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Abstract

In causal discovery, linear non-Gaussian acyclic models (LiNGAMs) have been
studied extensively. While the causally sufficient case is well understood, in many
real applications the observed variables are not causally related. Rather, they are
generated by latent variables, such as confounders and mediators, which may
themselves be causally related. Existing results on the identification of the causal
structure among the latent variables often require very strong graphical assumptions.
In this paper, we consider partially observed linear models with either non-Gaussian
or heterogeneous errors. In that case we give two graphical conditions which are
necessary for identification of the causal structure. These conditions are closely
related to sparsity of the causal edges. Together with one additional condition on
the coefficients, which holds generically for any graph, the two graphical conditions
are also sufficient for identifiability. These new conditions can be satisfied even
when the number of latent variables is very large. We demonstrate the validity of
our results on synthetic data.

1 Introduction

In the standard causal discovery problem, we are given non-experimental data and aim to learn the
direct causal relations between the observed variables [1, 2]. But in many applications, we do not
believe that all causal variables relevant to the observed system have been measured. While some
of the observed variables may interact directly, others might interact indirectly via latent mediators,
and still others could be generated by latent common causes; indeed, any pair of observed variables
may stand in all three relations at once. Further, the relevant latent variables may be causally related
themselves. For example, responses to psychometric questionnaires are usually thought of as noisy
views of various traits, and the researcher is predominately interested in the causal relations between
these hidden traits and their hierarchical structure. Similarly, in financial markets, stock returns may
be causally related, but may also be confounded or mediated by a complicated network of unmeasured
economic and political factors.

It is natural to ask what conditions are both necessary and sufficient for the identification of such
partially observed causal structures from observational data. Various sufficient conditions have
been proposed; however, these conditions are rather restrictive, and are not in general necessary for
identification of the full causal structure.
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In this work, we consider the case of linear causal models in which the overcomplete mixing matrix
from the noise terms to the measured variables is identifiable up to permutation and scaling of columns.
This is possible, for example, in the case of independent non-Gaussian noise [3], or when given
access to heterogeneous domains in which the variances of the noise terms change independently
across domains but the causal graph and weights remain constant (see Theorem 1 of our paper). We
provide necessary and sufficient conditions under which the latent causal structure can be uniquely
identified up to trivial indeterminicies.

2 Problem setup

Suppose some causal variables V = {V1, . . . , Vp} follow a linear structural equation model (SEM)

V = FV + ε, (1)

where V := (V1, . . . , Vp)T is a vector of causal variables, F is a causal adjacency matrix that can
be permuted (by simultaneous row and column permutations) to strictly lower-triangular form, and
ε = (ε1, . . . , εp)T is a vector of independent noise variables. In this paper we consider two settings
for εi: 1) all εi are mutually independent and non-Gaussian; or 2) there are multiple domains, εi are
uncorrelated within each domain, and their variances change independently across domains. We will
make the second assumption technically precise Section 3.

We seek necessary and jointly sufficient conditions for identifiability of F (up to trivial indetermina-
cies) in the case where only some subset of V (which we call X ) is measured. Thus F may encode
observed-observed interactions, latent confounding, latent-latent interactions, and latent mediation or
intermediate confounding. Our results identify F from the equivalence classM, as defined in Section
2.2, of mixing matrices induced by (1). This equivalence classM is identifiable if, for example, the
errors are non-Gaussian or if their distribution changes over time or between domains.

2.1 Notation

For any matrix A and index sets J and K, we write AJ
K to denote the submatrix of A with columns

indexed by J and rows indexed by K. Observe that AJ
K = IKAIJ . Thus, FJ

K describes the direct
effect of {Vj : j ∈ J} on {Vk : k ∈ K}. (Remember: causes are up-stream of their effects.)

The graph induced by (1) has edges Vi → Vj whenever Fi
j 6= 0. We write Pa(Vi) := {Vj : Vi ← Vj}

and Ch(Vi) := {Vj : Vi → Vj}, respectively, to denote the parents and children of Vi. We say that
(V1, ..., Vk) constitutes a directed path from V1 to Vk if Vi → Vi+1 for every i ∈ {1, ..., k − 1}.
Trivially, for every Vi, (Vi) is a directed path from Vi to itself; we say that a directed graph is acyclic
(a DAG) if (Vi) is the only such path. We write Anc(Vi) := {Vj ∈ V : Vj has a directed path to Vi}
and Desc(Vi) := {Vj : Vi has a directed path to Vj}, respectively, to denote the ancestors and
descendants of Vi. For DAGs, notice that Anc(Vi) ∩Desc(Vi) = {Vi}, but Vi 6∈ Pa(Vi) ∪ Ch(Vi).

We assume that only some subset X ⊆ V is observed, with the remaining L = V − X being latent.
We use Vi to denote a generic variable, observed or latent, whileXi ∈ X denotes an observed variable
and Lj ∈ L denotes a latent variable. When it is clear from context, we occasionally suppress the
distinction between a variable Vi and its index i.

2.2 Identification and minimality

Since F induces a DAG, we can always solve (1) to express the causal variables in terms of the
independent noise terms:

V = Mε, (2)
where

M := (I− F)−1 (3)
is the mixing matrix with Mi

j being the net effect of εi on Vj . This net effect is calculated by
multiplying causal weights along paths and summing across paths. Notice that if Mi

j 6= 0, then
Vj ∈ Desc(Vi).

Because L is hidden, let us explicitly write X in terms of ε:

X = MX ε. (4)
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In both the non-Gaussian and heterogeneous settings we consider in this paper, MX is identifiable up
to permutation and scaling of columns; that is, we can identify the equivalence class

M = {MXDP : DP ∈ DPp}, (5)

where

DPp := {DP ∈ Rp×p : D is full rank diagonal and P is a permutation matrix}.
We argue this for both settings individually in Section 3.

We say that an adjacency matrix F generatesM if (I−F)−1X ∈M. Of course, in partially observed
systems, the adjacency matrix that generatesM is not unique. However, some of these matrices are
sparser than others. In causal discovery, as in model selection more broadly, we tend to prefer the
“simplest” model that adequately fits the data [4, 5]. As a result, without prior knowledge, a partially
observed linear causal model cannot be identified if the population distribution can be written in
terms of an equally sparse or sparser model; after all, we would never select a complicated model if
a simpler model fits just as well. It is therefore natural to recast the question of identifiability to a
question of maximal sparsity.

Let the `0 “norm” of a matrix ‖ · ‖0 denote the number of non-zero entries in that matrix. Then we say
that a causal adjacency matrix F is minimal with respect toM if F generatesM and ‖F̂‖0 ≥ ‖F‖0
for any F̂ 6= F that generatesM.

Let F denote the class of minimal adjacency matrices that generate M. Clearly, since M is
identifiable, so is F . We say that an adjacency matrix F is identified up to trivialities if

F =
{

(DP)−1FDP : DP ∈ DPp with (DP)XX = I
}
. (6)

The only indeterminacy remaining in F amounts to re-indexing and re-scaling the latent factors.

A word of caution is in order. Because the adjacency matrix that generatesM is not unique in the
partially observed case, it is only possible to talk about identification with respect to some selection
principle. Throughout this work we use minimality as such a selection principle – indeed we define
identification in terms of it. As justification, in Section 5.1, we describe one class of non-minimal
adjacency matrices which are pathological and whose exclusion is desirable; further, in Section 6, we
show that existing works make assumptions even stronger than minimality; further still, in Section
7, we show that popular model selection criteria like BIC favor minimal graphs. Nevertheless, just
as BIC is not always the most sensible criterion for model selection, so minimality is not always
the most sensible principle for an identification theory. For example, Figure 1 shows a non-minimal
graph which is not pathological. Thus, if a practitioner believes the true partially observed causal
model to be non-minimal, they should content themselves with partial identification (c.f. [6]).

In Sections 4 and 5, we express identification up to trivialities in terms of two local graphical
conditions, which are much easier to check than (6). But first, we return to the identifiability ofM.

3 Sufficient conditions for identification ofM

The main results of Sections 4 and 5 rely on the identifiability ofM, which is theoretically guaranteed
in the two settings we consider in this paper. In the first setting, εi are assumed to be independent and
non-Gaussian. Then according to Theorem 3 by Eriksson and Koivunen [7],M is identifiable from
the distribution of X. The task of estimatingM from X is known as Overcomplete Independent
Component Analysis (OICA) [3], and in practice this task is known to be computationally difficult
[8].

In the second setting, εi are uncorrelated from each other with changing variances across multiple
domains (or over time) and MX has full row rank (which is always the case for acyclic models). Note
that in this setting, while the components of ε are mutually independent within each domain, they
are not necessarily mutually independent across domains because their variances may be dependent
across domains. This setting is expected to apply to a number of nonstationary scenarios including
brain signal analysis, and the following theorem establishes the corresponding identifibiality ofM.
Besides complementing Theorem 3 of Eriksson and Koivunen [7] as an alternative foundation for our
identification work, the identifiability ofM in this setting may be of independent interest in the fields
of blind source separation and system identification.
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Theorem 1. Suppose we have observed X generated according to the mixing procedure (4) in a
number of domains, t = 1, 2, ..., T , where MX has full row rank. Assume that εi are uncorrelated
in each domain and that their variances in domain t, denoted by σ2

ti, change independently across
domains in the sense that S, whose (t, i)-th entry is σ2

ti, has full column rank. Further assume that
each |X | columns of MX are linearly independent and that p ≤ 2|X | − 2. Then if X admits a model
X = M̃X ε̃, where ε̃ also follows the above assumption on ε, then every column of M̃X must be
proportional to a column of MX and vice versa.

Note that this theorem gives sufficient conditions for the identifiability ofM; our empirical results
suggest that they are not necessary.

4 Necessary conditions for identification of F up to trivialities

In this section, we introduce our identification conditions and show that they are necessary for F to
be identified up to trivialities. The identification conditions are graphical conditions described in
terms of “bottlenecks” and “redundancies.”

Let J , K, and B be subsets of the nodes of a directed graph. Note that they need not be mutually
disjoint. We say that B is a bottleneck from J to K if, for every j ∈ J and every k ∈ K, each
directed path from j to k includes some b ∈ B. A bottleneck B from J to K will be called minimal
if every bottleneck B′ from J to K has |B′| ≥ |B|, and unique minimal if the inequality is strict
for B′ 6= B. Note that bottlenecks do not in general d-separate J and K along all paths, but only
directed paths from J to K.

It is clear from the definition that, for each Vi, Ch(Vi) is a bottleneck from Ch(Vi) to X . However,
for identification, we further require:
Condition 1 (Bottleneck). For every Vi, Ch(Vi) is the unique minimal bottleneck from Ch(Vi) to X .

As illustrated in Figure 1, the bottleneck condition ensures that if we try to “explain” the net effect of
Vi on X by replacing Ch(Vi) with any subset of Desc(Vi), the result is a denser graph. As illustrated
in Figure 3, the strong non-redundancy condition will further ensure that we cannot “explain” the
effect of Vi on Ch(Vi) via some of its non-descendants:
Condition 2 (Strong Non-Redundancy). For all Li, Vj , if Ch(Li) ⊆ Ch(Vj) ∪ {Vj} then Li = Vj .

Figure 2 shows a graph that satisfies both of these conditions. To build intuition, let us list some
simple consequences of these conditions. By the bottleneck condition, each variable must have fewer
than |X | children; but if a variable has no latent children, then the bottleneck condition is satisfied
trivially for that variable. By strong non-redundancy, each latent variable must have at least two
children. For any pair (Li, Vj), if Li is an ancestor but not a parent of Vj , or has more than one
directed path to Vj , then strong non-redundancy is satisfied for that pair. If Vj is a parent of Li and
they violate strong non-redundancy, then the bottleneck condition is violated for Vj .
Theorem 2. If F is identified up to trivialities, then the graph induced by F satisfies the bottleneck
and strong non-redundancy conditions.

Figure 1: An egregious violation of the bottleneck condition.
Left: {V2, V3} is a strictly smaller bottleneck from Ch(V1)
to X . Right: a sparser yet observationally equivalent graph.
Although both graphs also violate strong non-redundancy,
egregious bottleneck violations are not always redundant.

Figure 2: A simple graph illustrating
our structural conditions. L1 satisfies
the bottleneck condition. L2 and L3

are non-redundant as each has a child
the other does not. X1 and L3 are non-
redundant as L3 → X2 and X1 6∈ L.
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Thus the bottleneck and strong non-redundancy conditions are necessary for identification of F up to
trivialities. In Section 5, we further show that they (along with a very mild constraint on the causal
weights) are also jointly sufficient conditions.

If Ch(Vi) is not at least a minimal bottleneck for every Vi, then F 6∈ F . Figure 1 shows one example
of such a violation of the bottleneck condition. Otherwise, as long as bottleneck faithfulness is also
satisfied, F is an equivalence class of equally sparse latent structures which all violate at least one of
the bottleneck and strong non-redundancy conditions. The nature of these indeterminacies is depicted
in Figure 3. In Figure 2 we show a simple yet illustrative example in which both conditions are
satisfied.

(a) (b) (c) (d)

Figure 3: Two equivalence classes. (a) and (b) are equivalent, the former violating the bottleneck
condition (X 6= Ch(L1) is a minimal bottleneck from Ch(L1) to X ) and the latter strong non-
redundancy (Ch(L2) ⊆ Ch(L1)). (c) and (d) are equivalent, both violating strong non-redundancy.

5 Sufficient conditions for identification of F up to trivialities

In the previous section, we introduced two structural conditions which must be satisfied for F to be
identifiable up to trivialities. In this section, we prove that they (along with “bottleneck faithfulness,”
a very mild constraint on the causal weights) are also jointly sufficient. Throughout, we assume that
X is generated according to (1). In particular, we assume thatM is identifiable, for example due to
Theorem 3 of Eriksson and Koivunen [7] or Theorem 1 of the present work.

5.1 Bottleneck faithfulness

First, we connect ranks of submatrices of M to minimal bottlenecks of its corresponding graph.
Proposition 1. Let B be a minimal bottleneck from J to K. Then Rank(MJ

K) ≤ |B|.

Strict inequality in Proposition 1 for some minimal bottleneck B from J to K can make F non-
identifiable – even if the bottleneck condition and strong non-redundancy hold. For instance, both
graphical conditions hold for

X =

0 1 −1
2 2 0
3 3 0
4 0 4

L + εX , L = εL,

but Rank(MLX ) = 2 while the minimal bottleneck from L to X is L with |L| = 3. The system

X =

0 1 −1
0 2 0
0 3 0
0 0 4

L + εX , L =

[
0 0 0
1 0 0
1 0 0

]
L + εL

generates the same mixing matrix, MX , but has a strictly sparser graph. Thus to ensure identifiability,
we assume that the causal coefficients satisfy:
Condition 3 (Bottleneck Faithfulness). For every J ⊆ V,K ⊆ X , if B is a minimal bottleneck from
J to K, then Rank

(
MJ

K

)
= |B|.

In the supplementary material we characterize the set of adjacency matrices F that are bottleneck
faithful for a given graph. In particular, we show that a generic F is bottleneck faithful.

Interestingly, in linear systems, classical faithfulness is a special case of bottleneck faithfulness.
Rank(MJ

K) = 0 is a violation of classical faithfulness if there is a minimal bottleneck B 6= ∅ from
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J to K. That is, if there is a path from J to K but the path coefficients cancel out so that the net
effect of J on K is 0, the system is not faithful to the graph. Bottleneck faithfulness generalizes this
so that the net effect of J on K must have maximal rank for the given graph.

5.2 Identifiability

In this subsection, we show that if the bottleneck condition, strong non-redundancy, and bottleneck
faithfulness hold for F, then F is identifiable up to trivialities. Throughout, we assume the three
conditions hold.

Our approach is illustrated by the following computation. For any Vi,

MX (I− F)i = IiX . (7)

Let J = Ch(Vi). Since the support of Fi is J , the equation

(M− I)iX = MJ
Xx. (8)

always has a solution at x = Fi
J . In fact, (under the three assumptions of this section) this solution is

unique:

Lemma 1. Let J = Ch(Vi). Then the unique solution to (8) is given by x = Fi
Ch(Vi)

.

But there is a version of (8) for each J ⊆ V . For which other choices of J does (8) have a solution?
Clearly a solution always exists if J ⊇ Ch(Vi). On the other hand, we can guarantee that a solution
with |J | ≤ |Ch(Vi)| is only possible if J contains an ancestor of Vi:

Lemma 2. Suppose J ⊆ V − Anc(Vi). If (M − I)iX ∈ Range
(
MJ
X
)
, then |J | ≥ |Ch(Vi)|, with

equality if and only if J = Ch(Vi).

By Lemma 2, if any superset of Ch(Vi) containing no ancestors of Vi is identifiable, then Ch(Vi) is
also identifiable. Next, we will show how such a superset of Ch(Vi) can be identified.

Let Vk ⊆ V denote the variables whose longest path to X has fewer than k nodes. More formally, we
define recursively

V0 := ∅, (9)
Vk+1 := {Vi ∈ V : Ch(Vi) ⊆ Vk} , for k ≥ 0. (10)

Naturally, we define Xk := Vk ∩ X and Lk := Vk ∩ L. Notice that Vk is strictly increasing, and is
induced by the topological ordering on V .

Proposition 2. For all k, either Vk ⊂ Vk+1, or Vk = V .

Further, for each k ≥ 0, define

Jk+1(Vi) := arg min
J∈
{
J⊆Vk:Mi

Xk
∈Range

(
MJ

Xk

)} |J |. (11)

Intuitively, this denotes the set of minimal choices for J ⊂ Vk such that (8) has a solution. From
Lemma 2, we know that Jk+1(Vi) = {Ch(Vi)} if Vi ∈ Vk+1 − Vk. The construction of (11) allows
us to generalize Lemma 2 to describe which versions of (8) have solutions when we are not sure of
the causal order.

Lemma 3. For every k ≥ 0, let Vk and Jk(Vi) be defined as above. Then Vi ∈ Vk+1 − Vk if and
only if all of the following hold:

1. Vi 6∈ Vk;

2. |Support(Mi
X )−Xk| ≤ 1;

3. |Jk+1(Vi)| = 1; and

4. for all Vj 6= Vi satisfying points 1 and 2, Mj
Xk
6∈ Range

(
M

Jk(Vi)
Xk

)
.
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As a result of Lemma 3, each Vk is identifiable. Clearly, if Vi ∈ Vk+1, then Ch(Vi) ∈ Vk and
Vk ∩ Anc(Vi) = ∅. Hence by Lemma 2, Ch(Vi) is also identifiable. Thus the full DAG is
identifiable, and each column of MX can be associated with the corresponding node in the DAG.
However, Lemmas 1, 2, and 3 are not enough to distinguish which nodes correspond to latent variables
and which correspond to observed variables; we have yet to pair each Xi with its net effects Mi

X .
Resolving this final indeterminacy is not hard. Intuitively, the vector of MX corresponding to Xi

must have non-zero coefficients in the i-th slot while every vector corresponding to descendants of
Xi will not. Lemma 4 formalizes this observation.

Lemma 4. Xi ∈ Xk+1 if and only if Xi ∈ Vk+1 and Support (MXi

X )−Xk = {i}.

Together, Lemmas 1, 2, 3, and 4 imply that F is identifiable if MX is identifiable. Of course,
we do not know MX—only M. Nevertheless, Lemmas 2, 3, and 4 do not involve the scaling
and permutation of MX—only the linear dependencies of its columns. Some simple calculation
shows that Lemma 1 can be used to put any MXPD ∈ M in one-to-one correspondence with
(PD)−1F(PD).

Theorem 3. Suppose F satisfies generalized non-redundancy, bottleneck faithfulness, and the bottle-
neck condition. Then F is identifiable up to indeterminacies.

6 Relation to existing work

Constraint- and score-based approaches to causal discovery based on conditional independence
testing—such as SGS [1], IC [2], PC [9], GES [10], and FGS [11]—generally focus on the causally
sufficient case. These algorithms identify the Markov equivalence class of graphs which all encode
the same set of conditional independence relations. While some methods based on conditional inde-
pendence tests, such as FCI [12] and RFCI [13], are able to relax the assumption of causal sufficiency,
their focus is on learning the causal relations between observed variables and distinguishing them
from spurious dependencies induced by shared latent ancestors. Such methods recover only limited
information about the latent structure, as only the most basic information about latent structure
is identifiable from conditional independence relations alone. For one review of causal discovery
methods, see Spirtes and Zhang [14].

It is possible to go beyond the equivalence class with additional assumptions on causal mechanisms
[14]. In particular, linear non-Gaussian models have been studied extensively. In the causally
sufficient case, Shimizu et al. [15] leverages acyclicity of the causal relations and the identifiability
of the square ICA problem [16, 17] to show how the causal adjacency matrix can be identified, while
Lacerda et al. [18] further estimate a subclass of cyclic causal models. In both cases, one may replace
the non-Gaussian noise assumption with the heterogeneous noise assumption (in the formal sense of
Theorem 1) and the identifiability results still hold [19].

By contrast, previous works on partially observed linear non-Gaussian models only study certain
special cases in which the models are partially identifiable. Hoyer et al. [20] describe a procedure
to convert partially observed causal models to a canonical form in which no latent variable has any
parents. They further provide an algorithm which recovers all canonical forms consistent with the
observed overcomplete basisM, which is identifiable by OICA [3]. This recovered equivalence class
of observationally equivalent canonical forms can be huge, and by definition can neither identify
causal relations among latent confounders nor distinguish latent confounders from latent mediators.

More recently, Lemma 5 of Salehkaleybar et al. [6] states that ifM is identifiable, then the causal
order among observed variables is identifiable if classical faithfulness holds between all variables.
Their condition is strictly weaker than ours; as we discuss in Section 5.1, classical faithfulness is
entailed by bottleneck faithfulness and imposes no graphical conditions. That a weaker condition
suffices for their task is not surprising, since their task is strictly easier than ours; if F is identified
up to trivialities then the causal order among observed variables is also identified (while the causal
order alone tells very little about F). Lemma 5 has a reassuring consequence for our work: even if
the graphical conditions for total identification fail to apply, the causal order of X is still identified.

If the practitioner is further interested in the observed variables’ net effects on one another, (M− I)XX ,
then additional graphical assumptions are needed. Theorem 16 of Salehkaleybar et al. [6] provides
one condition sufficient for this purpose: no latent variable Li has precisely the same observed
descendants as any observed variable Xj (formally, for all Li, Xj ,Desc(Li) ∩X 6= Desc(Xj) ∩X ).
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Again, this being a relatively easy subtask of the problem we consider, it is not surprising that our
conditions are not strictly weaker. With that said, our conditions are not strictly stronger, either; the
bottleneck and strong non-redundancy conditions can be satisfied even when Li and Xj have the
same observed descendants, as shown in Figure 4.

Figure 4: Examples of graphs identifiable fromM. From left to right: a graph where Desc(L)∩X =
Desc(X1) ∩ X ; a widening hierarchical structure; a hierarchical structure with intra-layer relations.

To recover causal structures of the hidden variables, many results rely on strong assumptions about
clusters of pure variables (sets of observed variables which each share a latent confounder and have
no other parents). For example, Spearman’s classical Tetrad condition [21] identifies latent causes
with four pure observed children from covariance information alone. In the linear non-Gaussian case,
existing work reduces the number of pure observed children to three [22], and more recently to two
[23, 24]. Clearly, these are all special cases of both the bottleneck and non-redundancy conditions.
As such, our graphical assumptions are strictly weaker.
Proposition 3. Suppose each Li in a partially observed DAG has at least two pure children (latent
or observed). Then the DAG satisfies the bottleneck and non-redundancy conditions.

However, identification is possible even when no latent confounder has any pure children; for
example, Anandkumar et al. [25] present a model in which latent variables with no pure children are
identifiable. Rather than purity, they require a graph expansion property—for all non-singleton S ⊆ L,
|
⋃

Li∈S Ch(Li)∩X | ≥ |S|+dmax, where dmax = maxi |Ch(Li)∩X |—as well as a rank condition
on FLX which places hard-to-check graphical constraints on the model and bounds |L| ≤ 1

3 |X |. Non-
redundancy among latent variables can be derived from the expansion property by considering the
case where |S| = 2, and the bottleneck condition by considering S = {Li} ∪ Ch(Li) ∩ L. Thus
in one sense, our conditions can be seen as a refinement on the expansion property; however, we
also remove the many hard-to-check graphical consequences of the rank condition, and further show
that many graphs even with |L| � |X | are identifiable. For example, Figure 4 shows an identifiable
hierarchical model in which the number of latent variables increases with depth. Moreover, we show
that our conditions are sufficient for identifying hierarchical structures in which variables in the same
layer are causally related. Figure 4 shows one such system.
Proposition 4. Suppose F satisfies the rank and graph expansion conditions of Anandkumar et al.
[25]. Then F also satisfies the bottleneck and strong non-redundancy conditions.

Propositions 3 and 4 show that our conditions are indeed more general than previous identification
conditions; not only do our conditions allow and identify causal relations among observed variables,
they also identify latent structures which no previous works could. (See, for example, Figure 4.)
Furthermore, in light of Theorems 2 and 3, they show that many existing works implicitly took
sparsity of causal edges as a useful primitive for what it means for a partially observed causal model
to be identifiable. Such a primitive is widely used throughout causal discovery, even in the causally
sufficient case [4, 5].

Although many of these conditions for latent structure identification rely on non-Gaussian independent
noise, direct estimation of the mixing matrix is often avoided in practice, especially in the causally
insufficient case, as estimation of the overcomplete mixing matrix is computationally challenging
[8]. Estimation of the mixing matrix can be avoided by directly using the independent additive noise
assumption and exploiting graphical conditions such as causal sufficiency or purity. For example,
in the causally sufficient case, Pa(Xi) is identifiable by regressing Xi on Z ⊆ X and testing the
independence of the regression residuals and Z [26]. This approach may be adapted to the non-linear
[27, 28] and post-nonlinear [29] cases. Tashiro et al. [30] extend this idea to identify causal relations
among observed variables in the causally insufficient case, and a related condition is developed by
Xie et al. [24] to identify one special type of confounder. However, such methods owe their efficiency
to the strong structural conditions under which they guarantee identifiability. As the bottleneck
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and non-redundancy conditions are much more general, this naturally complicates the question of
estimation.

7 Estimation

In Theorems 1 and 3, we have shown that a causal system which satisfies the conditions of Section 4
is uniquely identifiable whenever MX is identifiable. However, as indicated in Section 6, estimation
of MX from homogeneous non-Gaussian data—for example, by overcomplete ICA—is computa-
tionally hard. Further, whereas the estimation algorithms presented in [15], [18], and [6] require the
practitioner to test which entries of MX are exact zeros, a naive algorithm inspired by Lemmas 1, 2,
3, and 4 would further require them to test which submatrices’ singular values are exact zeros. Such
an algorithm is not advisable.

As a proof of concept, we therefore focus our experiments on partially observed linear causal models
in the heterogeneous case. In this setting, F can be learned directly by optimizing the regularized
likelihood with respect to F, given the sample covariance matrices of X. We leave more efficient
estimation in more general settings to future work.

7.1 Simulations

Suppose we have access to samples from T heterogeneous domains. The data in the t-th domain
follow

V = FV + ε, (12)
where ε ∼ N (0,Σt) for diagonal Σt. Then in the t-th domain,

X = MXΣtM
T
X . (13)

The negative log likelihood is

−2``(F,Σ) =

T∑
t=1

nt

(
|X | log(2π) + log det(St) + Tr

(
S−1t Ê

[
xtx

T
t

]))
, (14)

where xt,i is the i-th row of the design matrix for the t-th domain, Ê
[
xtx

T
t

]
is the empirical second

moment of the d-th domain, St = MXΣtM
T
X , and nt is the sample size in the t-th domain. If X

is generated according to (12), the independent change condition in Theorem 1 holds for the noise
variances, and F satisfies the assumptions of Section 4, then by Theorems 1 and 3, F is identifiable
up to trivialities. Hence we can in principle optimize the regularized log likelihood.

As a sanity check for our theoretical results, we simulate data according to (12); for every identifiable
graph structure with three observed variables and at most five directed edges, we generated ten causal
adjacency matrices with weights randomly drawn from (−0.9,−0.5)∪ (0.5, 0.9). We estimate F and
|L| by minimizing the BIC via exhaustive search. By enumerating candidate graphs from sparsest to
densest, a single search could take anywhere from 10 to 60 minutes on an Intel core i7 processor.

To verify that our estimation method was actually leveraging the noise’s heterogeneity, we ran
the experiment with one domain and 5000 observations. Only 3% of graphs were identified. Not
surprisingly, only 15% of learned graphs had any latent variables at all. Increasing the number of
domains from 1 to 3 but keeping the total sample size at 5000 (i.e. 1666 per domain) improved the
rate of structure identification to 50% of trials.

With 5 domains and 500 samples per domain, the correct graph is identified on 50% of trials; with
1000 samples per domain, this improves to 70%; and with 10 000, this further improves to 80%. In
every case that the wrong graph was recovered, the equivalence class of mixing matrices M̂ generated
by F̂ had incorrect support, perhaps due to insufficient domains or accidentally coupled changes
in the noise variances. This supports the main theory of Theorem 3, which, in light of Theorem
1, claims that the structure of F is uniquely determined from a correctly identifiedM. We report
detailed results in the supplement for all graphs studied.

To verify our claims in Theorem 2, we also tested simulated data from ten non-identifiable par-
tially observed DAGs—six of which stand in the main equivalence class relations of Figure 3, and
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four of which are not minimal. Not surprisingly, members of the same equivalence class were
indistinguishable, each system achieving the same log likelihood up to eight significant digits.

Because exhaustive search over graphs is computationally expensive (even for this toy problem, there
are 1759 graphs, and so 1759 non-convex optimization problems), it would be desirable to instead
optimize the L1-penalized negative log likelihood:

L(F,Σ) = −2``(F,Σ) + λ
∑
|Fi,j |. (15)

As before, we simulated data from (12). Numerical experiments verify that L(F0,Σ0) is very near
a local minimum for all practical λ > 0, where (F0,Σ0) denotes the true adjacency matrix and
noise covariances. However, experiments also suggest that this local minimum is generally quite
far from the global minimum, both in parameter space and in L1 loss. Moreover, while the L1
penalty successfully drives many parameters to zero (as we would expect), our experiments frequently
converge to minima which are denser than the true system. Intuitively, the L1 penalty does not care
about the density of F̂; a dense system with small coefficients may have a comparable L1 penalty
as a sparse system with large coefficients. Naturally, denser systems are better equipped to fit the
observed domain covariances. We summarize these experiments in the supplement.

8 Conclusion and discussions

In many fields, we do not believe that all causally relevant variables have been measured. In
such partially observed settings, beyond accurately estimating the causal relations among observed
variables, practitioners may want to further identify the causal relations among the hidden variables
which generate the observed data. Inspired by this issue, we have contributed to the identification
theory of partially observed linear causal models by providing necessary and sufficient graphical
conditions for the identification of the full causal graph. Throughout, we assume the additive noise
terms in the structural equation model follow non-Gaussian distributions or have independently
changing variances across time or between domains. Such assumptions, unlike the single-domain
Gaussianity assumption, render the mixing procedure from the noise terms to the observed variables
identifiable up to the permutation and scaling of columns, thereby facilitating our final identifiability
results. These conditions are expected to be applicable to a wide variety of partially observed
structures. To deal with real applications, efficient estimation methods are needed, and we hope our
theoretical identifiability results will stimulate algorithmic development to finally solve this important
causal discovery problem. As future work, we will focus on developing practical estimation methods
and extending our results to nonlinear cases.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No 801199.

The work presented in this article was supported in part by Novo Nordisk Foundation Grant
NNF20OC0062897.

This work was supported in part by the National Institutes of Health (NIH) under Contract
R01HL159805, by the NSF-Convergence Accelerator Track-D award #2134901, by the United
States Air Force under Contract No. FA8650-17-C7715, and by a grant from Apple Inc. The NIH or
NSF is not responsible for the views reported in this article.

We are grateful to the anonymous reviewers for their careful reading and helpful comments.

References
[1] Peter Spirtes, Clark Glymour, Richard Scheines, and David Heckerman. Causation, Prediction,

and Search. MIT Press, 2000.

[2] Judea Pearl. Causality. Cambridge University Press, 2009.

[3] Michael S Lewicki and Terrence J Sejnowski. Learning overcomplete representations. Neural
Computation, 12(2):337–365, 2000.

10



[4] Malcolm Forster, G. Raskutti, Reuben Stern, and Naftali Weinberger. The frugal inference of
causal relations. The British Journal for the Philosophy of Science, 69, 04 2017.

[5] Garvesh Raskutti and Caroline Uhler. Learning directed acyclic graphs based on sparsest
permutations. Stat, 2018.

[6] Saber Salehkaleybar, AmirEmad Ghassami, Negar Kiyavash, and Kun Zhang. Learning linear
non-Gaussian causal models in the presence of latent variables. Journal of Machine Learning
Research, 21(39):1–24, 2020.

[7] J. Eriksson and V. Koivunen. Identifiability, separability, and uniqueness of linear ICA models.
IEEE Signal Processing Letters, 11(7):601–604, 2004.

[8] Chenwei Ding, Mingming Gong, Kun Zhang, and Dacheng Tao. Likelihood-free overcomplete
ICA and applicationsin causal discovery. In Advances in Neural Information Processing Systems,
2019.

[9] Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal graphs. Social
Science Computer Review, 9(1):62–72, 1991.

[10] David Maxwell Chickering. Optimal structure identification with greedy search. Journal of
Machine Learning Research, 3(Nov):507–554, 2002.

[11] Joseph Ramsey, Madelyn Glymour, Ruben Sanchez-Romero, and Clark Glymour. A million vari-
ables and more: the Fast Greedy Equivalence Search algorithm for learning high-dimensional
graphical causal models, with an application to functional magnetic resonance images. Interna-
tional Journal of Data Science and Analytics, 3(2):121–129, 2017.

[12] Peter Spirtes, Christopher Meek, and Thomas Richardson. An algorithm for causal inference in
the presence of latent variables and selection bias. Computation, Causation, and Discovery,
1999.

[13] Diego Colombo, Marloes H Maathuis, Markus Kalisch, and Thomas S Richardson. Learning
high-dimensional directed acyclic graphs with latent and selection variables. The Annals of
Statistics, pages 294–321, 2012.

[14] Peter Spirtes and Kun Zhang. Causal discovery and inference: Concepts and recent method-
ological advances. Applied Informatics, 2016.

[15] Shohei Shimizu, Patrik O. Hoyer, Aapo Hyvärinen, and Antti Kerminen. A linear non-Gaussian
acyclic model for causal discovery. Journal of Machine Learning Research, 2006.

[16] P. Comon. Independent Component Analysis – a new concept? Signal Processing, 36:287–314,
1994.

[17] A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. John Wiley & Sons,
Inc, 2001.

[18] G. Lacerda, P. Spirtes, J. Ramsey, and P. O. Hoyer. Discovering cyclic causal models by
Independent Components Analysis. Uncertainty in Artificial Intelligence, 2008.

[19] Kiyotoshi Matsuoka, Masahiro Ohoya, and Mitsuru Kawamoto. A neural net for blind separation
of nonstationary signals. Neural Networks, 8(3):411–419, 1995.

[20] Patrik O Hoyer, Shohei Shimizu, Antti J Kerminen, and Markus Palviainen. Estimation of
causal effects using linear non-Gaussian causal models with hidden variables. International
Journal of Approximate Reasoning, 49(2):362–378, 2008.

[21] Charles Spearman. Pearson’s contribution to the theory of two factors. British Journal of
Psychology, 19(1):95, 1928.

[22] Shohei Shimizu, Patrik O Hoyer, and Aapo Hyvärinen. Estimation of linear non-Gaussian
acyclic models for latent factors. Neurocomputing, 72(7-9):2024–2027, 2009.

11



[23] Ruichu Cai, Feng Xie, Clark Glymour, Zhifeng Hao, and Kun Zhang. Triad constraints for
learning causal structure of latent variables. Advances in Neural Information Processing Systems,
2019.

[24] Feng Xie, Ruichu Cai, Biwei Huang, Clark Glymour, Zhifeng Hao, and Kun Zhang. Generalized
independent noise condition for estimating linear non-Gaussian latent variable graphs. Advances
in Neural Information Processing Systems, 2020.

[25] Animashree Anandkumar, Daniel Hsu, Adel Javanmard, and Sham M. Kakade. Learning linear
Bayesian networks with latent variables. Proceedings of the 30th International Conference on
Machine Learning, 2013.

[26] Shohei Shimizu, Takanori Inazumi, Yasuhiro Sogawa, Aapo Hyvärinen, Yoshinobu Kawahara,
Takashi Washio, Patrik O Hoyer, and Kenneth Bollen. DirectLiNGAM: A direct method for
learning a linear non-Gaussian structural equation model. The Journal of Machine Learning
Research, 12:1225–1248, 2011.

[27] PO. Hoyer, D. Janzing, JM. Mooij, J. Peters, and B. Schölkopf. Nonlinear causal discovery with
additive noise models. In Advances in neural information processing systems, pages 689–696,
Red Hook, NY, USA, June 2009. Max-Planck-Gesellschaft, Curran.

[28] Jonas Peters, Joris M Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery with
continuous additive noise models. Journal of Machine Learning Research, 2014.

[29] Kun Zhang and Aapo Hyvärinen. On the identifiability of the post-nonlinear causal model. In
Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, pages 647–655.
AUAI Press, 2009.

[30] Tatsuya Tashiro, Shohei Shimizu, Aapo Hyvärinen, and Takashi Washio. ParceLiNGAM: A
causal ordering method robust against latent confounders. Neural Computation, 2014.

12


