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Figure 1: Self-attention maps from a supervised CRATE with 8×8 patches trained using classification. The
CRATE architecture automatically learns to perform object segmentation without a complex self-supervised
training recipe or any fine-tuning with segmentation-related annotations. For each image pair, we visualize the
original image on the left and the self-attention map of the image on the right.

Abstract

Transformer-like models for vision tasks have recently proven effective for a wide
range of downstream applications such as segmentation and detection. Previ-
ous works have shown that segmentation properties emerge in vision transformers
(ViTs) trained using self-supervised methods such as DINO, but not in those trained
on supervised classification tasks. In this study, we probe whether segmentation
emerges in transformer-based models solely as a result of intricate self-supervised
learning mechanisms, or if the same emergence can be achieved under much
broader conditions through proper design of the model architecture. Through
extensive experimental results, we demonstrate that when employing a white-box
transformer-like architecture known as CRATE, whose design explicitly mod-
els and pursues low-dimensional structures in the data distribution, segmentation
properties, at both the whole and parts levels, already emerge with a minimalis-
tic supervised training recipe. Layer-wise finer-grained analysis reveals that the
emergent properties strongly corroborate the designed mathematical functions of
the white-box network. Our results suggest a path to design white-box founda-
tion models that are simultaneously highly performant and mathematically fully
interpretable.

1 Introduction

Representation learning in an intelligent system aims to transform high-dimensional, multi-modal
sensory data of the world—images, language, speech—into a compact form that preserves its es-
sential low-dimensional structure, enabling efficient recognition (say, classification), grouping (say,
segmentation), and tracking [26, 31]. Classical representation learning frameworks, hand-designed
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Figure 2: (Left) Visualizing the self-attention map for an input image using the CRATE model. The input
tokens for CRATE consist of N non-overlapping image patches and a [CLS] token. We use the CRATE
model to transform these tokens to their representations, and de-rasterize the self-attention map associated to the
[CLS] token and the image patch tokens at the penultimate layer to generate a heatmap visualization. Details
are provided in Section 2.1. (Right) Overview of one layer of CRATE architecture. The CRATE model is a
white-box transformer-like architecture derived via unrolled optimization on the sparse rate reduction objective
(Appendix B). Each layer compresses the distribution of the input tokens against a local signal model, and
sparsifies it in a learnable dictionary. This makes the model mathematically interpretable and highly performant
[51].

for distinct data modalities and tasks using mathematical models for data [12, 38, 39, 48, 49], have
largely been replaced by deep learning-based approaches, which train black-box deep networks with
massive amounts of heterogeneous data on simple tasks, then adapt the learned representations on
downstream tasks [3, 4, 35]. This data-driven approach has led to tremendous empirical successes—in
particular, foundation models [3] have demonstrated state-of-the-art results in fundamental vision
tasks such as segmentation [22] and tracking [45]. Among vision foundation models, DINO [6,
35] showcases a surprising emergent properties phenomenon in self-supervised vision transformers
(ViTs [11])—ViTs contain explicit semantic segmentation information even without trained with
segmentation supervision. Follow-up works have investigated how to leverage such segmentation in-
formation in DINO models and achieved state-of-the-art performance on downstream tasks, including
segmentation, co-segmentation, and detection [2, 46].
As demonstrated in Caron et al. [6], the penultimate-layer features in ViTs trained with DINO
correlate strongly with saliency information in the visual input—for example, foreground-background
distinctions and object boundaries (similar to the visualizations shown in Figure 1)—which allows
these features to be used for image segmentation and other tasks. However, to bring about the
emergence of these segmentation properties, DINO requires a delicate blend of self-supervised
learning, knowledge distillation, and weight averaging during training. It remains unclear if every
component introduced in DINO is essential for the emergence of segmentation masks. In particular,
there is no such segmentation behavior observed in the vanilla supervised ViT models that are trained
on classification tasks [6], although DINO employs the same ViT architecture as its backbone.
In this paper, we question the prevailing wisdom, stemming from the successes of DINO, that a
complex self-supervised learning pipeline is necessary to obtain emergent properties in transformer-
like vision models. We contend that an equally-promising approach to promote segmentation
properties in transformer is to design the transformer architecture with the structure of the input data
in mind, representing a marrying of the classical approach to representation learning with the modern,
data-driven deep learning framework. We call such an approach to transformer architecture design
white-box transformer, in contrast to the black-box transformer architectures (e.g., ViTs [11]) that
currently prevail as the backbones of vision foundation models. We experiment with the white-box
transformer architecture CRATE proposed by Yu et al. [51], an alternative to ViTs in which each
layer is mathematically interpretable, and demonstrate through extensive experiments that:

The white-box design of CRATE leads to the emergence of segmentation properties in the
network’s self-attention maps, solely through a minimalistic supervised training recipe—the
supervised classification training used in vanilla supervised ViTs [11].

We visualize the self-attention maps of CRATE trained with this recipe in Figure 1, which share
similar qualitative (object segmentation) behaviors to the ones shown in DINO [6]. Furthermore, as
to be shown in Figure 7, each attention head in the learned white-box CRATE seems to capture a
different semantic part of the objects of interest. This represents the first supervised vision model with
emergent segmentation properties, and establishes white-box transformers as a promising direction
for interpretable data-driven representation learning in foundation models.
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Figure 3: Visualization of PCA components. We compute the PCA of the patch-wise representations of each
column and visualize the first 3 components for the foreground object. The representations of CRATE are
better aligned, and with less spurious correlations, to texture and shape components of the input than those of
ViT. See the pipeline in Appendix D.2 for more details.

Outline. The remainder of the paper is organized as follows. In Section 2, we outline our experimental
methodologies to study segmentation in transformer-like architectures, and provide a basic analysis
which compares the segmentation in supervised CRATE to the vanilla supervised ViT and DINO. In
Section 3, we present extensive ablations and more detailed analysis of the segmentation property
which utilizes the white-box structure of CRATE, and we obtain strong evidence that the white-box
design of CRATE is the key to the emergent properties we observe. In Appendix A, we discuss
previous findings in visual attention and white-box models. In Appendix B, we review the design of
CRATE, the white-box transformer model we study in our experiments.

2 Measuring Emerging Properties in CRATE
We now study the emergent segmentation properties in supervised CRATE both qualitatively and
quantitatively. As shown in previous work [6], segmentation within the ViT [11] emerges only when
applying DINO, a very specialized self-supervised learning method [6]. Specifically, a vanilla ViT
trained on supervised classification does not develop the ability to perform segmentation. In contrast,
as we demonstrate both qualitatively and quantitatively in Section 2 and Section 3, segmentation
properties emerge in CRATE even when using standard supervised classification training.
Our empirical results demonstrate that self-supervised learning, as well as the specialized design
options in DINO [6] (e.g., momentum encoder, student and teacher networks, self-distillation, etc.)
are not necessary for the emergence of segmentation. We train all models (CRATE and ViT) with
the same number of data and iterations, as well as optimizers, to ensure experiments and ablations
provide a fair comparison—precise details are provided in Appendix E.1.

2.1 Qualitative Measurements

Visualizing self-attention maps. To qualitatively measure the emergence phenomenon, we adopt the
attention map approach based on the [CLS] token, which has been widely used as a way to interpret
and visualize transformer-like architectures [1, 6]. Indeed, we use the same methodology as [1, 6],
noting that in CRATE the query-key-value matrices are all the same; a more formal accounting
is deferred to Appendix D.1. The visualization results of self-attention maps are summarized in
Figure 1 and Figure 7. We observe that the self-attention maps of the CRATE model correspond
to semantic regions in the input image. Our results suggest that the CRATE model encodes a clear
semantic segmentation of each image in the network’s internal representations, which is similar to the
self-supervised method DINO [6]. In contrast, as shown in Figure 14 in the Appendices, the vanilla
ViT trained on supervised classification does not exhibit similar segmentation properties.
PCA visualization for patch-wise representation. Following previous work [2, 35] on visualizing
the learned patch-wise deep features of image, we study the principal component analysis (PCA) on
the deep token representations of CRATE and ViT models. Again, we use the same methodology as
the previous studies [2, 35], and a more full accounting of the method is deferred to Appendix D.2. We
summarize the PCA visualization results of supervised CRATE in Figure 3. Without segmentation
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(a) Visualization of coarse semantic segmentation.

Model Train mIoU

CRATE-S/8 Supervised 23.9
CRATE-B/8 Supervised 23.6
ViT-S/8 Supervised 14.1
ViT-B/8 Supervised 19.2

ViT-S/8 DINO 27.0
ViT-B/8 DINO 27.3

(b) mIoU evaluation.
Figure 4: Coarse semantic segmentation via self-attention map. (a) We visualize the segmentation masks for
both CRATE and the supervised ViT. We select the attention head with the best segmentation performance for
CRATE and ViT separately. (b) We quantitatively evaluate the coarse segmentation mask by evaluating the
mIoU score on the validation set of PASCAL VOC12 [13].
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Figure 5: Visualization of on COCO val2017 [27] with MaskCut. (Top Row) Supervised CRATE architecture
clearly detects the major objects in the image. (Bottom Row) Supervised ViT sometimes fails to detect the major
objects in the image (columns 2, 3, 4).

supervision, CRATE is able to capture the boundary of the object in the image. Moreover, the
principal components demonstrate feature alignment between tokens corresponding to similar parts
of the object; for example, the red channel corresponds to the horse’s leg. On the other hand, the PCA
visualization of the supervised ViT model is considerably less structured. We also provide more PCA
visualization results in Figure 9.

2.2 Quantitative Measurements

Besides qualitatively assessing segmentation properties through visualization, we also quantitatively
evaluate the emergent segmentation property of CRATE using existing segmentation and object
detection techniques [6, 46]. Both methods apply the internal deep representations of transformers,
such as the previously discussed self-attention maps, to produce segmentation masks without further
training on special annotations (e.g., object boxes, masks, etc.).
Coarse segmentation via self-attention map. As shown in Figure 1, CRATE explicitly captures the
object-level semantics with clear boundaries. To quantitatively measure the quality of the induced
segmentation, we utilize the raw self-attention maps discussed earlier to generate segmentation masks.
Then, we evaluate the standard mIoU (mean intersection over union) score [28] by comparing the
generated segmentation masks against ground truth masks. This approach has been used in previous
work on evaluating the segmentation performance of the self-attention maps [6]. A more detailed
accounting of the methodology is found in Appendix D.3. The results are summarized in Figure 4.
CRATE largely outperforms ViT both visually and in terms of mIoU, which suggests that the internal
representations in CRATE are much more effective for producing segmentation masks.
Object detection and fine-grained segmentation. To further validate and evaluate the rich semantic
information captured by CRATE, we employ MaskCut [46], a recent effective approach for object
detection and segmentation that does not require human annotations. As usual, we provide a more
detailed methodological description in Appendix D.4. This procedure allows us to extract more
fine-grained segmentation from an image based on the token representations learned in CRATE.
We visualize the fine-grained segmentations produced by MaskCut in Figure 5 and compare the
segmentation and detection performance in Table 1. Based on these results, we observe that MaskCut
with supervised ViT features completely fails to produce segmentation masks in certain cases, for

4



Detection Segmentation
Model Train AP50 AP75 AP AP50 AP75 AP

CRATE-S/8 Supervised 2.9 1.0 1.1 1.8 0.7 0.8
CRATE-B/8 Supervised 2.9 1.0 1.3 2.2 0.7 1.0
ViT-S/8 Supervised 0.1 0.1 0.0 0.0 0.0 0.0
ViT-B/8 Supervised 0.8 0.2 0.4 0.7 0.5 0.4

ViT-S/8 DINO 5.0 2.0 2.4 4.0 1.3 1.7
ViT-B/8 DINO 5.1 2.3 2.5 4.1 1.3 1.8

Table 1: Object detection and fine-grained segmentation via MaskCut on COCO val2017 [27]. We consider
models with different scales and evaluate the average precision measured by COCO’s official evaluation metric.
The first four models are pre-trained with image classification tasks under label supervision; the bottom two
models are pre-trained via the DINO self-supervised technique [6]. CRATE conclusively performs better than
the ViT at detection and segmentation metrics when both are trained using supervised classification.
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Figure 6: Effect of depth for segmentation in supervised CRATE. (Left) Layer-wise segmentation per-
formance of CRATE and ViT via MaskCut pipeline on COCO val2017 (Higher AP score means better
segmentation performance). (Right) We visualize layer-wise PCA components following the implementation in
Amir et al. [2]. See more results in Figure 9.

example, the first image in Figure 5 and the ViT-S/8 row in Table 1. Compared to ViT, CRATE
provides better internal representation tokens for both segmentation and detection.

3 White-Box Empowered Analysis of Segmentation in CRATE
In this section, we delve into the segmentation properties of CRATE using analysis powered by our
white-box perspective. To start with, we analyze the internal token representations from different
layers of CRATE and study the power of the network segmentation as a function of the layer depth.
We then perform an ablation study on various architectural configurations of CRATE to isolate the
essential components for developing segmentation properties. Finally, we investigate how to identify
the “semantic” meaning of certain subspaces and extract more fine-grained information from CRATE.
We use the CRATE-B/8 and ViT-B/8 as the default models for evaluation in this section.

Role of depth in CRATE. Each layer of CRATE is designed for the same conceptual purpose: to
optimize the sparse rate reduction and transform the token distribution to compact and structured
forms (Appendix B). Given that the emergence of semantic segmentation in CRATE is analogous
to the clustering of tokens belonging to similar semantic categories in the representation Z, we
therefore expect the segmentation performance of CRATE to improve with increasing depth. To
test this, we utilize the MaskCut pipeline (described in Section 2.2) to quantitatively evaluate the
segmentation performance of the internal representations across different layers. Meanwhile, we
apply the PCA visualization (described in Section 2.1) for understanding how segmentation emerges
with respect to depth. Compared to the results in Figure 3, a minor difference in our visualization is
that we show the first four principal components in Figure 6 and do not filter out background tokens.
The results are summarized in Figure 6. We observe that the segmentation score improves when
using representations from deeper layers, which aligns well with the incremental optimization design
of CRATE. In contrast, even though the performance of ViT-B/8 slightly improves in later layers, its
segmentation scores are significantly lower than those of CRATE (c.f. failures in Figure 5, bottom
row). The PCA results are presented in Figure 6 (Right). We observe that representations extracted
from deeper layers of CRATE increasingly focus on the foreground object and are able to capture
texture-level details. Figure 9 in the Appendix has more PCA visualization results.
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COCO Detection VOC Seg.
Model Attention Nonlinearity AP50 AP75 AP mIoU

CRATE MSSA ISTA 2.1 0.7 0.8 23.9
CRATE-MLP MSSA MLP 0.2 0.2 0.2 22.0
CRATE-MHSA MHSA ISTA 0.1 0.1 0.0 18.4
ViT MHSA MLP 0.1 0.1 0.0 14.1

Table 2: Ablation study of different CRATE variants. We use the Small-Patch8 (S-8) model configuration
across all experiments in this table.

Head 0
“Leg”

Head 1
“Body”

Head 3
“Face”

Head 4
“Ear”

Head 0
“Leg”

Head 1
“Body”

Head 3
“Face”

Head 4
“Ear”

Figure 7: More visualization of semantic heads. We forward a mini-batch of images through a supervised
CRATE and examine the attention maps from all the heads in the penultimate layer. We visualize a selection of
attention heads to show that certain heads convey specific semantic meaning, i.e. head 0 ↔ ”Legs”, head 1 ↔

”Body”, head 3 ↔ ”Face”, head 4 ↔ ”Ear”.

Ablation study of architecture in CRATE. Both the attention block (MSSA) and the MLP block
(ISTA) in CRATE are different from the ones in the ViT. In order to understand the effect of each
component for emerging segmentation properties of CRATE, we study three different variants of
CRATE: CRATE, CRATE-MHSA, CRATE-MLP, where we denote the attention block and MLP block
in ViT as MHSA and MLP respectively. We summarize different model architectures in Table 2.
For all models in Table 2, we apply the same pre-training setup on the ImageNet-21k dataset. We
then apply the coarse segmentation evaluation (Section 2.2) and MaskCut evaluation (Section 2.2)
to quantitatively compare the performance of different models. As shown in Table 2, CRATE
significantly outperforms other model architectures across all tasks. Interestingly, we find that the
coarse segmentation performance (i.e., VOC Seg) of the ViT can be significantly improved by simply
replacing the MHSA in ViT with the MSSA in CRATE, despite the architectural differences between
MHSA and MSSA being small. This demonstrates the effectiveness of the white-box design.

Identifying semantic properties of attention heads. As shown in Figure 1, the self-attention map
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between the [CLS] token and patch tokens contains clear segmentation masks. We are interested in
capturing the semantic meaning of certain attention heads; this is an important task for interpretability,
and is already studied for language transformers [34]. Intuitively, each head captures certain features
of the data. Given a CRATE model, we first forward an input image (e.g. a horse image as in Figure 7)
and select four attention heads which seem to have semantic meaning by manual inspection. After
identifying the attention heads, we visualize the self-attention map of these heads on other input
images. We visualize the results in Figure 7. Interestingly, we find that each of the selected attention
heads captures a different part of the object, and even a different semantic meaning. For example,
the attention head displayed in the first column of Figure 7 captures the legs of different animals,
and the attention head displayed in the last column captures the ears and head. This parsing of the
visual input into a part-whole hierarchy has been a fundamental goal of learning-based recognition
architectures since deformable part models [14, 15] and capsule networks [20, 40]—strikingly, it
emerges from the white-box design of CRATE within our simple supervised training setup.1

4 Discussions and Future Work

In this study, we demonstrated that when employing the white-box model CRATE as a foundational
architecture in place of the ViT, there is a natural emergence of segmentation masks even while using
a straightforward supervised training approach. Our empirical findings underscore the importance of
principled architecture design for developing better vision foundation models. As simpler models are
more interpretable and easier to analyze, we are optimistic that the insights derived from white-box
transformers in this work will contribute to a deeper empirical and theoretical understanding of the
segmentation phenomenon. Furthermore, our findings suggest that white-box design principles hold
promise in offering concrete guidelines for developing enhanced vision foundation models. Two
compelling directions for further research would be investigating how to better engineer white-box
models such as CRATE to match the performance of self-supervised learning methods (such as
DINO), and expanding the range of tasks for which white-box models are practically useful.
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Appendix
A Related Work

Visual attention and emergence of segmentation. The concept of attention has become increas-
ingly significant in intelligence, evolving from early computational models [21, 23, 41] to modern
neural networks [11, 44]. In deep learning, the self-attention mechanism has been widely employed
in processing visual data [11] with state-of-the-art performance on various visual tasks [6, 18, 35].
DINO [6] demonstrated that attention maps generated by self-supervised Vision Transformers
(ViT)[11] can implicitly perform semantic segmentation of images. This emergence of segmentation
capability has been corroborated by subsequent self-supervised learning studies [6, 18, 35]. Capitaliz-
ing on these findings, recent segmentation methodologies [2, 22, 46] have harnessed these emergent
segmentations to attain state-of-the-art results. Nonetheless, there is a consensus, as highlighted in
studies like Caron et al. [6], suggesting that such segmentation capability would not manifest in a
supervised ViT. A key motivation and contribution of our research is to show that transformer-like
architectures, as in CRATE, can exhibit this ability even with supervised training.

White-box models. In data analysis, there has continually been significant interest in developing
interpretable and structured representations of the dataset. The earliest manifestations of such interest
were in sparse coding via dictionary learning [47], which are white-box models that transform the
(approximately linear) data into human-interpretable standard forms (highly sparse vectors). The
advent of deep learning has not changed this desire much, and indeed attempts have been made
to marry the power of deep learning with the interpretability of white-box models. Such attempts
include scattering networks [5], convolutional sparse coding networks [36], and the sparse manifold
transform [9]. Another line of work constructs deep networks from unrolled optimization [7, 43,
50, 51]. Such models are fully interpretable, yet only recently have they demonstrated competitive
performance with black-box alternatives such as ViT at ImageNet scale [51]. This work builds on
one such powerful white-box model, CRATE [51], and demonstrates more of its capabilities, while
serving as an example for the fine-grained analysis made possible by white-box models.

B Preliminaries: White-Box Vision Transformers

Notation. We denote the (patchified) input image by X = [x1, . . . ,xN ] ∈ RD×N , where xi ∈
RD×1 represents the i-th image patch and N represents the total number of image patches. xi is
referred to as a token, and this term can be used interchangeably with image patch. We use f ∈ F :
RD×N → Rd×(N+1) to denote the mapping induced by the model; it is a composition of L+1 layers,
such that f = fL ◦ · · · ◦f ℓ ◦ · · · ◦f1 ◦f0, where f ℓ : Rd×(N+1) → Rd×(N+1), 1 ≤ ℓ ≤ L represents
the mapping of the ℓ-th layer, and f0 : X ∈ RD×N → Z1 ∈ Rd×(N+1) is the pre-processing
layer that transforms image patches X = [x1, . . . ,xN ] to tokens Z1 =

[
z1
[CLS], z

1
1 , . . . ,z

1
N

]
, where

z1
[CLS] denotes the “class token”, a model parameter eventually used for supervised classification in

our training setup. We let

Zℓ =
[
zℓ
[CLS], z

ℓ
1, . . . ,z

ℓ
N

]
∈ Rd×(N+1) (1)

denote the input tokens of the ℓth layer f ℓ for 1 ≤ ℓ ≤ L, so that zℓ
i ∈ Rd gives the representation

of the ith image patch xi before the ℓth layer, and zℓ
[CLS] ∈ Rd gives the representation of the class

token before the ℓth layer. We use Z = ZL+1 to denote the output tokens of the last (Lth) layer. In
this section, we revisit the CRATE architecture (Coding RAte reduction TransformEr)—a white-box
vision transformer proposed in Yu et al. [51]. CRATE has several distinguishing features relative to
the vision transformer (ViT) architecture [11] that underlie the emergent visual representations we
observe in our experiments. We first introduce the network architecture of CRATE in Section B.1,
and then present how to learn the parameters of CRATE via supervised learning in Section B.2.

B.1 Design of CRATE—A White-Box Transformer Model

Representation learning via unrolling optimization. As described in Yu et al. [51], the white-box
transformer CRATE f : RD×N → Rd×(N+1) is designed to transform input data X ∈ RD×N

drawn from a potentially nonlinear and multi-modal distribution to piecewise linearized and compact
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feature representations Z ∈ Rd×(N+1). It does this by posing a local signal model for the marginal
distribution of the tokens zi. Namely, it asserts that the tokens are approximately supported on a
union of several, say K, low-dimensional subspaces, say of dimension p≪ d, whose orthonormal
bases are given by U[K] = (Uk)

K
k=1 where each Uk ∈ Rd×p. With respect to this local signal model,

the CRATE model is designed to optimize the sparse rate reduction objective [51]:

max
f∈F

EZ

[
∆R(Z | U[K])− λ∥Z∥0

]
= max

f∈F
EZ

[
R(Z)− λ∥Z∥0 −Rc(Z;U[K])

]
, (2)

where Z = f(X), the coding rate R(Z) is (a tight approximation for [30]) the average number of
bits required to encode the tokens zi up to precision ε using a Gaussian codebook, and Rc(Z | U[K])
is an upper bound on the average number of bits required to encode the tokens’ projections onto each
subspace in the local signal model, i.e., U∗

kzi, up to precision ε using a Gaussian codebook [51].
When these subspaces are sufficiently incoherent, the minimizers of the objective (2) as a function of
Z correspond to axis-aligned and incoherent subspace arrangements [52].
Hence, a network designed to optimize (2) by unrolled optimization [7, 16, 32] incrementally
transforms the distribution of X towards the desired canonical forms: each iteration of unrolled
optimization becomes a layer of the representation f , to wit

Zℓ+1 = f ℓ(Zℓ), (3)

with the overall representation f thus constructed as

f : X
f0

−−→ Z1 → · · · → Zℓ fℓ

−−→ Zℓ+1 → · · · → ZL+1 = Z. (4)

Importantly, in the unrolled optimization paradigm, each layer f ℓ has its own, untied, local signal
model U ℓ

[K]: each layer models the distribution of input tokens Zℓ, enabling the linearization of
nonlinear structures in the input distribution X at a global scale over the course of the application of
f .
The above unrolled optimization framework admits a variety of design choices to realize the layers
f ℓ that incrementally optimize (2). CRATE employs a two-stage alternating minimization approach
with a strong conceptual basis [51], which we summarize here and describe in detail below:

1. First, the distribution of tokens Zℓ is compressed against the local signal model U ℓ
[K] by an

approximate gradient step on Rc(Z | U ℓ
[K]) to create an intermediate representation Zℓ+1/2;

2. Second, this intermediate representation is sparsely encoded using a learnable dictionary Dℓ to
generate the next layer representation Zℓ+1.

Experiments demonstrate that even after supervised training, CRATE achieves its design goals for
representation learning articulated above [51].

Compression operator: Multi-Head Subspace Self-Attention (MSSA). Given local models
U ℓ

[K], to form the incremental transformation f ℓ optimizing (2) at layer ℓ, CRATE first compresses
the token set Zℓ against the subspaces by minimizing the coding rate Rc( · | U ℓ

[K]). As Yu et al. [51]
show, doing this minimization locally by performing a step of gradient descent on Rc( · | U ℓ

[K]) leads
to the so-called multi-head subspace self-attention (MSSA) operation, defined as

MSSA(Z | U[K])
.
=

p

(N + 1)ε2
[U1, . . . ,UK ]

 (U∗
1Z) softmax((U∗

1Z)∗(U∗
1Z))

...
(U∗

KZ) softmax((U∗
KZ)∗(U∗

KZ))

 , (5)

and the subsequent intermediate representation

Zℓ+1/2 = Zℓ−κ∇ZRc(Zℓ | U[K]) ≈
(
1− κ · p

(N + 1)ε2

)
Zℓ+κ · p

(N + 1)ε2
·MSSA(Zℓ | U[K]), (6)

where κ > 0 is a learning rate hyperparameter. This block bears a striking resemblance to the
ViT’s multi-head self-attention block, with a crucial difference: the usual query, key, and value
projection matrices within a single head are here all identical, and determined by our local model
for the distribution of the input tokens. We will demonstrate via careful ablation studies that this
distinction is crucial for the emergence of useful visual representations in CRATE.
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Sparsification operator: Iterative Shrinkage-Thresholding Algorithm (ISTA). The remaining
term to optimize in (2) is the difference of the global coding rate R(Z) and the ℓ0 norm of the tokens,
which together encourage the representations to be both sparse and non-collapsed. Yu et al. [51]
show that local minimization of this objective in a neighborhood of the intermediate representations
Zℓ+1/2 is approximately achieved by a LASSO problem with respect to a sparsifying orthogonal
dictionary Dℓ. Taking an iterative step towards solving this LASSO problem gives the iterative
shrinkage-thresholding algorithm (ISTA) block [47, 51]:

Zℓ+1 = f ℓ(Zℓ) = ReLU(Zℓ+1/2 + ηDℓ∗(Zℓ+1/2 −DℓZℓ+1/2)− ηλ1)
.
= ISTA(Zℓ+1/2 | Dℓ). (7)

Here, η > 0 is a step size, and λ > 0 is the sparsification regularizer. The ReLU nonlinearity
appearing in this block arises from an additional nonnegativity constraint on the representations in the
LASSO program, motivated by the goal of better separating distinct modes of variability in the token
distribution [17]. The ISTA block is reminiscent of the MLP block in the ViT, but with a relocated
skip connection.

The overall CRATE architecture. Combining the MSSA and the ISTA block, as above, together
with a suitable choice of hyperparameters, we arrive at the definition of a single CRATE layer:

Zℓ+1/2 .
= Zℓ + MSSA(Zℓ | U ℓ

[K]), f ℓ(Zℓ) = Zℓ+1 .
= ISTA(Zℓ+1/2 |Dℓ). (8)

These layers are composed to obtain the representation f , as in (4). We visualize the CRATE archi-
tecture in Figure 2. Full pseudocode (both mathematical and PyTorch-style) is given in Appendix C.

The forward and backward pass of CRATE. The above conceptual framework separates the role
of forward “optimization,” where each layer incrementally transforms its input towards a compact
and structured representation via compression and sparsification of the token representations using
the local signal models U ℓ

[K] and sparsifying dictionaries Dℓ at each layer, and backward “learning,”
where the local signal models and sparsifying dictionaries are learned from supervised (as in our
experiments) or self-supervised training via back propagation to capture structures in the data. We
believe that such mathematically clear designs of CRATE play a key role in the emergence of
semantically meaningful properties in the final learned models, as we will soon see.

B.2 Training CRATE with Supervised Learning

As described in previous subsection, given the local signal models (U ℓ
[K])

L
ℓ=1 and sparsifying

dictionaries (Dℓ)Lℓ=1, each layer of CRATE is designed to optimize the sparse rate reduction
objective (2). To enable more effective compression and sparsification, the parameters of local signal
models need to be identified. Previous work [51] proposes to learn the parameters (U ℓ

[K],D
ℓ)Lℓ=1

from data, specifically in a supervised manner by solving the following classification problem:

min
W ,f

∑
i

ℓCE(WzL+1
i,[CLS], yi) where

[
zL+1
i,[CLS], z

L+1
i,1 , . . . ,zL+1

i,N

]
= f(Xi), (9)

where (Xi, yi) is the ith training (image, label) pair, W ∈ Rd×C maps the [CLS] token to a vector
of logits, C is the number of classes, and ℓCE(·, ·) denotes the softmax cross-entropy loss.2

C CRATE Implementation

In this section, we provide the details on our implementation of CRATE, both at a higher level for
use in mathematical analysis, and at a code-based level for use in reference implementations. While
we used the same implementation as in Yu et al. [51], we provide the details here for completeness.

C.1 Forward-Pass Algorithm

We provide the details on the forward pass of CRATE in Algorithm 1.

2This is similar to the supervised ViT training used in Dosovitskiy et al. [11].
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Algorithm 1 CRATE Forward Pass.

Hyperparameter: Number of layers L, feature dimension d, subspace dimension p, image dimen-
sion (C,H,W ), patch dimension (PH , PW ), sparsification regularizer λ > 0, quantization error
ε, learning rate η > 0.

Parameter: Patch projection matrix W ∈ Rd×D. ▷ D
.
= PHPW .

Parameter: Class token z0
[CLS] ∈ Rd.

Parameter: Positional encoding Epos ∈ Rd×(N+1). ▷ N
.
= H

PH
· W
PW

.
Parameter: Local signal models (U ℓ

[K])
L
ℓ=1 where each U ℓ

[K] = (U ℓ
1 , . . . ,U

ℓ
K) and each U ℓ

k ∈
Rd×p.

Parameter: Sparsifying dictionaries (Dℓ)Lℓ=1 where each Dℓ ∈ Rd×d.
Parameter: Sundry LAYERNORM parameters.

1: function MSSA(Z ∈ Rd×(N+1) | U[K] ∈ RK×d×p)

2: return
p

(N + 1)ε2

K∑
k=1

Uk(U
∗
kZ) softmax((U∗

kZ)∗(U∗
kZ)) ▷ Eq. (5)

3: end function

4: function ISTA(Z ∈ Rd×(N+1) |D × Rd×d)
5: return ReLU(Z + ηD∗(Z −DZ)− ηλ1) ▷ Eq. (7)
6: end function

7: function CRATEFORWARDPASS(IMG ∈ RC×H×W )
8: X

.
= [x1, . . . ,xN ]← PATCHIFY(IMG) ▷ X ∈ RD×N and each xi ∈ RD.

9: # f0 Operator
10:

[
z1
1 , . . . ,z

1
N

]
←WX ▷ z1

i ∈ Rd.
11: Z1 ←

[
z1
[CLS], z

1
1 , . . . ,z

1
N

]
+Epos ▷ Z1 ∈ Rd×(N+1).

12: # f ℓ Operators
13: for ℓ ∈ {1, . . . , L} do
14: Zℓ

n ← LAYERNORM(Zℓ) ▷ Zℓ
n ∈ Rd×(N+1)

15: Zℓ+1/2 ← Zℓ
n + MSSA(Zℓ

n | U ℓ
[K]) ▷ Zℓ+1/2 ∈ Rd×(N+1)

16: Z
ℓ+1/2
n ← LAYERNORM(Zℓ+1/2) ▷ Z

ℓ+1/2
n ∈ Rd×(N+1)

17: Zℓ+1 ← ISTA(Z
ℓ+1/2
n |Dℓ) ▷ Zℓ+1 ∈ Rd×(N+1)

18: end for

19: return Z ← ZL+1

20: end function
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C.2 PyTorch-Like Code for Forward Pass

Algorithm 2 PyTorch-Like Code for MSSA and ISTA Forward Passes

1 class ISTA:
2 # initialization
3 def __init__(self, dim, hidden_dim, dropout = 0., step_size=0.1, lambd=0.1):
4 self.weight = Parameter(Tensor(dim, dim))
5 init.kaiming_uniform_(self.weight)
6 self.step_size = step_size
7 self.lambd = lambd
8 # forward pass
9 def forward(self, x):

10 x1 = linear(x, self.weight, bias=None)
11 grad_1 = linear(x1, self.weight.t(), bias=None)
12 grad_2 = linear(x, self.weight.t(), bias=None)
13 grad_update = self.step_size * (grad_2 - grad_1) - self.step_size * self.

lambd
14 output = relu(x + grad_update)
15 return output
16 class MSSA:
17 # initialization
18 def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
19 inner_dim = dim_head * heads
20 project_out = not (heads == 1 and dim_head == dim)
21 self.heads = heads
22 self.scale = dim_head ** -0.5
23 self.attend = Softmax(dim = -1)
24 self.dropout = Dropout(dropout)
25 self.qkv = Linear(dim, inner_dim, bias=False)
26 self.to_out = Sequential(Linear(inner_dim, dim), Dropout(dropout)) if

project_out else nn.Identity()
27 # forward pass
28 def forward(self, x):
29 w = rearrange(self.qkv(x), ’b n (h d) -> b h n d’, h = self.heads)
30 dots = matmul(w, w.transpose(-1, -2)) * self.scale
31 attn = self.attend(dots)
32 attn = self.dropout(attn)
33 out = matmul(attn, w)
34 out = rearrange(out, ’b h n d -> b n (h d)’)
35 return self.to_out(out)

Algorithm 3 PyTorch-Like Code for CRATE Forward Pass

1 class CRATE:
2 # initialization
3 def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.):
4 # define layers
5 self.layers = []
6 self.depth = depth
7 for _ in range(depth):
8 self.layers.extend([LayerNorm(dim), MSSA(dim, heads, dim_head, dropout)

])
9 self.layers.extend([LayerNorm(dim), ISTA(dim, mlp_dim, dropout)])

10 # forward pass
11 def forward(self, x):
12 for ln1, attn, ln2, ff in self.layers:
13 x_ = attn(ln1(x)) + ln1(x)
14 x = ff(ln2(x_))
15 return x
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D Detailed Experimental Methodology

In this section we formally describe each of the methods used to evaluate the segmentation property
of CRATE in Section 2 and Section 3, especially compared to DINO and supervised ViT. This section
repeats experimental methodologies covered less formally in other works; we strive to rigorously
define the experimental methodologies in this section.

D.1 Visualizing Attention Maps

We recapitulate the method to visualize attention maps in Abnar and Zuidema [1] and Caron et al.
[6], at first specializing their use to instances of the CRATE model before generalizing to the ViT.
For the kth head at the ℓth layer of CRATE, we compute the self-attention matrix Aℓ

k ∈ RN defined
as follows:

Aℓ
k =

Aℓ
k,1
...

Aℓ
k,N

 ∈ RN , where Aℓ
k,i =

exp(⟨U ℓ∗
k zℓ

i ,U
ℓ∗
k zℓ

[CLS]⟩)∑N
j=1 exp(⟨U ℓ∗

k zℓ
j ,U

ℓ∗
k zℓ

[CLS]⟩)
. (10)

We then reshape the attention matrix Aℓ
k into a

√
N ×

√
N matrix and visualize the heatmap as

shown in Figure 1. For example, the ith row and the jth column element of the heatmap in Figure 1
corresponds to the mth component of Aℓ

k if m = (i − 1) ·
√
N + j. In Figure 1, we select one

attention head of CRATE and visualize the attention matrix Aℓ
k for each image.

For the ViT, the entire methodology remains the same, except that the attention map is defined in the
following reasonable way:

Aℓ
k =

Aℓ
k,1
...

Aℓ
k,N

 ∈ RN , where Aℓ
k,i =

exp(⟨Kℓ∗
k zℓ

i ,Q
ℓ∗
k zℓ

[CLS]⟩)∑N
j=1 exp(⟨Kℓ∗

k zℓ
j ,Q

ℓ∗
k zℓ

[CLS]⟩)
. (11)

where the “query” and “key” parameters of the standard transformer at head k and layer ℓ are denoted
Kℓ

k and Qℓ
k respectively.

D.2 PCA Visualizations

As in the previous subsection, we recapitulate the method to visualize the patch representations using
PCA from Amir et al. [2] and Oquab et al. [35]. As before we specialize their use to instances of the
CRATE model before generalizing to the ViT.
We first select J images that belong to the same class, {Xj}Jj=1, and extract the token representations
for each image at layer ℓ, i.e.,

[
zℓ
j,[CLS], z

ℓ
j,1, . . . ,z

ℓ
j,N

]
for j ∈ [J ]. In particular, zℓ

j,i represents
the ith token representation at the ℓth layer for the jth image. We then compute the first PCA
components of Ẑℓ = {ẑℓ

1,1, . . . , ẑ
ℓ
1,N , . . . , ẑℓ

J,1, . . . , ẑ
ℓ
J,N}, and use ẑℓ

j,i to denote the aggregated
token representation for the i-th token of Xj , i.e., ẑℓ

j,i = [(U∗
1 ẑ

ℓ
j,i)

⊤, . . . , (U∗
K ẑℓ

j,i)
⊤]⊤ ∈ R(p·K)×1.

We denote the first eigenvector of the matrix Ẑ∗Ẑ by u0 and compute the projection values as

{σλ(⟨u0, z
ℓ
j,i⟩)}i,j , where σλ(x) =

{
x, |x| ≥ λ

0, |x| < λ
is the hard-thresholding function. We then select

a subset of token representations from Ẑ with σλ(⟨u0, z
ℓ
j,i⟩) > 0. which correspond to non-zero

projection values after thresholding, and we denote this subset as Ẑs ⊆ Ẑ. This selection step is used
to remove the background [35]. We then compute the first three PCA components of Ẑs with the
first three eigenvectors of matrix Ẑ∗

s Ẑs denoted as {u1,u2,u3}. We define the RGB tuple for each
token as:

[rj,i, gj,i, bj,i] = [⟨u1, z
ℓ
j,i⟩, ⟨u2, z

ℓ
j,i⟩, ⟨u3, z

ℓ
j,i⟩], i ∈ [N ], j ∈ [J ], zℓ

j,i ∈ Ẑs. (12)

Next, for each image Xj we compute Rj ,Gj ,Bj , where Rj = [rj,1, . . . , rj,N ]⊤ ∈ Rd×1 (similar
for Gj and Bj). Then we reshape the three matrices into

√
N ×

√
N and visualize the “PCA

components” of image Xj via the RGB image (Rj ,Gj ,Bj) ∈ R3×
√
N×

√
N .
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The PCA visualization of ViTs are evaluated similarly, with the exception of utilizing the “Key”
features ẑℓ

j,i = [(K∗
1 ẑ

ℓ
j,i)

⊤, . . . , (K∗
K ẑℓ

j,i)
⊤]⊤. Previous work [2] demonstrated that the “Key”

features lead to less noisy space structures than the “Query” features. In the experiments (such as in
Figure 3), we set the threshold value λ = 1

2 .

D.3 Segmentation Maps and mIoU Scores

We now discuss the methods used to compute the segmentation maps and the corresponding mean-
Union-over-Intersection (mIoU) scores.
Indeed, suppose we have already computed the attention maps Aℓ

k ∈ RN for a given image as in
Appendix D.1. We then threshold each attention map by setting its top P = 60% of entries to 1
and setting the rest to 0. The remaining matrix, say Ãℓ

k ∈ {0, 1}N , forms a segmentation map
corresponding to the kth head in the ℓth layer for the image.
Suppose that the tokens can be partitioned into M semantic classes, and the mth semantic class has
a boolean ground truth segmentation map Sm ∈ {0, 1}N . We want to compute the quality of the
attention-created segmentation map above, with respect to the ground truth maps. For this, we use
the mean-intersection-over-union (mIoU) metric [28] as described in the sequel. Experimental results
yield that the heads at a given layer correspond to different semantic features. Thus, for each semantic
class m and layer ℓ, we attempt to find the best-matched head at layer ℓ and use this to compute the
intersection-over-union, obtaining

mIoUℓ
m

.
= max

k∈[K]

∥Sm ⊙Aℓ
k∥0

∥Sm∥0 + ∥Aℓ
k∥0 − ∥Sm ⊙Aℓ

k∥0
, (13)

where ⊙ denotes element-wise multiplication and ∥·∥0 counts the number of nonzero elements in the
input vector (and since the inputs are boolean vectors, this is equivalent to counting the number of 1’s).
To report the overall mIoU score for layer ℓ (or without referent, for the last layer representations),
we compute the quantity

mIoUℓ .
=

1

M

M∑
m=1

mIoUℓ
m, (14)

and average it amongst all images for which we know the ground truth.

D.4 MaskCut

We apply the MaskCut pipeline (Algorithm 4) to generate segmentation masks and detection bounding
box (discussed in Section 2.2). As described by Wang et al. [46], we iteratively apply Normalized
Cuts [42] on the patch-wise affinity matrix M ℓ, where M ℓ

ij =
∑K

k=1⟨U ℓ∗
k zℓ

i ,U
ℓ∗
k zℓ

j⟩. At each
iterative step, we mask out the identified patch-wise entries on M ℓ. To obtain more fine-grained
segmentation masks, MaskCut employs Conditional Random Fields (CRF) [24] to post-process the
masks, which smooths the edges and filters out unreasonable masks. Correspondingly, the detection
bounding box is defined by the rectangular region that tightly encloses a segmentation mask.

Algorithm 4 MaskCut

Hyperparameter: n, the number of objects to segment.
1: function MASKCUT(M )
2: for i ∈ {1, . . . , n} do
3: mask← NCUT(M) ▷ mask is a boolean array
4: M ←M ⊙ mask ▷ Equivalent to applying the mask to M
5: masks[i]← mask
6: end for
7: return masks
8: end function

Following the official implementation by Wang et al. [46], we select the parameters as n = 3, τ =
0.15, where n denotes the expected number of objects and τ denotes the thresholding value for
the affinity matrix M ℓ, i.e. entries smaller than 0.15 will be set to 0. In Table 1, we remove the
post-processing CRF step in MaskCut when comparing different model variants.
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E Experimental Setup and Additional Results

In this section, we provide the experimental setups for experiments presented in Section 2 and
Section 3, as well as additional experimental results. Specifically, we provide the detailed experimental
setup for training and evaluation on Appendix E.1. We then present additional experimental results on
the transfer learning performance of CRATE when pre-trained on ImageNet-21k [10] in Appendix E.2.
In Appendix E.4, we provide additional visualizations on the emergence of segmentation masks in
CRATE.

E.1 Setups

Model setup We utilize the CRATE model as described by Yu et al. [51] at scales -S/8 and -B/8.
In a similar manner, we adopt the ViT model from Dosovitskiy et al. [11] using the same scales (-S/8
and -B/8), ensuring consistent configurations between them. One can see the details of CRATE
transformer in Appendix C.

Training setup All visual models are trained for classification tasks(see Section B.2) on the
complete ImageNet dataset [10], commonly referred to as ImageNet-21k. This dataset comprises
14,197,122 images distributed across 21,841 classes. For training, each RGB image was resized to
dimensions 3× 224× 224, normalized using means of (0.485, 0.456, 0.406) and standard deviations
of (0.229, 0.224, 0.225), and then subjected to center cropping and random flipping. We set the mini-
batch size as 4,096 and apply the Lion optimizer [8] with learning rate 9.6× 10−5 and weight decay
0.05. All the models, including CRATEs and ViTs are pre-trained with 90 epochs on ImageNet-21K.

Evaluation setup We evaluate the coarse segmentation, as detailed in Section Section 2.2, using
attention maps on the PASCAL VOC 2012 validation set [13] comprising 1,449 RGB images.
Additionally, we implement the MaskCut [46] pipeline, as described in Section 2.2, on the COCO
val2017 [27], which consists of 5,000 RGB images, and assess our models’ performance for both
object detection and instance segmentation tasks. All evaluation procedures are unsupervised, and
we do not update the model weights during this process.

E.2 Transfer Learning Evaluation

We evaluate transfer learning performance of CRATE by fine-tuning models that are pre-trained
on ImageNet-21k for the following downstream vision classification tasks: ImageNet-1k [10],
CIFAR10/CIFAR100 [25], Oxford Flowers-102 [33], Oxford-IIIT-Pets [37]. We also finetune on two
pre-trained ViT models (-T/8 and -B/8) for reference. Specifically, we use the AdamW optimizer [29]
and configure the learning rate to 5× 10−5, weight decay as 0.01. Due to memory constraints, we set
the batch size to be 128 for all experiments conducted for the base models and set it to be 256 for the
other smaller models. We report our results in Table 3.

Datasets CRATE-T CRATE-S CRATE-B ViT-T ViT-B

# parameters 5.74M 14.12M 38.83M 10.36M 102.61M

ImageNet-1K 62.7 74.2 79.5 71.8 85.8
CIFAR10 94.1 97.2 98.1 97.2 98.9
CIFAR100 76.7 84.1 87.9 84.4 90.1
Oxford Flowers-102 82.2 92.2 96.7 92.1 99.5
Oxford-IIIT-Pets 77.0 86.4 90.7 86.2 91.8

Table 3: Top 1 accuracy of CRATE on various datasets with different model scales when pre-trained on
ImageNet-21K and fine-tuned on the given dataset.

E.3 Pre-trained on ImageNet-1k

We evaluate the object detection and instance segmentation performance of CRATE
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E.4 Additional Visualizations

Supervised CRATE

DINO

Figure 8: Additional visualizations of the attention map of CRATE-S/8 and comparison with DINO [6].
Top 2 rows: visualizations of attention maps from supervised CRATE-S/8. Bottom 2 rows: visualizations of
attention maps borrowed from DINO’s paper. The figure shows that supervised CRATE has at least comparable
attention maps with DINO. Precise methodology is discussed in Appendix D.1.

Supervised CRATE

Supervised ViT

Shallow Deep

Figure 9: Additional layer-wise PCA visualization. Top 2 rows: visualizations of the PCA of the features from
supervised CRATE-B/8. Bottom 2 rows: visualizations of the PCA of the features from supervised ViT-B/8.
The figure shows that supervised CRATE shows a better feature space structure with an explicitly-segmented
foreground object and less noisy background information. The input image is shown in Figure 1’s top left corner.
Precise methodology is discussed in Appendix D.2.
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Figure 10: Effect of training epochs in supervised CRATE. (Left) Detection performance computed at
each epoch via MaskCut pipeline on COCO val2017 (Higher AP score means better detection performance).
(Right) We visualize the PCA of the features at the penultimate layer computed at each epoch. As training
epochs increase, foreground objects can be explicitly segmented and separated into different parts with semantic
meanings.

50%, N(0, 10)

50%, N(0, 25)

50%, N(0, 50)

50%, N(0, 75)

Figure 11: Adding Gaussian noise with different standard deviation. We add Gaussian noise to the input
image on a randomly chosen set of 50% of the pixels, with different standard deviations, and visualize all 6
heads in layer 10 of CRATE-S/8. The values of each entry in each color of the image are in the range (0, 255).
The right 2 columns, which contain edge information, remain unchanged with different scales of Gaussian noise.
The middle column shows that texture-level information will be lost as the input becomes noisier.
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10%, N(0, 75)

25%, N(0, 75)

50%, N(0, 75)

75%, N(0, 75)

Figure 12: Adding Gaussian noise to a different percentage of the pixels. We add Gaussian noise with
standard deviation 75 to a randomly chosen set of pixels within the input image, taking a different number of
pixels in each experiment. We visualize all 6 heads in layer 10 of CRATE-S/8. The values of each entry in
each channel of the image are in the range (0, 255). In addition to the observation in Figure 11, we find that
CRATE shifts its focus as the percentage of noisy pixels increases. For example, in the middle column, the
head first focuses on the texture of the door. Then, it starts to refocus on the edges. Interestingly, the tree pops
up in noisier cases’ attention maps.
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CRATE CRATE-sth CRATE-MLP CRATE-MHSA 

Figure 13: Attention map of CRATE’s variants in second-to-last layer. In addition to the quantitative results
discussed in Section 3, we provide visualization results for the architectural ablation study. CRATE-MLP and
CRATE-MHSA have been discussed in Section 3 while CRATE-sth maintains both MSSA and ISTA blocks, and
instead switches the activation function in the ISTA block from ReLU to soft thresholding, in accordance with
an alternative formulation of the ISTA block which does not impose a non-negativity constraint in the LASSO
(see Appendix B.1 for more details). Attention maps with clear segmentations emerge in all architectures with
the MSSA block.

CRATE ViT ViTCRATE 

Figure 14: More attention maps of supervised CRATE and ViT on images from COCO val2017. We select
the second-to-last layer attention maps for CRATE and the last layer for ViT.
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