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ABSTRACT

Fragment-based drug design is a promising strategy leveraging the binding of indi-
vidual fragments, potentially yielding ligands with multiple key interactions, sur-
passing the efficiency of full ligand screening. The initial step of fragment identi-
fication remains challenging, as fragments often bind weakly and non-specifically.
We propose a protein-fragment encoder, a new contrastive learning approach that
captures protein-fragment interactions. Its latent space allows to perform virtual
screening as well as generative design. In the latter case, fragment embeddings
are generated conditioned on the protein surface. Our method locates protein-
fragment interactions with high sensitivity and can be directly applied to vir-
tual screening for which we observed competitive fragment recovery rates. The
generative method outperforms common methods such as virtual screening pro-
viding a valuable starting point for fragment hit discovery. Together, these ap-
proaches contribute to advancing fragment identification and could provide valu-
able tools for fragment-based drug discovery. All the code and data can be found
on https://github.com/rneeser/LatentFrag.

1 INTRODUCTION

Hit identification remains a critical challenge in drug discovery, despite advances in screening tech-
niques and computational tools (Jalencas et al., 2024; Hasselgren & Oprea, 2024). High-throughput
screening (HTS) struggles to explore vast chemical space efficiently and often fails to identify strong
starting points for drug design (Edfeldt et al., 2011). Fragment-Based Drug Design (FBDD) offers
a promising alternative, leveraging smaller fragments with higher ligand efficiency that can be com-
bined to form potent ligands (Congreve et al., 2008; Hubbard & Murray, 2011; Yu et al., 2020).

Recent machine learning (ML) approaches enable rapid exploration of chemical space, yet many
FBDD methods do not account for a protein structure, rely on prior knowledge of fragment hits (Mc-
Corkindale et al., 2022), or depend on molecular docking1, which often struggles to localize frag-
ment binding within protein pockets (Bian & Xie, 2018; Marchand & Caflisch, 2018). Structure-
Based Drug Design (SBDD) incorporates geometric information but frequently generates unrealistic
or synthetically inaccessible molecules when designing full ligands (Buttenschoen et al., 2024; Yang
et al., 2024). While FBDD constrains chemical space using known fragments, challenges remain
in merging, linking, and growing fragments into complete ligands (Imrie et al., 2020; Neeser et al.,
2023; Igashov et al., 2024; Ferla et al., 2025).

To address these limitations, we introduce a novel structure-based fragment screening approach that
learns a protein-fragment representation through contrastive training. Our encoder maps protein

1Docking is a computational technique used to predict the binding pose of a molecule within a pocket.
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surfaces and molecular fragments into a shared latent space, capturing not just fragment chemistry
but also binding interactions. Inspired by Igashov et al. (2022), who performed ligand and fragment
screening based on pocket representations but using a model trained in protein-protein interactions,
our model is specifically tailored for fragment screening and does not depend on the availability of
fragments in crystal structures. Additionally, we endow our encoder with a generative framework
for fragment identification. We use a flow matching-based model to sample fragment embeddings
conditioned on the protein pocket, combined with a fragment library that is queried based on the
sampled embeddings. This approach does not require a decoder, ensures chemically realistic frag-
ments, and allows to flexibly change libraries without retraining.

To summarize, our contributions are the following:

• Novel Protein-Fragment Contrastive Learning: We introduce a protein-fragment en-
coder trained in a contrastive fashion that jointly learns representations of protein surfaces
and molecular fragments in a shared latent space. Our approach captures aspects of inter-
action while maintaining chemical relevance through fragment similarity-based penalties.

• Structure-Based Fragment Identification: We propose a flow matching framework for
fragment identification that operates directly in the protein-fragment latent space. Unlike
existing methods, our approach is explicitly conditioned on protein structure and guarantees
chemically valid outputs through library-based sampling.

• Evaluation Framework: By assessing both “hard” recovery metrics and “soft” pharma-
cophoric similarity, we provide insights into the model’s ability to identify meaningful
fragment hits. Our analysis demonstrates improvements over virtual screening baselines
while highlighting current limitations in exact fragment matching.

2 METHODS

2.1 PROTEIN-FRAGMENT CONTRASTIVE LEARNING

The protein-fragment encoder is trained contrastively and is designed to produce expressive latent
embeddings for both fragments and protein surfaces. Thus, the latent vectors capture critical features
for binding interactions and are uniquely suited to the task of fragment identification.

Training involves maximizing the cosine similarity between embeddings of fragments and nearby
protein surface points (positive examples), while minimizing the similarity to other surface points
elsewhere on the protein (negative examples). Negative examples are selected to include diverse
protein surface geometries from the pocket—convex, concave, and random regions—to prevent
overfitting to pocket-specific features. The surface curvature is predicted on the fly by a concur-
rently trained classifier. Protein surface embeddings are parametrized by a geodesic convolutional
neural network similar to dMaSIF (Sverrisson et al., 2021) while fragments are processed by a graph
transformer (Dwivedi & Bresson, 2020; Vignac et al., 2022; Igashov et al., 2023) (Appendix B.1).

To ensure chemical relevance, a fragment similarity penalty (FSP) is incorporated via a hinge loss.
This loss discourages molecules with low Tanimoto similarity from having similar embeddings. An
additional classification loss is used to train the model to predict the type of non-covalent interac-
tion (NCI), if present, that each protein surface point can engage in, integrating interaction-specific
information. Notably, the relative positions of the molecules are only used to select positive and
negative examples during training, and do not directly influence the embeddings as fragments are
represented as 2D graphs. This design promotes position-agnostic representations of fragment and
surface features, enabling their broad applicability in fragment-based drug design (for details see
Appendix B).

2.2 FRAGMENT IDENTIFICATION VIA FLOW MATCHING

We employ a generative modeling approach using flow matching (Lipman et al., 2022), represent-
ing proteins as surface point clouds and ligands as coarse fragment graphs. Protein surface points
are featurized by latent vectors and ligand nodes representing fragments are defined by a latent em-
bedding (fragment type) and the arithmetic mean of their coordinates (centroid). The latent vectors
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are learned embeddings from our protein-fragment encoder. A schematic overview of the fragment
identification process is shown in Figure 2A, and the neural network is illustrated in Figure C.1.

Flow matching is a generative modeling approach that learns to map noise to structured data by
matching probability flows, enabling efficient sampling from complex distributions. Two flows are
employed: a spherical flow for the latent fragment embeddings, which assumes a unit sphere prior,
and a Euclidean flow for the centroids, with a Gaussian prior. This method avoids the need for a
decoder by selecting fragments from a precomputed library based on cosine similarity of fragment
embeddings, ensuring chemical plausibility of the resulting fragments. This facilitates exchanging
or expanding fragment library even after sampling. We use a library with 41,224 unique fragments
extracted from PDB (Appendix D). More information on the generative framework is in Appendix C.

3 RESULTS & DISCUSSION

3.1 LATENT REPRESENTATION

Figure 1: A: Encoder pipeline, maximizing the cosine similarity cos(·) between fragment and close
pocket surface embeddings while minimizing the similarity between negative pairs. Additionally,
a fragment similarity penalty (FSP) and loss on classifying non-covalent interactions (NCI) from
protein surfaces are incorporated. B: Protein surface colored by cosine similarity to the fragment
(PDB ID: 6Q4I). C: t-SNE plot of the fragment library in latent space with representative molecules.

To assess whether our encoder captures protein-fragment interaction patterns, we evaluated its em-
beddings based on several key metrics. Specifically, we examined whether the binding region could
be recovered, necessitating that the fragments of both the protein and the ligand exhibit similarity.
This evaluation was conducted for both the entire surface and the pocket surface alone (Table F.4).
The high EF1 (enrichment factor in the 1st percentile) of 22.85 for the whole surface demonstrates
that the model is capable of clearly distinguishing the pocket from the rest of the surface and a EF1

of 2.28 for the pocket only highlights that even in the pocket itself the model chooses binding surface
points twice as likely as non-interacting areas. The area under the precision recall curve (AUPR) of
0.39 represents a significant improvement over the baseline of 0.16 (fraction of interacting vs. non-
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interacting points), further indicating that the model is able to prioritize surface points. These results
consistently demonstrate that the model successfully distinguishes interacting from non-interacting
surfaces and can identify regions of fragment binding.

In addition to the quantitative assessment, Figure 1B illustrates how our embeddings localize in-
teracting surfaces with relatively high sensitivity, with the highest similarity observed between the
binding fragment and its corresponding protein region. This ”hotspot” can be found without any
information on relative position of the two molecules. This indicates that the combination of these
two latent representations captures aspects of the underlying interaction and suggests that it can be
used for downstream applications such as virtual screening. We further assess the latent space of
the encoder using t-SNE dimensionality reduction demonstrating a structured and interpretable em-
bedding space (Figure 1C). Compared to standard RDKit fingerprints (Figure F.5), our embeddings
form distinguishable clusters, which correspond to fragments with similar chemical profiles. Further
results can be found in Appendix F.1.

3.2 FRAGMENT IDENTIFICATION

Figure 2: A: Generative pipeline starting with encoding and the flow matching model operating in
latent space. B: Distributions of docking efficiency (docking score normalized by the number of
heavy atoms). C: Hard recovery metrics based on both number of sampling hits (left) (sampled
fragments recovering the ground truth) and unique fragment recovery (right) (number of unique
recovered fragments). The RMSD refers to the distance between centroids. D: Soft recovery metrics
based on the SuCOS score relative to the full reference ligand are shown as reverse cumulative
proportion (left) and the success rate with a threshold of 0.5 (right).

A straightforward application of our learned latent space is virtual screening (VS), focusing on its
ability to identify relevant fragments by similarity to the target pocket surface. However, a natural
extension of this approach dubbed Latent VS is the use of generative modeling, which enables the
sampling of novel fragment embeddings directly in the learned space. We compare these methods
to VS based on docking scores (Docking VS) and a random baseline. For detailed information on
evaluation and metrics we refer to Appendix E.2.

Figures 2C and 2D show results for hard and soft recovery. Hard recovery quantifies exact matches to
reference fragments and soft recovery tries to assess the overlap in terms of pharmacophoric patterns
to the reference. While hard recovery rates of unique fragments were not particularly high, genera-
tive modeling consistently outperformed latent and docking VS (recovery rates of 4.33%, 0.02% and
2.05%, respectively). Random sampling did not recover anything. The generative approach is able
to find the correct fragments multiple times resulting in a much increased sampling hit rate compared
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to latent or docking VS (0.554%, 0.001% and 0.130% respectively). Experimental fragment screen
hit rates often vary between 1% and 2%, and are thus slightly higher than our fragment recovery
rate, but at the expense of time and resources (Jalencas et al., 2024). These findings demonstrate
the potential of our method to obtain initial fragment hits and narrow further experimental search.
We further evaluated soft recovery as similarity to the complete reference ligands using the shape
and pharmacophore dependent SuCOS score (Leung et al., 2019). Figure 2D shows that genera-
tive samples clearly improved over the random baseline by having a bigger fraction of high-scoring
molecules that are thus similar to the reference geometry and chemistry. Interestingly, compared
to the poor results on true recovery, docking VS fares better than our generative approach on the
soft metric with increased number of hits. The higher number of atoms on average per fragment
compared to generative sampling (19 and 13 respectively, see Figure F.7) as well as more realis-
tic placement in the pocket might influence this outcome. One major advantage of our approach
compared to docking VS is speed: docking the full library to one single target takes approximately
28 hours while generative sampling takes around 10 minutes only. On top of that, once sampled,
different libraries or library expansions can be tested retrospectively while for docking this further
increases computational cost.

Docking efficiency was evaluated as a proxy for binding affinity (Figure 2). We normalize by number
of heavy atoms as the molecule size can have a significant impact especially when dealing with such
small structures. While generative samples showed weaker scores than the reference fragments,
they outperformed the random baseline. Fragments obtained through docking VS unsurprisingly
outperform all other methods as they were filtered based on docking scores.

Lastly, Figure 3 shows three selected samples from our generative pipeline highlighting the ability
to recover sensible poses even with our constrained docking approach and match interaction profiles
from the reference ligands. The first example recovers the full reference ligand and, given the
close overlap, will likely recover also the hydrogen bonds. The second sample has a high SuCOS
score to the reference and visually exhibits close overlap with the reference. Lastly, when selecting
by docking efficiency, we observe recovering of π-π stacking. For additional results we refer to
Appendix F.2.

Figure 3: Selected generated samples (teal) compared to the reference ligand (light red) with corre-
sponding interactions (red lines). Left: Sample recovering the reference. Middle: Sample with high
SuCOS score. Right: Sample with low docking efficiency and predicted π-π-stacking (blue lines).

4 CONCLUSIONS

We introduced a novel method that creates a representation capturing key properties of protein-
fragment interactions, enabling both virtual screening and generative fragment identification. Our
protein-fragment encoder is trained on protein surfaces and molecular fragments in a contrastive
fashion encoding them into a joint latent space. The flow matching method correspondingly op-
erates in this latent space sampling both fragment embeddings and their centroids. Our generative
approach demonstrated successful fragment recovery, suggesting its potential for providing initial
hit hypotheses for experimental validation.

Virtual screening based on latent fragment embeddings performed on par with docking-based
screening but required significantly less computation, while our generative method is even more
cost-effective. Furthermore, our method offers the added advantage of flexible choice and expan-
sion of the fragment library even after sampling, increasing the chemical space that is accessed and
potentially increasing hit rates. Beyond fragment identification, our surface embeddings could be
explored for binding site prediction, addressing the current limitation requiring prior knowledge on
the binding pocket.
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A PREVIOUS WORK

Molecular representation learning (MRL) is a well-established field, with numerous studies refining
and adapting methods for specific tasks such as property and reaction prediction (Guo et al., 2022).
Various MRL approaches leverage language models as encoders (Shin et al., 2019; Chithrananda
et al., 2020; Li & Jiang, 2021) or introduce specialized representations, such as UniMol, which
incorporates 3D conformers (Zhou et al., 2023), and MolR, which is tailored for reaction-based
learning (Wang et al., 2021). However, these methods typically do not explicitly account for pro-
tein targets and are not primarily designed for hit screening or drug discovery. Gao et al. (2023)
proposed DrugCLIP, which contrastively learns pocket and ligand representations for the task of VS
based on the UniMol encoder architecture (Zhou et al., 2023). This method conceptually shares
many aspects with out work but encodes the pocket globally and full ligands not allowing the task
of fragment placement. While none of the aforementioned approaches focus specifically on molec-
ular fragments, Chakravarti (2018) propose a fragment-based method, though it remains centered
on chemical properties relevant to tasks like property prediction rather than interaction-driven ap-
plications. A concurrent work that was published at the time of writing by Lohmann et al. (2024)
proposes a similar encoder. They encode both proteins and ligands but then use the protein embed-
dings and for the task of affinity prediction.

The task of computational fragment identification has been mostly dependent on fragment dock-
ing (Bian & Xie, 2018; Marchand & Caflisch, 2018), which is costly and less accurate than ligand
docking. FRESCO (McCorkindale et al., 2022) is a ML-based method that implicitly considers
target structure through pharmacophore distributions. The extraction of those, however, requires
known hits from fragment screens and respective crystal structures, which is often not available in
a drug discovery campaign. The closest approach to ours by Igashov et al. (2022) matches protein
pocket embeddings in order to find related fragment hits, making it also limited by the availability
of crystal structures.

B LATENT ENCODER

B.1 MODEL ARCHITECTURE

PROTEIN ENCODING The protein encoding approach is similar to the dMaSIF (Sverrisson et al.,
2021) method with some notable exceptions: a smaller receptive field r (geodesic radius), higher
embedding dimension d and surface computation as in the original MaSIF (Gainza et al., 2020).
The protein surface is first computed using the MSMS program (Sanner et al., 1996) with a density
of 3 Å, a water probe radius of 1.5 Å and subsequent downsampling to a resolution of 1 Å. Input
features computed on this surface include geometric properties (shape index, curvature) and chemi-
cal features (electrostatics, hydrogen bond donors/acceptors, hydropathy). The architecture is based
on a special convolutional neural network which uses Gaussian kernels defined in a local geodesic
coordinate system. We refer to Gainza et al. (2020) for detailed information.

FRAGMENT ENCODING Fragments are represented as 2D graphs. Node features are initialized by
one-hot encoded atom types considering {C, N, O, S, B, Br, Cl, P, I, F, NH, N+, O-} with NH cor-
responding to a Nitrogen with an explicit Hydrogen and +/- represent formal charges. Additionally,
a suite of properties are computed for atoms, bonds and on the global level, which are summarized
in Table B.1. The fragment encoding is parametrized using a Graph Transformer (GT) (Dwivedi
& Bresson, 2020; Vignac et al., 2022; Igashov et al., 2023) directly using the output of the learned
global embedding y. We largely follow the GT implementation of Igashov et al. (2023) with one
notable exception of linearly projecting the input features before adding them to the network output
instead of simply cropping the vector.
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Table B.1: Features for initializing nodes, edges and global features of the fragment graph. Non-
binary atom and bond properties were one-hot encoded and global continuous values min-max
scaled. These properties were determined using RDKit. (RDKit)

Localization Feature Values Size

atom

atom type {C, N, O, S, B, Br, Cl, P, I, F, NH, N+, O-} 13
formal charge [-1,3] 5
degree [0,6] 7
is in ring binary 1
is aromatic binary 1
hybridization {sp, sp2, sp3, sp2d, sp3d, sp3d2, unspecified} 7
chiral tag [S, R, unspecified, other] 4

bond type {single, double, triple, aromatic, no bond} 5
bond conjugated binary 1

is in ring binary 1

global

# atoms continuous 1
# bonds continuous 1
# rings continuous 1
# aromatic rings continuous 1
MW continuous 1
logP continuous 1
TPSA continuous 1
# HBD continuous 1
# HBA continuous 1
ring sizes [3, 18], no ring, other ring size 18

B.2 CONTRASTIVE TRAINING

The encoder is trained contrastively maximizing the cosine similarity for positive protein-fragment
pairs while minimizing it for negative pairs sampled from the same protein pocket.

POSITIVE AND NEGATIVE PAIRS Positive surface points P+ are defined as all surface points
within a threshold distance dbind of any fragment atom. Negative surface points P− are sampled
from various regions within the pocket, excluding positive points. These include:

• Random pocket points: Points sampled uniformly from the pocket.
• Concave points: Predicted by a curvature classifier as regions with inward curvature.
• Convex points: Predicted as regions with outward curvature.

To classify surface curvature as concave or convex, we train a Histogram-based Gradient Boosting
Classifier from scikit-learn (scitkit learn) on the same dataset using curvatures at different
smoothing scales as described in dMaSIF (Sverrisson et al., 2021). The classifier labels concave
regions based on their proximity to fragments (d < dbind), assuming such regions are more likely
to host binding interactions, while convex points are those outside this threshold. The classifier is
trained and run concurrently with the encoder training, enabling on-the-fly curvature prediction.

CONTRASTIVE LOSS For the contrastive training loss, the cosine similarity between the protein
surface embedding hp and fragment embedding hf is computed as follows:

cos(hp, hf ) =
hp · hf

∥hp∥∥hf∥
. (B.1)

Positive pairs maximize cos(hp, hf ) while negative minimize it

Lpos = −E(p,f)∈P+ [w(p, f) log σ(cos(hp, hf ))] (B.2)

Lneg = −E(p,f)∈P− [log σ(− cos(hp, hf ))] . (B.3)
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Here, σ is the sigmoid function, and w(p, f) scales the contribution of positive pairs by their dis-
tances d, defined as:

w(p, f) =
1

1 + exp(−α(d−dmin

dmax
− 0.5))

(B.4)

where dmin and dmax normalize the distances, and α controls the sharpness of the weighting. This
up-weights positive points that are further away, encouraging the model to focus on points at the
edge of the binding regions. This was shown to work much better than the more intuitive way of
penalizing far points by inverting the sign before α in Equation B.4, which surprisingly resulted
in approximately random ROC AUC scores on the test set. This weighting scheme also slightly
improves over the binary case (no weights) especially with respect to discriminative metrics such
as EF1 or top-k Accuracy also on the test set. One potential explanation for this is that interactions
further away are weaker albeit more numerous, which in return can result in them being ”drowned
out” and the model not taking this collective effect of interactions into account.

The final contrastive loss is the sum of both terms

Lcontrastive =
Lpos + Lneg

2
(B.5)

B.3 FRAGMENT SIMILARITY PENALTY (FSP)

To incorporate aspects purely dependent on the small molecular fragment and encourage diversity
of embeddings we introduce a fragment similarity penalty (FSP). The FSP is a hinge loss between
the true positive fragment embedding h+f and the embedding of a randomly sampled fragment from
the same training library with Tanimoto similarity below 0.1. This penalizes similar embeddings
despite dissimilar chemical structures. The loss is defined like so

LFSP = ReLU(cos(h+f , h
−
f )− c) (B.6)

with margin c.

B.4 NON-COVALENT INTERACTION (NCI) LOSS

The additional NCI loss is based on a multi-label classifier predicting non-covalent interaction (NCI)
types for protein pocket surface points using their latent embeddings. This encourages the differ-
entiation of the pocket surface and aims at increasing sensitivity to different fragments. The NCI
classifier module is a lightweight feedforward neural network with one linear layers, surface em-
beddings as input and nNCI +1 classes as output using a sigmoid activation function. The model is
thus tasked with predicting probabilities for the classes {hydrophobic interactions, hydrogen bonds,
water bridges, salt bridges, π-stacks, π-cation interactions, halogen bonds, interaction presence}.
Interactions are extracted by using the Protein-Ligand Interaction Profiler (PLIP) (Adasme et al.,
2021b) and positive labels, as one-hot encoded interaction profile, are assigned when surface points
are in a distance of 2 Å of the interacting residue atom. One surface point can have several interac-
tions if it is close to multiple interactions. The loss is the the binary cross entropy (BCE) between
predicted probabilities z and true labels y

LNCI = BCE(z, y) (B.7)

B.5 TRAINING LOSS

The final training loss is the weighted sum of the previous individual losses including L2 regulariza-
tion

L = λcontrastiveLcontrastive + λregLreg + λFSPLFSP + λNCILNCI . (B.8)

with the regularization term amounting to

Lreg =
1

n+m

 n∑
i=1

h2p,i +

m∑
j=1

h2f,j

 . (B.9)
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B.6 TRAINING

Table B.2: Hyperparameters of the encoder training.

Module Parameter Value

training
epochs 25
batch size 32
learning rate 0.001

loss

λcontrastive 2.0
regularization 0.1
NCI loss yes
dmin [Å] 0.5
dmax [Å] dbind = 3.0
α 5.5
λNCI 1.0
FSP loss yes
λFSP 1.0
FSP margin c 0.3
threshold dbind [Å] 3.0

negative samples
random [%] 0.34
concave [%] 0.33
convex [%] 0.33

protein encoder
dMaSIF

radius r [Å] 3.0
resolution [Å] 1.0
layers 2
hidden dimension 16
embedding dimension 128
curvature scales {1.0, 3.0, 5.0, 7.0 9.0}

fragment encoder
GT

layers 4
input node dimension 37
input edge dimension 5
input global dimension 27
encoder dimensions X: 256, E: 64, y: 256

hidden dimensions dx: 256, de: 32, dy: 256
dffX : 256, dffE : 64, dffy: 256

heads 8
output node dimension 128
output global dimension 128

C GENERATIVE MODELING

The architecture and flow matching framework was inspired by DrugFlow (Schneuing et al., 2024;
2025).

C.1 FLOW MATCHING

Flow matching is a generative method, where a prior p0 is connected to the data distribution p1
through a sequence of probability distributions {pt : t ∈ [0, 1]}. This path is defined by a time-
dependent vector field that can be approximated by this method. The transform the prior into a data
point the vector field ut(x) is integrated to give the flow

d

dt
ψt(x) = ut(ψt(x)). (C.10)
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Lipman et al. (2022) showed that rather than defining the true vector field ut(x), it is easier to
parametrize the conditional flow ut(x|x1) based on a data point x1. The conditional flow matching
loss is defined as

LCFM = Et,q(x1),pt(x0)∥vθ(t, xt)− ẋt∥2. (C.11)

with ẋt| = d
dtψ(x0|x1), the time derivative of the conditional flow. To generate new samples, we

sample x0 from the prior distribution p(x0) and simulate the ODE in equation C.10 using the learned
vector field vθ(t, xt).

C.2 CENTROID COORDINATES: EUCLIDEAN FLOW

To parametrize the centroid coordinates we use the Independent-coupling conditional flow match-
ing (Albergo & Vanden-Eijnden, 2022; Tong et al., 2023) with the generative vector field

ut(x|x1) =
σ′
t(x1)

σt(x1)
(x− µt(x1)) + µ′

t(x1). (C.12)

A constant velocity vector field ẋt = x1−xt

1−t results from a constant σ = σt(x1) and µt(x1) =

tx1 + (1− t)x0 to define the Gaussian probability path. The loss for this flow thus amounts to

Lcoord = Et,q(x1),pt(x0)∥vθ(t, xt)− (x1 − x0)∥2. (C.13)

C.3 LATENT FRAGMENT EMBEDDINGS: SPHERICAL FLOW

For the latent embeddings of the fragments, we define a flow on the unit sphere S2 = {x ∈ R2+1 :
∥x∥2 = 1}. We can interpolate between x0 and x1 in the tangent space in which the vector field
vθ(t, xt) is also learned, allowing one to avoid simulation. Concurrently, the loss is also computed
in tangent space where the local geometry is Euclidean

LS2 = Et,q(x1),pt(x0)∥vθ(t, xt)−
logxt

(x1)

1− t
∥2 (C.14)

To obtain xt as the point on the sphere, we employ exponential and logarithmic maps

xt = expx0
(tlogx0

(x1)) (C.15)

with expx(u) = cos(∥u∥)x + sin(∥u∥)( u
∥u∥ ), which maps a tangent vector u to the sphere and

logx(y) =
θ

sin(θ) (x − cos(θ)y), which takes point x on the sphere to a vector in the tangent space
at base y. θ = arccos(< x, y >), the geodesic distance between x and the base y. Equation C.15
corresponds to the spherical linear interpolation (SLERP) (Shoemake, 1985)

xt = SLERP(x0, x1, t) =
sin((1− t)θ)

sin(θ)
x0 +

sin(tθ)

sin(θ)
x1. (C.16)

The spherical flow allows consistency in relation to the cosine similarity-based encoder training and
library searching and results in a smooth trajectory between x0 and x1. A Euclidean flow, while
also applicable, exhibits a drastic change in cosine similarity only with high t requiring the model to
learn big velocities for later time points only. This flow is similar to the system described by Alimisis
et al. (2021).

C.4 TRAINING LOSS

Combining the two modalities gives a weighted sum of the previously defined losses:

L = λcoordLcoord + λS2LS2 (C.17)
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C.5 BACKBONE ARCHITECTURE
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Figure C.1: Schematic overview of backbone architecture of the neural network parametrizing out
flows. Left: All inputs are featurized individually to scalar and vector features, subsequently the
fragment and pocket node features are transformed with a GVP and the pre-trained dMaSIF mod-
ule from the encoder repsectively before being passed to a shared heterogeneous GVP Jing et al.
(2021). Out output consists of velocities for the latent representation (scalar) and fragment centroid
coordinates (vector). Right: Detailed layer of the GVP with distinct messages computed based on
source and destination nodes for every edge feature. All modules are processed separately in output
module based on another GVP. Figure adapted from Schneuing et al. (2025)

PROTEIN REPRESENTATION Proteins are represented as pocket surface point clouds, restricted to
a 7 Å radius around the ligand. Surface points are featurized with normals as vector features and
latent embeddings from the MaSIF module of the encoder as scalar features. For edge construction
in the heterograph, k-nearest neighbors are sampled to connect nodes. Edge distances transformed
via a radial basis function (RBF) with 16 bases.

FRAGMENTED LIGAND REPRESENTATION Small molecule ligands are represented as coarse
graphs, where fragmented ligands are decomposed into nodes and edges. Each node corresponds
to a fragment, with its centroid as the position x and a latent embedding serving as the scalar node
feature h. No additional vector features are used except from self-conditioning. The graph is fully
connected, as the goal is to learn fragment placement and identification rather than reconstruct to
the ligand. Edge features are derived from pairwise distances using a RBF with 16 bases.

NEURAL NETWORK Combining pocket and fragments results in a heterogenous graph that is
composed of two distinct node groups, fragments and pocket surface points, connected by four
types of edges: fragment-to-fragment (F2F), fragment-to-pocket (F2P), pocket-to-fragment (P2F),
and pocket-to-pocket (P2P). To accommodate this complexity, we employ a heterogeneous graph
neural network architecture using geometric vector perceptron (GVP) layers Jing et al. (2021). This
architecture incorporates distinct learnable message functions for each edge type and separate update
functions for each node type. The pocket nodes are not parametrized by a GVP but instead by the
MaSIF module pre-trained during the contrastive learning (weights are not frozen). Figure C.1
displays a scheme of the network architecture.
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C.6 TRAINING

Table C.3: Hyperparameters for the training of the flow matching model. s = scalar feature, V =
vector feature

Module Parameter Value

training epochs 442

learning rate 5e-4

loss λx 1.0
λh 100.0

heterogeneous graph pocket edge k neighbors 10
edge cutoff interaction [Å] 10.0

GVP
layers 5
node hidden dimensions (s, V) 265, 32
edge hidden dimensions (s, V) 64, 16

simulation parameters steps 500

C.7 SAMPLING AND POST-PROCESSING

SELF-CONDITIONING Self-conditioning (Chen et al., 2023) is used, in which the model takes
previous predictions as input during sampling. This has been shown to improve performance.

NUMBER OF COARSE NODES In order to sample new fragments, the model needs to know how
many nodes to place to build a graph. This can be done either by ground truth size, given this
information is available, or alternatively is made dependent on the training distribution of number
of coarse nodes given a pocket with x number of residues.

LIBRARY QUERYING At the end of sampling, the model outputs fragment embeddings h and
centroid coordinates x. We can move from this coarse representation to an all-atom output by
querying a fragment library maximum cosine similarity of the respective latent embeddings. This
fragment library is independent of sampling or training and thus flexibly interchangeable.

DOCKING In order to obtain a realistic orientation with respect to the protein, all fragments are
docked individually. Docking is performed using Gnina (McNutt et al., 2021) with the fragment
placed at the sampled centroid defining the bounding box plus a margin of 1 Å.

D DATA

For both the encoder and the generative modeling protein-ligand structures were extracted from
the Protein Data Bank (PDB) (Berman et al., 2000). For this, PDB was queried (accessed May
2023) retrieving 122,012 protein-only entries where the structures were determined using one of
the following experimental methods: X-ray diffraction, electron microscopy, solid-state NMR, or
solution NMR. The entries are filtered to include only those with a refinement resolution of 3 Å or
better and at least one distinct non-polymer entity present. Subsequently, all structures are split into
individual chains and corresponding ligands. All ligand SMILES present in the PDB are extracted to
reassign the correct bond order using RDKit. Pairs where this reassignment failed were discarded.
All proteins were protonated using Reduced (Word et al., 1999).

All ligands were fragmented using BRICS rules (Degen et al., 2008) with the exception of breaking
double bonds. Fragments smaller than 8 heavy atoms got recombined with all possible neighboring
fragments (related to graph partitioning), which served as a data augmentation technique.

2Training stopped early due to convergence and limiting training time.
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D.1 ENCODER

For the encoder, only fragments in the distance of at least 5 Å were kept and the following filtering
criteria were applied. Fragments are discarded if:

• Have no interaction as determined by PLIP (Adasme et al., 2021b).

• Have more than 20 heavy atoms.

• An element present is not in {C, N, O, S, B, Br, Cl, P, I, F}
• Molecular weight is more than 500 Da.

• Have a maximal ring size of more than 8.

• Have a phosphate group or an aklyl chain of at least 4 Carbons.

The dataset is split into training, validation and test following the approach used for HoloProt (Som-
nath et al., 2021), which is based on precomputed 30% sequence similarity. This splitting approach
does result in having overlapping fragments but no data leakage in terms of protein sequence simi-
larity.

Each fragment in the dataset is randomly paired with another fragment with a Tanimoto similarity
below 0.1 for the FSP.

The fragment library used for VS and the generative pipeline is identical to the training fragments
with the exception of removing fragments that have no profiled non-covalent interactions. This re-
sults in a fragment library of 41,224 unique fragments and 52,070 conformers (Fig. D.2), with the
lowest energy conformer being retained for downstream tasks. The full library consist of 86,927
unique chains. The training set consists of 310,298, the validation set of 33,547 and the test set
45,210 protein:fragment pairs. Figure D.3 shows the distribution of some important molecular prop-
erties for the training data and the library.

Figure D.2: Distribution of frequency of SMILES in the fragment library. Individual fragments
can appear multiple times with different conformations but will have the same latent encoding.
Ethylbenzene is the most frequent fragment and appears 51 times..

D.2 FLOW MATCHING

For the training and evaluation of the generative framework we use the same splits based on 30%
sequence similarity as described above but randomly subsample the validation and test set to 100
datapoints with unique pockets. We further use the same data augmentation technique as described
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Figure D.3: Molecular properties of fragments extracted from the PDB structures. Both the complete
library (dark teal) used for querying fragments in the generative pipeline and the set filtered by the
presence of interactions (light teal) are shown. MW = molecular weight, HBD = hydrogen bond
donor, HBA = hydrogen bond acceptor, logP = lipophilicity, nROT = number of rotational bonds

for the encoder for which we recombine fragments smaller than 8 heavy atoms in a combinatorial
manner with their neighbors in order to get big enough fragments. One datapoint will have all
fragments necessary to make up one ligand and contrary to the encoder, fragments further away are
not discarded. The training set comprises of 118,786 pocket:fragment-set pairs.

Pocket surfaces are extracted by removing points further than 7 Å from the full ligand. Pocket
surfaces points cloud smaller than 250 points are discarded.

E METRICS AND EVALUATION

E.1 ENCODER

The encoder is evaluated on the full test set by assessing results obtained from both full surfaces
and pocket surfaces only. The ROC AUC (area under the receiver operating characteristic curve)
represents the main training objective of being able to discriminate between positive (interacting)
and negative (non-interacting) surface:fragment pairs and is computed based on their cosine simi-
larities across the whole surfaces. The following metrics are all computed on the cosine similarities
between a fragment and each protein surface point and true (interacting) points are defined as those
within 3 Å of the fragment.

The enrichment factor (EF) measures how well high-similarity points are enriched for binding
sites compared to random expectation. All points above a similarity threshold given by the specified
percentile (we consider top 1st, 5th, and 10th percentile) are considered high-similarity points. The
EF is the division of the fraction of interacting points among high similarity points and the fraction
of interacting points across all points (whole surface or pocket). The top-k accuracy evaluates how
well the highest-scoring points correspond to actual binding sites. It first ranks all points based
on similarity and selects the top k (1, 10, 100) highest-scoring ones to compute the accuracy. The
Area Under the Precision-Recall Curve (AUPR) quantifies how well similarity values distinguish
binding from non-binding sites. The precision-recall curve is computed by varying the similarity
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threshold and measuring the trade-off between precision and recall from which the area under the
curve is calculated.

To assess correlation of cosine similarity between latent representation to more interpretable similar-
ities the Tanimoto similarity based on RDKit fingerprints (2048 bits) (RDKit) and the ROSHAMBO
score were computed. The ROSHAMBO score (Atwi et al., 2024) is a shape and color (pharam-
cophore) similarity metric for which conformers had to first be aligned in 3D space.

The clusters in the t-SNE plots in Figures 1 and F.5 were obtained using KMeans clustering and the
number of clusters was determined by minimizing the silhouette score (29 for latent representation,
18 for fingerprints).

E.2 FRAGMENT IDENTIFICATION

We investigated fragment identification through two approaches: virtual screening (VS) using our
latent embeddings (Latent VS) and the generative framework for sampling fragment embeddings
and their centroids. These are compared against VS based on docking (Docking VS) and a random
baseline, evaluated on 100 protein pockets with ≤ 30% sequence similarity to the training set.

GENERATIVE MODELING For each surface 100 samples are generated with number of frag-
ments corresponding to the reference number of fragments. In case of multiple datapoints for one
pocket:ligand pair due to graph partitioning a random sample is chosen out of those. Every sample
consists of one or more nodes with corresponding centroid and latent representation, which is used
to query the library for closest fragment based on cosine similarity. All fragments are subsequently
docked using Gnina (McNutt et al., 2021) within a restricted volume around predicted centroids as
described in Appendix C.7.

LATENT VIRTUAL SCREENING The latent embeddings are used directly for virtual screening by
ranking the sum of all cosine similarities between all pocket surface points and fragments in the
library. The top 100 per target are selected and docked in the full pocket with the bounding box
given by the reference ligand.

DOCKING VIRTUAL SCREENING We further perform VS with docking. The full library is docked
as described above to every test pocket. The top 100 fragments ranked by docking score are selected
as hits.

RANDOM BASELINE A random baseline is established by randomly selecting fragments out of
the library and noising the ground truth centroid by adding the double of a randomly chosen noise
level drawn from the normal distribution. For every target the same number of fragments as in the
ground truth pocket are sampled.

E.2.1 METRICS

We focus on a few evaluation metrics describing recovery, and proxies for interaction:

HARD RECOVERY Hard recovery is defined as exact matches between sampled and reference
fragments based on non-isomeric SMILES. We ignore stereochemistry as chiral centers might be
altered during docking especially with some fragments missing stereo-assignments. We further dis-
tinguish between Sampling hits and Unique Fragments. With the first, describing the total number
of samples that have a corresponding match while the latter is the unique number of reference frag-
ments that got recovered. Recovery rates are calculated correspondingly by dividing by number of
sampled fragments or number of reference fragments that are also in the library. The VS baselines
are divided by the total amount of selected top fragments for the Sampling hits (100 fragments x
100 targets).

SOFT RECOVERY Soft recovery metrics are based on the SuCOS score (Leung et al., 2019), which
assess shape and color (pharmacophoric) similarity between a smaller (fragment) and bigger (ref-
erence ligand) molecule. We plot the reverse cumulative proportion and assess ”soft hits” as those
fragments with a score higher than 0.5. The scores are calculated based on docked poses.
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DOCKING EFFICIENCY Docking efficiency distributions are compared in order to assess a proxy
for binding affinity. Docking efficiency is the vina score (docking score computed by Gnina (McNutt
et al., 2021)) normalized by the number of heavy atoms to reduce the bias introduced by fragments
size. The scores are computed based on docked poses except for the reference, which is based on
minimized poses.

NON-COVALENT INTERACTIONS Non-covalent interactions are extracted by PLIP (Adasme et al.,
2021b) applied to all docked fragments individually. Reference profiles are based on crystal structure
poses.

F ADDITIONAL RESULTS

F.1 ENCODER

We observed that without the FSP loss, we have on par sensitivity but the average similarity between
all fragments of the library is much higher than with FSP (0.45 vs. 0.25), which we thought crucial
for the task of fragment screening (further preliminary data in Fig. F.4). The effect of the NCI loss
is less pronounced but does increase the metrics discussed in Section 3.1.

We further investigated different similarity metrics on a random subset of 1000 fragments. The co-
sine similarity between each latent representation correlates strongly to Tanimoto similarity (Spear-
man ρ = 0.45) based on the RDKit fingerprint (2048 bits) while there is only moderate correlation
to shape and pharmacophoric similarities (after alignment) as determined by ROSHAMBO (Atwi
et al., 2024) (for details see Appendix E). Interestingly, the correlation to the color score is higher
than the corresponding shape score (Spearman ρ of 0.38 and 0.25 respectively) indicating that phar-
macophoric aspects dominate.

Table F.4: Metrics evaluating the encoder on the test set. All scores are computed on the cosine
similarity between fragment and protein surface representations with points labeled as true being
3 Å way from the fragment.

Model Surface ROC
AUC ↑

avg
hf ↓ EF1 ↑ EF5 ↑ EF10 ↑ top-1

Acc ↑
top-10
Acc ↑

top-100
Acc ↑

AUPR ↑
(true rate)

ours whole 0.7 0.25 22.85 14.35 8.61 0.39 0.36 0.33 0.31 (0.01)
pocket 2.28 2.23 2.2 0.45 0.41 0.39 0.39 (0.16)

no NCI whole 0.64 0.23 21.37 14.00 8.47 0.33 0.31 0.31 0.28 (0.01)
pocket 2.22 2.17 2.15 0.41 0.39 0.37 0.37 (0.16)

no FSP whole 0.73 0.45 24.79 14.29 8.45 0.45 0.43 0.36 0.32 (0.01)
pocket 3.16 2.70 2.46 0.53 0.51 0.42 0.40 (0.16)

Figure F.4: Preliminary results highlighting the importance of the FSP on fragment representation
diversity. λ corresponds to the loss weight.
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Figure F.5: t-SNE dimensionality reduction of the fragment library represented as RDKit finger-
prints (2048 bits).

F.2 FRAGMENT IDENTIFICATION

Table F.5: Recovery rates for sampling hits (samples that were an exact match) and unique fragments
(unique fragments that were recovered). It should be noted that the different approaches result in
hugely different numbers of sampled/top fragments as for latent VS we select the top 100 fragments
based on the sum of cosine similarities to the pocket, for docking VS the top 100 based on docking
scores, while the baseline and generative modeling we sample 100 times as many fragments as there
are in the reference. This is included in the calculation of the recovery rate.

Approach Sampling hits
recovery rate [%]

Unique fragments
recovery rate [%]

Generative modeling 4.33 0.554
Latent VS 0.02 0.001
Docking VS 2.05 0.130
Random baseline 0.00 0.00

Given that our latent representations capture protein-fragment interaction and not just chemical sim-
ilarity we can expect correlation between RMSD and cosine similarity between sampled fragments
and reference fragments. This correlation is based on the assumption that the ideal placement of
one fragment is unique in a pocket, which is certainly not always the case. Unfortunately, RMSD
did not show a strong correlation with cosine similarity between samples and references. However,
generative fragments exhibited improved correlations compared to random samples. Additionally,
shape and color overlap metrics using ROSHAMBO (Atwi et al., 2024) showed improvements over
the random baseline, though absolute values remained low as well. Importantly, it should be noted
that fragments often bind promiscuously across multiple binding sites, which may contribute to the
observed variability.
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Figure F.6: Dimensionality reduction plot (PCA and t-SNE) of the sampled fragments from the
generative pipeline compared to the reference fragments colored and symbolized by target.

Figure F.7: Distribution of number of heavy atoms for our generated samples, docking VS and the
random baseline.

F.2.1 NON-COVALENT INTERACTIONS

Using the Protein-Ligand Interaction Profiler (PLIP) (Adasme et al., 2021a) to compare profiles of
non-covalent interactions we observed similar interaction type distributions between the reference
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and sampled fragments but a higher average total number of interactions. However, similar results
were observed with random samples, with even better profiles than the reference, putting the in-
sightfulness of these results into question. This is likely more an artefact of docking, which aims at
maximizing such interactions, than true interactions as we do not dock the reference fragments from
crystal structures. Corresponding data is shown in Figure F.8.

(a) Hydrogen bonds. (b) π interactions.

(c) Hydrophobic interactions. (d) Sum of all interactions.

Figure F.8: Distribution of non-covalent interactions for sampled, reference and random fragments.
π-interactions include π-π-stacking and π-cation interactions. The total number of interactions
includes hydrogen bonds, π-interactions, hydrophobic interactions and salt bridges.

G COMPUTATIONAL RESOURCES

All models were trained on a single GPU (NVIDIA A100-SXM4-80GB) while development was
performed on a NVIDIA GeForce RTX 3090.
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