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Abstract

A cursory reading of the literature suggests that we have made a lot of progress in de-
signing effective adversarial defenses for Graph Neural Networks (GNNGs). Yet, the
standard methodology has a serious flaw — virtually all of the defenses are evaluated
against non-adaptive attacks leading to overly optimistic robustness estimates. We
perform a thorough robustness analysis of 7 of the most popular defenses spanning
the entire spectrum of strategies, i.e., aimed at improving the graph, the architecture,
or the training. The results are sobering — most defenses show no or only marginal
improvement compared to an undefended baseline. We advocate using custom
adaptive attacks as a gold standard and we outline the lessons we learned from
successfully designing such attacks. Moreover, our diverse collection of perturbed
graphs forms a (black-box) unit test offering a first glance at a model’s robustnessﬂ

1 Introduction

The vision community learned a bitter lesson — we need specific carefully crafted attacks to properly
evaluate the adversarial robustness of a defense. Consequently, adaptive attacks are considered the
gold standard [44]]. This was not always the case; until recently, most defenses were tested only
against relatively weak static attacks. The turning point was Carlini & Wagner [3[]’s work showing
that 10 methods for detecting adversarial attacks can be easily circumvented. Shortly after, Athalye
et al. [1]] showed that 7 out of the 9 defenses they studied can be broken since they (implicitly) rely
on obfuscated gradients. So far, this bitter lesson is completely ignored in the graph domain.
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Figure 1: Adaptive attacks draw a different picture of robustness. All defenses are less robust than
reported, with an undefended GCN [33]] outperforming some. We show results on Cora ML for both
poisoning (attack before training) and evasion (attack after training), and both global (attack the test
set jointly) and local (attack individual nodes) setting. The perturbation budget is relative w.r.t. the
#edges for global attacks (5% evasion, 2.5% poisoning) and w.r.t. the degree for local attacks (100%).
In (a)/(b) SVD-GCN is catastrophically broken — our adaptive attacks reach 24%/9% (not visible).
Note that our non-adaptive attacks are already stronger than what is typically used (see @
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Virtually no existing work that proposes an allegedly robust Graph Neural Network (GNN) evaluates
against adaptive attacks, leading to overly optimistic robustness estimates. To show the seriousness of
this methodological flaw we categorize 49 works that propose a robust GNN and are published at
major conferences/journals. We then choose one defense per category (usually the most highly cited).
Not surprisingly, we show that none of the assessed models are as robust as originally advertised
in their respective papers. In we summarize the results for 7 of the most popular defenses,
spanning the entire spectrum of strategies (i.e., aimed at improving the graph, the architecture, or the

training, see [Table TJ).

We see that in both local and global settings, as well as for both evasion and poisoning, the adversarial
accuracy under our adaptive attacks is significantly smaller compared to the routinely used non-
adaptive attacks. Even more troubling is that many of the defenses perform worse than an undefended
baseline (a vanilla GCN [33])). Importantly, the 7 defenses are not cherry-picked. We report the results
for each defense we assessed and selected each defence before running any experiments.

Adversarial robustness measures the local generalization capabilities of a model, i.e., sensitivity
to (bounded) worst-case perturbations. Certificates typically provide a lower bound on the actual
robustness while attacks provide an upper bound. Since stronger attacks directly translate into tighter
bounds our goal is to design the strongest attack possible. Our adaptive attacks have perfect knowledge
of the model, the parameters, and the data, including all defensive measures. In contrast, non-adaptive
attacks (e.g., transferred from an undefended proxy or an attack lacking knowledge about defense
measures) only show how good the defense is at suppressing a narrow subset of input perturbations

Tramer et al. [44] showed that even adaptive attacks can be tricky to design with many subtle
challenges. The graph domain comes with additional challenges since graphs are typically sparse
and discrete and the representation of any node depends on its neighborhood. For this reason, we
describe the recurring themes, the lessons learned, and our systematic methodology for designing
strong adaptive attacks for all examined models. Additionally, we find that defenses are sometimes
sensitive to a common attack vector and transferring attacks can also be successful. Thus, the diverse
collection of perturbed adjacency matrices resulting from our attacks forms a (black-box) unit test
that any truly robust model should pass before moving on to adaptive evaluation. In summary:

* We survey and categorize 49 defenses published across prestigious machine learning venues.

* We design custom attacks for 7 defenses (14%), covering the spectrum of defense techniques. All
examined models forfeit a large fraction of previously reported robustness gains.

* We provide a transparent methodology and guidelines for designing strong adaptive attacks.

* Qur collection of perturbed graphs can serve as a robustness unit test for GNNs.

2 Background and preliminaries

We follow the most common setup and assume GNN [20, [33] classifiers fp(A, X) that operate on a
symmetric binary adjacency matrix A € {0, 1}"*™ with binary node features X € {0,1}"*% and
node labels y € {1,2,...,C}™ where C is the number of classes, n is the number of nodes, and m
the number of edges. A poisoning attack perturbs the graph (flips edges) prior to training, optimizing
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where Zyck 18 the attacker’s loss, which is possibly different from £y, (see @ In an evasion attack,
0* is kept fixed and obtained by training on the clean graph ming £y,in(fo(A, X),y). In both cases,
the locality constraint ®(A) enforces a budget A by limiting the perturbation to an Lg-ball around
the clean adjacency matrix: ||A — Allp < 2A. Attacks on X also exist, however, this scenario is not
considered by the vast majority of defenses. For example, only one out of the seven examined ones
also discusses feature perturbations. We refer to[§ D|for more details on adaptive feature attacks.

Threat model. Our attacks aim to either cause misclassification of the entire test set (global) or a
single node (local). To obtain the strongest attack possible (i.e., tightest robustness upper bound),
we use white-box attacks. We do not constrain the attacker beyond a simple budget constraint that
enforces a maximum number of perturbed edges. For our considerations on unnoticeability, see[§ Al

2 From a security perspective non-adaptive attacks (typically transfer attacks) are also relevant since a real-world
adversary is unlikely to know everything about the model and the data.



Greedy attacks. Attacking a GNN typically corresponds to solving a constrained discrete non-
convex optimization problem that — evident by this work — is hard to solve. Commonly, approximate
algorithms are used to to tackle these optimization problems. For example, the single-step Fast
Gradient Attack (FGA) flips the edges whose gradient (i.e., V A £iain (fo+ (A, X),y)) most strongly
indicates so. On the other hand, Nettack [67]] and Metattack [66] are greedy multi-step attacks. The
greedy approaches have the nice side-effect that an attack for a high budget A directly gives all
attacks for budgets lower than A. On the other hand, they tend to be relatively weaker.

Projected Gradient Descent (PGD). Alternatively, PGD [53] has been applied to GNNs where
the discrete adjacency matrix is relaxed to [0, 1]™*" during the gradient-based optimization and the
resulting weighted change reflects the probability of flipping an edge. After each gradient update, the
changes are projected back such that the budget holds in expectation ||E[A] — Al|o < 2A. Finally,

multiple samples are obtained and the strongest perturbation A is chosen that obeys the budget A.
The biggest caveats while applying Ly-PGD are the relaxation gap and limited scalability (see Geisler
et al. [[17] for a detailed discussion and a scalable alternative).

Evasion vs. poisoning. Evasion can be considered the easier setting from an attack perspective since
the model is fixed fy-. For poisoning, on the other hand, the adjacency matrix is perturbed before
training (Eq. I). Two general strategies exist for poisoning attacks: (1) transfer a perturbed adjacency
matrix from an evasion attack [67]]; or (2) attack directly by, e.g., unrolling the training procedure
to obtain gradients through training [66]. Xu et al. [S3] propose to solve with alternating
optimization which was shown to be even weaker than the evasion transfer (1). Note that evasion is
particularly of interest for inductive learning and poisoning for transductive learning.

3 Adversarial defenses

We select the defenses s.t. we capture the entire spectrum of methods improving robustness against
structure perturbations. For the selection, we extend the taxonomy proposed in [21]. We selected the
subset without cherry-picking based on the criteria elaborated below before experimentation.

Taxonomy. The top-level categories are improving the graph (e.g., preprocessing), improving the
training (e.g., adversarial training or augmentations), and improving the architecture. Many defenses
for structure perturbations either fall into the category of improving the graph or adaptively weighting
down edges through an improved architecture. Thus, we introduce further subcategories. Similar
to [21]]’s discussion, unsupervised improvement of the graph finds clues in the node features and
graph structure, while supervised improvement incorporates gradient information from the learning
objective. Conversely, for adaptive edge weighting, we identify three prevalent approaches: rule-
based (e.g., using a simple metric), probabilistic (e.g., modeling a latent distribution), and robust
aggregations (e.g., with guarantees). We assign each defense to the most fitting taxon (details in[§ B).

Selected defenses. To evaluate a diverse set of defenses, we select one per leaf taxonE] We prioritize
highly cited defenses published at renowned venues with publicly available code. We implement
all defenses in one unified pipeline. We present the categorization of defenses and our selection in
Similarly to Tramer et al. [44], we exclude defenses in the “robust training” category (see[§ C|
for a discussion). Two of the three models in the “miscellaneous” category report some improvement
in robustness, but they are not explicitly designed for defense purposes so we exclude them from our
study. Some works evaluate only against evasion [48]], others only poisoning [[12} 15/ 58], and the rest
tackle both [[17,130}163]. In some cases the evaluation setting is not explicitly stated and inferred by us.
For completeness, we consider each defense in all four settings (local/global and evasion/poisoning).
Next, we provide a short summary of the key ideas behind each defense (details in[§ E).

Improving the graph. The feature-based Jaccard-GCN [48]] uses a preprocessing step to remove all
edges between nodes whose features exhibit a Jaccard similarity below a certain threshold. This was
motivated by the homophily assumption which is violated by prior attacks that tend to insert edges
between dissimilar nodes. The structure-based SVD-GCN [[12] replaces the adjacency matrix with a
low-rank approximation prior to plugging it into a regular GNN. This defense was motivated by the
observation that the perturbations from Nettack tend to disproportionately affect the high-frequency
spectrum of the adjacency matrix. The key idea in ProGNN [30] is to learn the graph structure by

3 The only exception is unsupervised graph improvement, as it contains two of the most popular approaches,
which rely on orthogonal principles. One filters edges based on the node features [48§]], the other uses a low-rank
approximation of the adjacency matrix [12].



Table 1: Categorization of selected defenses. Our taxonomy extends the one by Giinnemann [21]].

Taxonomy | Selected Defenses Other Defenses
. Jaccard-GCN [48] .
Improving Unsupervised ‘ SVD-GCN []2[] y [10!126]150!1591160]
graph - .
Supervised | ProGNN [30] [31]143]156]
Improving _ Robust training | n/a (seef§ C) [61[01[14122] 271 28] [41] 521531 54]
training Further training principles \ GRAND [15] [S1111412911391142/155!161!164/165]
Adaptively Rule-based | GNNGuard [58] [3111361137!157]
Improving ~ weighting  Probabilistic | RGCN [63] [811131124)1251138]
architecture ~ edges Robust agg. | Soft-Median-GDC [17]  [71[16]/47]
Miscellaneous \ n/a (see above) [401146)149]

alternatingly optimizing the parameters of the GNN and the adjacency matrix (the edge weights).
The loss for the latter includes the standard cross-entropy loss, the distance to the original graph, and
three other objectives designed to promote sparsity, low rank, and feature smoothness.

Improving the training. GRAND [15] relies on random feature augmentations (zeroing features)
coupled with neighbourhood augmentations X = (AX + AAX + - --). All randomly augmented
copies of X are passed through the same MLP that is trained with a consistency regularization loss.

Improving the architecture. GNNGuard [58] filters edges in each message passing aggregation
via cosine-similarity (smoothed over layers). In the first layer of RGCN [63] we learn a Gaussian
distribution over the feature matrix and the subsequent layers then manipulate this distribution (instead
of using point estimates). For the loss we then sample from the resulting distribution. In addition, in
each layer, RGCN assigns higher/lower weights to features with low/high variance. Soft-Median-GDC
[L7] replaces the message passing aggregation function in GNNs (typically a weighted mean) with a
more robust alternative by relaxing the median using differentiable sorting.

Common themes. One theme shared by some defenses is to first discover some property that can
discriminate clean from adversarial edges (e.g., high vs. low feature similarity), and then propose
a strategy based on that property (e.g., filter low similarity edges). Often they analyze the edges
from only a single attack such as Nettack [67]. The obvious pitfall of this strategy is that the attacker
can easily adapt by restricting the adversarial search space to edges that will bypass the defense’s
(implicit) filter. Another theme is to add additional loss terms to promote some robustness objectives.
Similarly, the attacker can incorporate the same terms in the attack loss to negate their influence.

4 Methodology: How to design strong adaptive attacks

In this section, we describe our general methodology and the lessons we learned while designing
adaptive attacks. We hope these guidelines can serve as a reference for testing new defenses.

Step 1 — Understand how the defense works and categorize it. For example, some defenses rely
on preprocessing which filters out edges that meet certain criteria (e.g., Jaccard-GCN [48]]). Others
introduce additional losses during training (e.g., GRAND [15]]) or change the architecture (e.g.,
RGCN [63])). Different defenses might need different attacks or impose extra requirements on them.

Step 2 — Probe for obvious weaknesses. Some examples include: (a) transfer adversarial edges from
another (closely related) model (see also[§ 6); (b) use a gradient-free (black-box) attack. For example,
in our local experiments, we use a Greedy Brute Force attack: in each step, it considers all possible
single edge flips and chooses the one that contributes most to the attack objective (details in[§ A).

Step 3 — Launch a gradient-based adaptive attack. For rapid prototyping, use a comparably cheap
attack such as FGA, and later advance to stronger attacks like PGD. For poisoning, strongly consider
meta-gradient-based attacks like Metattack [[66] that unroll the training procedure, as they almost
always outperform just transferring perturbations from evasion. Unsurprisingly, we find that applying
PGD [53]] on the meta gradients often yields even stronger attacks than the greedy Metattack, and we
refer to this new attack as Meta-PGD (details in[§ A).



Step 4 — Address gradient issues. Some defenses contain components that are non-differentiable,
lead to exploding or vanishing gradients, or obfuscate the gradients [1]. To circumvent these issues,
potentially: (a) adjust the defense’s hyperparameters to retain numerical stability; (b) replace the
offending component with a differentiable or stable counterpart, e.g., substitute the low-rank ap-
proximation of SVD-GCN [12] with a suitable differentiable alternative; or (c) remove components,
e.g., drop the “hard” filtering of edges done in the preprocessing of Soft-Median-GDC [17]]. These
considerations also include poisoning attacks, where one also needs to pay attention to all components
of the training procedure. For example, we ignore the nuclear norm loss term in the training of
ProGNN [30] to obtain the meta-gradient. Of course, keep the entire defense intact for its final
evaluation on the found perturbations.

Step 5 — Adjust the attack loss. In previous works, the attack loss is often chosen to be the same as
the training loss, i.e., the cross-entropy (CE). This is suboptimal since CE is not consistent according
to the definition by Tramer et al. [44] — higher loss values do not indicate a stronger attack. Thus, we
use a variant of the consistent Carlini-Wagner loss [4]] for local attacks, namely the logit margin (LM),
i.e., the logit difference between the ground truth class and most-likely non-true class. However,
as discussed by Geisler et al. [[17], for global attacks the mean LM across all target nodes is still
suboptimal since it can “waste” budget on already misclassified nodes. Their tanh logit margin (TLM)
loss resolves this issue. If not indicated otherwise, we either use TLM or the probability margin (PM)
loss — a slight variant of LM that computes the margin after the softmax rather than before.

Step 6 — Tune the attack hyperparameters such as the number of PGD steps, the attack learning
rate, the optimizer, etc. For example, for Metattack we observed that using the Adam optimizer [32]
can weaken the attack and replacing it with SGD can increase the effectiveness.

Lessons learned. We provide a detailed description of each adaptive attack and the necessary actions
to make it as strong as possible in Here, we highlight some important recurring challenges
that should be kept in mind when designing adaptive attacks. (1) Numerical issues, e.g., due to
division by tiny numbers can lead to weak attacks, and we typically resolve them via clamping. (2)
In some cases we observed that for PGD attacks it is beneficial to clip the gradients to stabilize
the adversarial optimization. (3) For a strong attack it is essential to tune its hyperparameters. (4)
Relaxing non-differentiable components and deactivating operations that filter edges/embeddings
based on a threshold in order to obtain gradients for every edge is an effective strategy. (5) If the
success of evasion-poisoning transfer depends on a fixed random initialization (see[§ J), it helps to
use multiple clean auxiliary models trained with different random seeds for the PGD attack — in each
PGD step we choose one model randomly. (6) Components that make the optimization more difficult
but barely help the defense can be safely deactivated. (7) It is sometimes beneficial to control the
randomness in the training loop of Meta-PGD. (8) For Meta-PGD it can help to initialize the attack
with non-zero perturbations and e.g., use the perturbed graph of a different attack.

Example 1 — SVD-GCN. To illustrate the attack process (especially steps 3 and 4) we present a
case study of how we construct an adaptive attack against SVD-GCN. Gradient-free attacks like
Nettack do not work well here as they waste budget on adversarial edges which are filtered out by
the low-rank approximation (LRA). Moreover, to the demise of gradient-based attacks, the gradients
of the adjacency matrix are very unstable due to the SVD and thus less useful. Still, we start with a
gradient-based attack as it is easier to adapt, specifically FGA, whose quick runtime enables rapid
prototyping as it requires only a single gradient calculation. To replace the LRA with a function whose
gradients are better behaved, we first decompose the perturbed adjacency matrix A = A + §A and,
thus, only need gradients for 4 A. Next, we notice that the eigenvectors of A usually have few large
components. Perturbations along those principal dimensions are representable by the eigenvectors,
hence most likely are neither filtered out nor impact the eigenvectors. Knowing this, we approximate
the LRA in a tractable manner by element-wise multiplication of A with weights that quantify how
well an edge aligns with the principal dimensions (details in . In short we replace LRA(A + JA)
with LRA(A) 4+ 6 A o Weight(A), which admits useful gradients. This approach carries over to other
attacks such as Nettack — we can incorporate the weights into its score function to avoid selecting
edges that will be filtered out.

Example 2 — ProGNN. While we approached SVD-GCN with a theoretical insight, breaking a
composite defense like ProGNN requires engineering and tinkering. When attacking ProGNN with
PGD and transferring the perturbations to poisoning we observe that the perturbations are only
effective if the model is trained with the same random seed. This over-sensitivity can be avoided by



employing lesson (5) in[§ 4 As ProGNN is very expensive to train due to its nuclear norm regularizer,
we drop that term when training the set of auxiliary models without hurting attack strength. For
unrolling the training we again drop the nuclear norm regularizer since it is non-differentiable.
Sometimes PGD does not find a state with high attack loss, which can be alleviated by random
restarts. As Meta-PGD optimization quickly stalls, we initialize it with a strong perturbation found by
Meta-PGD on GCN. All of these tricks combined are necessary to successfully attack ProGNN.

Effort. Breaking Jaccard-GCN (and SVD-GCN) required around half an hour (resp. three days) of
work for the initial proof of concept. Some other defenses require various adjustments that need to be
developed over time, but reusing those can quickly break even challenging defenses. It is difficult to
quantify this effort, but it can be greatly accelerated by adopting our lessons learned in[§ 4] In any
case, we argue that authors proposing a new defense must put in reasonable effort to break it.

5 Evaluation of adaptive attacks

First, we provide details on the experimental setup and used metrics. We then report the main results
and findings. We refer to for details on the base attacks, including our Greedy Brute Force and
Meta-PGD approaches. We provide the code, configurations, and a collection of perturbed graphs on
the project website linked on the first page.

Setup. We use the two most widely used datasets in the literature, namely Cora ML [2]] and Cite-
seer [19] (details in[§ F)). Unfortunately, larger datasets are barely possible since most defenses are
not very scalable. Still, in[§ N| we discuss scalability and apply an adaptive attack to arXiv (170k
nodes) [23]. We repeat the experiments for five different data splits (10% training, 10% validation,
80% testing) and report the means and variances. We use an internal cluster with Nvidia GTX 1080Ti
GPUs. Most experiments can be reproduced within a few hours. However, the experiments with
ProGNN and GRAND will likely require several GPU days.

Defense hyperparameters. When first attacking the defenses, we observed that many exhibit poor
robustness using the hyperparameters provided by their authors. To not accidentally dismiss a defense
as non-robust, we tune the hyperparameters such that the clean accuracy remains constant but the
robustness w.r.t. adaptive attacks is improved. Still, we run all experiments on the untuned defenses
as well to confirm we achieve this goal. In the same way, we also tune the GCN model, which we
use as a reference to asses whether a defense has merit. We report the configurations and verify the
success of our tuning in

Attacks and budget. In the global setting, we run the experiments for budgets A of up to 15% of the
total number of edges in the dataset. Due to our (R)AUC metric (see below), we effectively focus on
only the lower range of evaluated budgets. We apply FGA and PGD [53]] for evasion. For poisoning,
we transfer the found perturbations and also run Metattack [66] and our Meta-PGD. Recall that where
necessary, we adapt the attacks to the defenses as outlined in[§ 4]and detailed in[§ E]

In the local setting, we first draw sets of 20 target nodes per split with degrees 1, 2, 3, 5, 8-10, and
15-25 respectively (total of 120 nodes). This enables us to study how the attacks affect different types
of nodes — lower degree nodes are often conjectured to be less robust (see also [§ KJ). We then run
the experiments for relative budgets A of up to 200% of the target node’s degree. For example, if
a node has 10 neighbors, and the budget A = 70% then the attacker can change up to 10- 0.7 =7
edges. This commonly used setup ensures that we treat both low and high-degree nodes fairly. We
use Nettack [67]], FGA, PGD, and our greedy brute force attack for evasion. For poisoning, we only
transfer the found perturbations. Again, we adapt the attacks to the defenses if necessary.

In alignment with our threat model, we evaluate each found perturbation by the test set accuracy it
achieves (global) or the ratio of target nodes that remain correctly classified (local). For each budget,
we choose the strongest attack among all attempts (e.g., PGD, Metattack, Meta-PGD). This gives rise
to an envelope curve as seen in[Fig. 3] We also include lower budgets as attempts, i.e., we enforce the
envelope curve to be monotonically decreasing.

We introduce a rich set of attack characteristics by also transferring the perturbations supporting the
envelope curve to every other defense. These transfer attacks then also contribute to the final envelope
curve of each defense, but in most cases their contribution is marginal.
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Figure 2: Adaptive vs. non-adaptive attacks with budget-agnostic (R)AUC on Cora ML (c.f. [Fig. 1).
SVD-GCN (b) is disastrously broken — our adaptive attacks reach <0.02 (not visible). for Citeseer.

Non-adaptive attacks. We call any attack “non-adaptive” that is not aware of any changes made to
the model (including defense mechanisms). Where we report results for a non-adaptive attack (e.g.,
or[Fig. 2), we specifically refer to an attack performed on a (potentially linearlized) GCN with
commonly used hyperparameters (i.e., untuned). We then apply the perturbed adjacency matrix to
the actual defense. In other words, we transfer the adversarial perturbation from a GCN. For our
local non-adaptive attack, we always use Nettack. In contrast, for our global non-adaptive attack, we
apply all attacks listed above, and then transfer for each budget the attack which is strongest against
the GCN. Due to this ensemble of attacks, our global non-adaptive attack is expected to be slightly
stronger than the non-adaptive attacks in most other works.
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As our local attacks break virtually all target nodes within
our conservative maximum budget (see [§ F), taking the

Figure 3: The dotted lines show the test
set accuracy per budget after three global
poisoning attacks against a tuned GCN
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racy continues to decrease for unreasonably large budget,
and it is unclear when to stop. To avoid having to choose a maximum budget, we wish to stop when
discarding the entire tainted graph becomes the better defense. This is fulfilled by the area between
the envelope curve and the line signifying the accuracy of an MLP — a model that is oblivious to the
graph structure, at the expense of a substantially lower clean accuracy than a GNN. We call this metric
Relative AUC (RAUC) and illustrate it in More formally, RAUC(c) = ObO (c(b) — aprp)dd
s.t. b bg = ¢(b) 2 aprp where ¢(+) is a piecewise linear robustness per budget curve, and amLp
is the accuracy of the MLP baseline. We normalize the RAUC s.t. 0% is the performance of an MLP
and 100% is the optimal score (i.e., 100% accuracy).

Finding 1 — Our adaptive attacks lower robustness by 40% on average. In we compare
non-adaptive attacks, the current standard to evaluate defenses, with our adaptive attacks which we
propose as a new standard. The achieved (R)AUC in each case drops on average by 40% (similarly
for Citeseer, see[§ F)). In other words, the reported robustness in the original works proposing a
defense is roughly 40% too optimistic. We confirm a statistically significant drop (p < 0.05) with a
one-sided t-test in 85% of all cases. Considering adversarial accuracy for (small) fixed adversarial
budget instead of the summary (R)AUC over all budgets tells the same story: non-adaptive
attacks are too weak to be reliable indicators of robustness and adaptive attacks massively shrink the
alleged robustness gains.
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Figure 4: Difference (defense — undefended GCN) of adversarial accuracy for the strongest global
attack per budget. Almost half of the defenses perform worse than the GCN. We exclude SVD-GCN
since it is catastrophically broken and plotting it would make the other defenses illegible (accuracy
<24% already for a budget of 2% on Cora ML). Absolute numbers in @

Finding 2 - Structural robustness of GCN is not easily improved. In (global) and
(local) we provide a more detailed view for different adversarial budgets and different graphs. For
easier comparison we show the accuracy relative to the undefended GCN baseline. Overall, the decline
is substantial. Almost half of the examined defenses perform worse than GCN and most remaining
defenses neither meaningfully improve nor lower the robustness (see also[Fig. T|and [Fig. 3). GRAND
and Soft-Medoid-GCN retain robustness in some settings, but the gains are smaller than reported.

Finding 3 — Defense effectiveness depends on dataset. As we can see in and our
ability to circumvent specific defenses tends to depend on the dataset. It appears that some defenses
are more suited for different datasets. For example, GRAND seems to be a good choice for Citeseer
while it is not as strong on Cora ML. The results for local attacks paint a similar picture, here
we see that Cora ML is more difficult to defend. This points to another potentially problematic pitfall:
most defenses are developed only using these two datasets as benchmarks. Is robustness even worse
on other graphs? We leave this question for future work.

Finding 4 — No trade-off between accuracy and robust- o5 _—GoN
ness for structure perturbations. Instead, shows yx | = svpcon
that defenses with high clean accuracy also exhibit high © *] x S
RAUC, i.e., are more robust against our attacks. This ap- = | x + = GNNGuard
pears to be in contrast to the image domain [45]]. However, ¢ *ox A e
we cannot exclude that future more powerful defenses — ,| * *  Poisoning
might manifest this trade-off in the graph domain. PP, X Frasion

Clean Accuracy (%)

Finding 5 — Necessity of adaptive attacks. In[Fig. 7 we
show two exemplary characteristics of how an adaptive Figure 6: Model accuracy vs. RAUC of
attack bypasses defensive measures. First, to attack SVD-  the strongest global attacks on Cora ML.
GCN, it seems particularly effective to insert connections We do not observe a robustness accu-
to high-degree nodes. Second, for GNNGuard, GRAND racy trade-off, but even find models with
and Soft-Median-GDC it is disproportionally helpful to higher accuracy to be more robust.
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Figure 5: Difference (defense — undefended GCN) of fraction of correct predictions for the strongest
local attack per budget. Most defenses show no or only marginal gain in robustness. The dashed
vertical line shows where 95% of nodes for a GCN are misclassified on average. Abs. numbers in@
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Figure 7: Exemplary metrics characterizing the attack vector our strongest attacks, which are those
visible in[Fig. T.T|and [Fig. T.2] We give a more elaborate study of attack characteristics 1n|'§_]:l

delete edges. These examples illustrate why the existence of a one-fits-all perturbation which circum-
vents all possible defenses is unlikely. Instead, an adaptive attack is necessary to properly assess a
defense’s efficacy since different models are particularly susceptible to different perturbations.

Additional analysis. During this project, we generated a treasure trove of data. We perform a more
in-depth analysis of our attacks in the appendix. First, we study how node degree affects attacks (see

. For local attacks, the required budget to misclassify a node is usually proportional to the node’s
degree. Global attacks tend to be oblivious to degree and uniformly break nodes. Next, we perform a
breakdown of each defense in terms of the sensitivity to different attacks (see[§ I). In short, global
attacks are dominated by PGD for evasion and Metattack/Meta-PGD for poisoning with the PM or
TLM loss. For local, our greedy brute-force is most effective, rarely beaten by PGD and Nettack.
Finally, we analyze the properties of the adversarial edges in terms of various graph statistics such as

edge centrality and frequency spectra (see[§ I [§ M).

6 Robustness unit test

Next we systematically study how well the attacks transfer between defenses, as introduced in the
attacks and budget paragraph in[§ 3] In[Fig. 8] we see that in 15 out of 16 cases the adaptive attack is
the most effective strategy (see main diagonal). However for many defenses, there is often a source
model or ensemble of source models (for the latter see[§ G) which forms a strong transfer attack.
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Figure 8: RAUC for the transfer of the strongest global adaptive attacks on Cora ML between models.
The columns contain the models for which the adaptive attacks were created. The rows contain the
RAUC after the transfer. With only one exception, adaptive attacks (diagonal) are most effective.



Motivated by the effectiveness of transfer attacks (especially if transferring from ProGNN [30]]), we
suggest this set of perturbed graphs to be used as a bare minimum robustness unit test: one can probe
a new defense by testing against these perturbed graphs, and if there exists at least one that diminishes
the robustness gains, we can immediately conclude that the defense is not robust in the worst-case —
without the potentially elaborate process of designing a new adaptive attack. We provide instructions
on how to use this collection in the accompanying code.

Nevertheless, we cannot stress enough that this collection does not replace a properly developed
adaptive attack. For example, if one would come up with SVD-GCN and would use our collection
(excluding the perturbed graphs for SVD-GCN) the unit test would partially pass. However, as we
can see in e.g., SVD-GCN can be broken with an — admittedly very distinct — adaptive attack.

7 Related work

Excluding attacks on undefended GNNs, previous works studying adaptive attacks in the graph
domain are scarce. The recently proposed graph robustness benchmark [62] also only studies transfer
attacks. Such transfer attacks are so common in the graph domain that their usage is often not even
explicitly stated, and we find that the perturbations are most commonly transferred from Nettack or
Metattack (both use a linearized GCN). Other times, the authors of a defense only state that they
use PGD [53]] (aka “topology attack’) without further explanations. In this case, the authors most
certainly refer to a PGD transfer attack on a GCN proxy. They almost never apply PGD to their actual
defense, which would yield an adaptive attack (but possibly weak, see[§ 4]for guidance).

An exception where the defense authors study an adaptive attack is SVD-GCN [12]. Their attack
collects the edges flipped by Nettack in a difference matrix § A, replaces its most significant singular
values and vectors with those from the clean adajcency matrix A, and finally adds it to A. Notably,
this yields a dense continuous perturbed adjacency matrix. While their SVD-GCN is susceptible to
these perturbations, the results however do not appear as catastrophic as with our adaptive attacks,
despite their severe violation of our threat model (see[§ 2)). Geisler et al. [17] are another exception
where gradient-based greedy and PGD attacks are directly applied to their Soft-Median-GDC defense,
making them adaptive. Still, our attacks manage to further reduce their robustness estimate.

8 Discussion

We hope that the adversarial learning community for GNNs will reflect on the bitter lesson that
evaluating adversarial robustness is not trivial. We show that on average adversarial robustness
estimates are overstated by 40%. To ease the transition into a more reliable regime of robustness
evaluation for GNNs we share our recipe for successfully designing strong adaptive attacks.

Using adaptive (white-box) attacks is also interesting from a security perspective. If a model success-
fully defends such strong attacks, it is less likely to have remaining attack vectors for a real-world
adversary. Practitioners can use our methodology to evaluate their models in hope to avoid an arms
race with attackers. Moreover, the white-box assumption lowers the chance that real-world adversaries
can leverage our findings, as it is unlikely that they have perfect knowledge.

We also urge for caution since the attacks only provide an upper bound (which with our attacks is now
40% tighter). Nevertheless, we argue that the burden of proof that a defense is truly effective should
lie with the authors proposing it. Following our methodology, the effort to design a strong adaptive
attack is reduced, so we advocate for adaptive attacks as the gold-standard for future defenses.
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