates points of the same type located in
different neighborhood patterns. In Section 5,
we further validate that the NIE can also effectively describe the neighborhood cell distribution on
real cell clouds.

Hierarchical Spatial Perception. In WSI, the spatial distribution of cells is hierarchical. The
entire WSI is composed of multiple important regions, each of which consists of smaller clusters of
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Algorithm 1 Hierarchical Spatial Perception (HSP)

IUPUT: Coordinates of cells C = {c(i)}Ntotal
i=1 , features of cells Fcell = {f (i)

cell}
Ntotal
i=1 .

PARAMETER: The number of group anchors Nk, the filter threshold λsim, the basic number of points
within each group Nbasic, the number of perception levels L.

1: Encode features F = Ffc(Fcell), where Ffc is a fully connected layer.
2: for level l = 1, · · · , L do
3: Generate coordinate of group anchors Nk by FPS.
4: Group points according to C and Nk.
5: for group k = 1, · · · , Nk do
6: Compute Ssim according to Equation 4.
7: Create M = bool(Ssim > λsim).
8: Update F according to Equation 5.
9: Compute spatial distribution of k-th group f

(k)
group with mean aggregation.

10: end for
11: C ← Ck.
12: F ← {f (k)

group}Nk

k=1
13: Nk ← Nk/Nbasic

14: end for
15: return Slide representation f

(WSI)
cell = MaxAgg(F ).

cells. We propose HSP to learn this hierarchical structure of cell clouds. Specifically, HSP groups
the cells to divide the WSI into a collection of sub-regions. For each group, we conduct intra-
group information interaction to learn the cell spatial distribution. By aggregating features for each
group and repeating the above process at higher levels, HSP hierarchical models cell clouds. The
pseudocode of HSP is shown as Algorithm 1.

Given the coordinates C = {c(i)}Ntotal
i=1 and features Fcell = {f (i)

cell}
Ntotal
i=1 of a collection of cells,

group anchors K = {k(i)}Nk
i=1 are generated by Farthest Point Sampling (FPS) (Qi et al., 2017b),

where c(i) ∈ R2 and f
(i)
cell are the coordinate and feature of the i-th cell, Nk is the number of group

anchors, and k(i) ∈ R2 is the i-th anchor. To preserve the spatial distribution of cells as much as
possible, we incorporate cell category information into the anchor generating. For any group anchor
k(i), 2Ntotal/Nk nearest neighbors are assigned to it and marked as a group.

Cells assigned to the same group are spatially proximate, thus forming a local region. Consequently,
we further update the cell features within each group and aggregate them to obtain features that
describe the local cell spatial distribution. However, multiple clusters of spatially adjacent cells may
be assigned to the same group. We introduce a semantic-spatial aware filter to address this issue and
provide a detailed visualization and analysis in Section 5.

The semantic-spatial aware filter comprehensively considers the semantic similarity and spatial dis-
tance of cells within the same group. For each group, the coordinates of the group anchor and
the mean feature of the cells within the group are used as references. Then, a similarity score is
computed for each cell:

S
(i)
sim = exp (−∥c(i) − cref∥)

(f
(i)
cell)

T fref
Ndim

, (4)

where S
(i)
sim is the similarity score of the i-th cell, fref denotes the the mean feature, cref denotes

the coordinate of the group kernel, and ∥·∥ denotes the euclidean distance. We introduce a threshold
λsim to generate a filter M . If S(i)

sim < λsim, M (i) = 0 and the i-th cell is marked for discard.

For each cell, we calculate attention weights with respect to other cells within the same group to
update its feature. The attention is implemented as vector attention (Zhao et al., 2021). Moreover,
the positional relationships among cells are critical spatial information. Therefore, we incorporate
relative coordinates into our calculations. Assuming that the i-th cell within the group G, the infor-
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mation interaction between this cell and other cells is defined as follows:

S
(i,j)
att = M (j)Fatt(Wqf

(i)
cell −Wkf

(j)
cell + E(c(i) − c(j)),

(f
(i)
cell)

′ =
∑
G

δ(S
(i,j)
att )(Wvf

(j)
cell + E(c(i) − c(j)),

(5)

where S
(i,j)
att is the attention vector, Fatt is a Multilayer Perceptron (MLP), (f (i)

cell)
′ is the updated

feature of the i-th cell, δ denote the softmax and normalization for attention vectors, W· denotes a
linear projection layer, and E denotes a two layer MLP that maps the dimension of related distance
to the same of features. Cells can perceive the spatial distribution by stacking layers as described in
Equation 5.

HSP further introduces a hierarchical architecture to model the cell spatial distribution in a bottom-
up manner. Specifically, HSP consists of multiple levels, each of which models the local spatial
distribution of cells at a specific scale. Higher-level features are derived from lower-level features
by mean aggregation and are subsequently re-grouped and undergo attention to model cell spatial
distribution over a larger region. Finally, the feature of the WSI is the maximum aggregation of
features at the last level.

From CCFormer to FusedCCFormer: Fused with the appearance representation. CCFormer is
built on the cell cloud and produces a WSI-level representation of cell spatial distribution. Notably,
employing a foundation model to extract patch-level features can effectively construct a WSI-level
appearance representation, which has been shown to enhance performance in downstream tasks such
as survival prediction (Chen et al., 2024). In this work, we explore fusing CCFormer with patch em-
beddings from the foundation model, termed FusedCCFormer, to achieve a more comprehensive
and expressive WSI representation. Specifically, patch embeddings from the foundation model are
global-mean pooled across the slide to get the WSI appearance feature fWSI

app . The final WSI feature

fWSI is defined as f (WSI)
cell + β · E(f

(WSI)
app ), where β is the weight of the appearance term.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Datasets & Metrics. We conduct extensive experiments of survival prediction and cancer staging on
multiple cancer datasets of TCGA. In our experiments, we follow the usual practice to evaluate the
performance of survival prediction (Chen et al., 2021; Nakhli et al., 2023a) and cancer staging (Li
et al., 2024; Chan et al., 2023) by C-Index and Macro-F1 with 5-fold cross-validation, respectively.
In particular, we report the results of 5-fold cross-validation for each experiment. All reported results
in percentages refer to relative improvements.

Baselines. Global mean pooling (MeanPool) and global max pooling (MaxPool) are employed as
baselines. In addition, we compare CCFormer with SOTA WSI analysis methods. For MIL-based
methods, we compare with TransMIL (Shao et al., 2021), ABMIL (Ilse et al., 2018), CLAM (Lu
et al., 2021), DSMIL (Li et al., 2021), R2T-MIL (Tang et al., 2024), HDMIL (Dong et al., 2025),
and MambaMIL (Yang et al., 2024). As MIL methods are highly influenced by the pre-trained fea-
ture extractor, we utilize the pre-trained UNI (Chen et al., 2024), a SOTA self-supervised model for
pathology, to extract patch features. For graph-based methods, we compare with Patch-GCN (Chen
et al., 2021), WiKG (Li et al., 2024), and PAMOE (Wu et al., 2025). Besides, we also compare with
Pixel-Mamba (Qiu et al., 2025), which is an SOTA end-to-end WSI representation method. In ad-
dition, models for learning point clouds can be adaptively applied to cell clouds. Thus, we compare
CCFormer with SOTA point cloud methods, including PointNet (Qi et al., 2017a), PointNet++ (Qi
et al., 2017b), and Point Transformer v3 (PTv3) (Wu et al., 2024). The baselines are implemented
using their released code and the same split files, unless otherwise specified.

Implementation Details. Please refer to the Appendix.

5.2 MAIN RESULTS

Table 1 and Figure 5 report the results of survival prediction and cancer staging, respectively. Meth-
ods based on cell clouds achieve competitive results with MIL-based, graph-based, and end-to-end
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Table 1: Comparison of survival prediction in C-Index (↑). CCFormer outperforms other SOTA
methods. The best results are highlighted in bold, and the second-best results are in underlined.

Method Params. BLCA BRCA COAD
READ LUAD PAAD STAD

Pa
tc

h
fe

at
ur

e
M

IL

MeanPool (Patch) 4.1K 0.610 ± 0.024 0.643 ± 0.031 0.629 ± 0.186 0.571 ± 0.057 0.672 ± 0.097 0.579 ± 0.085
MaxPool (Patch) 4.1K 0.510 ± 0.038 0.589 ± 0.063 0.585 ± 0.078 0.480 ± 0.037 0.404 ± 0.122 0.474 ± 0.102

TransMIL (Shao et al., 2021) 2.7M 0.600 ± 0.061 0.663 ± 0.058 0.634 ± 0.105 0.587 ± 0.076 0.636 ± 0.121 0.581 ± 0.081
ABMIL (Ilse et al., 2018) 0.9M 0.609 ± 0.028 0.656 ± 0.055 0.668 ± 0.167 0.614 ± 0.066 0.696 ± 0.080 0.650 ± 0.098
CLAM (Lu et al., 2021) 0.8M 0.617 ± 0.024 0.656 ± 0.104 0.665 ± 0.100 0.619 ± 0.112 0.697 ± 0.084 0.641 ± 0.118
DSMIL (Li et al., 2021) 0.2M 0.601 ± 0.045 0.612 ± 0.070 0.647 ± 0.035 0.598 ± 0.117 0.677 ± 0.105 0.615 ± 0.078

HDMIL (Dong et al., 2025) 0.9M 0.597 ± 0.070 0.605 ± 0.086 0.607 ± 0.029 0.620 ± 0.092 0.748 ± 0.075 0.621 ± 0.108
MambaMIL (Yang et al., 2024) 4.2M 0.632 ± 0.048 0.659 ± 0.069 0.672 ± 0.066 0.631 ± 0.139 0.701 ± 0.082 0.628 ± 0.087

R2T-MIL (Tang et al., 2024) 2.7M 0.648 ± 0.031 0.640 ± 0.103 0.697 ± 0.051 0.655 ± 0.101 0.712 ± 0.072 0.638 ± 0.117

G
ra

ph

Patch-GCN (Chen et al., 2021) 1.4M 0.597 ± 0.022 0.628 ± 0.036 0.634 ± 0.121 0.617 ± 0.043 0.668 ± 0.115 0.563 ± 0.048
WiKG (Li et al., 2024) 2.0M 0.638 ± 0.030 0.649 ± 0.036 0.722 ± 0.069 0.632 ± 0.038 0.661 ± 0.112 0.672 ± 0.089

PAMOE+Patch-GCN (Wu et al., 2025) 15.5M 0.593 ± 0.028 0.589 ± 0.026 0.643 ± 0.086 0.620 ± 0.049 0.640 ± 0.079 0.549 ± 0.046

Po
in

tC
lo

ud

MeanPool (Cell) 1.5K 0.535 ± 0.045 0.573 ± 0.070 0.639 ± 0.063 0.552 ± 0.068 0.647 ± 0.045 0.569 ± 0.074
MaxPool (Cell) 1.5K 0.476 ± 0.024 0.571 ± 0.055 0.514 ± 0.156 0.535 ± 0.035 0.544 ± 0.065 0.527 ± 0.090

PointNet (Qi et al., 2017a) 3.5M 0.633 ± 0.025 0.665 ± 0.021 0.732 ± 0.044 0.638 ± 0.012 0.715 ± 0.047 0.682 ± 0.075
PointNet++ (Qi et al., 2017b) 1.5M 0.613 ± 0.038 0.656 ± 0.036 0.743 ± 0.028 0.645 ± 0.020 0.702 ± 0.043 0.633 ± 0.055

PTv3 (Wu et al., 2024) 39M 0.553 ± 0.039 0.536 ± 0.054 0.616 ± 0.069 0.591 ± 0.050 0.631 ± 0.114 0.560 ± 0.023

Pixel-Mamba (Qiu et al., 2025)† 6.2M 0.651 ± 0.049 0.671 ± 0.073 - 0.647 ± 0.033 - -

CCFormer (ours) 2.0M 0.641 ± 0.019 0.696 ± 0.056 0.782 ± 0.071 0.661 ± 0.034 0.748 ± 0.056 0.695 ± 0.076
FusedCCFormer (ours) 2.7M 0.667 ± 0.023 0.729 ± 0.066 0.795 ± 0.068 0.672 ± 0.045 0.771 ± 0.072 0.702 ± 0.063

†Results are directly taken from the original paper Qiu et al. (2025).
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Figure 5: Comparison of cancer staging with SOTA methods on (a) BLCA and (b) COAD-
READ in Macro-F1 (↑). FusedCCFormer outperforms SOTA methods on both cancers.

methods. Results indicate that patient survival risk and cancer stages are highly related to cell spatial
distribution, which aids in the analysis of WSIs and further enhances the accuracy of downstream
tasks. Moreover, by fusing cell spatial distribution representations with appearance representations,
FusedCCFormer significantly outperforms existing SOTA methods.

Survival Prediction. Table 1 reports survival prediction results across multiple cancers. Compared
to MIL-based and graph-based SOTA methods, CCFormer achieves the C-Index with improvements
of 1% to 8% on the BLCA, BRCA, COADREAD, LUAD, PAAD, and STAD. Compared with
end-to-end methods, CCFormer significantly outperforms Pixel-Mamba across most cancer types,
except on BLCA, where it is lower by 0.01. FusedCCFormer further delivers substantial C-index
improvements across all cancer types. Specifically, compared to SOTA baselines, FusedCCFormer
achieves the C-Index with improvements of 2% to 10% on multiple cancers.

Cancer Staging. Figure 5 (a) reports the results of cancer staging on the BLCA. CCFormer out-
performs PointNet, PointNet++, and PTv3 with 14%, 27%, and 34%, respectively. The experiments
also show that representing WSIs by cell spatial distribution alone is insufficient to fully capture the
complexity of BLCA staging. Although patch-based methods achieve substantially higher Macro-F1
than methods based on cell cloud alone, FusedCCFormer achieves higher Micro-F1 and surpasses
the best patch-based method by 5%. This indicates that cell spatial distribution representations en-
code staging-relevant features that are complementary to WSI appearance features.
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Table 2: The number of detected cells for each cancer dataset. HLLR can effectively increase
the number of detected cells, further improving the performance of CCFormer in downstream tasks.

HLLR BLCA BRCA COAD
READ LUAD PAAD STAD

✗ 449M 623M 396M 481M 213M 692M
✓ 475M 663M 424M 510M 226M 736M

Table 3: Ablation Studies of NIE and spatial-semantic aware filtering on BRCA in C-Index (↑).
Left: Neighboring Information Embedding (NIE) significantly improves performance. Mid: Hier-
archical Spatial Perception (HSP) ablation demonstrates benefits of spatial-semantic aware filtering.
Right: CCFormer exhibits excellent performance across a broad range of Nk and Nbasic. An appro-
priate Nbasic further improves the modeling of local cell spatial distributions, enabling CCFormer
to significantly outperform other SOTA methods.

Coordinate Type NIE C-Index (↑)

✗ ✓ ✗ 0.573 ± 0.070
✓ ✓ ✗ 0.665 ± 0.039
✓ ✗ ✓ 0.678 ± 0.021
✓ ✓ ✓ 0.696 ± 0.056

Filter Type λsim C-Index (↑)

None - 0.668 ± 0.043
Semantic 0.5 0.691 ± 0.044
Spatial 0.5 0.655 ± 0.040

Spatial + Semantic 0.9 0.652 ± 0.043
Spatial + Semantic 0.5 0.696 ± 0.056

Nk Nbasic C-Index (↑)

2048 4 0.652 ± 0.052
2048 16 0.696 ± 0.056
2048 32 0.662 ± 0.023
1024 16 0.683 ± 0.045
4096 16 0.663 ± 0.059

Figure 5 (b) reports the results of cancer staging on the COADREAD. CCFormer outperforms Point-
Net, PointNet++, and PTv3 with 28%, 51%, and 51%, respectively. Compared to SOTA MIL-based
methods, including TransMIL, ABMIL, CLAM, DSMIL, and MambaMIL, CCFormer achieves sig-
nificant improvement with 33%, 7%, 15%, 17%, and 31% respectively. In addition, compared to
SOTA graph-based methods, including Patch-GCN and WiKG, CCFormer achieves improvement
with 73% and 15%, respectively. The experiments also show that the global mean pooling can not
provide effective WSI features for cancer staging on the COADREAD, leading to a slight decrease
in Macro-F1 after combining CCFormer with MeanPool.

5.3 ABLATION STUDIES

Human-in-the-Loop Label Refinement. To comprehensively assess the impact of HLLR on the
representation of cell spatial distribution, we evaluate with two metrics: 1) the number of detected
cells, which shows the effect of HLLR on cell cloud construction, and 2) survival prediction per-
formance, which directly evaluates its influence on downstream clinical endpoints. As shown in
Table 2, HLLR substantially increases the number of detected cells. Specifically, across BLCA,
BRCA, COADREAD, LUAD, PAAD, and STAD, after finetuning the cell detection and classifi-
cation model with HLLR, the model yields an approximately 6% increase in detected cells. Since
each cancer dataset contains 200 to 700 million cells, tens of millions of additional cells per cancer
type are detected, markedly strengthening the representation of cell spatial distribution. Moreover,
HLLR improves survival prediction by an average of 1.2% in C-Index across the six cancer datasets.
For FusedCCFormer, the effect is more pronounced, with an average C-index gain of 2.4%.

Neighboring Information Embedding. Table 3 (Left) reports the results of ablation studies on NIE.
NIE improves the C-Index on BRCA from 0.665 to 0.696. The ablation studies further demonstrate
that cell coordinates and cell types are crucial for high-performance representations of cell spatial
distribution. We cluster cells based on Fld and Fgd via K-Means to visualize NIE. As shown in
Figure 6 (a), cells with different neighboring cell spatial distributions are distinguished. Specifically,
cancer cell clusters, immune cell clusters, mixed cell regions, and other cell clusters are identified.

Hierarchical Spatial Perception. Table 3 (Mid) evaluates the semantic–spatial-aware filter. By
forming more coherent local groups than the baseline, it increases the BRCA C-index from 0.668
to 0.696. In addition, the filter with a large threshold removes lots of important cells, resulting in a
decrease in C-Index. Table 3 (Right) analyzes the influence of Nk and Nbasic. CCFormer maintains
robust performance across various settings of Nk and Nbasic, except in extreme values (Nbasic = 4).
An appropriate Nbasic further improves the modeling of local cell spatial distributions. Notably, all
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Figure 6: Visualization. (a) Visualization of clustering based on NIE. Cancer cell clusters, im-
mune cell clusters, mixed cell clusters, and other cell clusters are identified. (b) Visualization of the
semantic-spatial aware filter. The filter drives the model to attend to important subregions within
each candidate region, thereby enhancing local representations of cell spatial distribution. (c) Visu-
alization of similarity. CCFormer effectively learns the semantics of different regions.

experiments in the main results employ the default Nbasic, verifying the strong parameter robustness
of CCFormer.

Figure 6 (b) shows the visualization of the semantic-spatial aware filter. Automatically generated
candidate regions can inadvertently merge spatially discontinuous or semantically heterogeneous
subregions into a single group, obscuring representation of local cell spatial distribution. The
semantic-spatial aware filter identifies the subset most similar to the group anchor within each can-
didate region, thereby improving the performance of CCFormer.

Visualization of Similarity. To illustrate how CCFormer understands relationships across different
regions, we visualize the similarity among groups at the last level. Specifically, we select a group
and visualize the similarity between this group and others. In addition, the attention scores are
mapped back to the input cell cloud. As shown in Figure 6 (c), CCFormer comprehends the semantic
relationships among regions. Local tissue regions with similar structures exhibit high similarity.

6 CONCLUSION

In this paper, we claim the importance of modeling cell distribution in solving pathology down-
stream tasks. Specifically, we argue that the collection of cells within a WSI can be regarded as a
cell cloud and propose a new scheme consisting of cell detection and cell cloud modeling. First, we
propose the Human-in-the-Loop Label Refinement (HLLR) to finetune the pretrained cell detection
and classification model. Then, a novel hierarchical cell cloud Transformer (CCFormer) is proposed
to model the spatial distribution of cells. Specifically, we propose a novel Neighboring Information
Embedding (NIE) to embed the neighborhood cell distribution at the cell level and a novel Hier-
archical Spatial Perception (HSP) to progressively perceive and aggregate cell spatial distribution
information. The clinical analysis validates that cell clouds can be used to construct effective clini-
cal indicators. In addition, extensive experiments verify that cell cloud is an effective representation
of slide and CCFormer outperforms other SOTA methods. This work provides a new insight for
WSI analysis from the cell cloud perspective, marking a significant milestone in the advancement of
computational pathology.
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A THE USE OF LARGE LANGUAGE MODELS

All core technical contributions in this work are conceived and developed exclusively by the au-
thors without assistance from large language models (LLMs). LLMs are used solely for manuscript
polishing. All LLM-polished technical descriptions and result analyses are rigorously reviewed and
verified by the authors.

B IMPLEMENTATION

B.1 CELL DETECTION AND CLASSIFICATION

Finetuning with Human-in-the-Loop Label Refinement. More than 36k credible patches (3 mil-
lion cells) are selected to build the fine-tuning dataset. In addition, 743 samples (141,649 cells) are
labeled by experts to further enhance the performance of domain-adaptation finetuning.

Preprocessing of WSIs. We pre-process and detect cells with the same workflow for each WSI:

• Region of Interest. We employ CLAM (Lu et al., 2021) to extract Regions of Interest
(ROI) in WSIs to reduce the number of pixels that need to be processed for cell detection
and classification. WSIs are fixed at 40x magnification to ensure that each cell has sufficient
detail. Due to the limitations of memory, the ROI of each WSI is divided into patches of
512×512 pixels for further processing.

• Cell Detection and Classification. The data distribution of PanNuke (Gamper et al., 2020)
partially overlaps with that of TCGA. More importantly, PanNuke covers 19 different or-
gans, enabling the training of a cell detection and classification model that generalizes well
across a wide range of tissue types, which is essential for supporting downstream tasks
on multiple cancers. Therefore, we pre-train DPA-P2PNet (Shui et al., 2024) on PanNuke
to obtain a more accurate and broadly applicable cell detection and classification model.
In this work, we focus on analyzing the spatial relationship among neoplastic cells, in-
flammatory cells, and other cells. Therefore, we integrate the cell types of PanNuke in the
pre-training. Specifically, cells with the type of connective, dead, and epithelial in PanNuke
are labeled as others.

• Merging Patches. We further merge the prediction on patches and generate results for each
WSI. Since the same cell might be split into multiple patches and predicted repeatedly by
the model, we merge cells that are close to the patch boundaries. Specifically, the image
resolution of WSI at 40x magnification is about 0.25 µm per pixel and the cell diameter is
approximately 10 µm. Therefore, we select cells that are less than 24 pixels away from the
patch boundaries and merge cells of the same type that are less than 12 pixels apart.

B.2 CLINICAL ANALYSIS

Table 4: Clinical analysis in log-rank p-values
(↓). Across a wide range of α, clinical indica-
tors derived from cell statistics robustly stratify
patients into low- and high-risk groups.

α COADREAD PAAD

[0, 0, 1]T 1.42e-02 1.38e-02
[0, 1, 0]T 4.59e-02 9.91e-03
[1, 0, 0]T 3.65e-03 1.43e-03

[0.50, 0.25, 0.25]T 1.54e-03 3.87e-03

We introduce a hyper-parameter vector α to
control the weight of each component in the
Cell Proportion Score (CPS). Additionally,
each component of CPS is subjected to min-
max normalization. Table 4 reports log-rank
test p-values for COADREAD and PAAD with
different settings of α. The results show that
each metric, considered individually, success-
fully stratifies patients into low- and high-risk
groups. Furthermore, for COADREAD, com-
bining components (α = [0.50, 0.25, 0.25]T )
further reduces the log-rank p-values, indicat-
ing stronger discrimination of patients’ survival
risk.
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B.3 CCFORMER

The scale factor λr = 4 and the discrete number Nd = 3 in NIE. For HSP, we set the number of
perception levels L = 3, the initial number of group anchors Nk = 2048, and the basic number of
points within each group Nbasic = 16. In each level, the input features are updated twice based on
Equation 5 of the main text, and the input dimension is expanded to twice its original size in the
group-wise aggregation. The semantic-spatial aware filter threshold λsim is set to 0.5 by default.
Due to cancer-specific heterogeneity in cell spatial distributions, we slightly adjust λsim per cancer
type around this default.

B.4 TRAINING

We follow the splitting method of SurvPath (Jaume et al., 2024) that WSIs are split into 5 folds ac-
cording to the sample sit. Negative log-likelihood survival loss and cross-entropy loss are employed
for training models on survival prediction and cancer staging, respectively.

Baselines (Ilse et al., 2018; Shao et al., 2021; Chen et al., 2021; Li et al., 2024; Qi et al., 2017a;b;
Wu et al., 2024; Yang et al., 2024; Lu et al., 2021; Li et al., 2021) are implemented with their
released codes. MIL-based methods are optimized using RAdam (Liu et al., 2019), a batch size of
1, a learning rate of 2 × 10−4, 1 × 10−3 weight decay, and epochs of 20. Patch-GCN (Chen et al.,
2021) and WiKG (Li et al., 2024) are optimized using their default hyper-parameters. Point cloud
methods are optimized using Adam (Kingma, 2014), a batch size of 8, a learning rate of 1 × 10−3,
cosine annealing learning rate decay to 1× 10−4, and epochs of 150. For CCFormer, we adjust the
learning rate, the semantic-spatial aware filter threshold λsim, and the dropout ratio for each cancer
based on the same training parameters as the point cloud methods. Due to the significant difference
in convergence speed between cell cloud methods and MIL-based methods, the combination of
CCFormer and MeanPool (Patch) fails to model the cell spatial distribution if model parameters are
randomly initialized. Therefore, the combination model loads the pre-trained CCFormer and freezes
it during training. Only the two fully connected layers added for MeanPool (Patch) are optimized
using Adam, a learning rate of 5 × 10−4, cosine annealing learning rate decay to 1 × 10−4, and
epochs of 10.

Experiments are conducted on a single NVIDIA H20. The average cell identification time for a
single WSI is 2.1 minutes. Following the preprocessing method of large-scale point clouds, we
perform grid sampling on cell clouds. Further sampling is performed for mini-batch training. The
average floating-point operations are 21.3 GFlops for each WSI during training.

C ADDITIONAL DISCUSSION AND EXPERIMENTS

Additional Discussion of Cell-Level Methods. Notably, prior studies have tried to represent and
analyze whole-slide images (WSIs) from a cell-level perspective, such as Co-Pilot (Nakhli et al.,
2023b) and Ceograph (Wang et al., 2023). These methods typically use graphs to model cell rela-
tionships. However, due to the substantial computational overhead, these graph-based approaches
are limited to patch-level analysis. For example, Ceograph samples 1024x1024 patches from ROIs
and builds a graph for each patch. In contrast, CCFormer directly analyzes the entire WSI as a uni-
fied cell cloud, enabling holistic representation learning and fully capturing cell-level relationships
without patch-based constraints.

Comparison with Hierarchical Patch-Based Methods. In this work, we propose HSP to model
cell spatial distribution in a bottom-up manner. The hierarchical structure has also been explored in
patch-based methods. We compare CCFormer with HIPT (Chen et al., 2022) on the BRCA survival
prediction. HIPT and CCFormer achieve C-Index of 0.614± 0.045 and 0.696± 0.056, respectively,
indicating that hierarchical learning of cell spatial distributions retains a performance advantage.

Limitations. This work is designed to be applied to as many types of cancer as possible. Therefore,
we categorize cells into three basic types: neoplastic, inflammatory, and other. Experiments on
survival prediction and cancer staging validate the rationality of this design.

This design also limits the performance of methods based on cell cloud in some cancers, which
require fine-grained cell classification. Detailed results of cancer staging are shown in Table 5. For
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Table 5: Comparison of cancer staging with SOTA methods on BLCA and COADREAD in ACC
(↑), AUC (↑), and Macro-F1 (↑). The combination of CCFormer and the global mean pooling
outperforms baselines on both cancers.

Method
BLCA COADREAD

ACC AUC Macro-F1 ACC AUC Macro-F1

Pa
tc

h
fe

at
ur

e
M

IL

MeanPool (Patch) 0.482 ± 0.057 0.701 ± 0.040 0.514 ± 0.053 0.390 ± 0.044 0.561 ± 0.090 0.305 ± 0.067

MaxPool (Patch) 0.380 ± 0.072 0.662 ± 0.042 0.388 ± 0.080 0.351 ± 0.043 0.539 ± 0.084 0.262 ± 0.059

TransMIL (Shao et al., 2021) 0.491 ± 0.078 0.709 ± 0.059 0.540 ± 0.052 0.376 ± 0.063 0.564 ± 0.041 0.298 ± 0.051

ABMIL (Ilse et al., 2018) 0.515 ± 0.084 0.722 ± 0.070 0.536 ± 0.105 0.420 ± 0.063 0.583 ± 0.042 0.369 ± 0.052

CLAM (Lu et al., 2021) 0.512 ± 0.078 0.689 ± 0.048 0.510 ± 0.077 0.391 ± 0.055 0.579 ± 0.072 0.345 ± 0.059

DSMIL (Li et al., 2021) 0.550 ± 0.079 0.688 ± 0.066 0.536 ± 0.080 0.386 ± 0.025 0.560 ± 0.045 0.338 ± 0.029

MambaMIL (Yang et al., 2024) 0.534 ± 0.060 0.683 ± 0.051 0.519 ± 0.067 0.345 ± 0.049 0.556 ± 0.042 0.302 ± 0.043

G
ra

ph Patch-GCN (Chen et al., 2021) 0.493 ± 0.053 0.644 ± 0.067 0.466 ± 0.064 0.319 ± 0.055 0.502 ± 0.073 0.229 ± 0.050

WiKG (Li et al., 2024) 0.523 ± 0.028 0.674 ± 0.033 0.518 ± 0.027 0.392 ± 0.047 0.563 ± 0.065 0.345 ± 0.069

Po
in

tC
lo

ud

MeanPool (Cell) 0.420 ± 0.038 0.582 ± 0.046 0.389 ± 0.029 0.378 ± 0.084 0.475 ± 0.040 0.216 ± 0.039

MaxPool (Cell) 0.366 ± 0.025 0.521 ± 0.012 0.246 ± 0.059 0.404 ± 0.092 0.547 ± 0.072 0.229 ± 0.055

PointNet (Qi et al., 2017a) 0.436 ± 0.027 0.560 ± 0.023 0.434 ± 0.032 0.430 ± 0.081 0.561 ± 0.055 0.310 ± 0.059

PointNet++ (Qi et al., 2017b) 0.436 ± 0.048 0.555 ± 0.067 0.388 ± 0.042 0.397 ± 0.060 0.540 ± 0.057 0.293 ± 0.061

PTv3 (Wu et al., 2024) 0.420 ± 0.075 0.606 ± 0.085 0.369 ± 0.090 0.443 ± 0.062 0.514 ± 0.056 0.262 ± 0.055

CCFormer (ours) 0.501 ± 0.057 0.635 ± 0.064 0.494 ± 0.055 0.429 ± 0.031 0.593 ± 0.057 0.396 ± 0.065

FusedCCFormer (ours) 0.569 ± 0.072 0.702 ± 0.069 0.568 ± 0.072 0.420 ± 0.063 0.595 ± 0.061 0.371 ± 0.097

Table 6: Cancer abbreviation and full name cross-reference table.

Abbreviation Full Name Abbreviation Full Name

BLCA Bladder Urothelial Carcinoma PAAD Pancreatic Adenocarcinoma
BRCA Breast Invasive Carcinoma READ Rectum Adenocarcinoma
COAD Colon Adenocarcinoma STAD Stomach Adenocarcinoma
LUAD Lung Adenocarcinoma

KIRC, the nuclear grade is significantly associated with patient survival risk (Frank et al., 2002; Sor-
bellini et al., 2005). For Lower Grade Gliomas (LGG), mitotic figures, nuclear atypia, necrosis, and
microvascular proliferation are important factors in diagnosing the survival risk of patients. (Dure-
gon et al., 2016) For BLCA, depth of invasion is a critical indicator in cancer staging (Dyrskjøt
et al., 2023). The stage of BLCA can be effectively judged by further categorizing neoplastic cells
based on whether there is muscle invasion. Therefore, further subclassification of cells represents
an effective strategy to enhance the performance of methods based on cell cloud.

D SYMBOL EXPLANATION

Table 6 summarizes the cross-reference of cancer abbreviations and full names.

E COMPARISON OF COMPUTATIONAL EFFICIENCY

Preprocessing. The comparison between UNI and DPA-P2PNet is summarized in the Table 7. For
UNI, patches are resized to 224, which is the default input size. For DPA-P2PNet, the default input
size is 512, as detailed in Appendix B. The WSI-level results are averaged over WSIs.

Compared with DPA-P2PNet, UNI has 5.5 times more parameters, which substantially increases the
computational cost of MIL-based methods in the preprocessing stage. Although the default input
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Table 7: Comparison of preprocessing computational efficiency in throughput (↑), FLOPs (↓),
and runtime (↓). MIL-based methods rely on foundation models such as UNI to extract patch
features, while CCFormer depends on cell detection and classification models like DPA-P2PNet
to infer WSIs and construct cell clouds. Since DPA-P2PNet is more lightweight than FMs, the
preprocessing stage of CCFormer has comparable or even lower total floating-point operations and
faster processing speed compared with MIL-based methods.

Method Parameters Patch Size Throughput
(patches/s)

FLOPs
(per patch)

Runtime
(per WSI, s)

FLOPs
(per WSI)

UNI (Chen et al., 2024) 303M 224 278 60 GFLOPs 41 672 TFLOPs
UNI V2 (Chen et al., 2024) 681M 224 114 180 GFLOPs 99 2.0 PFLOPs

DPA-P2PNet (Shui et al., 2024) 55M 512 160 87 GFLOPs 70 981 TFLOPs
DPA-P2PNet (Shui et al., 2024) 55M 256 612 22 GFLOPs 18 245 TFLOPs

Table 8: Comparison of computational efficiency of WSI-level tasks in runtime (↓) and FLOPs
(↓).

Method Memory (GB) Runtime (per WSI, s) FLOPs (per WSI)

ABMIL (Ilse et al., 2018) 2.4 0.0012 9 GFLOPs
TransMIL (Shao et al., 2021) 9.3 0.0116 63 GFLOPs

PointNet (Qi et al., 2017a) 2.7 0.0201 17 GFLOPs
CCFormer (ours) 67 0.2050 117 GFLOPs

patch size of DPA-P2PNet is 2.3 times that of UNI, the inference cost per patch remains comparable
between UNI and DPA-P2PNet.

In addition, the input size for cell detection and classification can be reduced from 512 at 40× magni-
fication to 256 at 20× magnification to further improve computational efficiency. Our computational
analysis shows that, under this setting, the average WSI inference time based on DPA-P2PNet is
only 0.44× that of UNI. To assess the impact of this change on cell detection performance at 40×
and 20×, we conduct an analysis of cell detection performance on the Lizard dataset. Specifically,
DPA-P2PNet achieves F1 scores of 88.08 and 87.90 at 40× and 20× magnification, respectively.
This shows that performing cell inference at a lower magnification can substantially accelerate cell
cloud inference without compromising accuracy. In contrast, more advanced foundation models fur-
ther increase the number of parameters, imposing a substantial computational burden on MIL-based
methods. For example, UNI V2 contains 681M parameters. The inference cost of UNI V2 for a
single WSI increases to 2.0 PFLOPs.

WSI-level tasks. We compare the inference computational cost of MIL-based methods and cell
cloud-based methods on WSI-level tasks in Table 8. The runtime is measured as the average forward-
pass time with a batch size of 1. Both runtime and FLOPs exclude preprocessing and data loading.

PointNet exhibits memory usage comparable to MIL-based methods. The FLOPs per WSI of Point-
Net are also significantly lower than those of TransMIL. Moreover, PointNet achieves substantially
better performance than both ABMIL and TransMIL as shown in Table 1. These results indicate that
representing WSIs as cell clouds is an effective approach that does not incur higher computational
costs than MIL-based methods.

Although CCFormer requires more GPU memory, longer runtime, and higher FLOPs than MIL-
based methods that only perform feature aggregation, it can still infer WSIs within one second on a
single GPU with at least 80 GB of memory. Moreover, CCFormer offers several advantages: 1) it
explicitly models the cell spatial distribution of WSIs rather than merely aggregating patch features,
and 2) it achieves significantly better survival prediction performance across multiple cancer types
compared to MIL-based methods.
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