
Under review as a conference paper at ICLR 2022

AEDESIGN: A GRAPH PROTEIN DESIGN METHOD AND
BENCHMARK ON ALPHAFOLD DB

Anonymous authors
Paper under double-blind review

ABSTRACT

While AlphaFold has remarkably advanced protein folding, the inverse problem,
protein design, by which protein sequences are predicted from the corresponding
3D structures, still faces significant challenges. First of all, there lacks a large-scale
benchmark covering the vast protein space for evaluating methods and models;
secondly, existing methods are still low in prediction accuracy and time-inefficient
inference. This paper establishes a new benchmark based on AlphaFold DB,
one of the world’s largest protein structure databases. Moreover, we propose a
new baseline method called AEDesign, which achieves 5% higher recovery than
previous methods and about 70 times inference speed-up in designing long protein
sequences. We also reveal AEDesign’s potential for practical protein design tasks,
where the designed proteins achieve good structural compatibility with native
structures. The open-source code will be released.

1 INTRODUCTION

As ”life machines”, proteins play vital roles in almost all cellular processes, such as transcription,
translation, signaling, and cell cycle control. Understanding the relationship between protein struc-
tures and their sequences brings significant scientific impacts and social benefits in many fields, such
as bioenergy, medicine, and agriculture (Huo et al., 2011; Williams et al., 2019). While AlphaFold2
has tentatively solved protein folding (Jumper et al., 2021; Wu et al., 2022; Lin et al., 2022; Mirdita
et al., 2022; Li et al., 2022c) from 1D sequences to 3D structures, its reverse problem, i.e., protein
design raised by (Pabo, 1983) that aims to predict amino acid sequences from known 3D structures,
has fewer breakthroughs in the ML community. The main reasons hindering the research progress
include: (1) The lack of large-scale standardized benchmarks; (2) The difficulty in improving protein
design accuracy; (3) Many methods are neither efficient nor open-source. Therefore, we aim to
benchmark protein design and develop an effective and efficient open-source method.

Previous benchmarks may suffer from biased testing and unfair comparisons. Since SPIN (Li et al.,
2014) introduced the TS500 (and TS50) consisting of 500 (and 50) native structures, it has served
as a standard test set for evaluating different methods (O’Connell et al., 2018; Wang et al., 2018;
Chen et al., 2019; Jing et al., 2020; Zhang et al., 2020a; Qi & Zhang, 2020; Strokach et al., 2020).
However, such a few proteins do not cover the vast protein space and are more likely to lead to biased
tests. Besides, there are no canonical training and validation sets, which means that different methods
may use various training sets. If the training data is inconsistent, how can we determine that the
performance gain comes from different methods rather than biases of the data distribution? Especially
when the test set is small, adding training samples that match the test set distribution could cause
dramatic performance fluctuations. Considering these issues, we suggest establishing a large-scale
standardized benchmark for fair and comprehensive comparisons.

Extracting expressive residue representations is a key challenge for accurate protein design, where
both sequential and structural properties must be considered. For general 3D points, structural features
should be rotationally and translationally invariant in the classification task. Regarding proteins,
we should consider amino acids’ stable structure, number, and order. Previous studies (O’Connell
et al., 2018; Wang et al., 2018; Ingraham et al., 2019; Jing et al., 2020) may have overlooked some
important protein features and data dependencies, i.e., bond angles; thus, few of them exceeds 50%
recovery except DenseCPD (Qi & Zhang, 2020). How can protein features and neural models be
designed to learn expressive residue representations?

Improving the model efficiency is necessary for rapid iteration of research and applications. Current
advanced methods have severe speed defects due to the sequential prediction paradigm. For example,
GraphTrans (Ingraham et al., 2019) and GVP (Jing et al., 2020) predict residues one by one during
inference rather than in parallel, which means that it calls the model multiple times to get the entire

1

Under review as a conference paper at ICLR 2022

protein sequence. Moreover, DenseCPD (Qi & Zhang, 2020) takes 7 minutes to predict a 120-length
protein on their server 1. How can we improve the model efficiency while ensuring accuracy?

To address these problems, we establish a new protein design benchmark and develop a graph model
called AEDesign (Accurate and Efficient Protein Design) to achieve SOTA accuracy and efficiency.
Firstly, we compare various graph models on consistent training, validation, and testing sets, where
all these datasets come from the AlphaFold Protein Structure Database (Varadi et al., 2021). In
contrast to previous studies (Ingraham et al., 2019; Jing et al., 2020) that use limited-length proteins,
we extend the experimental setups to the case of arbitrary protein length. Secondly, we improve the
model accuracy by introducing protein angles as new features and introducing a simplified graph
transformer encoder (SGT). Thirdly, we improve model efficiency by proposing a confidence-aware
protein decoder (CPD) to replace the auto-regressive decoder. Experiments show that AEDesign
significantly outperforms previous methods in accuracy (+5%) and efficiency (70+ times faster than
before). We also reveal AEDesign’s potential for practical protein design tasks, where the designed
proteins achieve good structural compatibility with native structures.

2 RELATED WORK

We focus on structure-based protein design (Gao et al., 2020; Pearce & Zhang, 2021; Wu et al., 2021;
Ovchinnikov & Huang, 2021; Ding et al., 2022; Strokach & Kim, 2022; Li & Koehl, 2014; Greener
et al., 2018; Anand et al., 2022; Karimi et al., 2020; Cao et al., 2021; Liu et al., 2022; McPartlon et al.,
2022; Huang et al., 2022; Dumortier et al., 2022; Li et al., 2022a; Maguire et al., 2021; Anishchenko
et al., 2021; Li et al., 2022b), and the approaches can be categorized into MLP-based, CNN-based,
and GNN-based ones. Some terms need to be explained in advance: we refer to amino acids as
residues, and accuracy indicates the degree of prediction of the residues, i.e., recovery.

Table 1: Statistics of structure-based protein design methods.
Ntrain is the number of training samples. TS500 and TS500
are the test sets containing 500 and 50 proteins, respectively.
All results are copied from their manuscripts or related papers.

Method Ntrain TS500 TS50 Code

M
L

P SPIN 1,532 30.30% 30.30% no
SPIN2 1,532 36.60% 33.60% no

Wang’s model 10,173 36.14% 33.00% no

C
N

N SPROF 7,134 40.25% 39.16% PyTorch
ProDCoNN 17,044 42.20% 40.69% no
DenseCPD ≤10,727 55.53% 50.71% no

G
N

N

GraphTrans 18,024 – – PyTorch
GVP 18,024 – 44.90% PyTorch
GCA 18,024 – 43.00% PyTorch

AEDesign 18,024 49.23% 48.36% PyTorch
ESM-IF >1M – – PyTorch

ProteinMPNN 18,024 – – PyTorch

Problem definition The structure-based
protein design aims to find the amino acids
sequence S = {si : 1 ≤ i ≤ n} that folds
into a known 3D structure X = {xi ∈
R3 : 1 ≤ i ≤ n}, where n is the num-
ber of residues and the natural proteins are
composed by 20 types of amino acids, i.e.,
1 ≤ si ≤ 20, and si ∈ N+. Formally, that
is to learn a function Fθ : X 7→ S. Be-
cause homologous proteins always share
similar structures (Pearson & Sierk, 2005),
the problem itself is underdetermined, i.e.,
the valid amino acid sequence may not be
unique. In addition, the need to consider
both 1D sequential and 3D structural infor-
mation further increases the difficulty of
algorithm design.

MLP-based models These methods use multi-layer perceptron (MLP) to predict the type of each
residue. The MLP outputs the probability of 20 amino acids for each residue, and the input feature
construction is the main difference between various methods. SPIN (Li et al., 2014) integrates
torsion angles (ϕ and ψ), fragment-derived sequence profiles, and structure-derived energy profiles
to predict protein sequences. SPIN2 (O’Connell et al., 2018) adds backbone angles (θ and τ), local
contact number, and neighborhood distance to improve the accuracy from 30% to 34%. (Wang et al.,
2018) uses backbone dihedrals (ϕ, ψ and ω), the solvent accessible surface area of backbone atoms
(Cα, N,C, andO), secondary structure types (helix, sheet, loop), Cα−Cα distance and unit direction
vectors of Cα − Cα, Cα −N and Cα − C, which achieves 33.0% accuracy on 50 test proteins. The
MLP methods have a high inference speed, but their accuracy is relatively low due to the partial
consideration of structural information. These methods require complex feature engineering using
multiple databases and computational tools, limiting their widespread usage.

CNN-based models CNN methods extract protein features directly from the 3D structure (Torng &
Altman, 2017; Boomsma & Frellsen, 2017; Weiler et al., 2018; Zhang et al., 2020a; Huang et al.,
2017; Chen et al., 2019), which can be further classified as 2D CNN-based and 3D CNN-based.

1http://protein.org.cn/densecpd.html

2

https://github.com/biomed-AI/SPROF
https://github.com/jingraham/neurips19-graph-protein-design
https://github.com/drorlab/gvp-pytorch
https://github.com/chengtan9907/Global-context-aware-generative-protein-design
https://github.com/facebookresearch/esm/tree/main/examples/inverse_folding
https://github.com/dauparas/ProteinMPNN
http://protein.org.cn/densecpd.html

Under review as a conference paper at ICLR 2022

The 2D CNN-based SPROF (Chen et al., 2019) extracts structural features from the distance matrix
and improves the accuracy to 39.8%. In contrast, 3D CNN-based methods extract residue features
from the atom distribution in a three-dimensional grid box. For each residue, the atomic density
distribution is computed after being translated and rotated to a standard position so that the model
can learn translation and rotation invariant features. ProDCoNN (Zhang et al., 2020a) designs a
nine-layer 3D CNN to predict the corresponding residues at each position, which uses multi-scale
convolution kernels and achieves 40.69% recovery on TS50. DenseCPD (Qi & Zhang, 2020) further
uses the DensetNet architecture (Huang et al., 2017) to boost the accuracy to 50.71%. Although
3DCNN-based models improve accuracy, their inference is slow, probably because they require
separate pre-processing and prediction for each residue.

Graph-based models Graph methods represent the 3D structure as a k-NN graph, then use graph
neural networks (Defferrard et al., 2016; Kipf & Welling, 2016; Veličković et al., 2017; Zhou
et al., 2020; Zhang et al., 2020b; Gao et al., 2022; Li et al., 2021a) to learn residue representations
considering structural constraints. The protein graph encodes the residue information in node vectors
and constructs edges and edge features between neighboring residues. GraphTrans (Ingraham et al.,
2019) combines graph encoder and autoregressive decoder to generate protein sequences. GVP (Jing
et al., 2020) increases the accuracy to 44.9% by proposing the geometric vector perceptron, which
learns both scalar and vector features in an equivariant and invariant manner concerning rotations and
reflections. GCA (Tan et al., 2022) further improves recovery to 47.02% by introducing global graph
attention. Another related work is ProteinSolver (Strokach et al., 2020), but it was mainly developed
for scenarios where partial sequences are known and do not report results on standard datasets. In
parallel with our work, ProteinMPNN (Dauparas et al., 2022) and ESM-IF (Hsu et al., 2022) achieve
dramatic improvements, while they do not provide the training code and will be benchmarked in the
future.

3 METHODS

3.1 OVERVIEW

We present the overall framework of AEDesign in Fig. 1. We suggest using AEDesign as a future
baseline model because it is more accurate, straightforward, and efficient than previous methods. The
methodological innovations include:
• Expressive features: We add new proteins angles (α, β, γ) to steadily improve the model accuracy.
• Simplified graph encoder: We use the simplified graph transformer (SGT) to extract more

expressive representations.
• Fast sequence decoder: We propose constraint-aware protein decoder (CPD) to speed up inference

by replacing the autoregressive generator.

3.2 GRAPH FEATURE AND ENCODER

The protein structure can be viewed as a particular 3D point cloud in which the order of residues is
known. For ordinary 3D points, there are two ways to get rotation and translation invariant features:
Using particular network architectures (Fuchs et al., 2020; Satorras et al., 2021; Jing et al., 2020;
Shuaibi et al., 2021) that take 3D points as input or using handicraft invariant features. For proteins,
general 3D point cloud approaches cannot consider their particularity, including the regular structure
and order of amino acids. Therefore, we prefer learning from the hand-designed, invariant, and
protein-specific features. How to create invariant features and learn expressive representations from
them is subject to further research.

Graph We represent the protein as a k-NN graph derived from residues to consider the 3D
dependencies, where the default k is 30. The protein graph G(A,X,E) consists of the adjacency
matrix A ∈ {0, 1}n,n, node features X ∈ Rn,12, and edge features E ∈ Rm,23. Note that n and m
are the numbers of nodes and edges, and we create these features by residues’ stable structure, order,
and coordinates.

Node features As shown in Fig. 2, we consider two kinds of angles, i.e., the angles αi, βi, γi formed
by adjacent edges and the dihedral angles ϕi, ψi, ωi formed by adjacent surfaces, where αi, βi, γi are
new features we introduced. For better understanding dihedral angles, it is worth stating that ϕi−1 is
the angle between plane Ci−2 −Ni−1 − Cαi−1

and Ni−1 − Cαi−1
− Ci−1, whose intersection is

Ni−1 − Cαi−1
. Finally, there are 12 node features derived from {sin, cos} × {αi, βi, γi, ϕi, ψi, ωi}.

3

Under review as a conference paper at ICLR 2022

GraphTrans
(or GVP)
Encoder

GraphTrans
(or GVP)
Decoder

GraphTrans
(or GVP)
Decoder

True sequence

Causal mask Pred cache

t+1

t
Update

Train Test
Alphafold v2

DB
AQ

YED
G

KQ
Y....

Data&Results Features Model Sequences

Simplified
GraphTrans

Encoder

Confidence-
aware
Protein

Decoder

Train&Test

Distance

Rotation

Direction

AQ
YED

G
KQ

Y....

 Clustering

Distance

Rotation

Direction

Quality filter

Partition

AEDesign

Baselines

Proccessed

DB

Structures

Benchmark

model 1 xxx

model 2 xxx

... ...

Figure 1: Overview of AEDesign. Compared with GraphTrans, StructGNN (Ingraham et al., 2019) and GVP
(Jing et al., 2020), we add new protein features, simplify the graph transformer, and propose a confidence-aware
protein decoder to improve accuracy and efficiency.

--Dihedral angle for -

--Dihedral angle for -

--Dihedral angle for -

--Angle for - -

--Angle for - -

--Angle for - -

, ,

N
od

e
Ed

ge

Local coordinate system

residue

new features

Figure 2: Angles of the protein backbone.

Edge features For edge j → i, we use relative rotation Rji, distance rji, and relative direction uji
as edge features, seeing Fig. 2. At the i-th residue’s alpha carbon, we establish a local coordinate
system Qi = (bi, ni, bi × ni). The relative rotation between Qi and Qj is Rji = QT

i Qj can be
represented by an quaternion q(Rji). We use radial basis r(·) to encode the distance between Cαi

and Cαj
. The relative direction of Cαj

respective to Cαi
is calculated by uji = QT

i
xj−xi

||xj−xi|| . In
summary, there are 23 edge features: 4 (quaternion) + 16 (radial basis) + 3 (relative direction).

Simplified attention

Figure 3: Simplified graph transformer.

Simplified graph transformer Denote hl
i and elji

as the output feature vectors of node i and edge j → i
in layer l. We use MLP to project input node and
edge features into d-dimensional space, thus h0

i ∈
Rd and e0ji ∈ Rd. When considering the attention
mechanisms centered in node i, the attention weight
aji at the l + 1 layer is calculated by:

{
wji =MLP1(h

l
j ||elji||hl

i)

aji =
expwji∑

k∈Ni
expwki

(1)

where Ni is the neighborhood system of node i and || means the concatenation operation. Here, we
simplify GraphTrans (Ingraham et al., 2019) by using a single MLP to learn multi-headed attention
weights instead of using separate MLPs to learn Q and K, seeing Fig. 3. The updated hl+1

i is:

4

Under review as a conference paper at ICLR 2022

{
vj =MLP2(e

l
ji||hl

j)

hl+1
i =

∑
j∈Ni

ajivj
(2)

By stacking multiple simplified graph transformer (SGT) layers, we can obtain expressive protein
representations considering 3D structural constraints by message passing.

3.3 SEQUENCE DECODER

To generate more accurate protein sequences, previous researches (Ingraham et al., 2019; Jing et al.,
2020) prefer the autoregressive mechanism. However, this technique also significantly slows down
the inference process because the residuals must be predicted one by one. Can we parallelize the
predictor while maintaining the accuracy?

Confidence Predictor

Conf-aware Protein Predictor

C
on

v1
D

C
on

v1
D

C
on

v1
D

Li
ne

ar

C
on

v1
D

C
on

v1
D

C
on

v1
D

Li
ne

ar

Logits

Logits

Confidence

128

128

20

Figure 4: CPD: The confidence-aware protein decoder. We use two 1D CNN networks to learn confidence
scores and make final predictions based on the input graph node features.

Context-aware Previously, we have considered the 3D constraints through graph networks but
ignored 1D inductive bias. As shown in Fig. 4, the input features are Zgnn = {z1, z2, · · · , zN},
where zi is the feature vector of node i extracted by the encoder. In the generation phase, we use
1D CNNs to capture the local sequential dependencies based on the 3D context-aware graph node
features, where the convolution kernel can be viewed as the sliding window.

Confidence-aware Given the 3D structure X = {xi : 1 ≤ i ≤ N} and protein sequence
S = {si : 1 ≤ i ≤ N}, the vanilla autoregressive prediction indicates p(S|X) =

∏
i p(si|X , s<i),

where residues must be predicted one-by-one. We replace autoregressive connections with parallelly
estimated confidence score c, written as

a = Conf(X)

c = f(a)

p(S|X) =
∏

i p(si|X , xi, ci)
(3)

where Conf(·) is the model containing graph encoder and CNN decoder (called ”Confidence predictor”
in Figure.4) and outputs logit scores a ∈ Rn,20, f(·) is the function computing confidence score
c ∈ Nn,1. The confidence score contains knowledge captured by the previous prediction and serves
as a hint message to help the network correct previous predictions. Let M = ColumnMax(a) ∈ Rn,1

and m = ColumnSubMax(a) ∈ Rn,1 as the first and secondary largest logits score of a, the
confidence score is defined as c = ⌊M

m ⌋. Let a ∈ R1,20, and noting i and j as the indexes of the
largest and sub-largest values of a, then M = ai,m = aj , and f(a) = ⌊ ai

aj
⌋, where ⌊·⌋ indicates the

floor function. By extending a ∈ R1,20 as a ∈ Rn,20, Eq.(3) shows the vectorized version of f(·).
We encode the confidence score as learnable embeddings C ∈ Rn,128, concatenate them with graph
features, and feed these features into another CNN decoder to get the revised predictions. Note that
all CNN decoders for estimating confidence and final predictions use the same CE loss:

L = −
∑
i

∑
1≤j≤20

1{j}(yi) log(pi,j). (4)

where pi,j is the predicted probability that residue i’s type is j, yi is the true label and 1{j}(·) is a
indicator function.

5

Under review as a conference paper at ICLR 2022

4 EXPERIMENTS

We conduct systematic experiments to establish a large-scale benchmark and evaluate the proposed
AEDesign method. Specifically, we aim to answer:

• Q1: What is the difference between the new bechmark and the old one?

• Q2: Can AEDesign achieve SOTA accuracy and efficiency on the new benchmark?

• Q3: What is important for achieving SOTA performance?

4.1 BENCHMARK COMPARATION (Q1)

Metric Following (Li et al., 2014; O’Connell et al., 2018; Wang et al., 2018; Ingraham et al., 2019;
Jing et al., 2020), we use sequence recovery to evaluate different protein design methods. Compared
with other metrics, such as perplexity, recovery is more intuitive and clear, and its value is equal to
the average accuracy of predicted amino acids in a single protein sequence. By default, we report the
median recovery score across the entire test set.

Previous benchmark In Table. 1, we show the old benchmark collected from previous studies,
including MLP (Li et al., 2014; O’Connell et al., 2018; Wang et al., 2018), CNN (Chen et al., 2019;
Zhang et al., 2020a; Qi & Zhang, 2020; Huang et al., 2017) and GNN (Ingraham et al., 2019; Jing
et al., 2020; Strokach et al., 2020; Dauparas et al., 2022; Hsu et al., 2022) models. Most approaches
report results on the common test set TS50 (or TS500), consisting of 50 (or 500) native structures
(Li et al., 2014). We also provide the results of AEDesign under the same experimental protocols
as GraphTrans and GVP. Although the TS50, TS500 test sets have contributed significantly to
establishing benchmarks, they still do not cover a vast protein space, and do not reveal how the model
performs on species-specific data. Besides, there are no canonical training and validation sets, which
means that different methods may use various training sets.

New dataset We use the AlphaFold Protein Structure Database (until 2021.2.1) 2 (Varadi et al.,
2021) to benchmark graph-based protein design methods. As shown in Table. 6 (Appendix), there are
over 360,000 predicted structures by AlphaFold2 (Jumper et al., 2021) across 21 model-organism
proteomes. This dataset has several advantages:

• Species-specific: This dataset provides well-organized species-specific data for different species,
which is helpful to develop specialized models for each species.

• More structures: This dataset provides more than 360,000 structures, while Protein Data Bank
(PDB) (Burley et al., 2021) holds just over 180,000 structures for over 55,000 distinct proteins.

• High quality: The median predictive score of AlphaFold2 reaches 92.4%, comparable to ex-
perimental techniques (Callaway, 2020). Nicholas (Fowler & Williamson, 2022) found that
AlphaFold tends to be more accurate than NMR ensembles. In 2020, the CASP14 benchmark
recognized AlphaFold2 as a solution to the protein–folding problem (Pereira et al., 2021).

• Missing value: There are no missing values in protein structures provided by AlphaFold DB.
• Widespread usage: AlphaFold DB has been used in many frontier works (Varadi et al., 2022;

Morreale et al., 2022; Luyten et al., 2022; Alderson et al., 2022; Zhang et al., 2022; Fowler &
Williamson, 2022; Shaban et al., 2022; Brems et al., 2022; Hsu et al., 2022), and we believe that
investigating AlphaFold DB could yield more discoveries for protein design.

Dataset Preprocessing It should be noted that the AlphaFold2 DB data itself may have model bias.
Similar to ESM-IF (Hsu et al., 2022), we address data quality and partitioning issues through data
pre-processing for each species-specific subset. As suggested by (Baek & Kepp, 2022; Callaway,
2020), the MAE between the predicted and experimentally generated structures does depend on
pLDDT. Thus, we filter low-quality structures whose confidence score (pLDDT) is less than 70. To
prevent potential information leakage, for each species-specific subset, we cluster protein sequences
if their sequence similarities (Qi & Zhang, 2020; Steinegger & Söding, 2017) are higher than 30%
(Qi & Zhang, 2020) and split the dataset by these clusters. As a result, the proteins belonging to
the same cluster must be in one of the training, validation, and test sets. By default, we keep the

2https://alphafold.ebi.ac.uk

6

https://alphafold.ebi.ac.uk

Under review as a conference paper at ICLR 2022

ratio of the training set and test set at about 9:1 and choose 100 proteins belonging to a randomly
selected cluster for validation. If the randomly selected cluster has less than 100 proteins, then all of
its proteins are used as the validation set.

4.2 AEDESIGN BENCHMARK (Q2)

Overall settings We extend the experimental setups to arbitrary length and species-specific, while
most previous studies (Ingraham et al., 2019; Jing et al., 2020; Tan et al., 2022) do not explore such
a vast protein space. Arbitrary length means that the protein length may be arbitrary to generalize
the model to broader situations; otherwise, the protein must be between 30 and 500 in length.
Species-specific indicates that we develop a specific model for each organism’s proteome to learn
domain-specific knowledge. In summary, there are two settings, i.e., species-specific dataset with
limited length (SL) and species-specific dataset with arbitrary length (SA). Denote the total amount
of structures as Nall, and the i-th species has Ni structures, we have Nall =

∑i=21
i=1 Ni. As shown

in Table. 6, if the length is limited, Nall = 254, 636; otherwise, Nall = 365, 198. For each species-
specific subset, we develop 21 models based on datasets with N1, N2, · · · , N21 structures. We report
the median recovery scores across the test set. All baseline results were obtained by running their
official code with the same dataset. In parallel with our work, ProteinMPNN (Dauparas et al., 2022)
and ESM-IF (Hsu et al., 2022) are also proposed, but they are not provided with the full training code
and will be benchmarked in the future. Due to space constraints, we introduce abbreviations such as
GTrans for GraphTrans and SGNN for Struct GNN.

Hyper-parameters AEDesign’s encoder contains ten layers of SGT, and the decoder contains
three layers of CNN, where the hidden dimension is 128. We use Adam optimizer and OneCycleLR
scheduler to train all models up to 100 epochs with early stop patience 20 and learning rate 0.001. In
the SL setting, we set the batch size as 16 for GraphTrans, StructGNN, GCA, and AEDesign, and the
max node number as 2000 for GVP, which indicates the maximum number of residuals per batch.
In the SA setting, we change GVP’s max node parameter to 3000 to make it applicable to all data.
GraphTrans, StructGNN, and GCA take more GPU memories because they must pad data according
to the longest chain in each batch, and we adjust the batch size to 8 to avoid memory overflow.

Table 2: SL benchmark. The length of the protein
must be between 30 and 500. We highlight the best (or
next best) results in bold (or underline).

GTrans SGNN GVP GCA Our(SL) Gain
DANRE 44.93 55.82 62.16 63.23 70.70 7.47
CANAL 47.81 50.62 52.55 58.43 61.36 2.93
MOUSE 49.53 54.04 59.23 62.00 68.34 6.34
ECOLI 46.95 52.62 55.08 59.79 60.71 0.92

DROME 42.39 52.94 58.92 60.52 66.67 6.15
METJA 42.68 52.09 51.59 58.54 62.24 3.7
PLAF7 46.32 50.00 49.52 58.74 61.16 2.42

MYCTU 54.02 56.32 58.50 65.24 68.68 3.44
CAEEL 47.44 54.89 62.32 63.00 70.23 7.23
DICDI 42.15 53.14 58.41 61.54 67.21 5.67
TRYCC 51.13 56.18 62.35 61.33 71.08 8.73
YEAST 36.18 49.23 52.14 58.30 62.50 4.2
SCHPO 44.56 49.34 51.90 58.21 60.64 2.43

RAT 48.23 60.41 67.01 65.87 75.50 8.49
HUMAN 51.15 54.83 61.19 63.10 69.69 6.59
ARATH 45.78 55.56 63.08 63.83 71.15 7.32
MAIZE 47.06 55.42 64.86 65.00 74.12 9.12
LEIIN 49.48 51.33 55.33 60.22 64.71 4.49
STAA8 45.57 48.31 47.52 57.14 60.00 2.86
SOYBN 47.73 56.52 64.84 64.10 73.96 9.12
ORYSJ 46.29 54.62 63.64 63.64 72.98 9.34
Average 46.54 53.53 58.20 61.51 67.32 5.81

Table 3: SA benchmark. There is no constraint on
the protein length. We highlight the best (or next best)
results in bold (or underline).

GTrans SGNN GVP GCA Our(SA) Gain
DANRE 48.82 57.24 66.18 65.14 69.65 3.47
CANAL 51.14 55.17 61.82 60.88 68.45 6.63
MOUSE 47.79 57.40 64.23 64.50 74.07 9.57
ECOLI 50.60 54.22 59.11 60.71 66.22 5.51

DROME 50.56 55.91 63.13 61.67 71.55 8.42
METJA 51.03 52.47 53.13 59.24 59.64 0.4
PLAF7 48.11 53.92 57.26 59.75 66.01 6.26

MYCTU 48.25 58.04 61.93 64.93 70.57 5.64
CAEEL 46.82 54.05 64.48 64.03 73.17 8.69
DICDI 55.58 56.82 64.17 62.91 71.66 7.49
TRYCC 48.56 59.57 64.52 66.06 75.18 9.12
YEAST 50.00 54.00 60.41 58.45 66.71 6.3
SCHPO 47.62 53.91 60.26 60.21 66.64 6.38

RAT 47.97 57.83 65.99 63.89 73.54 7.55
HUMAN 55.28 56.29 64.86 63.83 67.43 2.57
ARATH 48.39 57.59 66.55 64.66 73.84 7.29
MAIZE 56.76 58.57 67.78 65.83 76.00 8.22
LEIIN 54.58 56.85 63.92 62.81 63.54 -0.38
STAA8 49.36 51.43 53.85 58.46 63.85 5.39
SOYBN 49.94 58.44 66.25 69.23 76.51 7.28
ORYSJ 48.04 58.41 66.78 64.00 75.15 8.37
Average 50.24 56.10 62.70 62.91 69.97 7.06

SL&SA results We present the SL and SA benchmark in Table. 2 and Table. 3, respectively. The
order of model accuracy from high to low is AEDesign > GCA > GVP > SGNN > GTrans. Under
SL setting, AEDesign achieves the best recovery on all species-specific subsets and exceeds previous
methods by 5.81% on average. Under SA setting, AEDesign is still the most accurate model, and
the increased training data further improves the model, i.e., the average accuracy of AEDesign (SA)
is 69.97% while that of AEDesign (SL) is 62.91%. For species-specific subsets, the larger the data

7

Under review as a conference paper at ICLR 2022

volume, the better model performance; refer to Table.6. For example, the recovery on METIJ is
58.54% when the number of structures is 1605, which will increase to 73.96% on SOYBN when the
data volume increases to 41,048.

4.3 EFFICIENCY COMPARATION (Q2)

A good algorithm should have excellent computational efficiency in addition to high accuracy. We
compare the inference time cost of different approaches, especially when designing long proteins
commonly found in AF2DB.

Setting We evaluate various models’ inference time costs under different scenarios, considering
100 proteins with short (L<500), medium (500<L<1000), and long (1000<L) lengths . As to long
sequence design, we further investigate the time costs of encoder, decoder, and encoder+decoder. All
experiments are conducted on an NVIDIA-V100.

1.22

0.65

17.28
10.3

4.57

377.53 345.98 435.43

2016.23

0.53

378.75 346.63 452.71

2026.53

5.1

0.1

1

10

100

1000

10000

GraphTrans StructGNN GCA GVP AEDesign

Encoder Decoder Enc+Dec

Figure 5: Inference time cost when designing long proteins. We report the total inference time of different
methods on 100 long proteins, which are longer than 1000. The time costs of the encoder, decoder and
encoder+decoder are reported.

Table 4: Inference time costs of different methods. #Number is the number of proteins for time cost evaluation.
#Avg L is the average protein length.

Short Medium Long
#Number 100 100 100
#Avg L 286 724 1632

GraphTrans 47.58 262.87 378.76
StructGNN 43.63 213.87 346.63

GCA 44.99 230.64 452.71
GVP 208.85 969.51 2026.53

AEDesign 1.61 2.77 5.09

Results We show the inference time costs for designing proteins of different lengths in Table.4.
When designing short proteins (L < 500), AEDesign is 25+ times faster than baselines; and the
dominance extends to about 70 times for designing long proteins (L ≥ 500). In Fig. 5, we observe
that the time costs of baselines mainly come from the autoregressive decoder, and the proposed CPD
module significantly speeds up the decoding process.

4.4 ABLATION STUDY (Q3)

While AEDesign has shown remarkable performance, we are more interested in where the improve-
ments come from. As mentioned before, we add new protein features, simplify the graph transformer,
and propose a confidence-aware protein decoder. Whether these modifications could improve model
performance?

8

Under review as a conference paper at ICLR 2022

ADesign w/o SGT w/o CPD w/o new feat
DANRE 70.70 68.27 71.04 62.18
CANAL 61.36 59.00 62.53 53.45
MOUSE 68.34 65.88 68.70 60.00
ECOLI 60.71 58.27 61.05 52.97

DROME 66.67 64.22 67.11 54.45
METJA 62.24 59.23 63.10 50.61
PLAF7 61.16 57.64 62.67 50.01

MYCTU 68.68 65.21 69.57 56.02
CAEEL 70.23 67.89 70.69 57.00
DICDI 67.21 63.79 67.48 54.94
TRYCC 71.08 68.93 71.70 59.58
YEAST 62.50 59.77 63.23 49.32
SCHPO 60.64 58.14 62.05 48.67

RAT 75.50 72.91 75.54 64.50
HUMAN 69.69 67.28 70.21 58.55
ARATH 71.15 69.30 71.82 61.62
MAIZE 74.12 72.17 74.42 64.26
LEIIN 64.71 61.98 65.29 52.52
STAA8 60.00 57.87 60.33 47.31
SOYBN 73.96 72.06 73.58 63.89
ORYSJ 72.98 71.26 73.23 64.11
Average 67.32 64.81 67.87 56.47

Gain – -2.51 0.55 -10.85

Table 5: Ablation study under the SL setting.

Setting We conduct ablation studies un-
der the SL setting. Specifically, we may re-
place the simplified attention module with
the original GraphTrans (w/o SGT), re-
place the CPD module with the autoregres-
sive decoder of GraphTrans (w/o CPD), or
remove the newly introduced angle features
(w/o new feat). All experimental settings
keep the same as previous SL settings.

Results and analysis The ablation re-
sults are shown in Table. 5. We conclude
that: (1) The SGT module and the new
features can improve the recovery rate by
2.51% and 10.85%, respectively. Most of
the performance improvement comes from
the new angular features, are consistent
with the recent ProteinMPNN, while they
focus on distance features. (2) If we re-
place the CPD module with the autoregres-
sive decoder, the recovery rate will improve
by 0.55%. However, the recovery improve-
ment brought by the autoregressive decoder is marginal compared to the SGT module and the new
features. Therefore, we conclude CPD module dramatically improves the evaluation speed while
maintaining good recovery. (3) If we remove the introduced angular features, AEDesign is not as
accurate as GCA and GVP, but the improvement in efficiency is still significant.

4.5 VISUAL EXAMPLES

We show the potential of AEDesign in real applications, i.e., designing all-alpha, all-beta, and mixed
native proteins. We ensemble multiple models by selecting the sequence with the lowest perplexity
as the final solution. We use AlphaFold2 to predict the structures of designed sequences and compare
them with the reference ones. Visual examples are provided in Figure. 6.

All-alpha structure (3tld) All-beta structure (2giy) Mixed structure (1mgr)
(Recovery=50.00, RMSD=1.18) (Recovery=53.07, RMSD=0.54) (Recovery=46.39, RMSD=0.47)

Figure 6: Visual examples. For native structures, we color Helix, Sheet, and Loop with cyan, magenta, and
orange, respectively. Green structures are protein chains designed by our algorithm. We provide the recovery
score and structural RMSD relative to the ground truth proteins.

5 CONCLUSION

This paper establishes a new benchmark and proposes a new method (AEDesign) for AI-guided
protein design. By introducing new protein features, simplifying the graph transformer, and proposing
a confidence-aware protein decoder, AEDesign achieves state-of-the-art accuracy and efficiency. We
hope this work will help standardize comparisons and provide inspiration for subsequent research.

9

Under review as a conference paper at ICLR 2022

REFERENCES

T Reid Alderson, Iva Pritišanac, Alan M Moses, and Julie D Forman-Kay. Systematic identification
of conditionally folded intrinsically disordered regions by alphafold2. bioRxiv, 2022.

Namrata Anand, Raphael Eguchi, Irimpan I Mathews, Carla P Perez, Alexander Derry, Russ B Altman,
and Po-Ssu Huang. Protein sequence design with a learned potential. Nature communications, 13
(1):1–11, 2022.

Ivan Anishchenko, Samuel J Pellock, Tamuka M Chidyausiku, Theresa A Ramelot, Sergey Ovchin-
nikov, Jingzhou Hao, Khushboo Bafna, Christoffer Norn, Alex Kang, Asim K Bera, et al. De novo
protein design by deep network hallucination. Nature, 600(7889):547–552, 2021.

Kristoffer Torbjoern Baek and Kasper Planeta Kepp. Assessment of alphafold2 residue conformations
for human proteins. bioRxiv, 2022.

Wouter Boomsma and Jes Frellsen. Spherical convolutions and their application in molecular mod-
elling. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
1113d7a76ffceca1bb350bfe145467c6-Paper.pdf.

Maarten A Brems, Robert Runkel, Todd O Yeates, and Peter Virnau. Alphafold predicts the most
complex protein knot and composite protein knots. Protein Science, 31(8):e4380, 2022.

Stephen K Burley, Charmi Bhikadiya, Chunxiao Bi, Sebastian Bittrich, Li Chen, Gregg V Crichlow,
Cole H Christie, Kenneth Dalenberg, Luigi Di Costanzo, Jose M Duarte, et al. Rcsb protein
data bank: powerful new tools for exploring 3d structures of biological macromolecules for
basic and applied research and education in fundamental biology, biomedicine, biotechnology,
bioengineering and energy sciences. Nucleic acids research, 49(D1):D437–D451, 2021.

Ewen Callaway. ’it will change everything’: Deepmind’s ai makes gigantic leap in solving protein
structures. Nature, pp. 203–204, 2020.

Yue Cao, Payel Das, Vijil Chenthamarakshan, Pin-Yu Chen, Igor Melnyk, and Yang Shen. Fold2seq: A
joint sequence (1d)-fold (3d) embedding-based generative model for protein design. In International
Conference on Machine Learning, pp. 1261–1271. PMLR, 2021.

Sheng Chen, Zhe Sun, Lihua Lin, Zifeng Liu, Xun Liu, Yutian Chong, Yutong Lu, Huiying Zhao,
and Yuedong Yang. To improve protein sequence profile prediction through image captioning on
pairwise residue distance map. Journal of chemical information and modeling, 60(1):391–399,
2019.

Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning based
protein sequence design using proteinmpnn. bioRxiv, 2022.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29:3844–3852, 2016.

Wenze Ding, Kenta Nakai, and Haipeng Gong. Protein design via deep learning. Briefings in
bioinformatics, 23(3):bbac102, 2022.

Baldwin Dumortier, Antoine Liutkus, Clément Carré, and Gabriel Krouk. Petribert: Augmenting bert
with tridimensional encoding for inverse protein folding and design. bioRxiv, 2022.

Nicholas J Fowler and Mike P Williamson. The accuracy of protein structures in solution determined
by alphafold and nmr. Structure, 2022.

Fabian B Fuchs, Daniel E Worrall, Volker Fischer, and Max Welling. Se (3)-transformers: 3d
roto-translation equivariant attention networks. arXiv preprint arXiv:2006.10503, 2020.

10

https://proceedings.neurips.cc/paper/2017/file/1113d7a76ffceca1bb350bfe145467c6-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/1113d7a76ffceca1bb350bfe145467c6-Paper.pdf

Under review as a conference paper at ICLR 2022

Wenhao Gao, Sai Pooja Mahajan, Jeremias Sulam, and Jeffrey J Gray. Deep learning in protein
structural modeling and design. Patterns, 1(9):100142, 2020.

Zhangyang Gao, Cheng Tan, Lirong Wu, and Stan Z Li. Semiretro: Semi-template framework boosts
deep retrosynthesis prediction. arXiv preprint arXiv:2202.08205, 2022.

Joe G Greener, Lewis Moffat, and David T Jones. Design of metalloproteins and novel protein folds
using variational autoencoders. Scientific reports, 8(1):1–12, 2018.

Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and Alexander
Rives. Learning inverse folding from millions of predicted structures. bioRxiv, 2022.

Bin Huang, Tingwe Fan, Kaiyue Wang, Haicang Zhang, Chungong Yu, Shuyu Nie, Yangshuo Qi,
Wei-Mou Zheng, Jian Han, Zheng Fan, et al. Accurate and efficient protein sequence design
through learning concise local environment of residues. bioRxiv, 2022.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Yi-Xin Huo, Kwang Myung Cho, Jimmy G Lafontaine Rivera, Emma Monte, Claire R Shen, Yajun
Yan, and James C Liao. Conversion of proteins into biofuels by engineering nitrogen flux. Nature
biotechnology, 29(4):346–351, 2011.

John Ingraham, Vikas K Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for
graph-based protein design. 2019.

Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael JL Townshend, and Ron Dror. Learning
from protein structure with geometric vector perceptrons. arXiv preprint arXiv:2009.01411, 2020.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Mostafa Karimi, Shaowen Zhu, Yue Cao, and Yang Shen. De novo protein design for novel folds using
guided conditional wasserstein generative adversarial networks. Journal of chemical information
and modeling, 60(12):5667–5681, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Alex J Li, Mindren Lu, Israel Tilahun Desta, Vikram Sundar, Gevorg Grigoryan, and Amy E Keating.
Neural network-derived potts models for structure-based protein design using backbone atomic
coordinates and tertiary motifs. bioRxiv, 2022a.

Alex J Li, Vikram Sundar, Gevorg Grigoryan, and Amy E Keating. Terminator: A neural framework
for structure-based protein design using tertiary repeating motifs. arXiv preprint arXiv:2204.13048,
2022b.

Jianshu Li, Jian Zhao, Congyan Lang, Yidong Li, Yunchao Wei, Guodong Guo, Terence Sim,
Shuicheng Yan, and Jiashi Feng. Multi-human parsing with a graph-based generative adversar-
ial model. ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMM), 17(1):1–21, 2021a.

Jie Li and Patrice Koehl. 3d representations of amino acids—applications to protein sequence
comparison and classification. Computational and structural biotechnology journal, 11(18):47–58,
2014.

Pan Li, Da Li, Wei Li, Shaogang Gong, Yanwei Fu, and Timothy M Hospedales. A simple feature aug-
mentation for domain generalization. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 8886–8895, 2021b.

11

Under review as a conference paper at ICLR 2022

Zhixiu Li, Yuedong Yang, Eshel Faraggi, Jian Zhan, and Yaoqi Zhou. Direct prediction of profiles
of sequences compatible with a protein structure by neural networks with fragment-based local
and energy-based nonlocal profiles. Proteins: Structure, Function, and Bioinformatics, 82(10):
2565–2573, 2014.

Ziyao Li, Xuyang Liu, Weijie Chen, Fan Shen, Hangrui Bi, Guolin Ke, and Linfeng Zhang. Uni-fold:
An open-source platform for developing protein folding models beyond alphafold. bioRxiv, 2022c.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa,
Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of protein sequences at
the scale of evolution enable accurate structure prediction. bioRxiv, 2022.

Yufeng Liu, Lu Zhang, Weilun Wang, Min Zhu, Chenchen Wang, Fudong Li, Jiahai Zhang, Houqiang
Li, Quan Chen, and Haiyan Liu. Rotamer-free protein sequence design based on deep learning and
self-consistency. 2022.

Yvette A Luyten, Deanna E Hausman, Juliana C Young, Lindsey A Doyle, Kerilyn M Higashi,
Natalia C Ubilla-Rodriguez, Abigail R Lambert, Corina S Arroyo, Kevin J Forsberg, Richard D
Morgan, et al. Identification and characterization of the wyl brxr protein and its gene as separable
regulatory elements of a brex phage restriction system. Nucleic acids research, 50(9):5171–5190,
2022.

Jack B Maguire, Daniele Grattarola, Vikram Khipple Mulligan, Eugene Klyshko, and Hans Melo.
Xenet: Using a new graph convolution to accelerate the timeline for protein design on quantum
computers. PLoS computational biology, 17(9):e1009037, 2021.

Matt McPartlon, Ben Lai, and Jinbo Xu. A deep se (3)-equivariant model for learning inverse protein
folding. bioRxiv, 2022.

Milot Mirdita, Konstantin Schütze, Yoshitaka Moriwaki, Lim Heo, Sergey Ovchinnikov, and Martin
Steinegger. Colabfold: making protein folding accessible to all. Nature Methods, pp. 1–4, 2022.

Francesca E Morreale, Stefan Kleine, Julia Leodolter, Sabryna Junker, David M Hoi, Stepan Ovchin-
nikov, Anastasia Okun, Juliane Kley, Robert Kurzbauer, Lukas Junk, et al. Bacprotacs mediate
targeted protein degradation in bacteria. Cell, 2022.

James O’Connell, Zhixiu Li, Jack Hanson, Rhys Heffernan, James Lyons, Kuldip Paliwal, Abdollah
Dehzangi, Yuedong Yang, and Yaoqi Zhou. Spin2: Predicting sequence profiles from protein
structures using deep neural networks. Proteins: Structure, Function, and Bioinformatics, 86(6):
629–633, 2018.

Sergey Ovchinnikov and Po-Ssu Huang. Structure-based protein design with deep learning. Current
opinion in chemical biology, 65:136–144, 2021.

Carl Pabo. Molecular technology: designing proteins and peptides. Nature, 301(5897):200–200,
1983.

Robin Pearce and Yang Zhang. Deep learning techniques have significantly impacted protein structure
prediction and protein design. Current opinion in structural biology, 68:194–207, 2021.

William R Pearson and Michael L Sierk. The limits of protein sequence comparison? Current
opinion in structural biology, 15(3):254–260, 2005.

Joana Pereira, Adam J Simpkin, Marcus D Hartmann, Daniel J Rigden, Ronan M Keegan, and
Andrei N Lupas. High-accuracy protein structure prediction in casp14. Proteins: Structure,
Function, and Bioinformatics, 89(12):1687–1699, 2021.

Yifei Qi and John ZH Zhang. Densecpd: improving the accuracy of neural-network-based computa-
tional protein sequence design with densenet. Journal of chemical information and modeling, 60
(3):1245–1252, 2020.

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
arXiv preprint arXiv:2102.09844, 2021.

12

Under review as a conference paper at ICLR 2022

Nadine M Shaban, Rui Yan, Ke Shi, Sofia N Moraes, Adam Z Cheng, Michael A Carpenter, Jason S
McLellan, Zhiheng Yu, and Reuben S Harris. Cryo-em structure of the ebv ribonucleotide reductase
borf2 and mechanism of apobec3b inhibition. Science advances, 8(17):eabm2827, 2022.

Muhammed Shuaibi, Adeesh Kolluru, Abhishek Das, Aditya Grover, Anuroop Sriram, Zachary Ulissi,
and C Lawrence Zitnick. Rotation invariant graph neural networks using spin convolutions. arXiv
preprint arXiv:2106.09575, 2021.

Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein sequence searching for
the analysis of massive data sets. Nature biotechnology, 35(11):1026–1028, 2017.

Alexey Strokach and Philip M Kim. Deep generative modeling for protein design. Current opinion
in structural biology, 72:226–236, 2022.

Alexey Strokach, David Becerra, Carles Corbi-Verge, Albert Perez-Riba, and Philip M Kim. Fast and
flexible protein design using deep graph neural networks. Cell Systems, 11(4):402–411, 2020.

Cheng Tan, Zhangyang Gao, Jun Xia, and Stan Z Li. Generative de novo protein design with global
context. arXiv preprint arXiv:2204.10673, 2022.

Wen Torng and Russ B Altman. 3d deep convolutional neural networks for amino acid environment
similarity analysis. BMC bioinformatics, 18(1):1–23, 2017.

Michel van Kempen, Stephanie Kim, Charlotte Tumescheit, Milot Mirdita, Johannes Söding, and
Martin Steinegger. Foldseek: fast and accurate protein structure search. bioRxiv, 2022.

Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina
Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, et al. Alphafold protein
structure database: Massively expanding the structural coverage of protein-sequence space with
high-accuracy models. Nucleic acids research, 2021.

Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy Natassia, Galabina
Yordanova, David Yuan, Oana Stroe, Gemma Wood, Agata Laydon, et al. Alphafold protein
structure database: massively expanding the structural coverage of protein-sequence space with
high-accuracy models. Nucleic acids research, 50(D1):D439–D444, 2022.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Jingxue Wang, Huali Cao, John ZH Zhang, and Yifei Qi. Computational protein design with deep
learning neural networks. Scientific reports, 8(1):1–9, 2018.

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco S Cohen.
3d steerable cnns: Learning rotationally equivariant features in volumetric data. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
488e4104520c6aab692863cc1dba45af-Paper.pdf.

Stephen A Williams, Mika Kivimaki, Claudia Langenberg, Aroon D Hingorani, JP Casas, Claude
Bouchard, Christian Jonasson, Mark A Sarzynski, Martin J Shipley, Leigh Alexander, et al. Plasma
protein patterns as comprehensive indicators of health. Nature medicine, 25(12):1851–1857, 2019.

Ruidong Wu, Fan Ding, Rui Wang, Rui Shen, Xiwen Zhang, Shitong Luo, Chenpeng Su, Zuofan Wu,
Qi Xie, Bonnie Berger, et al. High-resolution de novo structure prediction from primary sequence.
BioRxiv, 2022.

Zachary Wu, Kadina E Johnston, Frances H Arnold, and Kevin K Yang. Protein sequence design
with deep generative models. Current opinion in chemical biology, 65:18–27, 2021.

Yuan Zhang, Yang Chen, Chenran Wang, Chun-Chao Lo, Xiuwen Liu, Wei Wu, and Jinfeng Zhang.
Prodconn: Protein design using a convolutional neural network. Proteins: Structure, Function, and
Bioinformatics, 88(7):819–829, 2020a.

13

https://proceedings.neurips.cc/paper/2018/file/488e4104520c6aab692863cc1dba45af-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/488e4104520c6aab692863cc1dba45af-Paper.pdf

Under review as a conference paper at ICLR 2022

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. IEEE Transactions on
Knowledge and Data Engineering, 2020b.

Zuobai Zhang, Minghao Xu, Arian Jamasb, Vijil Chenthamarakshan, Aurelie Lozano, Payel Das,
and Jian Tang. Protein representation learning by geometric structure pretraining. arXiv preprint
arXiv:2203.06125, 2022.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI Open, 1:57–81, 2020.

14

Under review as a conference paper at ICLR 2022

A DATA STATISTICS

Protein length In Table.6, we count the protein in each species dataset by length. AlphaFold DB
contains some extra-long proteins, so it is necessary to improve the algorithm efficiency.

ID Name Structures ≤ 30 (30, 500) [500, 1000] > 1000

1 DANRE 24,664 27 15,460 6,573 2,604
2 CANAL 5,974 0 3,656 1,874 444
3 MOUSE 21,615 55 13,767 5,668 2,125
4 ECOLI 4,363 63 3,719 526 55
5 DROME 13,458 28 8,509 3,563 1,358
6 METJA 1,773 0 1,605 144 24
7 PLAF7 5,187 1 2,832 1,313 1,041
8 MYCTU 3,988 4 3,365 536 83
9 CAEEL 19,694 52 15,073 3,592 977

10 DICDI 12,622 3 7,663 3,367 1,589
11 TRYCC 19,036 6 12,622 5,007 1,401
12 YEAST 6,040 24 3,789 1,715 512
13 SCHPO 5,128 5 3,385 1,386 352
14 RAT 21,272 12 13,884 5,370 2,006
15 HUMAN 23,391 49 12,399 5,653 5,290
16 ARATH 27,434 42 19,885 6,389 1,118
17 MAIZE 39,299 83 29,145 8,360 1,711
18 LEIIN 7,924 0 4,276 2,505 1,143
19 STAA8 2,888 22 2,567 267 32
20 SOYBN 55,799 17 41,048 12,353 2,381
21 ORYSJ 43,649 78 35,987 6,738 846

Sum 365,198 571 254,636 82,899 27,092

Table 6: AlphaFold DB: we show the total number of proteins Nall, and the number of proteins whose length
within (0, 30], (30, 500], (500, 1000] and (1000,+∞]. The statistics of all species-specific subsets are also
presented.

15

Under review as a conference paper at ICLR 2022

B PREPROCESSING

Filter low quality data by pLDDT Similar to ESM-IF (Hsu et al., 2022), we address data quality
and partitioning issues through data pre-processing for each species-specific subset. As suggested by
(Baek & Kepp, 2022; Callaway, 2020), the MAE between the predicted and experimentally generated
structures does depend on pLDDT. Thus, we filter low-quality structures whose confidence score
(pLDDT) is less than 70.

Filter test data by sequence identity To prevent potential information leakage, for each species-
specific subset, we cluster protein sequences if their sequence similarities (Qi & Zhang, 2020;
Steinegger & Söding, 2017) are higher than 30% (Qi & Zhang, 2020) and split the dataset by these
clusters. As a result, the proteins belonging to the same cluster must be in one of the training,
validation, and test sets. By default, we keep the ratio of training set to test set around 9:1 and select
100 proteins from a randomly selected cluster for validation. If the randomly selected cluster has
less than 100 proteins, then all of its proteins are used as the validation set. In Table.7, we show the
number of training data (#Train), validation data (#Valid), and test data (#Test) under the partition
based on 30% sequence identity.

Filter test data by TS-score In addition to the sequence identity clustering, we further filter the
test sets by structural similarity using Foldseek (van Kempen et al., 2022) to exclude any structures
with TM-score larger than 0.5 from those in the training set. Thus, the training and test sets are
strictly different at both the sequence and structure levels. In Table.7, we show the number of test
data (#TMTest) after filtering by 30% sequence identity and 0.5 TM-score.

SL setting SA setting

ID Name #Train #Valid #Test #TMTest #Train #Valid #Test #TMTest
1 DANRE 13914 100 1446 493 22197 100 2367 808
2 CANAL 3290 99 267 168 5377 99 498 240
3 MOUSE 12417 73 1277 412 19524 28 2063 862
4 ECOLI 3347 100 272 114 3926 100 337 129
5 DROME 7672 86 751 369 12112 100 1246 610
6 METJA 1444 80 81 42 1595 88 90 47
7 PLAF7 2561 87 184 105 4668 100 419 267
8 MYCTU 3028 100 237 98 3589 100 299 78
9 CAEEL 13565 95 1413 522 17724 96 1874 743
10 DICDI 6896 100 667 346 11359 100 1163 586
11 TRYCC 11360 98 1164 739 17132 86 1818 964
12 YEAST 3410 100 279 169 5436 100 504 263
13 SCHPO 3046 100 239 118 4616 99 413 200
14 RAT 12495 45 1344 56 19145 99 2028 858
15 HUMAN 11160 99 1140 452 21051 100 2240 955
16 ARATH 17897 99 1889 750 24690 94 2650 910
17 MAIZE 26232 98 2815 1220 35369 100 3830 1420
18 LEIIN 3848 100 328 201 7131 100 693 411
19 STAA8 2310 100 157 76 2599 100 189 75
20 SOYBN 36944 99 4005 1732 50226 92 5481 2152
21 ORYSJ 32388 97 3502 2047 39289 95 4265 2273

Sum 229224 1955 23457 10229 328755 1976 34467 14851

Table 7: Dataset splits. We show the number of training data (#Train), validation data (#Valid), and test data
(#Test) under the partition based on 30% sequence identity. We also exhibit the number of test data (#TMTest)
after filtering by 30% sequence identity and 0.5 TM-score.

16

Under review as a conference paper at ICLR 2022

C RESULTS AFTER TM-SCORE FILTERING

TM-score filtered Results We evaluated all models on test sets filtered by both 30% sequence
identity and 0.5 TM-score, and provide the TM-score filtered benchmarks on Table.8 and Table.9.
Compared to the results without using the TM-score filter, the relative performance gain of our model
is slightly reduced. The average model performance on this TM score-based test set remains nearly
the same as on the sequence identity-based test set. We note that ESM-IF also finds that “the model
performance overall remains the same on the TM score-based test set as on the CATH topology split
test set.” These facts show that more filters do not make the model predictions as difficult as we
expected. This means that the model may not rely on the so-called homologous information leakage
for prediction, but actually learns the patterns of the data.

Table 8: TM-score filtered SL benchmark. The length
of the protein must be between 30 and 500. The se-
quence identity and TM-score between training and
testing proteins are less than 30% and 0.5, respectively.

GTrans SGNN GVP GCA Our(SL) Gain
DANRE 42.86 53.57 60.17 61.96 69.18 7.22
CANAL 47.69 51.56 52.52 59.20 62.22 3.02
MOUSE 48.55 53.74 58.60 62.61 68.65 6.04
ECOLI 38.55 52.46 54.93 59.32 60.49 1.17

DROME 43.20 53.98 60.00 62.07 68.91 6.84
METJA 42.86 52.77 51.23 57.78 62.47 4.69
PLAF7 48.00 50.49 51.59 61.29 64.10 2.81

MYCTU 53.88 56.42 58.08 66.45 69.20 2.75
CAEEL 48.42 56.05 63.65 66.67 74.24 7.57
DICDI 41.18 53.81 59.68 64.07 69.85 5.78
TRYCC 54.13 59.04 64.24 64.68 74.55 9.87
YEAST 34.86 49.28 51.95 58.82 62.07 3.25
SCHPO 46.35 49.32 52.17 59.77 62.43 2.66

RAT 44.14 54.43 59.52 63.05 70.96 7.91
HUMAN 50.29 54.48 61.06 63.83 70.69 6.86
ARATH 44.83 55.68 62.86 65.05 72.26 7.21
MAIZE 46.62 55.56 64.13 66.33 75.00 8.67
LEIIN 50.50 52.96 56.25 61.36 66.52 5.16
STAA8 45.81 47.54 48.41 58.65 59.90 1.25
SOYBN 46.93 55.74 63.16 64.43 73.68 9.25
ORYSJ 45.14 54.12 62.50 64.10 73.77 9.67
Average 45.94 53.48 57.94 62.45 68.15 5.70

Table 9: TM-score filtered SA benchmark. There is no
constraint on the protein length. The sequence identity
and TM-score between training and testing proteins are
less than 30% and 0.5, respectively.

GTrans SGNN GVP GCA Our(SA) Gain
DANRE 47.83 56.27 65.00 64.91 63.54 -1.46
CANAL 51.59 54.84 62.02 61.67 69.26 7.24
MOUSE 47.06 56.99 63.64 64.77 74.06 9.29
ECOLI 50.41 54.02 59.43 61.23 66.11 4.88

DROME 50.97 56.46 63.55 62.93 72.88 9.33
METJA 51.24 52.50 55.60 59.80 59.79 -0.01
PLAF7 48.30 54.39 58.32 60.35 67.04 6.69

MYCTU 46.66 56.43 59.84 63.50 69.09 5.59
CAEEL 46.95 53.73 64.40 66.34 74.59 8.25
DICDI 56.85 58.10 64.86 64.82 73.51 8.65
TRYCC 50.26 61.41 66.36 69.08 77.73 8.65
YEAST 49.62 53.90 59.92 59.01 67.69 7.77
SCHPO 47.31 53.43 59.38 60.26 66.83 6.57

RAT 47.14 56.52 64.16 64.00 73.21 9.05
HUMAN 55.37 56.00 64.36 64.41 66.83 2.42
ARATH 47.03 56.38 65.04 64.70 73.82 8.78
MAIZE 56.46 58.05 66.04 66.67 76.00 9.33
LEIIN 55.64 58.00 64.55 65.03 64.62 -0.41
STAA8 48.68 51.35 53.85 58.95 63.16 4.21
SOYBN 48.98 57.52 64.60 69.85 76.78 6.93
ORYSJ 46.38 57.14 64.81 65.12 75.36 10.14
Average 50.03 55.88 62.37 63.69 70.09 6.40

17

Under review as a conference paper at ICLR 2022

D BENCHMARK ON CATH4.2

How we re-run baselines We tune hyperparameters of all models on CATH4.2. For baseline
models, we prefer to choose the hyperparameters recommended in their original paper to ensure
that the results produced by our code are consistent with those reported, as shown in Table.10.
For AEDesign, we also tune the hidden dimensions (128) and the number of layers (10 layers of
GNN + 3 layers of CNN) in CATH4.2 to investigate whether it could achieve competitive results.
When adapting to the new dataset, such as AlphaFold DB, we we fix hyperparameters of all models,
including AEDesign, to be the same as those on CATH4.2. For each model, we use the same batch
size as in the reproduction phase and adjust the learning rate in [0.001, 0.0001] to ensure that the
model is converged stably.

Results on CATH4.2 We provide results where models are trained on CATH4.2 in Table.10 for
investigating the potential of AEDesign model when designing native proteins. We use the same
data splitting as GraphTrans (Ingraham et al., 2019) and GVP (Jing et al., 2020), where proteins are
partitioned by the CATH topology classification, resulting in 18024 proteins for training, 608 proteins
for validation, and 1120 proteins for testing. We observe that the non-autoregressive AEDesign
outperforms its competitors in recovery while the autoregressive GVP and GCA achieve lower
perplexity. Since recovery is the primary measure, we conclude that AEDesign is competitive in
designing native proteins. More importantly, the performance order of models is consistent with the
results on AlphaFold DB: AEDesign > GCA ≈ GVP > StructGNN > GraphTrans.

Table 10: Results comparison on the CATH dataset. All baselines are reproduced under the same code
framework, where perplexity (lower is better) and recovery (higher is better) are reported. The best and next best
results are labeled with bold and underline.

Model Perplexity ↓ Recovery % ↑
Short Single-chain All Short Single-chain All

Reported

StructGNN 8.33 8.86 6.55 – – –
GraphTrans 8.54 9.03 6.85 – 27.6 –
GVP 7.10 7.44 5.29 32.1 32.0 40.2
GCA 7.68 8.09 6.44 33.25 33.04 36.11

Reproduced

StructGNN 8.29 8.74 6.40 29.44 28.26 35.91
GraphTrans 8.39 8.83 6.63 28.14 28.46 35.82
GVP 7.23 7.84 5.36 30.60 28.95 39.47
GCA 7.09 7.49 6.05 32.62 31.10 37.64
AEDesign 7.32 7.63 6.30 34.16 32.66 41.31

18

Under review as a conference paper at ICLR 2022

E DOMAIN GENERALIZATION

This work does not study the domain generalization problem, which could be another research
direction. However, it will be good for readers to know the difference between proteins created by
AlphaFold2 and native ones.

Discussion about Domain shifts We study the domain shifts between proteins created by Al-
phaFold2 and native proteins. Taking all the testing sets of AF2DB and CATH4.2 as examples,
we statistics the distribution of angle features to study whether there are significant differences, as
shown in Table.11. We also compare angle distributions of AF2DB and CATH4.2 in Figure.7. We
observe that the angle distributions are quite similar but not the same between AF2DB and CATH4.2.
The similar distribution means that the knowledge learned from AF2DB could be transferred into
CATH4.2, while the difference may lead to performance degradation when transferring to different
domains.

Figure 7: Comparing the angle distributions between CATH4.2 and AF2DB, structural noise = 0.00.

Noise std ψ ω ϕ α β γ

0
CATH4.2 1.34(0.89) -0.66(1.57) -0.40(3.04) 1.01(0.09) 1.20(0.05) 1.11(0.08)
AF2DB 1.20(0.96) -0.78(1.44) -1.53(2.55) 0.98(0.07) 1.19(0.05) 1.09(0.07)
KL 1.38 3.10 17.12 175.64 11.76 52.46

0.02
CATH4.2 1.34(0.89) -0.66(1.57) -0.33(3.05) 1.01(0.10) 1.20(0.06) 1.11(0.09)
AF2DB 1.19(0.96) -0.78(1.44) -1.44(2.60) 0.98(0.08) 1.19(0.06) 1.09(0.08)
KL 2.30 2.97 12.71 73.24 5.33 25.54

0.05
CATH4.2 1.34(0.90) -0.65(1.57) -0.22(3.03) 1.02(0.12) 1.21(0.09) 1.11(0.11)
AF2DB 1.19(0.97) -0.78(1.44) -1.16(2.72) 0.98(0.11) 1.19(0.09) 1.09(0.10)
KL 1.07 2.61 9.25 18.21 1.87 3.58

0.1
CATH4.2 1.33(0.92) -0.63(1.59) -0.14(2.99) 1.03(0.18) 1.21(0.15) 1.12(0.18)
AF2DB 1.19(0.99) -0.77(1.46) -0.83(2.80) 0.99(0.18) 1.20(0.15) 1.10(0.17)
KL 1.26 2.07 5.21 4.11 0.81 0.49

Table 11: Statistics of angle features. We count angle distributions for the testing sets of AF2DB (SL setting) and
CATH4.2. The mean and standard deviation are provided, where the standard deviation is marked in brackets.
We also provide KL divergence between the angle distributions of AF2DB and CATH4.2. Gaussian noise could
be added to the input structures, where the noise std is listed in the left.

Address the domain shift issue How to eliminate domain differences? Inspired by Li at.el(Li
et al., 2021b; Dauparas et al., 2022; Hsu et al., 2022), we find that perturbing input structures with
Gaussian noise during training leads to improved domain-generalization performance. As shown
in Table.11, the KL divergence between features of AF2DB and CATH4.2 decreases when the the
standard deviation of Gaussian noise increases. When training AEDesign on SOYBN (a subset of

19

Under review as a conference paper at ICLR 2022

AF2DB) and evaluating it on the testing set of CATH4.2, the generalization can be enhanced by
adding noise, as shown in Table.12. However, this does not mean that higher noise levels are better,
as too much noise may obscure all useful information.

Noise std 0.00 0.001 0.02 0.05 0.08 0.10 0.20 0.30

CATH4.2 20.74 29.21 32.62 34.51 34.24 33.63 31.90 29.26

Table 12: Results under the cross-domain setting. We train AEDesign on the training set of SOYBN, and
evaluate it on the testing set of CATH4.2. We reveal how the noise level helps the domain generalization.

We have discussed the domain shift issue between AF2DB and CATH4.2, and verified that the model
trained on AF2DB by simply adding Gaussian noise is effective for designing native proteins. This
discovery is consistent with the results of ESM-IF and ProteinMPNN. However, we provide new
insight into why adding noise is effective. We believe that better domain generalization methods
could further improve the model’s performance, but we do not intend to study it in depth in this
work. Moreover, ESM-IF has verified that: training AF2DB with CATH4.2 should further improve
the model performance from 38.3% to 51.6% on the CATH dataset, and this paper does not repeat
their innovation. From our perspective, ESM-IF’s data augmentation is actually another domain
generalization approach.

Figure 8: Comparing the angle distributions between CATH4.2 and AF2DB, structural noise = 0.02.

20

Under review as a conference paper at ICLR 2022

Figure 9: Comparing the angle distributions between CATH4.2 and AF2DB, structural noise = 0.05.

Figure 10: Comparing the angle distributions between CATH4.2 and AF2DB, structural noise = 0.10.

21

	Introduction
	Related work
	Methods
	Overview
	 Graph feature and encoder
	Sequence decoder

	Experiments
	Benchmark comparation (Q1)
	AEDesign benchmark (Q2)
	Efficiency comparation (Q2)
	Ablation study (Q3)
	Visual examples

	Conclusion
	Data statistics
	Preprocessing
	Results after TM-score filtering
	Benchmark on CATH4.2
	Domain generalization

