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Abstract

Transformer and its variants are fundamental neural architectures in deep learn-
ing. Recent works show that learning attention in the Fourier space can improve
the long sequence learning capability of Transformers. We argue that wavelet
transform shall be a better choice because it captures both position and frequency
information with linear time complexity. Therefore, in this paper, we systemati-
cally study the synergy between wavelet transform and Transformers. We propose
Wavelet Space Attention (WavSpA) that facilitates attention learning in a learnable
wavelet coefficient space which replaces the attention in Transformers by (1) apply-
ing forward wavelet transform to project the input sequences to multi-resolution
bases, (2) conducting attention learning in the wavelet coefficient space, and (3)
reconstructing the representation in input space via backward wavelet transform.
Extensive experiments on the Long Range Arena demonstrate that learning atten-
tion in the wavelet space using either fixed or adaptive wavelets can consistently
improve Transformer’s performance and also significantly outperform learning in
Fourier space. We further show our method can enhance Transformer’s reasoning
extrapolation capability over distance on the LEGO chain-of-reasoning task.

1 Introduction

Transformer [39] has become one of the most influential neural architectures in deep learning. Large
language models such as ChatGPT [26] have reshaped people’s imagination of what an AI model
can do in making conversation with humans, solving nontrivial math problems, writing code, and
even co-authoring a paper [16]. In image processing, vision transformers have become the backbone
for a wide array of applications [9, 29]. Similarly, on source code understanding, Codex [3] can
finish people’s code given the helper text of the function or just the function name. All of those
accomplishments are built upon the foundational Transformer.

Nevertheless, the effective handling of long sequences remains a challenge for Transformers due
to the intricate relationships that can exist within such sequences. To address this limitation, recent
research has focused on enhancing the Transformers’ long-range capabilities through attention
learning in transformed sequence spaces. One approach involves low-cost token-mixing, which
utilizes forward Fourier transformation to achieve notable accuracy improvements while maintaining
quasi-linear time complexity [18]. However, without incorporating a backward transformation, the
model might inadvertently mix information from both the input and transformed spaces. To overcome
this limitation, researchers have leveraged the forward and backward Fourier transformations to
learn large filters with linear weights [31] and non-linearities [11] for vision tasks, exploiting the
equivalence between multiplication in the Fourier space and direct convolution in the input space.

In light of these developments, it is evident that attention learning in transformed sequence spaces
holds significant promise for enhancing the effectiveness of Transformers’ handling of long-range
dependencies. We propose Wavelet Space Attention (WavSpA) that facilitates attention learning in
a learnable wavelet coefficient space, as shown in Figure 1(a). Specifically, we first apply forward
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Figure 1: An overview of our proposed WavSpA. (a) The only difference between a Transformer
block and a WavSpA block is the attention computation. (b) The general flow of computation in
WavSpA with learnable forward and backward wavelet transform.

wavelet transform to project the input sequence to multi-resolution bases, then conduct attention
(e.g., full attention [39], random feature kernel [30]) in the wavelet coefficient space, and finally,
reconstruct the representation in input space via backward wavelet transform. We implement the
transform using Fast Wavelet Transform (FWT) [22] so both transform steps are linear in time,
leading to a small overhead.

Performing attention on a sequence in a wavelet-transformed space can offer several advantages.
Firstly, it can enhance the representation of the input sequence by capturing relevant features and
patterns. By applying the transformation, the sequence is mapped to a new space where certain char-
acteristics might be easier to capture. Attention mechanisms can then be applied in this transformed
space to effectively weigh these transformed features, leading to improved representation learning.
Secondly, it can enable the attention mechanism to capture different types of relationships between
the elements of the sequence, such as associative relationships. By operating in the transformed
space, attention can effectively capture the underlying structure of the data and reason over it, leading
to improved performance on long sequences. Finally, it is orthogonal to existing work that attempts
to replace attention, hence can be combined with any Transformer design.

Besides applying fixed wavelets, we further propose three ways to construct learnable wavelets: direct
wavelet parameterization, orthogonal wavelet parameterization, and wavelet lifting. We give detailed
explanations of the three schemes and discuss their individual advantages and drawbacks.

We conduct extensive experiments on the Long Range Arena (LRA) benchmark to validate and
justify our proposed WavSpA. By combining fixed wavelet space with various representative attention
methods, we observed significant performance improvements without introducing additional time
complexities. Furthermore, we analyze the performance of WavSpA’s three parameterization schemes
when coupled with the attention methods, demonstrating even stronger performance boosts. Addi-
tionally, our investigation demonstrated that equipping the Transformer with our proposed WavSpA
resulted in enhanced reasoning extrapolation capacity, as evidenced by improved performance on
the LEGO dataset [47]. These findings highlight the superior long-range understanding capabilities
achieved by learning in the wavelet coefficient space compared to the input space or Fourier space.

In summary, our major contributions are as follows.

• We propose WavSpA to facilitate learning in the wavelet space following a forward-backward
paradigm which can be paired with various attention methods and boost their long-range under-
standing capabilities.

• We further propose three adaptive wavelet parameterization schemes (AdaWavSpA, OrthoWavSpA,
LiftWavSpA) to maximize the flexibility of wavelet transformation.

• Extensive experiments on the Long-Range Arena benchmark have demonstrated the effectiveness
and also justified the design of WavSpA.

• We show WavSpA enhances the reasoning extrapolation capacity to longer sequence lengths.

Reproducibility. Our code is available at https://github.com/EvanZhuang/wavspa.

2 Learning Attention in a Transformed Space

Inspired by recent work, we begin our study with sequence space transformation with Fourier
transforms. FNet [18] replaced the attention with solely forward Fourier transform, it performs well
empirically but mixing Fourier coefficients with the input of the original data space is not an intuitive
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Table 1: Transformed Spaces vs. Original Space (N/A) on the Long Range Arena Text task. We color
the number green if it surpasses the baseline (i.e., N/A), red vice versa.

Transformation Transformer Linformer Linear Att. Longformer Performer

Original Space (N/A) 64.27 53.94 65.90 62.85 65.40

Fourier - Forward Only [18] 54.65 51.27 65.25 53.51 53.39
Fourier [31, 11] 56.42 57.06 71.66 55.36 65.52
Fixed Daubechies-2 Wavelet 74.82 55.22 71.93 74.99 75.60
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Figure 2: We show a chirp signal from 1Hz to 4Hz, its continuous Fourier transform, and its
continuous wavelet transform. From the Fourier transform graph one can only infer the existence of
signal in the range of 1-4Hz without time information, while in the wavelet transform graph, both
time and frequency information are present and one can tell this is a chirp signal.

approach. Typical space transforms consist of a forward step and a backward step [31, 11]. Hence,
we are interested in comparing sequence learning in a forward-only or in a forward-backward mode.

We conduct pilot studies on the Text task of Long Range Arena [35], combining various attention
mechanisms with Forward Only Fourier transform or Forward Backward Fourier transform. The
results are summarized in Table 1, and experiment details can be found in Section 4. Notably, we
observed that learning with the Forward Backward mode consistently outperformed the Forward Only
mode. While the Fourier transform occasionally outperformed the original space, its improvement
was not consistently observed across all attention mechanisms.

This phenomenon is understandable since Fourier transform maps signals into the frequency domain,
resulting in the loss of time information. In the deep learning context, losing time information is
analogous to losing positional information. And positional information is vital in many tasks, as it
pins down associative relationships amid elements of the sequence. Hence, preserving and leveraging
time information becomes vital for effectively capturing the dependencies within the sequence.

Based on such observation, we propose WavSpA that facilitates attention learning in a wavelet
coefficient space, detailed methodology explained in Section 3. Wavelet transform is a sequence
projection method where both frequency and time information are captured. As an illustration, we
show an example of wavelet transform to demonstrate its ability in time-frequency localization
compared to the Fourier transform (see Figure 2). Furthermore, the wavelet transform is multi-level
where the decomposition levels correspond to low-to-high frequencies. In the deep learning context,
low-frequency signal represents global features and high-frequency signal represents local features,
which has been shown useful in prior attention methods [1, 46].

This multi-level decomposition capability corresponds to the multi-level nature of long inputs such
as human text. As associative relationships in text occur at various levels, starting from individual
words within a sentence. For instance, in the sentence“The cat chased the mouse” the words “cat”
and “mouse” are associated in terms of their roles in the action.

Associative relationships also extend beyond sentence boundaries. Texts are organized in hierarchical
structures, such as paragraphs, sections, and documents, where higher-level associations emerge.
Within a paragraph, sentences are associated, contributing to a coherent idea. In longer texts like news
articles, sections and chapters form hierarchical connections, uniting them under common topics.

This hierarchical structure is not unique to text but also exists in other sequential inputs, including
source code, formulas, and more. Recognizing and understanding this multi-level hierarchy is crucial
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as it enables models to capture rich relationships within the sequence, facilitating more advanced
extrapolation reasoning capabilities.

To validate our intuition, we perform experiments on the LRA benchmark (Fixed Daubechies-2
Wavelet row of Table 1), the results indicate wavelet transform can deliver consistent performance
boosts across a wide range of attention mechanisms. Furthermore, we present a comprehensive
comparison of attention learning in Fourier space and Fixed wavelet spaces in Appendix Table 3.

3 WavSpA: Learning Attention in Parametrized Wavelet Space

In this section, we introduce the details of WavSpA. As shown in Figure 1(a), the only difference
between a Transformer block and a WavSpA block is the attention computation. The general flow of
WavSpA is shown in Figure 1(b), which constitutes the forward wavelet transform, the attention in
the middle, and the backward wavelet transform.

We list our notations here — we denote scalars as x, vectors as x, matrices as X; we denote function
f ’s transformation in the coefficient space as f̂ .

3.1 WavSpA Paradigm

We propose the WavSpA paradigm to conduct attention learning in the wavelet coefficient space
between forward and backward transformation. The forward transformation decomposes the input
sequence into coefficients of a set of wavelet basis. We then conduct attention in the coefficient space.
In the backward transformation, we reconstruct the target representation in the original function space.
For fixed wavelet families, we require the forward-backward transformation pair to be invertible
and exact, meaning that one can perfectly reconstruct the same input from the derived coefficients.
However, this constraint is not always attached to adaptive wavelets.

The general framework is shown below. In practice, we deal with vectors with dimensions of the
attention head dimension. Here, we limit ourselves to 1d functions for a clear illustration. Given input
and output function x(t), y(t) : R −→ R on time domain t, wavelet basis ψ(ω, t) on both frequency
and time domain ω, t (e.g, the basis for a Daubechies-2 wavelet), and attention module Attention,

(forward) x̂(ω) =
∑
i

x(ti)ψ
∗(ω, ti) (1)

(attention) ĥ(ω) = Attention ◦ x̂(ω) (2)

(backward) y(t) =
∑
j

ĥ(ωj)ψ(ωj , t) (3)

where ψ∗(ω, t) denotes the complex conjugate of ψ.

Learning carried out in this space will correspond to gathering and processing information in a
coarse to fine-grained fashion. Furthermore, wavelet transform enjoys O(n) time complexity [22], an
already desirable property compared to Fourier transform’s O(n log n) complexity.

3.2 Direct Wavelet Parameterization - AdaWavSpA

One key benefit of wavelet transformation is its flexibility in choosing the wavelets for its application,
for example, Daubechies wavelets [8] are optimized to have the most compact support; symlets [7]
are designed to have better symmetric properties. Therefore it is natural to consider parameterization
of the wavelet coefficients and make wavelet transformation part of the learning process.

The direct parameterization scheme is the most intuitive approach. We make the wavelet coefficients
learnable parameters, and update them during training. The key problem here is maintaining the
structure between the scaling coefficients and the wavelet coefficients, i.e. the quadrature mirror filter
(QMF) relationship [7]. We consider parameterizing the scaling coefficients (ϕ(n) ∈ Rn, n denotes
wavelet length) and expanding the system according to the QMF relationship to obtain the full set of
wavelet coefficients (ψ(n) ∈ Rn), shown in equation 4.

ψ
(n)
j = (−1)jϕ

(n)
−j , j ∈ Z (4)
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Further strengthening the learning power of adaptive parameterizations, we use different sets (i.e.,
d sets) of learnable wavelets for individual hidden dimensions of the input X ∈ Rn,d. At the same
time, we do not wish the output to have volatile changes when permuting the hidden dimensions. In
other words, we want permutation invariance for the hidden dimensions. For that reason we only
use 1d wavelet transform over the input’s hidden dimension d for parameterized transformations,
including this scheme and the following two parameterization schemes,

The direct parameterization scheme satisfies the QMF relationship automatically, but we have no
guarantee that the trained wavelet will form an orthogonal wavelet basis. We enjoy more freedom at
the cost of using a potentially imperfect projection and reconstruction pair.

3.3 Orthogonal Wavelet Parameterization - OrthoWavSpA

We provide another way to systematically construct parameterized orthogonal wavelets to keep the
perfect reconstruction property intact. There exist extensive studies on this topic [38, 19, 32, 25],
but many are based on constrained optimization, which is not ideal for our purpose. We present an
unconstrained construction that originates from lattice filters, we refer readers to [25] for details of
this design. In general, the orthogonal wavelets are constructed iteratively, each time we extend the
wavelet by multiplying the current wavelet by an upshifted rotation matrix. The resulting wavelet
basis will always be orthogonal, the formula is shown below:

ψ(n) = R(θ1) ·U · . . . ·U · R(θn) (5)

where R is the rotation matrix and U is an upshift matrix.

As an example, we show how to construct a parameterized wavelet ψ(4) of length 4 from a parameter-
ized wavelet of length 2 (ψ(2) = [sin θ1, cos θ1]):

ψ
(4)
4

ψ
(4)
3

ψ
(4)
2

ψ
(4)
1

 =

 cos θ2 0
− sin θ2 0

0 sin θ2
0 cos θ2

[
sin θ1
cos θ1

]
(6)

θ1, θ2 represent the two rotation angles that we can set as learnable parameters.

This parameterization scheme offers naturally orthogonal wavelets without the need to customize
the loss functions or derive a new optimization process. But on the other hand, this scheme requires
more computation than the direct parameterization scheme and the compute cost grows with respect
to the wavelet length.

3.4 Wavelet Lifting - LiftWavSpA

The wavelet lifting scheme [34] is developed to become the second-generation wavelet transformation,
due to its simplicity and extended flexibility. It is not characterized by transformation via functional
convolution, rather it builds its forward and backward transformation from these three steps: 1.
segmentation: splitting the input into two parts, one widely used segmentation is separating the even
and odd parts of the input; 2. update: we mix the information from the subsampled segment into the
wavelet segment 3. lifting: normalizing the subsampled segment and blend the information again.

The simplest design is the so-called Lazy wavelet [34, 33], the forward transformation is shown below
for the first level where (λ1,:, γ1,:) represent the subsampled coefficients and wavelet coefficients:

(segmentation) λ1,k = x2k, ∀k ∈ Z (7)

(update) γ1,k = x2k+1 −
1

2
(λ1,k + λ1,k+1), ∀k ∈ Z (8)

(lifting) λ1,k = λ1,k +
1

4
(γ1,k−1, γ1,k), ∀k ∈ Z (9)

It is assumed that each point in the input is related to its neighbors, hence in equation 8 we mix the
information from the even segment to the odd segment. Then to make sure each decomposition level
has the same mean and energy, we lift the subsampled coefficients with the wavelet coefficients,
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mixing the odd segment into the even segment in equation 9. In the Lazy wavelet lifting scheme, the
wavelets are inexplicitly parameterized by non-linearities they are later applied to.

A second-level decomposition (λ2,:, γ2,:) will further decompose the λ1,: into finer-grained sequences.
And the backward transformation is straightforward: simply reversing the positive and negative signs
in the forward steps accordingly will recover the segments.

Wavelet lifting is a simple and straightforward alternative wavelet transformation scheme. The update
and lifting step could be subject to arbitrary designs, which entitled this scheme with the most
flexibility. However, what comes with this flexibility is the huge search space for finding the optimal
lifting, hence we only use the basic Lazy wavelet in our study and leave the rest for future research.

4 Experiments

Our study begins by conducting experiments on the publicly available benchmark Long Range
Arena [35]. Our aim is to compare the effectiveness of learning attention in different input spaces:
the regular input space, Fourier space with 2D Fourier transformation, and wavelet space with fixed
2D Daubechies-2 wavelet transformation. The results of these experiments demonstrate noteworthy
improvements in performance, shown in Table 1.

Furthermore, we proceed to examine the performance of WavSpA’s three parameterization schemes
when combined with attention methods. The outcomes reveal even more substantial performance
gains, as illustrated in Table 2. Based on these findings, we propose a hypothesis that attributes these
performance boosts to enhanced reasoning capabilities over distance. To validate our hypothesis, we
test it on the LEGO [47] dataset, which is a chain-of-reasoning task.

In addition to our primary investigations, we perform runtime analysis to measure the add-on cost
imposed by WavSpA, the result shows that the overhead is small (Appendix A.6). We compare the
performance of our adaptive WavSpA when coupled with attention (Transformer-AdaWavSpA) with
other efficient transformers on the LRA benchmark in (Appendix Table 7). We provide a proof to
show WavSpA maintains Transformer’s universal approximation power (Appendix A.3). We also
conduct ablation studies to verify the significance of backward reconstruction and the importance of
wavelet initialization in the training process (Appendix A.5 ). In the end, we embark on an exploratory
case study to investigate the characteristics of the learned wavelets (Appendix A.7).

4.1 Experimental Design

Long Range Arena (LRA) LRA [35] is designed to compare efficient transformers for their long-
range reasoning ability. Since its release which already contains ten different efficient transformers,
more and more efficient transformers have chosen it as the primary evaluation target. The datasets
require understanding long sequences of mathematical operations, classifying text based on sentiment,
matching similar documents, classifying images, and recognizing 2D spacial information. The
sequence lengths of the dataset are within the range of 1K-4K.

LEGO LEGO [47] is a reasoning task that encapsulates the problem of following a chain of
reasoning. The task itself requires reasoning over a sequence of variables and operators, and figuring
out the sign of each variable. A sample input sequence will look like this: a = +1; b = −a; e =
+b; d = −f ; c = +d; f = +e;, and the model will be asked to predict the sign (positive/negative) of
each variable. We follow the design of [47], train on the first 14/20 variables, and test on all 20/26
variables for our experiments. We train all models from random initialization.

Wavelet Transformation Details For fixed WavSpA, we use Daubechies-2 wavelet that has length
4 as the default choice and apply 2d wavelet transform with one decomposition level over both the
sequence length and hidden dimension. For adaptive WavSpA, we only transform over the sequence
length axis because we intend to avoid large permutation variance over the hidden dimensions since
we enabled learning distinctive adaptive wavelets over them. In our experiments, for direct wavelet
parameterization we initialize from Daubechies-20 wavelet that has length of 40 or Daubechies-8
wavelet that has length of 16, for orthogonal wavelet parameterization we set the wavelet length as
16, for wavelet lifting we conduct three levels of decomposition. The detailed hyper-parameters are
reported in Appendix A.4.
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Table 2: Evaluation results of our WavSpA paradigm with the three adaptive parameterization
schemes. We denote original space as N/A. Following previous works [20, 43], due to prolonged
training on retrieval task, we also report mean test accuracy without this task, denoted as “(w/o r)”.

Model LRA Mean Test Acc LRA Mean Test Acc (w/o r)

N/A AdaWavSpA OrthWavSpA LiftWavSpA N/A AdaWavSpA OrthWavSpA LiftWavSpA

Transformer 54.39 70.59 65.90 59.85 53.62 68.43 64.50 60.70
Linformer 49.36 50.72 52.01 52.12 48.64 48.12 49.95 47.47
Linear Att. 50.67 64.32 55.86 56.93 50.06 62.55 55.86 57.65
Longformer 53.46 63.66 54.96 57.48 52.60 64.93 54.96 58.54
Performer 51.41 65.47 60.69 56.95 50.81 64.05 61.44 58.00

Experiment Environment. Our early-stage experiments are conducted on RTX 3090 GPUs and
later moved to TPU v2-8s and v3-8s. Our code is written in Jax [2] with the Flax framework [12].
The fixed wavelet transformation implementation is primarily based on Jax Wavelet Toolbox [24]
and PyWavelets [17].

4.2 Attention in Fixed WavSpA

Our WavSpA paradigm has a general philosophy of applying attention in the wavelet space and is not
limited to a certain type of attention method. We comprehensively evaluate representative attention
methods on different space transformations (no transformation, 2d Fourier transformation, and 2d
fixed wavelet transformation with Daubechies-2 wavelet). In Table 1, we show that performing
full attention, or many other attention approximation operations in a wavelet transformed space as
proposed in WavSpA paradigm almost always brings great accuracy improvements. The complete
result is shown in Appendix Table 3. Almost all attention methods have increased accuracy when
trained in the wavelet space compared to an untransformed space or the Fourier space, except for the
Image dataset, where some incur a slight drop in accuracy.

4.3 Attention in Adaptive WavSpA

We demonstrate that the parameterized wavelets can further boost attention methods’ performance.
In Table 2, we show results for the three parameterization schemes mentioned in Section 3 when each
of these schemes is coupled with full attention and several other representative attention methods.
The full result is included in Appendix Table 4.

From the experiment results, we observe that direct parameterization almost always provides the
highest accuracy elevation, followed by orthogonal parameterization and lifting. This is counter-
intuitive: one would think imposing more structures should help the model to learn better wavelets,
and in some cases it does, but our experiments show that learning wavelets with the most freedom
is the best option most of the time. Does this mean wavelets’ nice mathematical properties are not
essential at all, and any parameter initialization would work?

We conduct ablation studies where we initialize the directly parameterized wavelets from Gaussian
distribution N(µ = 0, σ = 0.02), and from damped sinusoidal waves (x[t] = cos(t)

t+1 ). The results are
shown in Appendix Table 11. This showcases the importance of initializing from wavelets even when
we impose no constraints on them.

4.4 LEGO Reasoning Task

We hypothesize that the observed performance gain comes from the enhanced reasoning power over
distance. We test our hypothesis with the LEGO chain-of-reasoning task. Following the original
configuration, the Transformer is a randomly initialized BERT-base model (12-layer, 768-hidden
dimensions) and AdaWavSpA represents the same model when wrapped in our framework. We train
on the first 14/20 variables and evaluate on the last 6 variables. The learning rate (5e-5), training
schedule (200 epochs), and batch size (1024) are all following the original configuration. We perform
three runs for each model, the result is shown in Figure 3. It can be observed that the Transformer’s
extrapolation-over-distance capability is significantly enhanced when coupled with our framework.

7



14 15 16 17 18 19 20
Variable Index

40

50

60

70

80

90

100

Ac
cu

ra
cy

AdaWavSpA
Transformer

20 21 22 23 24 25 26
Variable Index

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

AdaWavSpA
Transformer

Figure 3: Generalization of Transformer-AdaWavSpA and vanilla Transformer. The WavSpA
paradigm improves the reasoning extrapolation to longer sequence lengths. The two figures show the
test set results for LEGO with 20 and 26 variables respectively. We report 90% confidence intervals.

5 Related Work

5.1 Attention Methods

There has been plenty of prior work to enable transformers to handle long input more effectively and
efficiently. Since the inefficiency comes from the quadratic dependency on sequence length because
of the dense attention operation, a large portion of research simulates the attention operation with
certain approximations, for example, replacing the dense attention matrix with a sparse version, or
assume that it satisfies certain low-rank structures. We briefly review some methods on this topic in
this section. For a more detailed survey, we refer the readers to [36].

Sparse Attention. Perhaps the most intuitive solution to alleviate the quadratic cost, Sparse
Attention only calculates a portion of the full n2 attention matrix. Early stage methods include Local
Attention [27] and Multi-passage BERT [41] use sliding windows or chunked blocks to speed up
computation. Longformer [1] and BigBird [46] further combine global attention, sliding window
attention, dilated sliding window attention, and random attention together to form strong sparse
attention mechanisms, and BigBird showed that their method is a universal approximator of sequence
functions. On the other front, Orthogonal Transformer [13] utilizes an iterative approach to construct
an orthogonal vector basis in Euclidean space, then perform windowed attention on grouped tokens
after orthogonal projection.

Low-rank Approximation. The self-attention matrix, at the center of transformer, has been found
to display low-rank behaviors after pre-training. Linformer [40] performed spectrum analysis on the
pre-trained attention matrix, and the results indicate that the top 128 singular values composite 88%-
96% of the entire 512 singular values across attention heads and layers. Based on this observation,
Linformer added low-rank projection matrices in attention to approximate the original attention
matrix. On a similar notion, Drone [4] extended the low-rank approximation scope to all matrices in
transformer via data-driven optimal compression.

Kernel Methods. The kernel methods approximate the whole self-attention by replacing the
softmax with a kernel function that can be decomposed to avoid the explicit calculation of the O(n2)
matrix multiplication. Linear Transformer [15] proposed a non-negative elu feature mapping as the
substitution for the softmax, they further pointed out the connection between their formulation and
RNNs, and argued that transformers and RNNs can be unified under the same umbrella. Building on
top of this, Random Feature Attention [28] and Performer [5] utilized random feature approximation
of the attention, one highlights the importance of normalization before random projection while the
other one emphasizes the benefits of positive & orthogonal random features.

Token Mixing. Token Mixing methods are another version of efficient transformer building blocks.
Different from the methods discussed above, they do not approximate attention, but rather conduct a
new way of enabling communication between tokens. Hard-coded Gaussian attention [44] showed
the possibility that a random token mixing strategy can work well in transformer encoders, as opposed
to delicate (pre-)trained attention heads. Token Mixing is a new view towards attention learning as
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these methods do not perform self-attention at all. FNet [18] pushed this idea further by providing an
efficient method to mix the tokens with Fourier forward transformation.

Among these methods, our WavSpA utilizes wavelet transform, thus, is slightly similar to Token
Mixing. However, our work should be seen as a new approach to boost transformers, which mixes
the idea of a sequence space transform that communicates between tokens and attention methods that
can benefit from the new space.

5.2 State Space Models

Different from all the attention methods, state space models (SSM) such as S4 [10] construct long-term
memories utilizing orthogonal polynomial projection. They update and maintain the hidden states
according to a differential equation, and output the states using linear projection. They have shown
outstanding performance on LRA and other long-range tasks. It is also flexible in choosing the family
of orthogonal polynomials, but for each polynomial family (Laguerre, Legendre) and each measure
(uniform, truncated), significant effort is required to derive the explicit SSM formula. Similarly,
MEGA [21] utilized the exponential moving average mechanism to construct its hidden space for
recording long-range dependencies and has shown promising results. Our WavSpA is orthogonal
towards the SSMs since our target is to boost attention methods’ performance on long-range tasks as
a sequence space transformation paradigm.

5.3 Sequence Space Transformation in ML

In the field of machine learning, sequence space transformations have gained widespread usage. One
particularly common transformation is the Fast Fourier Transform (FFT) [6], which is frequently
employed due to its ability to speed up convolution operations. In the context of our research objective,
previous works such as AFNO [11] and GFNet [31] have explored the learning of global filters for
images by incorporating block-wise MLPs in the Fourier transformation process. This approach can
be seen as akin to utilizing a convolutional layer with large filters. However, it is important to note
that these methods were primarily designed for learning global filters. Through our comprehensive
analysis (Table 3) and ablation study (Table 9), we have demonstrated that such architectures are
inadequate for capturing long-range associative relationships.

Fast wavelet transform[22] has been used for neural network compression [42], speech recogni-
tion [37], and time series analysis [23]. Recently in computer vision, WaveMix [14] proposed to
mix the input images with forward wavelet transform. We note that our work differs from theirs by
learning the attention in the coefficient space amid forward and backward wavelet transform.

6 Conclusions and Future Work

In this paper, we propose to learn attention in the wavelet coefficient space. Specifically, the inputs
are first forward transformed into the wavelet space, then the attention is learned, and finally, we
reconstruct the transformed sequence back in the input space. When coupled with attention methods,
learning in wavelet space can boost their performance on long-range understanding tasks while
enjoying no extra cost in time complexity. We further propose three ways to learn adaptive wavelets
for WavSpA: direct parameterization, orthogonal parameterization, and wavelet lifting. We discuss
their advantages and drawbacks and evaluate them empirically. The experiments show adaptive
wavelets can provide an even stronger lift to attention methods. In the end, we conduct study on a
chain-of-reasoning task, to show the improved long-range learning capability may come from the
enhanced reasoning extrapolation power.

Through this work, we have focused on performing attention in the transformed wavelet space, either
via fixed wavelet transformation or adaptive wavelet transformation. Is there an optimal way to
construct learnable wavelets? And if so what should be the leading criterion for such optimality?
These are both interesting questions we leave for the future.
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A Appendix

A.1 Wavelet Transform

Fourier transform decomposes the entire function into global sinusoidal waves. It tells people what
frequencies are there and in what magnitude, but no information is given about when that frequency
started or ended. See Figure 2 for an illustration on a chirp signal. This limits the capability to
understand the local structures of the input and to conduct learning on top of it, which is crucial to
many machine learning tasks.

Wavelet transform is designed to solve this issue. We give a basic introduction here, we refer interested
readers to [8] for a more thorough explanation. Wavelet transform employs a function ψ(x), x ∈ R,
called mother wavelet, to generate a family of translated and dilated wavelets (see Figure 1(b)):

ψi,j(x) = 2
i
2ψ(2ix− j), i, j ∈ Z (10)
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where scale i controls the resolution of the wavelet and j controls the position of the wavelet. With a
larger i the wavelet will be squeezed shorter in space, hence the normalization factor 2

i
2 to ensure the

same L2 norm for all wavelets. The wavelet family ψi,j(x) is orthogonal on this dyadic grid.

To be a valid mother wavelet ψ(x), the only requirement is admissibility:∫
R
ψ(x) dx = 0 (11)

In other words, the sum of function value should be 0.

Given any square integrable function f ∈ L2(R) (i.e.,
∫
|f(x)|2 dx <∞) and wavelet functions ψi,j ,

the wavelet transform pair is defined as:

f̂(i, j) =

∫
R
f(x)ψ∗

i,j(x) dx =
∑
t

f(xt)ψ
∗
i,j(xt) (12)

f(x) =

+∞∑
i=−∞

+∞∑
j=−∞

f̂(i, j)ψi,j(x) (13)

where ψ∗
i,j(x) denotes the complex conjugate of ψi,j(x).

Intuitively, in wavelet transform, we are scanning f(x) with a microscope that has two knobs. One
knob is the location j, the other one is the frequency (i.e., 2i). We will be able to oversee the local
structure of the input and calibrate it accordingly with parameterized functions in WavSpA paradigm.

To generalize beyond L2(R) and avoid using an infinite number of wavelets, we must introduce
another function ϕ, called scaling function with a similar admissibility and orthogonality constraint:∫ +∞

−∞
ϕ(x) dx = 1, ϕi,j(x) = 2

i
2ϕ(2ix− j), (14)

s.t. ⟨ϕi,j , ψi′,j′⟩ = 0, i′ > i, ∀j, j′

ϕi,j is designed to cover the scale up to i, hence the orthogonality requirement. The decomposition
of f(x) therefore becomes:

f(x) =

+∞∑
j=−∞

⟨ϕ0,j , f⟩ϕ0,j(x) +
+∞∑
i=0

+∞∑
j=−∞

⟨ψi,j , f⟩ψi,j(x) (15)

Note that although i still goes to +∞ in (15), i usually has an upper limit in practice since it is
impossible to work with infinite frequency.

In the d-dimensional case, we do not have a general orthogonal discrete Rd wavelet, unlike the
continuous case. However, we can still perform discrete wavelet transform over each spatial dimension
of the input, and we’d still be able to perfectly project and reconstruct the original function. To be
more specific, for sequential inputs X ∈ Rn,d of length n and hidden dimension d, we will apply 2d
wavelet transform over both the length and hidden dimension to generate the wavelet coefficients.

A.2 Universal Approximation Power

Background about Attention Let X ∈ Rn×d denotes the input sequence of length n and hidden
dimension d. A dense self-attention is shown below:

Attention(X) = Softmax(
QK⊤
√
d

)V (16)

where Q = XWq , K = XWk, V = XWv with Wq,Wk,Wv ∈ Rd×m stand for the query, key, and
value, respectively. The attention head size is denoted by m.

In this subsection, we show that WavSpA can maintain the universal approximation power on seq-to-
seq functions for Transformer and its variants. We illustrate this idea with proof for a slightly modified
Performer [5] under WavSpA. The goal is to show that for any f in F , ∀p ∈ [1,+∞),∀ϵ > 0, we
can find a f̄ in the class of Performer-WavSpA, such that:

dp(f, f̄) =

(∫
Rn×d

∥f(X)− f̄(X)∥pp dX
) 1

p

≤ ϵ
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We define the Performer-WavSpA class that has positional encoding, h heads, head size s, hidden
dimension r as Wh,s,r with FAVOR+ kernel with an additional normalization on the input.
Theorem A.1. ∀p ∈ [1,+∞), ϵ > 0, and for any f ∈ F , we can find a Performer-WavSpA network
w ∈ W2,1,4, such that dp(f,w) ≤ ϵ.

The sketch of the proof is simple: since we have required the transformation pair to be invertible and
exact, so for any seq-to-seq function, we can universally approximate it in the wavelet space and it
is equivalent to having universal approximation power in the original space. The detailed proof of
Theorem A.1 is shown below.

A.3 Proof for Theorem A.1

We define the function class F to be the set of all countinous functions that map a compact domain in
Rn×d to Rn×d.

We start from making the connection between random feature kernel and regular transformer block:
Lemma A.2. (Asymptotic Result for FAVOR+) The following is true for independent random wi,

MSE( ˆSM(x, y))

=
1

m
exp (∥x+ y∥2)SM2(x, y)(1− exp (−∥x+ y∥2))

⇒ lim
SM(x,y)−→0

MSE( ˆSM(x, y)) −→ 0

where SM denotes the softmax kernel, ˆSM denotes the random feature kernel, and MSE stands for
mean-squared error.

The proof of this lemma can be found at [5, Lemma 2]. It tells us the the MSE error is upper bounded
to a constant since x, y is normalized beforehand, and vanishes to 0 as the original softmax kernel
value tends to 0 and the number of random features m tends to +∞.

Next we use the main theorem of [45]. We denote the transformer network class that has positional
encoding, h heads, head size s, and hidden dimension r as T h,s,r.
Lemma A.3. ∀p ∈ [1,+∞), ϵ > 0, and for any f ∈ F , we can find a Transformer network
g ∈ T 2,1,4, such that dp(f, g) ≤ ϵ.

The proof of Lemma A.3 constitutes of several steps, of which the first step is to approximate any
function f ∈ F as a piece-wise constant function f̃ . Since f is continuous, the piece-wise constant
approximation can be of arbitrary accuracy. Next they find a modified transformer g̃ with hardmax
operator and a special class of activations. Finally they show that the transformer block g is able to
approximate g. The functional distance is then bounded by:

dp(f, g) ≤ dp(f, f̃) + dp(f̃ , g̃) + dp(g̃, g) ≤ ϵ

We show that with slight modification, the proof will work for Performer-WavSpA, and can be
generalized to the WavSpA paradigm under certain constraints.

The proof is outlined below: For ∀f ∈ F , its wavelet transform f̂ (we will also use fw to denote
this, see (12) for details) is still continuous. Hence, the discretization claim remains valid. We can
then effectively approximate the self-attention transformer block with the FAVOR+ block up to ϵ

4
difference by controlling the number of random features m. In the end, the backward reconstruction
is exact, the distance bound becomes when we control the other three terms to be less than 1

4ϵ as well:

dp(f,w)

≤ dp(fw, f̃w) + dp(f̃w, g̃) + dp(g̃, g) + dp(g,w)

≤ ϵ

A.4 LRA Configuration Details

We tried to follow all hyperparameters as suggested for each of the attention approximations with
exceptions on Linformer and Linear Trans. in Image and Pathfinder. For them, we experimented with
five additional configurations as shown in Table 5.
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Table 3: Performance comparison of Transformers on Long Range Arena: Transformed spaces
vs. Original space. We use F /W to denote the Fourier space learning similar to AFNO [11]
and GFNet [31] or wavelet space (which adds an O(n log n)/O(n) complexity cost). We color
the number green if it surpasses the baseline, red vice versa. Wavelet space (W) demonstrated
superior performance in 21 out of 25 architecture/task combinations compared to Fourier space. †

We reran Linformer & Linear Attention for all (N/A, F ,W) with the same additional five sets of
hyperparameters because of convergence issues.‡ We note that we are unable to reproduce a score
close to the original Linformer performance on Pathfinder. § This is the normalized version of
Performer as described in Section A.2.

Transformer Variants ListOps Text Retrieval Image Pathfinder

N/A F W N/A F W N/A F W N/A F W N/A F W

Full O(n2) 36.37 17.80 37.15 64.27 56.42 74.82 57.46 51.78 72.43 42.44 31.41 42.29 71.40 50.55 78.25
Linformer O(n) 35.70 36.15 37.65 53.94 57.06 55.22 52.27 55.93 65.85 38.47† 34.89† 39.17† 66.44† ‡ 61.76† 70.21†

Linear Att. O(n) 16.13 37.65 37.55 65.90 71.66 71.93 53.09 72.71 70.71 42.32† 51.07† 40.83† 75.91† 70.45† 76.43†

Longformer O(n) 35.63 18.95 36.65 62.85 55.36 74.99 56.89 52.52 66.21 42.22 29.12 37.10 69.71 50.38 78.15
Performer§ O(n) 18.01 37.15 38.20 65.40 65.52 75.60 53.82 60.56 78.56 42.77 9.99 42.98 77.05 50.49 79.17

Table 4: Evaluation results for the three adaptive parameterization schemes, we denote di-
rect/orthogonal parameterization, and wavelet lifting as Ada/Ortho/Lift-WavSpA.

Models ListOps Text Retrieval Image Pathfinder Avg Avg (w/o r)

Transformer 36.37 64.27 57.46 42.44 71.40 54.39 53.62
AdaWavSpA 55.40 81.60 79.27 55.58 81.12 70.59 68.43

OrthoWavSpA 45.95 81.63 71.52 49.29 81.13 65.90 64.50
LiftWavSpA 42.95 75.63 56.45 42.48 81.73 59.85 60.70

Longformer 35.63 62.85 56.89 42.22 69.71 53.46 52.60
AdaWavSpA 49.30 79.73 58.57 50.84 79.48 63.66 64.93

OrthoWavSpA 39.45 78.41 79.93 49.93 79.47 54.96 54.96
LiftWavSpA 39.40 78.00 53.27 40.95 75.80 57.48 58.54

Linformer 35.70 53.94 52.27 38.47 66.44 49.36 48.64
AdaWavSpA 37.15 54.75 61.09 34.93 65.66 50.72 48.12

OrthoWavSpA 38.05 56.93 60.25 39.45 65.35 52.01 49.95
LiftWavSpA 37.30 54.43 70.73 34.66 63.49 52.12 47.47

Linear Att. 16.13 65.90 53.09 42.32 75.91 50.67 50.06
AdaWavSpA 38.90 76.82 71.38 54.81 79.68 64.32 62.55

OrthoWavSpA 39.55 79.45 69.65 49.93 78.09 55.86 55.86
LiftWavSpA 38.35 73.39 54.06 44.39 74.46 56.93 57.65

Performer 18.01 65.40 53.82 42.77 77.05 51.41 50.81
AdaWavSpA 46.05 80.93 71.16 52.06 77.17 65.47 64.05

OrthoWavSpA 39.80 79.10 57.67 48.78 78.09 60.69 61.44
LiftWavSpA 39.85 75.96 52.75 39.97 76.20 56.95 58.00

For all fixed wavelet transform conducted in this work, we use Daubechies-2 [8] as the basis and we
set the level of decomposition to 1.

For Performer, the number of random features in the random feature kernel is set as 256 for all text
tasks (ListOps, Text, Retrivial), 512 for all image tasks (Image, Pathfinder).

We use the same set of hyperparameters for all the attention methods on individual tasks, the detailed
setting is shown in Table 6. We adjust the training length to stabilize the adaptive wavelets, the
training will take over min steps and then will terminate with patience (= 10% ∗ max step). We also
find out that on the image task, it is better to use both the first and last output as the readout (CLS2)
for parameterized wavelet transformation.

A.5 Ablation Study

We conduct an ablation study for WavSpA, as shown in Table 9. For (Linear), We limit the transfor-
mation in wavelet space to be linear. For (Fourier), we use the Fourier transform as the transformation
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Table 5: Additional hyperparameter configurations tried for Linformer and Linear Att. in Image and
Pathfinder

Hyperparameter Config1 Config2 Config3 Config4 Config5

Layers 1 1 2 2 2
Embedding Dim. 128 128 128 256 256
Attention Dim. 64 64 64 64 64
MLP Dim. 128 128 256 1024 512
Attention Heads 8 8 2 4 4
Dropout 0.2 0.1 0.1 0.1 0.2
Attention Dropout 0.1 0.1 0.1 0.1 0.1

Table 6: Hyperparameter configurations for parameterized WavSpA experiments.
Hyperparameter ListOps Text Retrieval Image Pathfinder

Batch Size 400 128 64 64 512
Max Step 80k 50k 50k 200k 500k
Min Step 5k 20k 20k 20k 20k
Layers 8 6 6 8 1
Embedding Dim. 128 256 256 128 128
Attention Dim. 64 256 128 64 64
MLP Dim. 128 1024 256 128 128
Attention Heads 1 1 1 1 8
AdaWavSpA WLen. 40 16 40 40 40
OrthoWavSpA WLen. 16 16 16 16 16
LiftWavSpA Lev. 3 3 3 3 3
Dropout 0.1 0.1 0.1 0.1 0.2
Attention Dropout 0.1 0.1 0.1 0.1 0.1
Readout CLS CLS CLS CLS2 MEAN

mechanism for WavSpA. For (Forward Fourier), we only use the forward Fourier transform without
backward transform. It can be observed that performance dropped significantly in all cases, indicating
the necessity of non-linearity in wavelet space and forward-backward wavelet transform.

For fixed WavSpA, we also try out different wavelet families and decomposition level when paired
with Performer, results shown in Table 10.

We further test the necessity of wavelets in direct wavelet parameterization scheme. We tried two
other initializations on ListOps task when coupled with full attention, one with random Gaussian
initialization N(µ = 0, σ = 0.02), the other one with damped sinusoidal wave initialization. It
can be observed from Table 11 that both alternative initializations induced significant performance
deterioration.

A.6 Model Runtime Analysis

Since our framework involves two additional steps in attention computation, the forward and backward
wavelet transform, it is important to measure the add-on cost of these two transformations. We
show the training & inference latency, and the number of additional parameters used in adaptive
wavelets in Table 8. The run-time data is collected for 2,000 steps on the Text dataset with sequence
length being 4,096. All WavSpA variants pay a small overhead (linear to sequence length) on the
wavelet transformations but also gain an advantage in efficiency due to the halved lengths in each
decomposition level. For example, with wavelet lifting, we observe a 40% less latency due to the
higher decomposition level (L=3) and simpler decomposition scheme. To illustrate the decomposition
effect, an input of length 4096 with three decomposition levels will be transformed into four sequences
with lengths 2048, 1024, 512, 512, thus delivering a speed-up (20482 + 10242 + 5122 + 5122 ≪
40962).
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Table 7: Evaluation results on Long-Range Arena benchmark. We show both the average accuracy
(Avg) and average accuracy without Retrieval (Avg (w/o r)) since LUNA 256, Nyströmformer, and our
WavSpA coupled with full attention and direct wavelet parameterization (Transformer-AdaWavSpA)
all use prolonged training steps on Retrieval.

Model ListOps Text Retrieval Image Pathfinder Avg Avg (w/o r)

Transformer 36.37 64.27 57.46 42.44 71.40 54.39 53.62

Local Attention 15.82 52.98 53.39 41.46 66.63 46.06 44.22
Sparse Trans. 17.07 63.58 59.59 44.24 71.71 51.24 49.15
Longformer 35.63 62.85 56.89 42.22 69.71 53.46 52.60
Linformer 35.70 53.94 52.27 38.56 76.34 51.36 51.14
Reformer 37.27 56.10 53.40 38.07 68.50 50.67 49.99
Sinkhorn Trans. 33.67 61.20 53.83 41.23 67.45 51.39 50.89
Synthesizer 36.99 61.68 54.67 41.61 69.45 52.88 52.43
BigBird 36.05 64.02 59.29 40.83 74.87 55.01 53.94
Linear Trans. 16.13 65.90 53.09 42.34 75.30 50.55 49.92
Performer 18.01 65.40 53.82 42.77 77.05 51.41 50.81
FNet 35.33 65.11 59.61 38.67 77.80 55.30 54.23
LUNA 256 37.98 65.78 79.56 47.86 78.55 61.95 57.54
Nyströmformer 37.15 65.52 79.56 41.58 70.94 58.95 53.80

Transformer-AdaWavSpA 55.40 81.60 79.27 55.58 81.12 70.59 68.42

Table 8: Training, inference latency, and the number of additional wavelet parameters in parametrized
wavelet transform for fixed and adaptive WavSpA, where d denotes the hidden dimension.

Schemes Transformer Fixed Daubechies-2 AdaWavSpA OrthoWavSpA LiftWavSpA

Avg Train Latency 100.00% 102.56% 112.43% 119.97% 63.52%
Avg Inference Latency 100.00% 103.03% 112.16% 119.38% 66.61%

Add. Wavelet Parameters 0 0 Wavelet Length * d (Wavelet Length / 2) * d 0

Table 9: Ablation study on Long-Range Arena benchmark.

Model ListOps Text Retrieval Image Pathfinder Avg Avg (w/r)

WavSpA 38.20 75.60 78.56 42.98 79.17 62.90 58.99

Linear 37.70 55.36 55.27 15.75 50.58 42.93 39.84
Fourier 36.85 65.52 60.56 9.99 50.49 44.68 40.71

Forward Fourier 37.15 64.91 65.98 37.84 53.39 51.85 48.32

Table 10: Ablation study for different wavelet families & decomposition levels for fixed Performer-
WavSpA on Long-Range Arena benchmark.

Config ListOps Text Retrieval Image Pathfinder

Daubechies-2, L=1 38.20 75.60 78.56 42.98 79.17

Daubeuchies-3, L=1 37.85 76.86 73.62 42.30 78.30
Daubeuchies-3, L=2 37.40 76.84 75.43 41.20 50.52

Coiflet-1, L=1 36.85 76.72 75.43 41.42 50.58
Coiflet-1, L=2 37.65 75.97 75.29 43.2 77.49
Symlet-2, L=1 37.50 75.07 75.59 42.85 49.85
Symlet-2, L=2 37.45 75.63 74.51 41.03 77.39
Symlet-2, L=3 37.55 75.39 76.24 40.88 76.84
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Table 11: Ablation study for Daubechies wavelet initialization, Gaussian initialization, and damped
sinusoidal wave initialization. All experiments are using full attention as the non-linearity.

Initialization ListOps

Daubechies init. 55.4

Gaussian init. 45.9
Damped Cos init. 44.65
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Figure 4: We show the measure for symmetry for all the layers of the Transformer-AdaWavSpA
trained on ListOps task. The density plot of each layer shows the distribution for all wavelets of each
individual hidden dimension (in this case 128 wavelets). The red dotted vertical line denotes the
measure for the Daubechies-20 wavelet, which is the wavelets’ initialization value.

A.7 Exploratory Study on Learned Wavelets

Since we have trained the adaptive wavelet in the end-to-end fashion, we are naturally drawn to this
question: what kind of wavelets has been learned? We use the best-performing direct parameterization
scheme as an example, to empirically examine the learned wavelets.

We initiate our analysis from one commonly studied property of wavelets that characterizes the phase
response of the wavelet [32] – symmetry. A closer-to-symmetric wavelet (such as symlet) will have
a closer-to-linear phase response, and a less symmetric wavelet (such as Daubechies) will have a
more distorted phase response. We measure the symmetry by calculating the ℓ1 norm between the
unit-normalized wavelet and the wavelet’s transpose. A perfectly symmetric wavelet will have 0 on
this measure.

From Figure 4, we observe that the variance in symmetry grows larger when going from shallow to
deep layers. Also on average, the learned wavelets are almost always less symmetric compared to
the Daubechies-20 wavelet. These results indicate that it is important to turn wavelet transformation
into an adaptive process since the optimal wavelet design varies across the layers and the hidden
dimensions.
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Table 12: Main results on code understanding tasks, numbers represent accuracy. Code-BERT and
C-BERT are BERT-base sized code language models designed for code understanding tasks. We use
their published results as a strong baseline, and we are able to surpass the baselines when coupling a
much smaller BERT-medium sized model with AdaWavSpA and 32-time less pretraining steps, using
the same pretraining corpus. We trained another vanilla BERT-medium following the same procedure
as the baseline without WavSpA.

Model Code-Defection D2A-Function

Code-BERT/C-BERT 62.08 60.2

BERT-Medium 59.69 59.73
WavSpA-BERT-Medium 63.47 63.75

Table 13: Sequence length for each dataset’s train split. The task of vulnerability detection requires
reasoning over the entire piece of code snippet to deduct the label.

Dataset Code-Defection D2A-Function

Average Length 1277.49 1038.86

Median Length 561 717

Table 14: Hyperparameter list for code understanding pretraining.
Hyperparameter BERT-medium WavSpA-BERT-medium

Layers 8 8
Embedding Dim. 512 512
Attention Dim. 2048 2048
Attention Heads 8 8
Dropout 0.1 0.1
Attention Dropout 0.1 0.1
Batch Size 64 64
Init. Learning Rate 5e-5 5e-5
Warmup Steps 10,000 10,000
Total Steps 100,000 100,000
Adam β1 0.9 0.9
Adam β2 0.98 0.98
Weight Decay 0.01 0.01
Wavelet Length - 16
Wavelet Level - 1
Wavelet Parametrization - Adaptive
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