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ABSTRACT

We present a novel approach to anytime networks that can control network depths
instantly at runtime to provide various accuracy-efficiency trade-offs. While con-
trolling the depth of a network is an effective way to obtain actual inference
speed-up, previous adaptive depth networks require either additional intermediate
classifiers or decision networks, that are challenging to train properly. Unlike
previous approaches, our approach requires virtually no architectural changes from
baseline networks. Instead, we propose a training method that enforces some sub-
paths of the baseline networks to have a special property, with which the sub-paths
do not change the level of input features, but only refine them to reduce prediction
errors. Those specialized sub-paths can be skipped at test time, if needed, to save
computation at marginal loss of prediction accuracy. We first formally present
the rationale behind the sub-paths specialization, and based on that, we propose
a simple and practical training method to specialize sub-paths for adaptive depth
networks. Our approach is generally applicable to residual networks including both
convolution networks and vision transformers. We demonstrate that our approach
outperforms non-adaptive baseline residual networks in various tasks, including
ImageNet classification, COCO object detection and instance segmentation.

1 INTRODUCTION

Modern deep neural networks provide state-of-the-art performance at high computational costs, and,
hence, lots of efforts have been made to leverage those inference capabilities in resource-constrained
systems, such as autonomous vehicles. Those efforts include compact architectures (Howard et al.,
2017; Zhang et al., 2018; Han et al., 2020), network pruning (Han et al., 2016; Liu et al., 2019),
weight/activation quantization (Jacob et al., 2018), knowledge distillation (Hinton et al., 2015), to
name a few. However, those approaches provide static accuracy-efficiency trade-offs that are often
tailored for worst-case scenarios, and, hence, the lost accuracy cannot be recovered even if more
resources become available.

Adaptive networks such as anytime networks (Huang et al., 2018; Yu et al., 2018; Wan et al., 2020)
attempt to provide runtime adaptability to deep neural networks by exploiting the redundancy in
either depths or widths, as shown in Figure 1, or resolutions (Yang et al., 2020a). Dynamic networks
(Wu et al., 2018; Li et al., 2021; 2020; Zhu et al., 2021) add additional control logic to the backbone
network for input-dependent adaptation. However, these adaptive networks usually require auxiliary
networks, such as intermediate classifiers or decision networks, which are challenging to train properly.
Further, since adaptive networks have multiple sub-networks, embedded in a single neural network,
training them incurs potentially conflicting training objectives for the sub-networks, resulting in
worse performance than non-adaptive networks (Li et al., 2019).

In this work, we introduce a novel approach to anytime networks that is executable in multiple depths
to provide instant runtime accuracy-efficiency trade-offs. Unlike previous adaptive depth networks,
our approach does not require additional add-on networks or classifiers, and, hence, it can be applied
to modern residual networks easily. While maintaining the structure of original networks, we train
several sub-paths, or a sequence of residual blocks, of the network to have a special property, that
preserves the level of input features, and only refines them to reduce prediction errors. At test time,
these specialized sub-paths can be skipped, if needed, for efficiency at marginal loss of accuracy as
shown in Figure-1 (right).
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Figure 1: Anytime networks with (left) early-exit branches, (middle) adaptive widths, or channels,
and (right) specialized sub-paths (ours). Dashed layers (or blocks) and channels can be skipped for
instant accuracy-efficiency trade-offs at runtime.

The proposed sub-paths specialization is achieved by enforcing sub-networks with different depths to
produce features with similar distributions for every spatial dimension. In Section 3, we formally
discuss the rationale behind the sub-paths specialization and introduce a simple and practical training
method for sub-paths specialization. In most previous adaptive networks, the total training time
is linearly proportional to the number of supported sub-networks, and resolving potential conflicts
between sub-networks is an important problem. In contrast, our approach does not try to resolve
potential conflicts while jointly training many sub-networks. Instead, our training method exploits
only two sub-networks for sub-paths specialization, and, at test time, those specialized sub-paths
are exploited selectively to build many sub-networks of various depths. Therefore, the total training
time is no greater than training two individual networks. Further, our approach with sub-paths
specialization do not exploit specific properties of convolution neural networks (CNNs) or vision
transformers, and, hence, is generally applicable to residual networks, including both CNNs and
recent vision transformers.

In Section 4, we demonstrate that our adaptive depth networks with sub-paths specialization outper-
form counterpart individual networks, both in CNNs and vision transformers, and achieve actual
inference acceleration in multiple tasks including ImageNet classification, COCO object detection
and instance segmentation. To the best of authors’ knowledge, this work is the first general approach
to adaptive networks demonstrating consistent performance improvements for both CNNs and vision
transformers.

2 RELATED WORK

Adaptive Networks: Anytime networks (Larsson et al., 2017; Huang et al., 2018; Hu et al., 2019;
Wan et al., 2020) and dynamic networks (Wu et al., 2018; Li et al., 2021; Guo et al., 2019; Li et al.,
2020; Yang et al., 2020a) have attracted lots of attention for their runtime adaptability. Most anytime
networks have multiple classifiers that are connected to intermediate layers (Huang et al., 2018; Li
et al., 2019; Fei et al., 2022). Training multiple classifiers is a challenging task and many anytime
networks (Li et al., 2019; Zhang et al., 2019; Wan et al., 2020; Huang et al., 2018; Hu et al., 2019)
exploit knowledge distillation to supervise intermediate classifiers using the last, or the best, classifier.
Slimmable neural networks can adjust channel widths for adaptability and they exploit switchable
batch normalization to handle multiple sub-networks with a single shared classifier (Yu et al., 2018;
Yu & Huang, 2019b). While some dynamic networks (Li et al., 2021) extend anytime networks
simply by adding input-conditioned decision gates at branching paths, a few dynamic networks
(Wu et al., 2018; Veit & Belongie, 2018; Wang et al., 2018a) extend residual networks by applying
block-level decision gates that determine if the block can be skipped. The latter approach is based on
the thought that some blocks can be skipped on easy inputs. However, in these dynamic networks
with adaptive depths, no formal explanation has been given why some blocks can be skipped for a
given input. Therefore, users have no control over the depth of the sub-networks.

Residual Blocks with Shortcuts: Since the introduction of ResNets (He et al., 2016), residual blocks
with shortcuts have received extensive attention because of their ability to train very deep networks,
and have been chosen by many recent deep neural networks (Sandler et al., 2018; Tan & Le, 2019;
Vaswani et al., 2017). Veit et al. (2016) argue that identity shortcuts make exponential paths and
results in an ensemble of shallower networks. This thought is supported by the fact that removing
individual residual blocks at test time does not significantly affect performance (Huang et al., 2016;
Xie et al., 2020). Other works argue that identity shortcuts enable residual blocks to perform iterative
feature refinement, where each block improves slightly but keeps the semantic of the representation
of the previous layer (Greff et al., 2016; Jastrzebski et al., 2018). Our work build upon those views on
residual blocks with shortcuts. We further extend them for adaptive depth networks by introducing a
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novel training method that exploits the properties of residual blocks more explicitly for sub-paths
specialization.

3 SUB-PATHS SPECIALIZATION FOR ADAPTIVE DEPTH NETWORKS

In this section, we first formally discuss the rationale behind the sub-paths specialization. Then, the
details of training of sub-paths specialization is discussed.

3.1 MOTIVATION AND OVERVIEW

In typical residual networks such as ResNets, the s-th residual stage is consisted of L identical
residual blocks, which transform input features hs−1 additively and produce the output features hs,
as shown in Equation 1. While a block with a residual function F learns higher level features as
traditional compositional networks (Simonyan & Zisserman, 2015), previous literature (Jastrzebski
et al., 2018; Greff et al., 2016) demonstrates that a residual function also tend to learn a function
that refines already learned features at the same feature level. The first and the second functions,
respectively, are called feature learning and feature refinement. If a residual block mostly perform
feature refinement while not changing the level of features, the performance of the residual network
is not significantly affected by dropping the block at test time (Huang et al., 2016; Xie et al., 2020).
However, in typical residual networks, most residual blocks tend to learn both functions, and, hence,
random dropping of residual blocks at test time degrades the performance significantly. If some
residual blocks can be trained to focus on one function while the remaining blocks are encouraged to
focus on the other function, then we can safely skip blocks specialized to feature refinement to save
computation at marginal loss of prediction accuracy, if needed for efficiency.

To this end, in our approach, residual functions of a residual stage are partitioned into two sub-paths,
Fbase and Fskippable, as in Equation 1, and, during training, they are encouraged to focus more on
respective functions, i.e., learning new level features and refining the learned features.

hs−1 + F1(hs−1) + F2(hs
1) + ...+ FK(hs

K−1)︸ ︷︷ ︸
Fbase︸ ︷︷ ︸

=hs
base

+FK+1(hs
K) + ...+ FL(hs

L−1)︸ ︷︷ ︸
Fskippable

= hs
super (1)

Since the last half residual functions, or Fskippable, is supposed to preserve the level of input features,
Fskippable can be skipped for efficiency and the intermediate features, or hs

base, can be used as the
input to the next stage. When the higher inference accuracy is required, Fskippable can be applied to
hs
base to produce more refined features hs

super. Since the feature representations hs
base and hs

super are
at the same level, either hs

base or hs
super can be provided as an input hs to the next (s+ 1)-th residual

stage with little change in the feature distribution.

Figure 2 shows an residual stage, in which the last half blocks are specialized to preserve the level
of input features. Since each such residual stage provides two alternative internal paths, if there are
Ns residual stages with specialized sub-paths, 2Ns sub-networks with different accuracy-efficiency
trade-offs become available at test time (Section 4.3).

3.2 SUB-PATHS SPECIALIZATION

Preserving the level of input features implies that two features representations hs
base and hs

super
have similar distributions over input X. We can enforce this during training by minimizing the
Kullback-Leibler (KL) divergence between the two feature representations:

DKL(hs
super||h

s
base) → 0 (2)

It is noteworthy that enforcing Equation 2 also has the distillation effect of transferring the knowledge
from hs

super to hs
base. Therefore, at each residual stage, hs

base is expected to learn more compact
representation from hs

super. As a consequence of Equation 2, we can conjecture that residual functions
in Fskippable is trained to have small magnitude:

Ex∈X[FK+1(hs
K) + ...+ FL(hs

L−1)] → 0 (3)
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Figure 2: Illustration of a residual stage with a specialized sub-path. A residual stage is split into
two sub-paths. While the first (blue) sub-path is mandatory for all sub-networks, the last (yellow)
sub-path can be skipped. During training, the last sub-path is encouraged to refine input feature
representation hs

base, while minimally changing its distribution. When the specialized sub-path is
skipped, a different set of batch normalization operators, called skip-aware BNs, are used in the
shared sub-path. The shortcuts within residual blocks are not shown for brevity.

Then, what do the residual functions in Fskippable learn during training? This can be further investi-
gated through Taylor expansion (Jastrzebski et al., 2018). Any loss function L used for training can
be approximated with Taylor expansion as follows:

L(hs
super) = L(hs

base + FK+1(hs
K) + ...+ FL−1(hs

L−2) + FL(hs
L−1)) (4)

≈ L(hs
base + FK+1(hs

K) + ...+ FL−1(hs
L−2)) + FL(hs

L−1) ·
∂L(hs

L−1)

∂hs
L−1

+O(·) (5)

...

≈ L(hs
base) +

L∑
j=K+1

Fj(hs
j−1) ·

∂L(hs
j−1)

∂hs
j−1

(6)

In Equations 4 -6, the loss function is iteratively expanded around hs
j−1 (j = K + 1, ..., L). In

Equation 5, note that only the first order term F (h) · ∂L(h)/∂h is left and all high order terms, such
as F 2(h) · ∂2L(h)/∂h2, are absored in O(·). These high order terms in O(·) can be safely ignored
in final Equation 6 since F s in Fskippable have small magnitudes, as shown in Equation 3. Thus, in
Equation 6, minimizing the loss L during training optimizes Fj (j = K + 1, ..., L) in the half space

of − ∂L(hs
j−1)

∂hs
j−1

to minimize the dot product between Fj and
∂L(hs

j−1)

∂hs
j−1

. This implies that every residual
function in Fskippable is optimized to learn a function that has a similar effect to gradient descent:

Fj(hs
j−1) ≃ −

∂L(hs
j−1)

∂hs
j−1

(j = K + 1, ..., L) (7)

Considering these results in Equations 2 and 7 together, we can conjecture that residual functions
in Fskippable (1) minimally change the distribution of input features hs

base, but (2) refine them
iteratively to minimize the loss for better inference accuracy. In other words, the skippable sub-path
is specialized for refining input features for better inference accuracy while preserving its feature
level. Therefore, Fskippable, or the specialized residual blocks, can be skipped without causing much
changes of the feature distribution to the next residual stages (Sections 4.3 and 4.4).

3.3 TRAINING ADAPTIVE DEPTH NETWORKS

To enforce Equation 2, we propose a training method shown in Algorithm 1, in which two sub-
networks, or the super-net and the base-net, are exploited in a single training loop for sub-paths
specialization. The super-net and the base-net are the largest and the smallest sub-networks, respec-
tively, of the proposed adaptive depth network M . For example, the base-net skips every specialized
sub-paths in M . In contrast, the super-net executes all residual blocks of M without skipping.

In steps 5 and 6, the forward passes of the super-net and the base-net are executed for the same
input x. The second argument, skip, of the model M indicates in which residual stage its specialized
sub-path is skipped. In ResNets with 4 residual stages, 16(= 24) sub-networks become available
by varying the skip argument. For example, we choose the base-net of a ResNet by setting the
second argument to skip=[True, True, True, True]. During the training, a wrapper function is used to
obtain intermediate features from every residual stage as well as the outputs of the sub-networks. For
instance, during the forward pass of the base-net, intermediate features from Ns residual stages, or
hbase = [h1

base, ...,hNs

base], and output ŷbase are obtained.
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Algorithm 1 Training with sub-paths specialization. Ns is the number of residual stages.

1: Initialize an adaptive depth network M
2: for i=1,...,niters do
3: Get next mini-batch of data x and label y
4: optimizer.zero_grad()
5: [ŷsuper,hsuper] = M(x, skip=[False, ... , False]) ▷ Forward pass for the super-net of M
6: [ŷbase,hbase] = M(x, skip=[True, ... , True]) ▷ Forward pass for the base-net of M
7: loss = α criterion(y, ŷsuper)+(1−α){

∑Ns
s=1 DKL(hs

super∥hs
base)+DKL(ŷsuper∥ŷbase)}

8: loss.backward()
9: optimizer.step()

10: end for

In step 7, we modify the loss by adding Kullback Leibler (KL) divergence between hbase and hsuper,
given in Equation 2, as an regularization term:

loss = α criterion(y, ŷsuper) + (1− α){
Ns∑
s=1

DKL(hs
super∥hs

base) +DKL(ŷsuper∥ŷbase)} (8)

ŷsuper and ŷbase are included in the regularization term since they are last features from the sub-
networks. The hyperparameter α controls the strength of the regularization term.

In previous anytime networks, all sub-networks are explicitly trained either jointly or sequentially (Yu
& Huang, 2019b), and, hence, the total training time is proportional to the number of supported sub-
networks. In contrast, our approach does not train all sub-networks jointly or sequentially. Instead, in
Algorithm 1, only two sub-networks are exploited during training for sub-paths specialization, and,
hence, the total training time is no greater than training two sub-networks individually. However, at
test time, the specialized sub-paths can be exploited selectively to construct 2Ns sub-networks of
various depths. We demonstrate this result in Section 4.3.

3.4 SKIP-AWARE BATCH NORMALIZATION FOR SHARED SUB-PATHS

In our adaptive depth networks, each residual stage expects the distribution of input features is not
affected by the choices of internal paths of its previous residual stages. However, the shared sub-paths
inside each residual stage still need adaptability to handle different sub-networks. Originally, batch
normalization (BN) (Ioffe & Szegedy, 2015) was proposed to handle internal covariate shift during
training non-adaptive networks by normalizing features. In our adaptive depth networks, however,
internal covariate shifts occur in shared sub-paths when different sub-networks are used. To handle
this internal covariate shifts, switchable BN operators, called skip-aware BNs, are used in shared
sub-paths. For example, at each residual stage, different BN operators are used by the layers in the
shared sub-path when specialized sub-path is skipped. The effectiveness of switchable BNs has been
demonstrated in neural networks with adaptive widths (Yu & Huang, 2019a) and adaptive resolutions
(Zhu et al., 2021), and we apply them for our adaptive depth networks. The amount of parameters for
skip-aware BNs is negligible. In ResNet50, skip-aware BNs increase the parameters by 0.07%.

4 EXPERIMENTS

To demonstrate the effectiveness of our approach, we conduct experiments on ImageNet classification
and COCO object detection and instance segmentation benchmarks. Three representative residual
networks both from CNNs and vision transformers are chosen as base models; MobileNet V2 (Sandler
et al., 2018) is a lightweight CNN model, ResNet (He et al., 2016) is a larger CNN model, and ViT
(Dosovitskiy et al., 2021) is a representative vision transformer. For CNN models, every residual stage
is split equally into two sub-paths and its second sub-path is skippable. Since the vision transformer
(ViT-b) has no residual stages, 12 consecutive encoder blocks are divided into 4 groups, resembling
CNN models, and the last encoder block of each group is used as a skippable sub-path. Since
vision transformers exploit layer normalization instead of batch normalization (Yao et al., 2021),
we apply switchable layer normalization operators in shared sub-paths instead of switchable BNs.
During training, every skippable sub-path is specialized according to Algorithm 1. We use ‘-ADN’ to
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denote our adaptive depth networks. Since our adaptive depth networks have many parameter-sharing
sub-networks in a single model, we indicate which sub-network is used for experiments in parenthesis,
e.g., -ADN (super-net). For our sub-networks, boolean values in the parenthesis, e.g., (TTFF), are
also used to indicate in which residual stages the sub-path is skipped. For example, -ADN (base-net)
is equivalent to -ADN (TTTT).

4.1 IMAGENET CLASSIFICATION

We evaluate our method on ILSVRC2012 dataset (Russakovsky et al., 2015) that has 1000 classes.
The dataset consists of 1.28M training and 50K validation images. For CNN models, we follow most
training settings in the original papers (He et al., 2016; Sandler et al., 2018), except that ResNet
models are trained for 150 epochs. For ViT-b, we follow DeIT’s training recipe (Touvron et al.,
2020; pyt, 2022). The hyperparameter α is set to 0.5 for all models. For fair comparison, individual
networks are trained in the same training settings of their corresponding adaptive depth networks.

Table 1: Results on ImageNet. Models with ‘-Base’ have the same depth as the base-net of corre-
sponding adaptive depth network. Latency is measured on an RTX 3090 device (batch size = 64).

Baseline Model Params FLOPs Acc@1 Acc@5 Latency

ResNet50

ResNet50-ADN (super-net) 25.58M 4.11G 77.6% 93.7% 43.2ms
ResNet50-ADN (base-net) 2.58G 76.1% 93.2% 27.6ms
ResNet50 (individual network) 25.56M 4.11G 76.7% 93.2% 43.2ms
ResNet50-Base (individual network) 17.11M 2.58G 75.0% 92.3% 27.6ms
Early-exiting branches

28.82M
4.11G 75.2% - 43.2ms

(Zhang et al., 2019; 2022) 3.52G 72.8% - 39.0ms
(Li et al., 2019) 2.05G 58.5% - 27.4ms

Slimmable widths
25.6M

4.1G 76.0% - 43.2ms
1.0x, 0.75x, 0.5x widths 2.0G 75.6% - 33.8ms
(Yu et al., 2018; Yu & Huang, 2019a) 1.0G 74.0% - 21.2ms

MobileNet

MV2-ADN (super-net) 3.72M 0.32G 72.7% 90.8% 15.5ms
MV2-ADN (base-net) 0.25G 70.7% 89.8% 13.2ms
MV2 (individual network) 3.50M 0.32G 72.1% 90.3% 15.5ms

V2 MV2-Base (individual network) 2.99M 0.25G 70.7% 89.6% 13.2ms
MutualNet (Yang et al., 2020b) - 0.32G 72.9% - -
AlphaNet-0.75x (Wang et al., 2021a) - 0.21G 70.5% - -

ViT-b/32

ViT-b/32-ADN (super-net) 88.25M 2.95G 76.4% 92.7% 39.5ms
ViT-b/32-ADN (base-net) 2.00G 73.2% 91.4% 26.7ms
ViT-b/32 (individual network) 88.22M 2.95G 75.9 % 92.5% 39.5ms
ViT-b/32-Base (individual network) 69.33M 2.00G 73.1% 90.8% 26.7ms

The results in Table 1 show that our adaptive depth networks consistently outperform individual
counterpart networks even though many sub-networks share parameters in a single network. We
conjecture that these improvements result from distilling the knowledge from hs

super to hs
base at each

residual stage and the iterative refinement at the skippable sub-paths, shown in Equation 7. In Table 1,
ResNet50-ADN is also compared with two representative anytime networks (Zhang et al., 2019; Yu &
Huang, 2019a) that can control the depths and the widths, respectively. Our adaptive depth networks
achieve better performance than these competitors. In particular, unlike competitors, the reduction of
FLOPs of ResNet-ADN is closely translated into actual acceleration. For instance, when the FLOPs
of ResNet50-ADN (base-net) is reduced by 37.3%, its inference latency is also similarly reduced by
36.2%. In contrast, although S-ResNet50 (0.75x) requires 22% less FLOPs than ResNet50-ADN
(base-net), it shows 22.4% longer inference latency in practice. Since S-ResNet50’s network depth is
not changed by reducing widths, it still needs to perform similar number of GPU kernel invocations
in practice. In early-exiting anytime networks, effective depths of network can be reduced. But as
shown in Zhang et al. (2019)’s work, sub-networks of early-exiting networks manifest significantly
low inference accuracy since they only exploit low-level features. In MobileNetV2, our MV2-ADN
is compared with recent adaptive networks that control network widths and resolutions. While these
networks exploit recent training techniques such as AutoAugment (Cubuk et al., 2019) and input
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resolution variations (Wang et al., 2021a), our MV2-ADN achieves similar performance without such
bells and whistles. Finally, our result with ViT-b/32-ADN demonstrates that our approach is generally
applicable to residual networks including vision transformers.

Table 2: Comparison of state-of-the-art efficient inference methods for ResNet 50 on ImageNet.
† denotes static pruning methods, ∗ denotes new filter design, ⋆ denotes dynamic networks.

Model Params FLOPs ↓FLOPs Acc@1 Acc@5

PFP-A-ResNet50 (Liebenwein et al., 2020)† 20.9M 3.7G 10% 75.9% 92.8%
Versatile-ResNet50 (Wang et al., 2018b)∗ 11.0M 3.0G 27% 74.5% 91.8%
Dynamic Slimmable (Li et al., 2021)⋆ - 3.1G 24% 76.6% -
ResNet50-ADN (TTFF) 25.6M 3.4G 17% 77.0% 93.4%

GReg-1 (Wang et al., 2021b)† - 2.8G 33% 76.1% -
Ghost-ResNet50-2 (Han et al., 2020)∗ 13.0M 2.2G 46% 75.0% 92.3%
DR-ResNet50 (α=2.0) (Zhu et al., 2021)⋆ 30.5M 2.3G 44% 75.3% 92.2%
ResNet50-ADN (base-net) 25.6M 2.6G 37% 76.1% 93.2%

In Table 2, two sub-networks of ResNet50-ADN are compared with several state-of-the-art efficient
inference methods. Both sub-networks of ResNet50-ADN achieve very competitive results compared
to many state-of-the-art methods. Some of these state-of-the-art methods require unusual training
techniques to provide accuracy-efficiency trade-offs. For example, in dynamic slimmable networks
(Li et al., 2021), 4 sub-networks are randomly sampled at every batch iteration until all sub-networks
are converged. In contrast, our approach exploits only two sub-networks, or super-net and base-net,
during training according to Algorithm 1. Further, unlike static pruning methods, since the sub-
networks of our approach share parameters in a single model, they can adapt their depths instantly at
runtime. The result with ResNet50-ADN (base-net) also demonstrates that non-skippable sub-paths
of our adaptive depth networks learn compact feature representations effectively while skippable
sub-paths are enforced to preserve the level of input features during training.

4.2 ABLATION STUDY

Table 3: Ablation analysis with ResNet50-ADN. Applied components are checked with
√

mark.

Sub-paths Skip-aware Acc@1
specialization BNs Super-net Base-net

75.2% (↓ 1.5%) 72.2% (↓ 2.8%)√
76.1% (↓ 0.6%) 74.9 % (↓ 0.1%)√
76.6% (↓ 0.1%) 75.1% (↑ 0.1%)√ √
77.6% (↑ 0.9%) 76.1% (↑ 1.1%)

We conduct ablation study on ImageNet classification to investigate the influence of two key com-
ponents of the proposed adaptive depth networks: (1) sub-paths specialization and (2) skip-aware
BNs. When our sub-path specialization is not applied, the loss in Algorithm 1 is modified to
loss = 1

2{criterion(y, ŷsuper) + criterion(y, ŷbase)}. The results are shown in Table 3. When
neither of them is applied, the inference accuracy of the super-net and the base-net is significantly
lower than that of individual networks by 1.5% and 2.8%, respectively. This result shows the difficulty
of training multiple sub-networks in anytime networks. During training, uncoordinated training sig-
nals from the super-net and the base-net decrease the effect of training, resulting in worse performance
than individual networks. When one of the two components is applied individually, the performance
is still slightly worse than individual networks’. Finally, when both sub-paths specialization and
skip-aware BNs are applied together, ResNet50-ADN achieves significantly better performance
than individual networks, both in the super-net and the base-net. This result demonstrates that both
sub-paths specialization and skip-aware BNs are essential for the proposed adaptive depth networks.
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Figure 3: (a) Performance while varying the depth of ResNet50-ADN. The labels under each bar are
boolean values indicating the residual stages that skip their specialized sub-path. (b) The distances
between the means of skip-aware BNs in the shared sub-paths of ResNet50-ADN. Bars with different
colors belong to different residual stages.
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(a) Original ResNet50

(b) ResNet50-ADN (super-net)

(c) ResNet50-ADN (base-net)

Figure 4: Class Activation Map images of the 3rd stages of ResNet50s. (a) Original ResNet50’s
activation regions change gradually across all blocks, indicating that every block performs similar
functions. (b) In ResNet50-ADN (super), the non-skippable first 3 blocks have extensive hot activation
regions, implying active learning of new level features. In contrast, the skippable last 3 blocks have
far less activation regions and they are gradually refined around the target. (c) The base-net’s final
activation map is very similar to the super-net’s, but has less hot activations around the target object.

4.3 VARYING NETWORK DEPTHS AT TEST TIME

One important advantage of sub-paths specialization is that each residual stage’s choice of internal
paths does not affect the following residual stages. Therefore, each residual stage can independently
make a decision about skipping its specialized sub-path. This implies that our adaptive depth networks
can support 2Ns sub-networks at test time, when Ns residual stages are given. Figure 3-(a) shows
the performance of ResNet50-ADN when its depth is varied at test time. Among them, only the
super-net and the base-net are used for training in Algorithm 1. The other sub-networks are built
by applying different combinations of skipping decisions at test time. Although these sub-networks
are not trained explicitly, their performance does not drop significantly. Instead, they show gradual
degradation of performance as the depth of sub-networks becomes gradually shallower.

4.4 ANALYSIS OF SUB-PATHS SPECIALIZATION

The premise of sub-paths specialization is that the feature distribution from each residual stage is not
much affected whether its specialized sub-path is skipped or not; i.e, DKL(hs

base||h
s
super) → 0. We

can verify this by inspecting the input distribution of the next residual stages. Figure 3-(b) shows the
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distances between the means of switchable BNs in the shared sub-paths of ResNet50-ADN. In Figure
3-(b), the distance at every residual stage’s first layer is close to zero. This demonstrates that their
previous residual stages produce feature distributions of the same means regardless of whether the
specialized sub-path is skipped or not. Figure 3-(b) also shows that the shared layers except the first
layers of each residual stage have very different input distributions, demonstrating the necessity of
skip-aware BNs in the shared sub-paths.

To further verify that the non-skippable sub-paths and the skippable sub-paths, respectively, focus
more on learning new level features and refining learned features, we visualize the activation of 3rd
residual stage of ResNet50-ADN using Grad-CAM (Selvaraju et al., 2017) in Figure 4. The 3rd
residual stage of ResNet50-ADN has six residual blocks and the last three blocks are skippable. In
Figure 4-(a), the activation regions of original ResNet50 changes gradually across all consecutive
blocks. This implies that all blocks are involved in gradual learning of new level features as well
as the refinement of the learned features. In contrast, in Figure 4-(b), ResNet50-ADN (super-net)
manifests very different progressions of activation regions in two sub-paths. In the first three residual
blocks, we can observe lots of hot activation regions in wide areas, suggesting active learning of new
level features. In contrast, significantly less activation regions are found in the skippable last three
blocks and they are gradually concentrated around the target object, demonstrating the refinement
of learned features. Further, in Figure 4-(c), we can observe that the final activation map of the
ResNet50 (base-net) is very similar to the super-net’s final activation map in (b), implying that they
are at the same feature level as suggested in Equation 2. However, the final activation map of the
base-net has less hot activation regions around the target object than super-net’s, potentially resulting
in lower inference accuracy than super-net’s more refined features.

4.5 OBJECT DETECTION AND INSTANCE SEGMENTATION

Table 4: Object detection and instance segmentation results on MS COCO dataset.

Detector Backbone FLOPs Individual Networks ResNet-ADN (ours)
Box AP Mask AP Box AP Mask AP

Faster-RCNN ResNet50 207.07G 36.4 37.8
(Ren et al., 2017) ResNet50-Base 175.66G 32.4 34.0
Mask-RCNN ResNet50 260.14G 37.2 34.1 38.3 34.1
(He et al., 2017) ResNet50-Base 228.73G 32.7 29.9 34.1 31.2

In order to investigate the generalization ability of our approach, we use MS COCO 2017 datasets
on object detection and instance segmentation tasks using representative detectors. We compare
individual ResNets and our adaptive depth ResNets-ADN as backbone networks of the detectors.
For training of detectors, we use Algorithm 1 with slight adaptation. For object detection, the
intermediate features hs

base and hs
super(s = 1..Ns) can be obtained directly from backbone network’s

feature pyramid networks (FPN) (Lin et al., 2017), and, hence, a wrapper function is not required to
extract intermediate features. All networks are trained on train2017 for 12 epochs from ImageNet
pretrained weights, following the training settings suggested in (Lin et al., 2017). Table 4 shows the
results on val2017 containing 5000 images. Our adaptive depth backbone networks significantly
outperform individual static backbone networks in terms of COCO’s standard metric AP.

5 CONCLUSIONS

We present a novel approach to adaptive depth networks that is generally applicable to residual
networks, including both convolution networks and vision transformers. Unlike previous approaches,
our adaptive depth networks do not require auxiliary add-on networks or classifiers to control network
depths. Instead, our approach train sub-paths of a single network to have a special property, with
which the sub-paths can be skipped for efficiency at marginal loss of prediction accuracy. We discuss
the theoretic rationale behind this sub-paths specialization, and present a simple and practical training
method. While our training method uses only two sub-networks, it makes various sub-networks with
different depths available at test time. Through extensive experiments with both convolution networks
and vision transformers, we demonstrate that the proposed adaptive depth networks outperform
individual static networks while achieving actual inference speed-up.
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6 REPRODUCIBILITY

For reproducibility, we provide source codes and the links to the pretrained weights as the supple-
mentary material. Code and models will be available in authors’ public repository. All programs for
training and evaluation run on PCs equipped with two or four Nvidia RTX 3090 GPUs and an Intel
i9-10900X CPU @3.7GHz.
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