
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HIQ-LIP: A QUANTUM-CLASSICAL HIERARCHICAL
METHOD FOR GLOBAL LIPSCHITZ CONSTANT ESTI-
MATION OF RELU NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Estimating the global Lipschitz constant of neural networks is crucial for under-
standing and improving their robustness and generalization capabilities. How-
ever, precise calculations are NP-hard, and current semidefinite programming
(SDP) methods face challenges such as high memory usage and slow processing
speeds. In this paper, we propose HiQ-Lip, a hybrid quantum-classical hierarchi-
cal method that leverages Coherent Ising Machines (CIMs) to estimate the global
Lipschitz constant. We tackle the estimation by converting it into a Quadratic Un-
constrained Binary Optimization (QUBO) problem and implement a multilevel
graph coarsening and refinement strategy to adapt to the constraints of contempo-
rary quantum hardware. Our experimental evaluations on fully connected neural
networks demonstrate that HiQ-Lip not only provides estimates comparable to
state-of-the-art methods but also significantly accelerates the computation pro-
cess. In specific tests involving two-layer neural networks with 256 hidden neu-
rons, HiQ-Lip doubles the solving speed and offers more accurate upper bounds
than the existing best method, LiPopt. These findings highlight the promising util-
ity of small-scale quantum devices in advancing the estimation of neural network
robustness.

1 INTRODUCTION

Neural networks have achieved remarkable success in various fields such as computer vision, natural
language processing, and autonomous driving, establishing themselves as core technologies in mod-
ern artificial intelligence (Zhao et al., 2024; Forner & Ozcan, 2023; Paniego et al., 2023). Despite
these advancements, the robustness and generalization capabilities of neural networks remain active
areas of research (Djolonga et al., 2021; Bennouna et al., 2023). The global Lipschitz constant is
a critical metric for measuring the robustness of a neural network’s output to input perturbations,
playing a significant role in understanding and enhancing model robustness (Leino et al., 2021a).

However, accurately computing the global Lipschitz constant is an NP-hard problem, particularly for
deep networks with nonlinear activation functions like ReLU (Jordan & Dimakis, 2020). Due to this
computational challenge, researchers have developed various approximation methods to estimate
upper bounds of the global Lipschitz constant. Among these, the Formal Global Lipschitz constant
(FGL) assumes that all activation patterns in the hidden layers are independent and possible, thereby
providing an upper bound for the exact global Lipschitz constant (Szegedy et al., 2014; Virmaux &
Scaman, 2018).

Existing methods often rely on relaxations and semidefinite programming (SDP) to estimate the up-
per bound of the Lipschitz constant (Chen et al., 2020; Shi et al., 2022). Although these methods
have a solid theoretical foundation, they suffer from high memory consumption and slow computa-
tion speeds. Additionally, simpler approaches such as matrix norm approximations, while compu-
tationally efficient, tend to provide overly conservative bounds that fail to reflect the network’s true
robustness accurately. These limitations drive the need for more efficient and precise methods to
estimate the global Lipschitz constant of neural networks.

In recent years, advancements in quantum computing have offered new avenues for tackling NP-
hard problems (Khumalo et al., 2022; Choi, 2008; Chatterjee et al., 2024). Given the computational

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

complexity of global Lipschitz constant estimation, quantum computation is seen as a potential so-
lution. Specifically, quantum devices based on the Quadratic Unconstrained Binary Optimization
(QUBO) model, such as Coherent Ising Machines (CIMs) or quantum annealer, have demonstrated
unique potential in solving complex combinatorial optimization problems (Inagaki et al., 2016;
Date et al., 2019). However, the limited number of qubits in current quantum computers poses sig-
nificant challenges when directly applying them to neural network robustness evaluations. Although
numerous works have attempted to address large-scale QUBO problems by employing strategies
like divide-and-conquer and QUBO formula simplification to decompose them into smaller QUBO
subproblems for quantum solving (Pelofske et al., 2021; Zhou et al., 2023), applications in neural
network robustness assessment remain largely unexplored.

To bridge this gap and harness the acceleration capabilities of quantum computing for FGL estima-
tion of neural network, we propose a quantum-classical hybrid hierarchical solving method named
HiQ-Lip. HiQ means multilevel solution method for quantum classical mixing, while Lip stands
for global Lipschitz constant. By reformulating the global Lipschitz constant estimation problem as
a cut-norm problem, we transform it into a QUBO form. Employing a multi-level graph coarsening
and refinement approach, we reduce the problem size to a range manageable by quantum computers,
successfully utilizing CIMs to solve for the neural network’s global Lipschitz constant.

In this study, we focus on the FGL under ℓ∞ perturbations, which approximates the maximum norm
of the gradient operator and assumes that all activation patterns in the hidden layers are independent
and possible. FGL serves as an upper bound for the exact global Lipschitz constant and has been
utilized in previous works (Raghunathan et al., 2018; Fazlyab et al., 2019; Latorre et al., 2020;
Wang et al., 2022).

By exploiting the equivalence relation between FGL and the cut norm problem, our proposed HiQ-
Lip method targets the estimation of the FGL which is the upper bound of ℓ∞ global Lipschitz
constant for two-layer fully connected neural networks. Initially, we convert the Lipschitz constant
estimation of the neural network into a cut-norm problem. Subsequently, we iteratively coarsen the
graph structure until obtaining the coarsest graph, solve the cut-norm problem on this graph using
CIMs, and finally refine the solution by mapping it back to the original graph. This process results
in an accurate estimation of the neural network’s global Lipschitz constant.

Simulation experiments on fully connected neural networks demonstrate that HiQ-Lip achieves per-
formance comparable to existing state-of-the-art (SOTA) methods in estimating the ℓ∞ global Lips-
chitz constant for two-layer networks, while exhibiting faster computation speeds. When extended to
multi-layer fully connected neural networks, applying our approach to every two consecutive layers
yields reasonable estimates within a valid range. The extension of HiQ-Lip provides tighter esti-
mates compared to the naive upper bound approach (Weight-Matrix-Norm-Product, MP method),
particularly excelling in shallower networks. Comparing SOTA methods, especially in terms of
running time, HiQ-Lip and HiQ-Lip extensions show up to two times speedup on two-layer neural
networks and up to one hundred times speedup on multi-layer neural networks.

Our method is heuristic in nature and aims to obtain very approximate solutions for FGL estimation,
and in the experiments, we obtain very close results to the SOTA method Geolip, which validates
the effectiveness of HiQ-Lip.

Our main contributions are as follows:

• Firstly Innovations of Quantum Computing to Neural Network Robustness Estima-
tion: We theoretically demonstrate the potential of small-scale quantum computing de-
vices, such as CIMs, in the domain of neural network robustness estimation. We empha-
size the NP-hard nature of the global Lipschitz constant estimation problem and introduce
a quantum-classical hybrid solving method that synergizes quantum and classical systems
to overcome the limited number of qubits in current quantum devices.

• Hierarchical algorithm Framework based on QUBO: We develop a QUBO-based solv-
ing algorithm framework that adopts a hierarchical approach. By transforming the ℓ∞
global Lipschitz constant estimation problem of two-layer fully connected neural networks
into a cut-norm problem, we achieve the first instance of utilizing CIMs to solve the global
Lipschitz constant of neural networks efficiently on small-scale quantum devices.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Extension to Multi-Layer Networks with Quantum Device: For multi-layer neural net-
works, we demonstrate that HiQ-Lip provides tighter estimates compared to the naive upper
bound (Weight-Matrix-Norm-Product) approach. Extending our method to neural networks
with depths ranging from 3 to 5 layers, we obtain more precise estimates than the naive up-
per bound, particularly excelling in shallower three-layer networks.

• Simulation Experiment Validation: We validate the effectiveness of HiQ-Lip on fully
connected feedforward neural networks. For two-layer fully connected neural networks
with one hidden layer, using CIMs with a limited number of qubits, we successfully mea-
sured the global Lipschitz constant for hidden layer sizes ranging from 8 to 256, achieving
better results than existing SOTA methods.

2 PRELIMINARIES

Let ∥ · ∥p denote the ℓp norm of a vector and W ∈ Rn×m represent the weight matrix between two
layers of a neural network. The activation function used within the network is indicated by σ(·). For
an input vector x, the output of the neural network is given by f(x). The global Lipschitz constant
is denoted by L.

For a given function f : Rn → Rm, the Lipschitz constant L is defined as:

∥f(x)− f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rn. (1)

The global Lipschitz constant L measures how fast the function fchanges over all input pairs (x, y)
and is a key metric to evaluate the robustness of neural networks.

For a neural network f of depth d, its gradient can be expressed via the chain rule:

∇f(x) = W d · diag
(
σ′(zd−1)

)
·W d−1 · · · diag

(
σ′(z1)

)
·W 1, (2)

where zi = W iai−1 + bi, ai = σ(zi), and σ′(·) denotes the derivative of the activation function.
Here, diag(·)means converting the vector to a diagonal matrix.

In this paper, we explore FGL under ℓ∞ permutation. The ℓ∞-FGL is defined as:

ℓ∞-FGL = max
vi∈[a,b]ni

∥∥W d · diag(vd−1) · · · diag(v1) ·W 1
∥∥
1
, (3)

where vi is the activation vector of the i-th layer, ni is its dimension, and [a, b] is the range of the
activation function’s derivative. For ReLU activation, σ′(x) ∈ {0, 1}.
Computing the exact global Lipschitz constant for neural networks is NP-hard. Therefore, various
methods aim to estimate its upper bound.

ℓ∞-FGL turns the estimation into finding the maximum norm of the gradient operator, providing an
upper bound:

L ≤ ℓ∞-FGL. (4)

3 TRANSFORMING LIPSCHITZ CONSTANT ESTIMATION INTO QUBO
FORMULATION

In this section, we focus on two-layer fully connected neural networks, i.e., networks with one
hidden layer. Consider a neural network with input dimension n, hidden layer dimension m, and
output dimension p. The weights are W 1 ∈ Rn×m and W 2 ∈ Rm×p. For a single output neuron,
W 1 = W , W 2 = u, u ∈ Rm×1.

We use y to denote v1. The ℓ∞-FGL estimation becomes:

max
y∈[0,1]n

∥∥WT diag(u)y
∥∥
q
= max

y∈[0,1]n
∥Ay∥q , (5)

where A = WT diag(u) and u represents the activation pattern. In this task, q is ∞ but 1 is also
introduced as a dual auxiliary.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

This problem is related to the ℓ∞ → ℓ1 matrix mixed-norm problem:
∥A∥∞→1 = max

∥x∥∞=1
∥Ax∥1 (6)

We begin by leveraging the duality between the ℓ1 and ℓ∞ norms, which is well-known in optimiza-
tion contexts (Johnson, 2006; Martin, 1998). Specifically, the ℓ1 norm of a vector v ∈ Rn can be
expressed using the maximum inner product between v and a binary vector z from the set {−1, 1}n:

∥v∥1 = max
z∈{−1,1}n

⟨v, z⟩. (7)

Here, ⟨v, z⟩ denotes the inner product, highlighting how each component of v contributes to the
norm when aligned with a binary vector z. This expression forms the basis for transforming our
optimization problem into a form suitable for binary variables, simplifying the calculation of ∥Ax∥1.

Building on the above duality, we can reformulate our objective function for ∥Ax∥1 in terms of
binary variables. Specifically, we express the optimization as:

max
∥x∥∞=1

∥Ax∥1 = max
∥x∥∞=1

max
y∈{−1,1}m

⟨Ax, y⟩ (8)

The introduction of y ∈ {−1, 1}m exploits the definition of the ℓ1 norm, effectively transforming the
problem into finding the maximum of the matrix-vector product Ax under the constraint ∥x∥∞ = 1.
The role of y is analogous to maximizing the response in the binary space, which significantly
simplifies the optimization process. We now proceed by substituting the dual form of the inner
product into the optimization framework:

max
∥x∥∞=1, y∈{−1,1}m

⟨Ax, y⟩ = max
x∈{−1,1}n, y∈{−1,1}m

⟨x,AT y⟩. (9)

At this point, the goal becomes identifying the direction of AT y that maximizes the inner product
with x. Since x is constrained by ∥x∥∞ = 1 and aij ∈ A, the maximum of ⟨x,AT y⟩ occurs when
each component xi takes the value that matches the sign of (AT y)i. Thus, the problem essentially
reduces to:

max
x∈{−1,1}n, y∈{−1,1}m

⟨x,AT y⟩ = max
xi,yj∈{−1,1}

n∑
i=1

m∑
j=1

aijxiyj . (10)

Hamiltonian is the dependence of many quantum devices to solve problems (Cerezo et al., 2021;
Glos et al., 2022). CIM and other quantum devices estimate the eigenvalue of Hamiltonian based
on its characteristics. Both CIM and quantum annealers aim at finding the minimum of the QUBO
problem. Define the Hamiltonian pointing in the direction of quantum evolution:

H = −
n∑

i=1

m∑
j=1

aijxiyj , (11)

the problem of estimating ℓ∞-FGL becomes minimizing H , which is a QUBO problem. Then the
CIM or other quantum device could solve it by the QUBO formulation.

However, directly solving this Hamiltonian requires O(n + m) qubits, exceeding the capacity of
current quantum devices (about 100 qubits) for practical networks (e.g., n +m > 784 for MNIST
networks) (Proctor et al., 2022; Kim et al., 2023; Klimov et al., 2024; Pelofske et al., 2023).

4 HIQ-LIP FOR LIPSCHITZ CONSTANT ESTIMATION

In this section, we propose a method called HiQ-Lip that aims to utilize small-scale quantum com-
puters to efficiently estimate ℓ∞-FGL. Due to the computational complexity of direct estimation,
we employ a hierarchical solution strategy that treats the weights of the neural network as the edge
weights of the graph and the neurons as the nodes. Based on the Equation 5 and 6, we construct
a weighted undirected graph G whose weight matrix is expressed as follows. A = WT diag(u),
where W ∈ Rn×m is the weight matrix between the input layer and the hidden layer, u ∈ Rm is the
per-class weight vector between the hidden layer and the output layer.

We construct a weighted undirected graph G with the following characteristics:

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

• Vertices: Each neuron in the neural network corresponds to a node in the graph, totaling
n + m nodes, where n is the number of input neurons and m is the number of hidden
neurons.

• Edges: Edges are established between input layer nodes xi and hidden layer nodes yj based
on the interaction terms in the Hamiltonian defined in Equation 11. The weight of the edge
between nodes xi and yj is given by ai,j , reflecting the connection strength derived from
the neural network’s weights.

We define the adjacency matrix Af of the graph G as:

Af =

[
0 A
AT 0

]
, ai,j ∈ Af (12)

The matrix Af is of size (n +m) × (n +m) and is symmetric, with zeros on the diagonal blocks
indicating no intra-layer connections.

4.1 COARSENING PHASE

The primary objective of the coarsening phase is to reduce the number of nodes by gradually merg-
ing nodes, thereby generating a series of progressively coarser graphs until the number of nodes
decreases to a level that can be solved directly by a small quantum computer.

• Node Pair Merging: Nodes are merged based on their distances in the embedding space.
Each node is randomly embedded onto a d-dimensional sphere by optimizing the objective:

min
{xi}

∑
(i,j)∈E

ai,j∥xi − xj∥2, (13)

where xi ∈ Rd represents the position of node i in the embedding space, and E denotes
the set of edges. This optimization encourages strongly connected nodes (with larger ai,j)
to be closer in the embedding space, making them candidates for merging.

• Node Pair Matching: In each iteration, the closest unmatched nodes are selected for merg-
ing, forming new node pairs. Let P be the matching matrix, where for matched nodes i and
j, the corresponding element Pi,j = 1. For the merged nodes, the weights of the connected
edges are accumulated, thereby forming the nodes of the next coarser graph.

• Construction of the Coarser Graph: The adjacency matrix Ac of the coarser graph is
computed as:

Ac = P⊤AfP, (14)

where Af is the adjacency matrix of the finer graph before coarsening. This process ef-
fectively reduces the graph size while preserving its structural properties relevant to the
optimization problem.

After each coarsening step, the number of vertices decreases approximately logarithmically. The
time complexity of the i-th coarsening step is O(N2

i ), where Ni is the number of nodes at level i.
Consequently, the overall time complexity of the Coarsening Phase is O(N2 logN), where N =
n+m. A detailed analysis is provided in Appendix A.1.

4.2 REFINEMENT PHASE

The refinement phase is a crucial step in the hierarchical solving strategy. Its purpose is to map the
approximate solutions obtained during the coarsening phase back to the original graph layer by layer
and perform local optimizations to ensure the global optimality of the final solution. This process
enhances the quality of the solution by gradually restoring the graphs generated at each coarsening
level and fine-tuning the solution.

1. Initialization: Starting from the coarsest graph Gc, which is obtained through successive
coarsening, an approximate solution has already been found on this graph. We use the

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

mapping F : Vf → Vc to derive the solution of the finer graph from that of the coarsest
graph. Specifically, the projection of the initial solution is defined as:

xi = xF (i), ∀i ∈ Vf (15)

2. Gain Computation: Gain computation is a critical step in the refinement process, used to
evaluate the change in the objective function when each node switches partitions, thereby
guiding optimization decisions. The gain for node i is calculated as:

gain(i) =
∑

j∈N(i)

ai,j (−1)2xixj−xi−xj (16)

where xi and xj represent the current partition labels of nodes i and j, respectively, and
N(i) is the set of neighbors of node i.

3. Local Optimization: At each level of the graph, using the solution from the previous
coarser level as the initial solution, we optimize the objective function by solving local
subproblems. We select the top K ≤ n +m nodes with the highest gains to participate in
local optimization, where K is determined by the number of qubits available. This allows
the quantum computer to efficiently solve the subproblems related to the cut-norm of the
coarsest graph. If the new solution improves the original objective function H of Equation
11, we update the current solution accordingly.

This process is iterated until several consecutive iterations (e.g., three iterations) no longer yield
significant gains, thereby ensuring that the quality of the solution is progressively enhanced and
gradually approaches the global optimum.

The Graph Refinement Phase iteratively improves the solution by mapping it back to finer graph
levels. The primary steps include initializing the solution, computing gains for each node, and
performing local optimizations using quantum solvers. Computing the gain for all nodes incurs a
time complexity of O(N2). The local optimization step involves solving smaller QUBO problems
of size K on a quantum device, which contributes O(Kα) to the complexity, with α being a small
constant. Overall, the Graph Refinement Phase operates with a time complexity of O(N2). See the
Appendix A.2 for a detailed analysis.

4.3 ALGORITHM OVERVIEW

As shown in Algorithm 1, HiQ-Lip begins with the initial graph G0 and, through lines 3 to 9, ex-
ecutes the coarsening phase by iteratively merging nodes to produce progressively smaller graphs
suitable for quantum processing. In line 10, it leverages quantum acceleration by solving the result-
ing QUBO problem on the coarsest graph using CIM or other quantum devices to efficiently obtain
an initial solution. Finally, lines 11 to 15 implement the refinement phase, where the algorithm
maps this solution back onto finer graph layers and performs local optimizations to accurately esti-
mate the ℓ∞-FGL. HiQ-Lip provides strict upper bound theoretical guarantees for one-hidden-layer
mlp networks can be seen in Appendix. B.

The HiQ-Lip algorithm achieves an overall time complexity ofO(N2 logN). See the Appendix A.4
for details. The Coarsening Phase dominates the complexity with O(N2 logN) due to the itera-
tive merging of nodes and updating of the adjacency matrix at each hierarchical level. Noticed that
the running time of quantum devices is generally considered to have a large speedup over classical
computers (Mohseni et al., 2022; Avkhadiev et al., 2020; Di Meglio et al., 2024). Even for problems
of exponential complexity, the running time of a quantum device can be considered a fraction of the
task time on a classical computer. In the Refinement Phase, the complexity is O(N2), primarily
from computing gains for node optimizations and solving smaller QUBO problems using quantum
devices. Consequently, the combined phases ensure that HiQ-Lip scales efficiently for neural net-
works of moderate size, leveraging quantum acceleration to enhance performance without exceeding
polynomial time bounds.

5 EXTENSION TO MULTI-LAYER NETWORKS

Directly estimating the global Lipschitz constant for multi-layer networks is challenging due to the
complexity of tensor cut-norm problems. We extend our method by approximating the network’s

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 HiQ-Lip Algorithm
1: Input: Weight matrix A, initial graph G0

2: Output: Estimated Lipschitz constant ℓ∞-FGL
3: Coarsening Phase:
4: Initialize G = G0

5: while Size of G exceeds quantum hardware limit do
6: Embed nodes and compute distances
7: Pair and merge nodes to form G′

8: G← G′

9: end while
10: Solve the QUBO problem on the coarsest graph using CIM to obtain the initial solution
11: Refinement Phase:
12: while Graph G is not G0 do
13: Project solution to finer graph
14: Compute gains and perform local optimization
15: end while
16: Compute ℓ∞-FGL from the final solution

Lipschitz constant as the product of the Lipschitz constants of individual layer pairs. By leveraging
the triangle inequality ∥A∥∥B∥ ≥ ∥AB∥, we transform the upper bound estimation of the FGL
into a layer-wise product of weight norms. This approach simplifies the estimation process by
decomposing the multi-layer problem into manageable two-layer subnetworks, thereby enabling
more efficient and scalable computations. It is inspired by the work of (Leino et al., 2021b; Bartlett
et al., 2017; Szegedy et al., 2014).

Our approach involves decomposing the multi-layer network into a series of two-layer subnetworks
and estimating the Lipschitz constant for each subnetwork. We then combine these estimates to
obtain the overall Lipschitz constant of the network. The key steps are as follows:

1. Processing the Output Layer: We start by focusing on a specific output neuron (e.g.,
corresponding to a particular class in classification tasks). We extract the weights associated
with this output neuron and incorporate them into the previous layer’s weights.

2. Constructing Adjacency Matrices: For layers l and l + 1, build the corresponding graph
model. We construct an adjacency matrix based on the modified weight matrices. These
adjacency matrices represent the connections between neurons in the two layers.

3. Computing Cut-Norms via HiQ-Lip: We formulate a QUBO problem for each adjacency
matrix and use the hierarchical method to estimate ∥Al∥∞→1. This yields an estimate of
the cut-norm for each layer pair.

4. Combining Results: We multiply the cut-norm estimates for all layer pairs and adjust for
scaling factors to compute the overall Lipschitz constant estimate.

The coefficient 1
2d−2 of FGL in a multi-layer neural network is used by (Latorre et al., 2020). For

the d-layer network, we decompose the estimate as:

ℓ∞-FGL ≤ max

{
1

2d−2

d−1∏
l=1

∥Al∥∞→1

}
, (17)

where Al is the processed weight matrix between layers l and l+1, and A = WT diag(u). We refer
to methods with such coefficients as HiQ-Lip MP A.

However, we found in our experiments that this approach gives loose estimates compared with
GeoLip. To obtain more robust estimates for 4 and 5 layers networks, we propose a new coefficient
as 1

2d−2
1

dd−3 to estimate FGL for fully connected neural networks with 3 to 5 layers. We refer to
methods with such coefficients as HiQ-Lip MP B. The approach of using a more compact coefficient
has been applied in previous work (Bartlett et al., 2017).

Intuitively, the new coefficients are introduced to make the estimation of the Lipschitz constant more
compact in multi-layer neural networks. According to the triangle inequality, if the independence

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

assumption between the layers does not hold perfectly, the original product estimate will appear
loose. Therefore, additional correction coefficients are introduced to weaken the influence of each
layer contribution. It can be regarded as a regularization based on the number of network layers to
the original product upper bound. Especially in deep networks, the nonlinear complexity makes the
product grow too fast, resulting in the estimated upper bound is much larger than the actual value.

These approaches leverage the sub-multiplicative property of norms and provide a tighter upper
bound compared to naive methods.

6 EXPERIMENTS

In this section, we evaluate the effectiveness and efficiency of HiQ-Lip on fully connected feed-
forward neural networks trained on the MNIST dataset. Our primary goal is to demonstrate that
HiQ-Lip can provide accurate estimates of the global Lipschitz constant with significantly reduced
computation times compared to SOTA methods.

6.1 EXPERIMENTAL SETUP

We conduct experiments on neural networks with varying depths and widths to assess the scalability
of HiQ-Lip. The networks are trained using the Adam optimizer for 10 epochs, achieving an ac-
curacy exceeding 93% on the test set. The experiments were conducted on a device with 32GB of
memory and an Intel Core i7 12th Gen CPU. The quantum algorithm portion was simulated using
Qboson’s Kaiwu SDK, which features 100 qubits. We consider the following network architectures:

• Two-Layer Networks (Net2): Networks with one hidden layer, where the number of hid-
den units varies among {8, 16, 64, 128, 256}. All networks use the ReLU activation
function.

• Multi-Layer Networks (Net3 to Net5): Networks with depths ranging from 3 to 5 layers.
Each hidden layer consists of 64 neurons, and ReLU activation is used throughout.

6.2 COMPARISON METHODS

We compare HiQ-Lip with several baseline methods:

• GeoLip (Wang et al., 2022): A geometry-based SOTA Lipschitz constant estimation
method that provides tight upper bounds.

• LiPopt (Latorre et al., 2020): An optimization-based SOTA method that computes upper
bounds using semidefinite programming.

• Matrix Product (MP): A naive method that computes the product of the weight matrix
norms across layers, providing a loose upper bound.

• Sampling: A simple sampling-based approach that estimates a lower bound of the Lips-
chitz constant by computing gradient norms at randomly sampled input points. We sample
200,000 points uniformly in the input space.

• Brute Force (BF): An exhaustive enumeration of all possible activation patterns to com-
pute the exact FGL. This method serves as the ground truth but is only feasible for small
networks.

We focus on estimating the FGL with respect to the output corresponding to the digit 8, as done
in previous works (Latorre et al., 2020; Wang et al., 2022). In the result tables, we use “N/A” to
indicate that the computation did not finish within a reasonable time frame (over 20 hours). We
highlight the time advantage of the quantum approach by bolding the methods with shorter time.

6.3 RESULTS ON TWO-LAYER NETWORKS

Tables 1 and 2 present the estimated Lipschitz constants and computation times for two-layer net-
works with varying hidden units.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Estimated Lipschitz constants for two-layer networks
Hidden Units HiQ-Lip GeoLip LiPopt-2 MP Sampling BF

8 127.96 121.86 158.49 353.29 112.04 112.04
16 186.09 186.05 260.48 616.64 176.74 176.76
64 278.40 275.67 448.62 1289.44 232.89 N/A
128 329.33 338.20 751.76 1977.49 272.94 N/A
256 448.89 449.60 1088.12 2914.16 333.99 N/A

Table 2: Computation times (in seconds) for two-layer networks
Hidden Units HiQ-Lip GeoLip LiPopt-2 BF

8 24.55 24.07 1,544 0.06
16 26.46 26.84 1,592 52.68
64 29.66 42.33 1,855 N/A

128 34.75 58.79 2,076 N/A
256 44.79 99.24 2,731 N/A

Analysis: From Table 1, HiQ-Lip’s Lipschitz constant estimates closely match those of GeoLip,
differing by less than 3% across all network sizes. For instance, with 256 hidden units, HiQ-Lip
estimates 448.89 compared to GeoLip’s 449.60.

Compared to the ground truth from the BF method—feasible only up to 16 hidden units due to com-
putational limits—HiQ-Lip’s estimates are slightly higher, as expected for an upper-bound method.
For 16 hidden units, BF yields 176.76, while HiQ-Lip estimates 186.09.

LiPopt-2 produces significantly higher estimates than both HiQ-Lip and GeoLip, especially as net-
work size increases. For 256 hidden units, LiPopt-2 estimates 1,088.12, more than double HiQ-Lip’s
estimate, suggesting it may provide overly conservative upper bounds for larger networks.

The naive MP method consistently overestimates the Lipschitz constant by three to six times com-
pared to HiQ-Lip, highlighting HiQ-Lip’s advantage in providing tighter upper bounds. The Sam-
pling method yields lower bound estimates below those of HiQ-Lip and GeoLip, confirming that
HiQ-Lip effectively captures the upper bound.

In terms of computation time (Table 2), HiQ-Lip demonstrates efficient performance, with times
slightly lower than GeoLip’s for smaller networks and significantly lower for larger ones. For 256
hidden units, HiQ-Lip completes in approximately 44.79 seconds, while GeoLip takes 99.24 sec-
onds.

LiPopt-2 exhibits the longest computation times, exceeding 1,500 seconds even for the smallest
networks, making it impractical for larger ones. The BF method is only feasible for very small
networks due to its exponential time complexity, becoming intractable beyond 16 hidden units.

Summary: Overall, HiQ-Lip achieves a favorable balance between estimation accuracy and
computational efficiency for two-layer networks. It provides tight upper bounds comparable
to GeoLip while reducing computation times by up to 2.2x in 256 hidden units network, par-
ticularly as the network width increases, demonstrating its scalability and effectiveness. This
acceleration is facilitated by leveraging quantum computing capabilities to solve the QUBO
formulation efficiently.

6.4 RESULTS ON MULTI-LAYER NETWORKS

Tables 3 and 4 present the estimated Lipschitz constants and computation times for multi-layer
networks with depths ranging from 3 to 5 layers.

Analysis: In Table 3, we compare two variants of HiQ-Lip for multi-layer networks: HiQ-Lip
MP A and HiQ-Lip MP B. HiQ-Lip MP A uses the coefficient 1

2d−2 as suggested in previous

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Estimated Lipschitz constants for multi-layer networks
Network HiQ-Lip MP A HiQ-Lip MP B GeoLip MP Sampling

Net3 477.47 477.47 465.11 8,036.51 331.12
Net4 3,246.37 1,093.05 923.13 52,420.62 454.73
Net5 26,132.45 1,513.34 1,462.58 327,219.23 547.11

Table 4: Computation times (in seconds) for multi-layer networks
Network HiQ-Lip Time GeoLip Time

Net3 6.46 784.69
Net4 8.76 969.79
Net5 13.31 1,101.30

literature (Latorre et al., 2020), while HiQ-Lip MP B introduces an additional scaling factor, using
1

2d−2dd−3 , to obtain tighter estimates for deeper networks.

For the multi-layer networks, our analysis reveals that for the 3-layer network (Net3), both HiQ-
Lip MP A and MP B produce identical estimates (477.47) close to GeoLip’s estimate (465.11),
indicating that the original coefficient in HiQ-Lip MP A is adequate for shallower networks.

However, in deeper networks (Net4 and Net5), HiQ-Lip MP A significantly overestimates the Lips-
chitz constant compared to GeoLip. For instance, in Net4, HiQ-Lip MP A estimates 3,246.37 versus
GeoLip’s 923.13, and in Net5, 26,132.45 versus 1,462.58. In contrast, HiQ-Lip MP B, with its mod-
ified scaling coefficient, yields much tighter estimates closer to GeoLip’s values (1,093.05 for Net4
and 1,513.34 for Net5), demonstrating that the additional scaling factor effectively compensates for
overestimations in deeper networks.

The MP method, as expected, results in excessively high estimates due to the exponential growth
from multiplying weight matrix norms. The Sampling method provides consistent lower bounds
below HiQ-Lip and GeoLip estimates; however, these lower bounds do not reflect the worst-case
robustness of the network.

Regarding computation time (Table 4), HiQ-Lip significantly outperforms GeoLip. For Net3, HiQ-
Lip completes in 6.46 seconds versus GeoLip’s 784.69 seconds—a speedup of over 120 times. This
substantial reduction demonstrates HiQ-Lip’s scalability and efficiency for deeper networks.

Notably, LiPopt was unable to produce results for networks deeper than two layers within a reason-
able time frame, highlighting its limitations in handling multi-layer networks.

Summary: HiQ-Lip, particularly the MP B variant with the modified scaling coefficient, pro-
vides accurate and tight upper bounds for the Lipschitz constant in multi-layer networks while
achieving computation speeds up to 120× faster than GeoLip. The additional scaling factor
effectively compensates for overestimation in deeper networks, making HiQ-Lip MP B a prac-
tical and scalable choice for estimating Lipschitz constants across varying network depths.

7 CONCLUSION

We introduced HiQ-Lip, a quantum-classical hybrid hierarchical method for estimating the global
Lipschitz constant of neural networks. By formulating the problem as a QUBO and employing graph
coarsening and refinement, we effectively utilized CIMs despite current hardware limitations. Our
method achieves comparable estimates to existing SOTA methods with faster computation speed up
to 2x and 120x in two-layer and multi-layer network. This work highlights the potential of quantum
devices in neural network robustness estimation and opens avenues for future research in leveraging
quantum computing for complex machine learning problems.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

A Avkhadiev, PE Shanahan, and RD Young. Accelerating lattice quantum field theory calculations
via interpolator optimization using noisy intermediate-scale quantum computing. Physical review
letters, 124(8):080501, 2020.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. Advances in neural information processing systems, 30, 2017.

Amine Bennouna, Ryan Lucas, and Bart Van Parys. Certified robust neural networks: Generalization
and corruption resistance. In International Conference on Machine Learning, pp. 2092–2112.
PMLR, 2023.

Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke Fu-
jii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al. Variational quantum
algorithms. Nature Reviews Physics, 3(9):625–644, 2021.

Yagnik Chatterjee, Eric Bourreau, and Marko J Rančić. Solving various np-hard problems using
exponentially fewer qubits on a quantum computer. Physical Review A, 109(5):052441, 2024.

Tong Chen, Jean B Lasserre, Victor Magron, and Edouard Pauwels. Semialgebraic optimization for
lipschitz constants of relu networks. Advances in Neural Information Processing Systems, 33:
19189–19200, 2020.

Vicky Choi. Minor-embedding in adiabatic quantum computation: I. the parameter setting problem.
Quantum Information Processing, 7:193–209, 2008.

Prasanna Date, Robert Patton, Catherine Schuman, and Thomas Potok. Efficiently embedding qubo
problems on adiabatic quantum computers. Quantum Information Processing, 18:1–31, 2019.

Alberto Di Meglio, Karl Jansen, Ivano Tavernelli, Constantia Alexandrou, Srinivasan Arunachalam,
Christian W Bauer, Kerstin Borras, Stefano Carrazza, Arianna Crippa, Vincent Croft, et al. Quan-
tum computing for high-energy physics: State of the art and challenges. PRX Quantum, 5(3):
037001, 2024.

Josip Djolonga, Jessica Yung, Michael Tschannen, Rob Romijnders, Lucas Beyer, Alexander
Kolesnikov, Joan Puigcerver, Matthias Minderer, Alexander D’Amour, Dan Moldovan, et al. On
robustness and transferability of convolutional neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16458–16468, 2021.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient
and accurate estimation of lipschitz constants for deep neural networks. Advances in neural
information processing systems, 32, 2019.

Dominik Forner and Sercan Ozcan. Examination of overlapping boundaries of innovation systems
using deep neural network and natural language processing. IEEE Transactions on Engineering
Management, 2023.

Adam Glos, Aleksandra Krawiec, and Zoltán Zimborás. Space-efficient binary optimization for
variational quantum computing. npj Quantum Information, 8(1):39, 2022.

Takahiro Inagaki, Yoshitaka Haribara, Koji Igarashi, Tomohiro Sonobe, Shuhei Tamate, Toshimori
Honjo, Alireza Marandi, Peter L McMahon, Takeshi Umeki, Koji Enbutsu, et al. A coherent ising
machine for 2000-node optimization problems. Science, 354(6312):603–606, 2016.

BE Johnson. Derivations from l1 (g) into l1 (g) and l infty(g). In Harmonic Analysis: Proceedings
of the International Symposium held at the Centre Universitaire de Luxembourg Sept. 7–11, 1987,
pp. 191–198. Springer, 2006.

Matt Jordan and Alexandros G Dimakis. Exactly computing the local lipschitz constant of relu
networks. Advances in Neural Information Processing Systems, 33:7344–7353, 2020.

Maxine T Khumalo, Hazel A Chieza, Krupa Prag, and Matthew Woolway. An investigation of
ibm quantum computing device performance on combinatorial optimisation problems. Neural
Computing and Applications, pp. 1–16, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Youngseok Kim, Andrew Eddins, Sajant Anand, Ken Xuan Wei, Ewout Van Den Berg, Sami Rosen-
blatt, Hasan Nayfeh, Yantao Wu, Michael Zaletel, Kristan Temme, et al. Evidence for the utility
of quantum computing before fault tolerance. Nature, 618(7965):500–505, 2023.

Paul V Klimov, Andreas Bengtsson, Chris Quintana, Alexandre Bourassa, Sabrina Hong, Andrew
Dunsworth, Kevin J Satzinger, William P Livingston, Volodymyr Sivak, Murphy Yuezhen Niu,
et al. Optimizing quantum gates towards the scale of logical qubits. Nature Communications, 15
(1):2442, 2024.

Fabian Latorre, Paul Thierry Yves Rolland, and Volkan Cevher. Lipschitz constant estimation for
neural networks via sparse polynomial optimization. In 8th International Conference on Learning
Representations, 2020.

Klas Leino, Zifan Wang, and Matt Fredrikson. Globally-robust neural networks. In International
Conference on Machine Learning, pp. 6212–6222. PMLR, 2021a.

Klas Leino, Zifan Wang, and Matt Fredrikson. Globally-robust neural networks. In International
Conference on Machine Learning, pp. 6212–6222. PMLR, 2021b.

Väth Martin. The dual space of l infty is l1. Indagationes Mathematicae, 9(4):619–625, 1998.

Naeimeh Mohseni, Peter L McMahon, and Tim Byrnes. Ising machines as hardware solvers of
combinatorial optimization problems. Nature Reviews Physics, 4(6):363–379, 2022.

Sergio Paniego, Nikhil Paliwal, and JoséMarı́a Cañas. Model optimization in deep learning based
robot control for autonomous driving. IEEE Robotics and Automation Letters, 9(1):715–722,
2023.

Elijah Pelofske, Georg Hahn, and Hristo Djidjev. Decomposition algorithms for solving np-hard
problems on a quantum annealer. Journal of Signal Processing Systems, 93(4):405–420, 2021.

Elijah Pelofske, Georg Hahn, and Hristo N Djidjev. Solving larger maximum clique problems using
parallel quantum annealing. Quantum Information Processing, 22(5):219, 2023.

Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen, and Robin Blume-Kohout. Mea-
suring the capabilities of quantum computers. Nature Physics, 18(1):75–79, 2022.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial exam-
ples. In International Conference on Learning Representations, 2018.

Zhouxing Shi, Yihan Wang, Huan Zhang, Zico Kolter, and Cho-Jui Hsieh. An efficient framework
for computing tight lipschitz constants of neural networks. Advances in neural information pro-
cessing systems, 2022.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fergus. Intriguing
properties of neural networks. International Conference on Learning Representations, 2014.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and
efficient estimation. Advances in Neural Information Processing Systems, 31, 2018.

Zi Wang, Gautam Prakriya, and Somesh Jha. A quantitative geometric approach to neural-network
smoothness. Advances in Neural Information Processing Systems, 35:34201–34215, 2022.

Xia Zhao, Limin Wang, Yufei Zhang, Xuming Han, Muhammet Deveci, and Milan Parmar. A
review of convolutional neural networks in computer vision. Artificial Intelligence Review, 57(4):
99, 2024.

Zeqiao Zhou, Yuxuan Du, Xinmei Tian, and Dacheng Tao. Qaoa-in-qaoa: solving large-scale max-
cut problems on small quantum machines. Physical Review Applied, 19(2):024027, 2023.

A DETAILED ALGORITHM ANALYSIS AND COMPLEXITY

We provide detailed mathematical derivations of the time complexities for each phase of the HiQ-Lip
algorithm.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A.1 GRAPH COARSENING PHASE COMPLEXITY

Let N = n + m be the total number of nodes in the initial graph. At each coarsening level i, the
number of nodes is Ni =

N
2i . The main steps and their complexities are as follows:

1. Node Embedding and Distance Calculation:

• Embedding all nodes into a d-dimensional space: O(Nid).
• Computing pairwise distances (optimized using approximate methods): O(Nikd),

where k is a small constant.

2. Node Pair Matching and Merging:

• Matching nodes (e.g., using greedy algorithms): O(Ni).
• Merging nodes and updating the adjacency matrix: O(N2

i ).

3. Graph Reduction:

• Computing the coarser adjacency matrix Ai+1: O(N2
i ).

The total time complexity for the coarsening phase is:

Tcoarsen =

L−1∑
i=0

O(N2
i )

=

L−1∑
i=0

O

((
N

2i

)2
)

= O

(
N2

L−1∑
i=0

(
1

4

)i
)

= O

(
N2 ·

1−
(
1
4

)L
1− 1

4

)
= O(N2)

Considering L = log2 N , the practical time complexity is approximated as O(N2 logN).

A.2 GRAPH REFINEMENT PHASE COMPLEXITY

In the refinement phase, the algorithm improves the solution by mapping it back to finer graphs. At
each refinement level i, the complexities are:

1. Initialization:

• Projecting the solution to the finer graph: O(Ni).

2. Gain Computation:

• Computing gains for all nodes: O(N2
i ).

3. Local Optimization:

• Solving a QUBO problem of size K using a quantum device: O(TQ), where TQ

depends on the quantum hardware.

The total time complexity for the refinement phase is:

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Trefine =

L−1∑
i=0

(
O(N2

i ) +O(TQ)
)

= O

(
L−1∑
i=0

N2
i

)
+O(LTQ)

= O(N2) +O(logN · TQ)

Since Ni =
N

2L−i , we have:

L−1∑
i=0

N2
i =

L−1∑
i=0

(
N

2L−i

)2

= N2
L∑

k=1

(
1

2k

)2

= N2
L∑

k=1

4−k

= N2 · 1− 4−L

1− 1
4

= O(N2)

A.3 QUANTUM DEVICE COMPLEXITY

The time TQ required by the quantum device (e.g., CIM) to solve a QUBO problem of size K may
be modeled as TQ = O(Kα), where α depends on the device’s properties. Since K is much smaller
than N and α is a small constant:

O(logN · TQ) = O(logN ·Kα)

This term is typically negligible compared to O(N2 logN). It is widely believed that quantum
devices have an exponential speedup compared to classical algorithms, which means that the run-
ning time of quantum computers can be ignored in quantum classical hybrid algorithms on large
problems.

A.4 OVERALL TIME COMPLEXITY

Combining the coarsening and refinement phases:

Ttotal = Tcoarsen + Trefine

= O(N2 logN) +O(N2) +O(logN · TQ)

= O(N2 logN) +O(logN · TQ)

Assuming TQ is relatively small and N is large, the overall time complexity is dominated by
O(N2 logN).

The HiQ-Lip algorithm’s overall time complexity is:

Ttotal = O(N2 logN)

where N = n +m is the total number of neurons in the neural network. The algorithm efficiently
reduces the problem size through hierarchical coarsening, making it suitable for current quantum
hardware limitations.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B HIQ-LIP FOR A ONE-LAYER HIDDEN MLP NETWORK: THEORETICAL
UPPER BOUND

In this section, we provide a detailed explanation of the theoretical guarantees associated with the
HiQ-Lip method for estimating the global Lipschitz constant of a two-layer MLP network. We
focus on how HiQ-Lip estimates the ℓ∞-FGL, and we describe why the algorithm provides an upper
bound for the true Lipschitz constant.

The global Lipschitz constant, L, is defined and bounded as shown in Equations (1)-(4) of the main
text. For a two-layer fully connected MLP, this is formalized in Equation (5) as:

L ≤ ℓ∞-FGL = max
y∈[0,1]n

∥WT diag(u)y∥q = max
y∈[0,1]n

∥Ay∥q,

where A = WT diag(u). Utilizing the duality between the ℓ1 and ℓ∞ norms, we transform this
continuous formulation into a discrete QUBO problem:

L ≤ ℓ∞-FGL = H = −
n∑

i=1

m∑
j=1

aijxiyj ,

where the goal is to minimize H , which directly corresponds to estimating the global Lipschitz
constant. While the graph coarsening and refinement strategies in HiQ-Lip are heuristic, they are
designed to maintain the key structural properties of the original graph while ensuring efficient
optimization under quantum hardware constraints.

The hierarchical nature of the algorithm introduces a series of approximations at each phase. These
approximations result in an upper bound on the optimal solution. Specifically, the solution HHiQ-Lip
obtained by HiQ-Lip satisfies the following relationship:

minH ≤ HHiQ-Lip,

indicating that HiQ-Lip provides an upper bound on the true global Lipschitz constant.

B.1 COARSENING PHASE

During the coarsening phase, the nodes of the original graph G0 are merged to form a coarser graph
Gc, represented by the adjacency matrix Ac. The edge weights in the coarser graph are aggregated
from the finer graph. Let P denote the mapping matrix used to merge the nodes, such that:

Ac = P⊤AfP,

where Af is the adjacency matrix of the finer graph. This aggregation step leads to a loss of detail,
meaning not all the edge weights of the finer graph are perfectly preserved in the coarser graph.
As a result, the solution Hc obtained by solving the QUBO problem on the coarser graph is an
approximation of the true minimum minH on the original graph:

Hc ≥ minH.

B.2 QUANTUM SOLUTION ON COARSE GRAPH

When solving the QUBO problem on the coarsest graph Gc using a quantum device, the solution
obtained, denoted Hquantum, is also an approximation due to hardware noise and finite precision.
Therefore, we have:

Hquantum ≥ Hc.

B.3 REFINEMENT PHASE

In the refinement phase, the solution from the coarsest graph is iteratively mapped back to the finer
graphs. Each refinement step involves local optimization, which improves the objective function but
does not guarantee that the true optimal solution on the original graph is recovered. Let Hf represent
the refined solution on the finer graph. Thus, we have:

Hf ≥ Hquantum.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.4 FINAL SOLUTION

Finally, the solution HHiQ-Lip obtained after the refinement phase satisfies the following:

HHiQ-Lip ≥ Hf ≥ Hquantum ≥ Hc ≥ minH.

This indicates that HiQ-Lip estimates the global Lipschitz constant with an upper bound, and the
method is designed to provide a safe approximation, suitable for tasks like robustness certification
where an upper bound is preferred.

16


	Introduction
	Preliminaries
	Transforming Lipschitz Constant Estimation into QUBO Formulation
	HiQ-Lip for Lipschitz Constant Estimation
	Coarsening Phase
	Refinement Phase
	Algorithm Overview

	Extension to Multi-Layer Networks
	Experiments
	Experimental Setup
	Comparison Methods
	Results on Two-Layer Networks
	Results on Multi-Layer Networks

	Conclusion
	Detailed Algorithm Analysis and Complexity
	Graph Coarsening Phase Complexity
	Graph Refinement Phase Complexity
	Quantum Device Complexity
	Overall Time Complexity

	HiQ-Lip for a One-Layer Hidden MLP Network: Theoretical Upper Bound
	Coarsening Phase
	Quantum Solution on Coarse Graph
	Refinement Phase
	Final Solution


