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ABSTRACT

Large language models (LLMs) have shown remarkable capabilities in language
understanding and generation. However, such impressive capability typically
comes with a substantial model size, which presents significant challenges in
deployment and inference. While structured pruning of model parameters offers a
promising way to reduce computational costs at deployment time, current methods
primarily focus on single model pruning. In this work, we develop a novel strategy
to compress models by strategically combining or merging layers from finetuned
model variants, which preserves the original model’s abilities by aggregating
capabilities accentuated in different finetunes. We pose the optimal tailoring of
these LLMs as a zero-order optimization problem, adopting a search space that
supports three different operations: (1) Layer removal, (2) Layer selection from
different candidate models, and (3) Layer merging. Our experiments demonstrate
that this approach leads to competitive model pruning, for example, for the Llama2-
13B model families, our compressed models maintain approximately 97.3% of
the original performance while removing ∼ 25% of parameters, significantly
outperforming previous state-of-the-art methods.

1 INTRODUCTION

The unique strengths of modern Large Language Models (LLMs) in language understanding, genera-
tion, and reasoning (Touvron et al., 2023; OpenAI et al., 2023; Chiang et al., 2023) are inextricably
linked to their immense size. Research in this field has generally followed a trajectory of scaling
model parameters and data to enhance performance, guided by two fundamental principles: scaling
laws, which establish that performance improves predictably with increased parameters (Kaplan
et al., 2020; Hoffmann et al., 2022; Wei et al., 2022), and over-parameterization theory, which demon-
strates that models with excess parameters achieve better optimization and generalization (Allen-Zhu
et al., 2019a;b; Li et al., 2020). These principles have led researchers to develop billion-parameter
architectures delivering unprecedented performance across diverse language tasks.

Despite these impressive capabilities, deploying LLMs presents significant challenges due to their
substantial computational demands. Various post-training techniques have been proposed to address
the issues faced when deploying models to consumer GPUs or local devices, or when reducing costs,
including model pruning (Frantar & Alistarh, 2023; Dettmers et al., 2023b; Xia et al., 2023; Kim
et al., 2024; Ma et al., 2023), knowledge distillation into smaller models (Chen et al., 2022; Hsieh
et al., 2023; Shridhar et al., 2023; Tunstall et al., 2023), and quantization of weights (Yao et al., 2022;
Gholami et al., 2022; Dettmers et al., 2023a). While quantization reduces parameter precision but
requires specific hardware support, and knowledge distillation necessitates costly retraining of smaller
models, structured pruning offers a more flexible and hardware-agnostic approach by eliminating
redundant parameters to decrease computation costs.

Existing pruning methods typically focus on pruning individual models through manually designing
metrics that assess the importance of specific structures or layers based on hidden state changes or
gradient (Kim et al., 2024; Men et al., 2024; Ma et al., 2023). However, most of these approaches
cause performance degradation and require additional post-training with full parameters to recover
performance.

To address these limitations, we take a radically different perspective and re-formulate structured
pruning as the problem of pruning not individual models, but a family of task-specific finetuned
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Figure 1: Our Approach: Model Pruning through Cutting and Stitching. We achieve competitive
model pruning performance by running a zero-order search that tailors layers based on a shared pool
of finetuned variants of the original model, selecting and stitching layers if necessary. The model
finetunes accentuate task-specific skills, allowing us to merge key components into a smaller model,
maintaining, for example, 97% of capabilities of Llama-13B, even after a 25% reduction in layers.

versions of a given model. These finetuned variants are surprisingly helpful for model pruning, as
each variant accentuates a particular task, such as coding, math, or language understanding. Further,
the variants are close enough that model merging can be employed to re-combine layers from multiple
variants, if needed (Wortsman et al., 2022). These observations lead us to our main question: Can we
develop better compressed models by strategically combining or merging layers from different
models? Motivated by this question, we propose a novel structured pruning method based on zero-
order optimization that supports three different operations to combine layers from different models
into a smaller, more efficient model: (1) Layer removal, (2) Layer selection from related candidate
models, (3) Layer merging.

For the optimization, we define multiple objective functions that capture different aspects of model
performance across different tasks to better preserve the original model’s capabilities and run a fully
data-driven zero-order optimization, instead of relying on expert-made heuristics for pruning. We
employ SMAC (Lindauer et al., 2022), which strategically allocates computational resources by
evaluating configurations at different calibration data sizes, thereby reducing computational costs
while boosting the efficiency of finding superior solutions. We rigorously validate our method’s
effectiveness by evaluating it on Llama-7B and Llama-13B with four state-of-the-art structural
pruning methods across comprehensive benchmarks. Our experimental results demonstrate that our
approach maintains excellent performance while outperforming existing pruning methods.

In summary, the main contributions of this paper are:

• We propose a novel structured pruning method that formulates pruning as a zero-order
optimization problem over a pool of candidate models, enabling automated discovery of
efficient models that leverage capabilities from multiple models.

• We find that this approach allows for a cost-effective model pruning stage that is effective
without the need for post-training to heal the pruned model.

• We validate our method’s effectiveness through extensive experiments, comparing against
modern LLM pruning methods on 14 benchmark tasks.

Our method maximally preserves the capabilities of the dense model: 92.2% for the 7B model and
97.3% for the 13B model. significantly outperforming previous state-of-the-art methods.

2 RELATED WORK

Compression of Language Models. Large language models (Touvron et al., 2023; OpenAI et al.,
2023; Chiang et al., 2023) necessitate efficient compression methods to reduce parameters and latency.
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These methods include structural pruning (Frantar & Alistarh, 2023; Dettmers et al., 2023b; Xia et al.,
2023; Kim et al., 2024; Ma et al., 2023), knowledge distillation (Chen et al., 2022; Hsieh et al., 2023;
Tunstall et al., 2023), and quantization (Yao et al., 2022; Gholami et al., 2022; Dettmers et al., 2023a).
Our work focuses on structural pruning, which removes sub-components from neural networks for
hardware-friendly compression - instead of pruning through sparsification, which requires significant
effort to materialize gains on standard hardware. Recent pruning methods are typically guided by
expert-designed criteria. LLMPruner (Ma et al., 2023) removes non-critical structures using gradient
information. SliceGPT (Ashkboos et al., 2024) reduces dimensionality by replacing weight matrices
with smaller ones. LaCo (Yang et al., 2024) collapses the weights of later layers into earlier ones
based on activation similarity. ShortGPT (Men et al., 2024) measures layer importance through
Block Influence (BI) derived from hidden state changes. Unlike these metric-based methods targeting
individual models, our approach employs zero-order search, namely hyperparameter optimization to
combine pruning and merging across model families. While LaCo also uses layer merging, it focuses
only on merging similar layers for a single model, whereas we focus on strategically combining
or merging layers from different models, which we find to noticeably improve upon within-model
merging. Additionally, our approach differs from the weight-sharing NAS-based pruning method
(Klein et al., 2024), which requires costly training. Instead of searching within a single model, we
directly optimize across fine-tuned models, strategically combining layers from diverse variants.

Model Merging. Model merging enhances capabilities without additional training data or computa-
tion. The field evolved from simple weighted parameter averaging (Utans, 1996) that often yielded
suboptimal results to advanced techniques like Task Arithmetic (Ilharco et al., 2022) which computes
differences between model parameters and SLERP (White, 2016) which performs interpolation along
spherical paths. Later approaches leveraged neural network sparsity, with TIES-Merging (Yadav
et al., 2024) selecting parameters based on magnitude while addressing sign conflicts, and DARE
(Yu et al., 2024) combining sparsification with parameter rescaling. Recent advances include Evolu-
tionary model merging (Akiba et al., 2024) optimizing coefficients through evolutionary search, and
multi-fidelity approach (Su & Geiping, 2025) that enables fine-grained exploration while reducing
costs. Our work also builds upon a multi-fidelity optimization framework to allow for an efficient
search for compressed models.

3 METHODS

In this section, we provide a detailed explanation of our approach. Unlike conventional model
compression pipelines, we formulate pruning as a zero-order optimization problem over the layers
and merging hyperparameters of a set of candidate models. We begin in Section 3.1 by outlining our
problem formulation and defining the optimization pipeline for pruning with three key components: a
search space, a target objective, and an optimizer. Section 3.2 follows with a description of the search
spaces. In Section 3.3, we introduce our designed target objective function. Finally, In Section 3.4,
we describe our choice of optimization strategy, which efficiently navigates the defined search space
to identify optimal pruning configurations. An overview of the pipeline is provided in Figure 1.

3.1 PROBLEM SETUP

Given a pre-trained base model Mbase and a set of candidate models M = {M1,M2, ...,MK}
fine-tuned from the same base model, our goal is to find an optimal pruned model that maximizes
performance while adhering to a target sparsity constraint. Let s denote the target sparsity factor,
where s ∈ [0, 1] indicates the fraction of parameters to be pruned. The pruned model is constructed
through a combination of layers from candidate models, employing operations such as layer-wise
merge, layer selection, and layer removal. These combinations and operations are determined by a
set of hyperparameters ω ∈ Ω, with Ω representing the search space of all possible hyperparameter
configurations. Each configuration ω defines a specific way to combine the layers from candidate
models to form a pruned model Mω . The performance of the pruned model can be evaluated using a
function f(Mω), which measures the model’s effectiveness on specific datasets and tasks. This leads
to our optimization problem:

ω∗ = argmin
ω∈Ω

f(Mω) subject to S(Mω) ≤ s (1)

where S(·) calculates the fraction of pruned parameters in the model compared to the base model,
and ω∗ represents the optimal hyperparameter configuration that yields the performing pruned model.
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3.2 SEARCH SPACE DESIGN

The search space Ω encompasses all possible pruning configurations that can be applied to construct
our pruned model. We formulate this space based on structural layer-wise pruning operations. We
aim to support three operations: (1) Layer removal, (2) layer selection, and (3) Layer merging. We
designed our search space as follows:

Given a base model with l layers and K candidate models fine-tuned from this base model, we
design the search space through a binary vector r = [r1, r2, . . . , rl] where ri ∈ {0, 1} indicates
whether the i-th layer is retained (ri = 0) or removed (ri = 1), satisfying

∑l
i=1 ri = ⌈l · s⌉

to achieve our target sparsity s. For each retained layer position i, we define a selection vector
ci = [ci,1, ci,2, . . . , ci,K ] where ci,j ∈ {0, 1} indicates whether the layer from the j-th candidate
model is selected. If

∑K
j=1 ci,j = 0, we retain the layer from the base model instead. When multiple

candidate models contribute to a layer position (i.e.,
∑K

j=1 ci,j > 1), we specify a merge method
mi ∈ {1, 2, . . . , Z} from Z available merging techniques. Each merge method mi is associated with a
set of hyperparameters hi = [hi,1, hi,2, . . . , hi,Pi ], where Pi is the number of hyperparameters for the
specific merge method. These hyperparameters govern the precise mechanism of layer combination,
such as interpolation weights or mask ratio parameters. Therefore, a complete configuration ω ∈ Ω is
represented as ω = {r, {ci|ri = 0}, {mi|ri = 0 and

∑K
j=1 ci,j > 1}, {hi|ri = 0 and

∑K
j=1 ci,j >

1}}. The total cardinality of the search space can be calculated as: |Ω| =
(

l
⌈l·s⌉

)
×

∏
i:ri=0 2

K ×∏
i:ri=0,

∑K
j=1 ci,j>1 Z ×

∏
i:ri=0,

∑K
j=1 ci,j>1 |hi|. which enables a wide exploration of pruning

strategies while maintaining the target sparsity constraint.

3.3 TARGET OBJECTIVE FUNCTION

To evaluate the quality of a pruned model, we define a multi-objective function that measures the
model’s effectiveness across tasks. Specifically, we measure performance on calibration datasets
Dcalibration, quantifying metrics such as accuracy for classification tasks or perplexity for language
modeling tasks. This provides a direct assessment of how well the pruned model preserves the
capabilities of the original model. We define a multi-task objective function that captures different
aspects of model performance across a range of tasks to produce a comprehensive pruned model.
Let T = {T1, T2, . . . , Tm} be a set of m tasks. For a pruned model Mω with configuration ω, we
employ Pareto Efficient Global Optimization (ParEGO) (Knowles, 2006) to identify Pareto-optimal
solutions across different objectives. Specifically, the ParEGO algorithm transforms multi-objective
optimization problems into a series of single-objective problems through scalarization methods:

fmulti(Mω, λ) = max
i=1,...,m

{λi · fi(Mω)}+ α

m∑
i=1

λi · fi(Mω) (2)

where fi(Mω) is the i-th objective function, λi is the corresponding weight satisfying
∑m

i=1 λi = 1
and λi ≥ 0, and α is a small positive constant (typically set to 0.05). The Chebyshev norm component
maxi=1,...,m{λi · fi(Mω)} ensures that all non-dominated solutions on the non-convex Pareto front
can be identified, while the term α

∑m
i=1 λi · fi(Mω) enhances the algorithm’s stability. The final

output of our optimizer is a Pareto front of pruning configurations, where each configuration represents
a different trade-off between performance on various tasks. In our experiments, we selected the
configurations from the best performing Pareto front and report their results.

3.4 SEARCH OPTIMIZER

To efficiently navigate the search space and find optimal pruning configurations, we employ SMAC
(Lindauer et al., 2022), which strategically allocates computational resources by evaluating con-
figurations at different fidelity levels. we use calibration dataset size as fidelity type, represented
by budgets b where bmin ≤ b ≤ bmax. Each budget value corresponds to a specific portion of the
calibration data used for evaluation - smaller budgets (lower fidelity) use fewer samples for faster
but less precise evaluations, while larger budgets (higher fidelity) use more samples for slower but
more accurate assessments. We use Random Forest (Breiman, 2001) as a surrogate model to sample
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new configurations. Given configuration space Ω, minimum budget bmin, maximum budget bmax,
reduction factor η and the maximum trials Tmax, the whole process is described in Algorithm 1.

Algorithm 1 The optimization process of Gptailor.

Require: Configuration space Ω, minimum budget bmin, maximum budget bmax, reduction factor η,
maximum trials Tmax

Ensure: Optimized configuration ω∗

1: smax = ⌊logη bmax

bmin
⌋, D ← ∅, T ← 0 ▷ Initialization

2: for s ∈ {smax, smax − 1, . . . , 0} and T < Tmax do
3: n← ⌈ (smax+1)

(s+1) · η
s⌉, r ← bmin · ηs ▷ Config count & budget

4: C ← Sample Configurations(n, D, Ω) ▷ Sample configurations
5: for i ∈ {0, 1, . . . , s} and T < Tmax do
6: ni ← ⌊n · η−i⌋, ri ← r · ηi ▷ Stage parameters
7: for each w ∈ C and T < Tmax do
8: Evaluate yw ← fmulti(Mw, λ) using ri samples from calibration set, D ← D ∪
{(w, ri, yw)}, T ← T + 1

9: end for
10: Sort C by performance, keep the top ⌊ni/η⌋ configurations in C
11: end for
12: end for
13: return the best-performing configuration ω∗ evaluated at highest budget

This efficient optimization strategy enables us to handle the search space defined in Section 3.2,
identifying high-performing pruned models that satisfy our multi-objective function from Section 3.3,
with significantly reduced computational cost compared to exhaustive search approaches.

4 EXPERIMENTAL SETTINGS

Benchmarks. To evaluate the pruned model’s capabilities, we utilized the OpenCompass evaluation
framework (Contributors, 2023). Specifically, we conduct evaluations in five aspects: Reasoning,
Language, Knowledge, Examination and Understanding. Reasoning: CMNLI (CNLI)(Xu et al.,
2020), HellaSwag (HeSw)(Zellers et al., 2019), PIQA (Bisk et al., 2020). Language: CHID (Zheng
et al., 2019), WSC (Levesque et al., 2012). Knowledge: CommonSenseQA (CSQA) (Talmor et al.,
2018), BoolQ (Clark et al., 2019). Examination: MMLU (Hendrycks et al., 2020), CMMLU (CMLU)
(Li et al., 2023). Understanding: Race-High/Middle (H/M) (Lai et al., 2017), XSum (Narayan et al.,
2018), C3 (Sun et al., 2020). For CHID and XSum, we use generative evaluation. For the WSC
dataset, we use cloze log-likelihood (WSCP) and generative (WSCG) evaluation. The remaining
benchmarks are evaluated using cloze log-likelihood. See more details in Supplementary Section C.

Baselines. To evaluate the effectiveness of our method, we compared with four state-of-the-art struc-
tured pruning methods: LLM-Pruner (LLMPru) (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024),
LaCo (Yang et al., 2024), and ShortGPT (Men et al., 2024). In our experiments, we set the pruning
ratios of our method to be equivalent to ShortGPT and LaCo. Furthermore, as our method is based
on multiple candidate models, we check three comprehensive comparison scenarios to guarantee
fairness: (1) Applying each baseline pruning method individually to all candidate models and picking
the strongest one, (2) First pruning each candidate model using the baseline method and then merging
them, and (3) First merging the candidate models and then applying pruning. For model merging
across baseline experiments, we employ the task-arithmetic merging (Ilharco et al., 2022) technique
used in our search space, with merging factors within the range [0.5, 1.0] (Ilharco et al., 2022).

Model Selection. To assess the effectiveness of the proposed method, we search for pruned versions of
the popular Llama2-7B and Llama2-13B (Touvron et al., 2023). For 7B models, we use Llama-2-7B
(Touvron et al., 2023) as our base model, with three candidate models: Llama-2-7B-Chat (Touvron
et al., 2023) (LM), MAmmoTH-7B (Yue et al., 2023) (Math), and Llama-2-Coder-7B (Manuel
Romero, 2023) (Code). For 13B models, we use Llama-2-13B (Touvron et al., 2023) as the base
model, with WizardLM-13B (Xu et al., 2023) (LM), WizardMath-13B (Luo et al., 2023) (Math), and
Llama-2-13B-Code-Alpaca (Chaudhary, 2023) (Code) as candidate models. We selected these models
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for their wide availability to ensure reproducible evaluation. For the 7B models, we set the sparsity
ratio to 9/32, removing approximately 28% of the layers. For the 13B models, we set the sparsity ratio
to 10/40, removing approximately 25% of the layers. These two ratios are matching the best settings
from prior work in ShortGPT and LaCo, while being slightly higher than other baseline methods,
allowing for fair comparisons. For layer merging, we implement task-arithmetic (Ilharco et al., 2022)
merging with a configurable merging factor that controls the magnitude of task-specific adaptations.

Calibration Data. For our calibration dataset, we selected multiple-choice datasets to ensure the
model’s generalization ability across different capabilities. Specifically, we sampled from diverse
datasets: 1000 examples from the PIQA (Bisk et al., 2020) training set, 500 examples from the WSC
(Levesque et al., 2012) training set, 1000 examples from the CSQA Talmor et al. (2018) training set,
and 1000 examples from the MMLU (Hendrycks et al., 2020) validation set (which is distinct from
the MMLU test set). This diverse collection allows us to calibrate our model across a broad spectrum
of linguistic and reasoning capabilities.

Objective and Optimizer. Our implementation builds upon SMAC (Lindauer et al., 2022) for opti-
mization. We allocate 500 search trials for both 13B and 7B experiments. To improve optimization ef-
ficiency, we use models with randomly removed middle layers as starting points, since models are rel-
atively robust to changes in these intermediate layers (Su & Geiping, 2025). We set the minimum bud-
get bmin as 100, maximum budget bmax as the 1000, and reduction factor η as 3. This resulted in budgets
of {100, 300, 1000} for PIQA, CSQA, and MMLU. For the WSC, we set budgets to {100, 200, 500}

5 RESULTS AND ANALYSIS

5.1 MAIN RESULTS

To validate the effectiveness of our method, we compared it with the four baselines: LLM-Pruner
(LLMPru) (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024), LaCo (Yang et al., 2024), and
ShortGPT (Men et al., 2024). We reproduce the results from these methods and evaluate on Open-
Compass (Contributors, 2023). As mentioned in the experiment section, we evaluate the results based
on three settings, i.e., individual pruning, pruning-then-merging, and merging-then-pruning.

Table 1 reports the best single model pruning and best merge results of all baselines, with full results
in Supplementary Section G. Our approach achieves the best results across multiple benchmarks
compared to all tested LLM pruning methods. In terms of overall performance, our method maximally
preserves the capabilities of the dense model: 92.2% (48.55/52.63) for the 7B model and 97.3%
(54.33/55.86) for the 13B model. To ensure our results were not biased by our calibration data, we also
calculate an avg* excluding the four benchmarks from which training data was selected for calibration
(MMLU, CSQA, WSC, PIQA). As shown in the avg* column, our method still outperformed all
baselines, further validating our approach. Notably, our method achieved comparable or even better
results than dense models on most tasks. We attribute these gains to: 1) Pruning might mitigate
"overthinking" effects (Kaya et al., 2019), as evidenced by benchmarks such as CNLI and WSC,
where other pruning methods also yielded performance gains, and 2) Our merging strategy might
mitigate the information loss caused by pruning, stemming from the merging process.

Figure 2 illustrates our best-performing 7B-pruned model and best-performing 13B-pruned models’
structure (See Supplementray Table 12 and Table 13 for details). We observe that both models tend to
remove middle-to-later layers, with the 13B model removing layers from layer 25 and the 7B model
from layer 19. This suggests information redundancy in these layers, aligning with findings that later
layers exhibit high similarity and redundancy (Men et al., 2024; Gromov et al., 2024).

5.2 WHICH PARTS OF THE SEARCH SPACE ARE CRITICAL ?

To determine where the benefits of our approach come from, we designed ablation experiments to
evaluate the contribution of different components in our search space. As our framework supports:
(1) Layer Selection (LS) from different candidate models, (2) layer merging, and (3) Layer Removal
(LR), we conducted ablation studies to isolate the impact of each component. Table 2 summarizes
the performance comparison across various benchmarks (More results in Supplementary Table 9).
Layer Removal Only (LR-only). We restricted the search space to allow only layer removal
operations on a single model. Consequently, our method in this setting supports only single-model
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Table 1: Comparison of pruning methods on multiple natural language benchmarks. "Single" refers
to the performance achieved when pruning a single model directly, while "Merge" refers to the
performance achieved through either "pruning-then-merging" or "merging-then-pruning". 7B models:
Llama-2-7B-Chat (LM), MAmmoTH-7B (Math), Llama-2-Coder-7B (Code), and Llama-2-7B (Base).
13B models: WizardLM-13B (LM), WizardMath-13B (Math), llama-2-13B-code-alpaca (Code), and
Llama-2-13B (Base).

LLM Pruner Type Reasoning Language Knowledge Understanding Avg Avg*
(ratio) CNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Llama
-7B

Dense
(0.0%)

Base 32.98 71.34 78.18 41.56 37.50 38.46 55.04 70.70 46.67 31.88 35.53 33.36 19.55 43.84 45.47 42.30
Math 32.99 68.60 75.79 39.71 39.42 36.54 50.78 69.36 43.04 32.16 30.36 36.42 20.88 43.45 44.25 41.70
LM 31.30 71.28 75.95 36.11 63.46 59.62 64.29 74.77 48.30 33.93 52.52 55.22 22.45 47.56 52.63 47.24

Code 32.99 70.27 78.62 41.61 36.54 41.35 57.41 71.04 46.22 32.20 41.25 39.69 18.79 46.25 46.73 43.79
LLMPru
(25.3%)

Single 32.99 59.57 73.34 30.32 46.15 0.00 20.15 57.28 23.21 25.16 21.56 21.52 15.19 31.07 32.68 32.74
Merge 34.71 60.57 73.50 26.62 40.38 5.77 19.90 52.14 24.01 25.30 23.07 22.98 15.51 32.49 32.64 32.60

SliceGPT
(26.3%)

Single 31.89 41.55 58.81 18.43 39.42 4.81 19.49 40.09 25.38 25.02 25.59 26.88 8.78 39.56 28.98 28.64
Merge 32.85 37.61 57.56 17.33 53.85 2.88 19.41 42.66 25.22 24.68 25.21 24.72 12.78 40.22 29.78 28.67

LaCo
(27.1%)

Single 32.97 55.24 69.53 31.47 36.54 34.62 22.11 67.22 29.08 26.16 28.53 28.27 14.68 43.51 37.14 36.45
Merge 31.89 56.26 71.22 27.32 39.42 22.12 23.42 72.66 29.30 26.00 25.19 26.81 16.11 43.62 36.52 36.21

ShortGPT
(27.1%)

Single 33.09 57.42 66.54 21.53 56.73 48.08 52.50 67.34 43.68 28.31 32.53 31.69 12.40 39.45 42.24 35.97
Merge 34.10 54.18 64.42 16.83 61.54 36.54 55.61 73.21 36.84 25.61 42.94 45.89 10.12 35.73 42.40 37.62

Ours
(27.1%) 35.46 54.43 67.74 23.63 63.46 43.27 62.90 75.08 48.75 33.86 55.35 58.64 12.99 44.16 48.55 43.73

Llama
-13B

Dense
(0.0%)

Base 32.99 74.77 79.71 47.35 50.96 63.46 67.24 71.38 55.84 38.74 57.98 60.17 23.47 47.51 55.11 50.48
LM 35.36 70.41 78.73 36.21 57.69 60.58 65.03 73.70 53.48 30.85 66.12 71.66 22.44 52.00 55.30 50.97

Math 32.99 68.78 77.26 44.36 36.54 19.23 60.36 78.44 54.21 38.12 47.74 48.82 19.51 44.66 47.93 47.05
Code 32.99 74.82 80.14 47.30 51.92 63.46 68.88 72.72 55.92 39.26 58.03 63.72 24.45 48.38 55.86 51.30

LLMPru
(21.2%)

Single 33.49 60.28 75.57 23.68 39.42 0.00 19.00 63.24 23.27 25.23 22.36 21.45 17.13 32.00 32.58 33.21
Merge 33.86 64.11 73.50 22.18 60.58 0.00 21.46 61.96 23.84 25.62 22.16 21.59 14.98 32.11 34.14 33.17

SliceGPT
(23.6%)

Single 33.19 42.44 59.90 18.03 54.81 19.23 32.51 41.22 33.09 25.75 29.45 29.87 9.99 37.75 33.37 29.74
Merge 30.98 46.83 62.57 19.33 51.92 49.04 37.76 38.38 33.55 25.22 23.53 23.05 9.95 39.67 35.13 28.55

LaCo
(24.6%)

Single 32.33 60.18 70.57 32.67 34.62 34.62 52.58 62.66 36.26 25.80 60.38 62.53 8.79 49.21 44.51 43.84
Merge 33.49 62.50 74.37 35.26 63.46 63.46 18.84 64.65 41.83 24.87 26.10 25.97 15.93 39.51 42.16 34.71

ShortGPT
(24.6%)

Single 32.95 62.64 73.50 28.22 36.54 50.96 65.44 67.71 53.50 30.73 65.52 71.38 19.12 48.60 50.49 47.43
Merge 31.07 63.24 68.61 27.17 49.04 43.27 65.68 78.01 51.26 36.88 57.38 62.67 16.94 44.05 49.66 46.38

Ours
(24.6%) 32.99 66.81 75.03 29.07 54.81 62.50 69.37 74.28 55.90 39.71 65.52 71.03 16.80 46.74 54.33 49.22

Figure 2: (a) Structure of our best-performing 7B-pruned model. The model integrates layers from
multiple candidates: Llama-2-7B-Chat (LM), MAmmoTH-7B (Math), Llama-2-Coder-7B (Code),
and Llama-2-7B (Base). The pruning ratio is 9/32, removing 9 layers out of 32 total layers. (b)
Structure of our best-performing 13B-pruned model. The model integrates layers from multiple
candidates: WizardLM-13B (LM), WizardMath-13B (Math), llama-2-13b-code-alpaca (Code), and
Llama-2-13B (Base). The pruning ratio is 10/40, removing 10 layers out of 40 total layers.

pruning without merging, similar to most conventional pruning approaches. As shown in Table 2,
there is a significant performance drop (48.55% vs. 44.83%), confirming that merely pruning layers
from a single model is insufficient. Moreover, it is worth noting that even with layer-removal only
pruning on a single model our method still outperforms the best baseline, ShortGPT (44.83% vs.
42.24%). This highlights the superiority of our approach to pruning, even in a simplified setting.

Layer Selection and Removal (LS+LR). In this setting, we enabled both layer selection from
different candidate models and layer removal operations, while disabling the layer merging
functionality. Compared with LR-only, LS+LR yields an even larger performance drop (48.55 vs.
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43.20 on average). This suggests that merely combining layers from different models without proper
integration through merging is ineffective.

Table 2: Comparison of different searching settings across various benchmarks. Settings: LR-only:
Layer-remove only, LS+LR: Layer-selection + layer-remove, FL-merge: Folding Layers Merging.

Setting Reasoning Language Knowledge Understanding Avg

CNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Ours 35.46 54.43 67.74 23.63 63.46 43.27 62.90 75.08 48.75 33.86 55.35 58.64 12.99 44.16 48.55
LR-only 34.96 53.80 66.70 18.58 49.04 58.65 60.61 68.87 47.85 33.54 42.51 43.04 8.05 41.42 44.83
LS+LR 32.92 55.84 65.07 17.98 63.46 26.92 58.97 51.22 48.97 34.61 48.68 49.44 8.33 42.41 43.20
FL-merge 32.99 52.90 63.66 19.28 46.15 62.50 60.52 75.20 48.30 34.33 50.77 55.29 6.39 39.40 46.26

5.3 ROBUSTNESS AND GENERALIZATION ANALYSIS

To comprehensively evaluate the robustness and generalizability of our framework, we conduct
extensive analysis across three critical dimensions: pruning ratio sensitivity, candidate pool scalability
and Generalization to next-generation models. These experiments aim to validate our method’s
effectiveness under diverse deployment constraints and resource limitations.

Table 3: Impact of Candidate Pool Composition
on Performance.

Model Pool Average Performance

Math&LM&Code 48.55

Math&LM 47.82
Code&LM 47.31
Code&Math 43.12

LM 45.42
Math 42.40
Code 42.03

Base 42.20

0.0 12.5 25.0 37.5 50.0 62.5 75.0
Prune Ratio

25

30

35

40

45

50

55

Av
er
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45.47
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44.25

54.34

27.47

LM
Base
Code
Math
Ours

Figure 3: Performance Comparison Across Dif-
ferent Pruning Ratios.

Performance Across Pruning Ratios. To further evaluate the generalizability of our method under
different pruning ratios, we validate its performance across varying pruning ratios. Since we have
already shown that even the layer-removal variant of our method surpasses other baselines such
as ShortGPT, here we focus specifically on layer removal. Moreover, we examine its impact on
different task-specific models, using this experiment to highlight the additional benefits of merging,
rather than simply pruning a single model. The results are visualized in Figure 3 with the average
accuracy among benchmark performances at different pruning ratios. More details are supplied in
Supplementary Table 10. From the results, we can see that the accuracy of all models decreases as
the pruning ratio increases. Our model achieves the best performance at all pruning ratios, especially
in the low pruning ratio range of 0%-37.5%. When pruning reaches 50%, every model suffers
performance collapse, leading to a reduced gap across models. This represents a clear elbow point,
indicating that beyond it, excessive parameter removal renders models unable to sustain effective
functionality without further post-training.

Scaling with Candidate Model Pool Size. To validate the generalizability of our method across
different candidate models, we conducted experiments by varying both the number of models and
their combinations in the pool. As shown in Table 3, with full results in Supplementary Table 21 the
results show that performance is indeed affected by the choice of candidate models. Specifically,
including language models (LM) in the candidate pool consistently yields substantial improvements,
while code models tend to contribute more modest gains. Importantly, we find that increasing the
number of candidate models consistently leads to improved overall performance. Our findings
highlight three key properties of the proposed method. (1) Incorporating high-quality models, such
as strong language models, consistently improves performance across benchmarks. (2) Adding
lower-performing models does not harm the overall results, demonstrating the stability of our search
strategy. (3) Enlarging the candidate pool generally yields further improvements, reflecting the
scalability and robustness of our approach.

Generalization to Next-Generation Models (Llama-3). We further extend our validation to Meta’s
Llama-3 8B model (Grattafiori et al., 2024), which is larger, more densely parameterized, and trained

8
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on 15T tokens with architectural improvements such as universal GQA and a longer context window.
Despite a similar model size, Llama-3 8B surpasses Llama-2 7B (Touvron et al., 2023). Pruning
such advanced models poses new challenges due to their semantic density, making validation on this
next-generation model crucial for establishing the practical applicability of our method in rapidly
evolving LLM landscapes. We compare our method with the best-performing baseline, ShortGPT.
As shown in Table 4 (full results in Supplementary Table 11), our method retains 84.55% of the
original performance (53.17/63.61) after pruning 9 layers, clearly outperforming ShortGPT’s 62.79%
(39.94/63.61) under the same compression ratio. Both results are lower than our Llama-2 7B retention
(92.2%) despite the similar model size, indicating that Llama-3 is less compressible. Nevertheless, our
method consistently surpasses the baseline, demonstrating its robustness across model generations.

Table 4: Comparison of pruning methods on multiple natural language benchmarks. For 8B model:
Meta-Llama-3-8B-Instruct (LM), MathCoder2-Llama-3-8B (Math), Code-Llama-3-8B (Code), and
Meta-Llama-3-8B (Base).

LLM Pruner Type Reasoning Language Knowledge Understanding
Avg

ratio/layer CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Llama3
-8B

Dense

Base 32.98 74.67 80.96 73.78 56.73 36.54 73.79 69.97 64.74 50.79 63.21 70.54 3.28 55.18 57.65
LM 33.00 71.08 80.69 65.53 55.77 69.23 76.66 78.87 65.97 53.64 76.44 81.75 17.97 63.95 63.61

Math 32.99 71.66 77.97 57.09 37.50 58.65 68.22 69.08 62.08 45.85 64.75 69.08 8.68 53.86 55.53
Code 32.98 65.56 74.70 78.42 61.54 61.54 63.47 78.35 48.03 34.55 52.40 58.43 19.36 46.41 55.41

ShortGPT
Single 32.83 45.06 65.78 23.38 41.35 53.85 39.56 63.73 32.37 28.69 40.14 45.19 3.68 43.51 39.94
Merge 32.95 48.58 64.96 18.43 36.54 35.58 42.83 67.22 33.05 28.71 30.16 32.45 3.66 44.27 37.10

Ours 33.42 54.83 69.75 34.02 47.12 62.50 73.79 64.34 63.13 50.04 72.81 77.65 3.00 46.52 53.78

5.4 ENHANCING LAYER-FOLDING PRUNING POTENTIAL

LaCo (Yang et al., 2024) is a merging-based pruning approach that performs within-model pruning
by folding later layers into earlier ones based on activation similarity. While effective, its potential
is constrained by suboptimal layer selection and merging strategies. To validate the effectiveness
and potential of this type of within-model merge operation, we use our hyperparameter optimization
framework with a specially designed search space (described in Section H.2). Empirically, As shown
in Table 2, our framework achieves improved performance (46.26) on this configuration, unlocking
greater potential from layer-folding pruning through optimized selection and merging strategies. This
validates that our approach can enhance various pruning paradigms beyond cross-model scenarios,
offering an effective solution when fine-tuned candidate models are unavailable.

5.5 COMPUTATIONAL EFFICIENCY ANALYSIS

We conducted a computational efficiency analysis against two competitive baselines, ShortGPT and
LaCo, on Llama7b using post-training settings from the LLMPruner paper. We test our framework
with two strategies: multi-candidate model searching (3 candidates) and single-model layer folding.
We choose these strategies because they cover complementary deployment scenarios when candidate
models are available versus unavailable. As shown in Supplementary Table 18 , both strategies
consistently outperform baselines with reduced computational overhead.

6 CONCLUSION

In this work, we presented a novel LLM compression approach that strategically combines layers
from fine-tuned model variants instead of pruning single models. By formulating this as a zero-order
optimization problem with a newly designed search space that supports layer removal, selection, and
merging, our method effectively preserves model capabilities while reducing size. Experiments on
Llama2-7B and Llama2-13B demonstrated that our compressed models retain 92.2% and 97.3% of
original performance, respectively, despite removing ∼ 25% of parameters, outperforming previous
state-of-the-art methods without requiring expensive post-training. Overall, our work demonstrates
that cutting and stitching layers from multiple fine-tuned variants of a model is a more effective
approach to LLM compression than traditional single-model pruning. While the search complexity
increases with the number of candidate models, this computational aspect represents an opportunity
for future optimization techniques to further enhance efficiency.

9
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ETHICS STATEMENT

In this work, we carefully ensure that all methods and experimental protocols conform to established
ethical guidelines. Our investigation centers on layer pruning as a strategy to improve the efficiency
of LLMs and to lower computational demands, contributing to more sustainable AI practices. In
addition, every model and dataset employed in this research is obtained from openly accessible
sources, guaranteeing respect for intellectual property and protection of personal privacy. Apart from
the models used as experimental subjects (Llama2-7B, Llama-2-7B-Chat, MAmmoTH-7B, Llama-2-
Coder-7B, Llama2-13B, WizardLM-13B, WizardMath-13B, Llama-2-13B-Code-Alpaca, Qwen3-8B,
Qwen3-4B-Instruct, and Qwen3-4B-Thinking), we also utilized LLMs as writing assistants, as
detailed in Section A. All uses of LLMs in this work comply with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We made several efforts to ensure reproducibility. First, we provide detailed experimental settings and
hyperparameters used throughout this paper in Section 4, Appendix B, and Section 5.5, and report all
evaluation metrics in Section 5. Second, our code will be submitted with the paper, accompanied by
detailed usage instructions and scripts to reproduce all reported results.
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A THE USE OF LARGE LANGUAGE MODELS

We used large language models solely as a general-purpose writing aid to help improve the clarity and
readability of the text, and to suggest minor wording improvements. The LLMs did not contribute to
the research ideation, experimental design, analysis, or interpretation of results. All technical content,
experiments, and conclusions presented in this paper are entirely the work of the authors.

B BASELINE

To ensure fair comparison, we applied various baseline pruning methods including LLM-
Pruner(LLMPru) (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024), LaCo (Yang et al., 2024) and
ShortGPT (Men et al., 2024):

LLM-Pruner adopts structural pruning that selectively removes non-critical coupled structures based
on gradient information, maximally preserving the majority of the LLM’s functionality. It applies
post-training to the pruned model, for fair comparison, we do not apply post training to it.

SliceGPT is a post-training sparsification scheme that replaces each weight matrix with a smaller
matrix, reducing the embedding dimension of the network. Specifically, they applied PCA to the
hidden representation from shallow to deep layers, and incorporated the dimension reduction matrix
into existing network parameters.

LaCo is a pruning method for large language models based on reducing layers. LaCo gradually
merges similar layers from deep to shallow and sets a threshold to avoid merging too many layers.

ShortGPT introduced the Block Influence (BI) metric, which uses the similarity between layer’s
input and output to measure the importance of each layer.

C EVALUATION BENCHMARKS

CMNLI (Chinese Multi-Genre Natural Language Inference) (CNLI) consists of two parts: XNLI
and MNLI. It contains text from various domains, including fiction, telephone conversations, travel,
and government sources. XNLI is a cross-lingual extension of the MultiNLI corpus, professionally
translated into multiple languages, including Chinese, providing a robust framework for assessing
language understanding across linguistic boundaries. Models must determine whether pairs of
sentences exhibit entailment, contradiction, or neutrality.

HellaSwag (HeSw) tests commonsense reasoning about physical situations. The dataset uses a
"Goldilocks" zone of complexity where examples are obviously nonsensical to humans but challeng-
ing for state-of-the-art models. Despite being trivial for humans (>95% accuracy), even advanced
models struggled with this benchmark upon its release, making it effective for measuring progress in
commonsense inference.

PIQA (Physical Interaction Question Answering) is a multi-choice question and answer dataset
that focuses on everyday scenarios, exploring models’ understanding of real-world physical laws
through daily situations.
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CHID (Chinese IDiom) is an idiom cloze test focusing on the representation and selection of Chinese
idioms, requiring cultural and linguistic knowledge specific to Chinese.

WSC (Winograd Schema Challenge) serves as a prominent benchmark for evaluating machine
understanding through pronouns resolution problems that are trivial for humans but require common-
sense reasoning for machines to solve correctly. The dataset consists of pairs of sentences differing in
one or two words with ambiguous pronouns resolved differently in the two sentences, designed to
test a system’s commonsense reasoning abilities.

CommonSenseQA (CSQA) is a multiple-choice question answering dataset containing 12,102 ques-
tions with one correct answer and four distractor answers, requiring different types of commonsense
knowledge to predict the correct answers. The dataset was constructed using ConceptNet relations
and crowd-sourced questions to test commonsense reasoning.

BoolQ provides 15,942 yes/no questions that occur naturally in unconstrained environments, testing
models’ binary decision-making abilities.

MMLU (Massive Multitask Language Understanding) evaluates models across 57 diverse subjects
covering STEM, humanities, and social sciences. The benchmark tests knowledge and problem-
solving ability with content ranging from elementary to professional levels. This benchmark has
become a standard evaluation metric in the field, with scores prominently reported for virtually all
language models, and uses multiple-choice questions that allow for simple accuracy calculations.

CMMLU (Chinese Massive Multitask Language Understanding) (CMLU) Developed to address
the gap in evaluating knowledge and reasoning capabilities in Chinese, CMMLU is a comprehensive
benchmark covering 67 subjects from elementary to advanced professional levels across natural
sciences, social sciences, engineering, and humanities. The benchmark includes topics with Chinese-
specific answers that may not be universally applicable in other regions or languages, making it a
fully Chinese-oriented evaluation tool.

RACE (Reading Comprehension from Examinations) is collected from English examinations in
China designed for middle and high school students, providing a culturally diverse reading assessment.

XSum evaluates abstract single document summarization systems, focusing on the ability to create
concise one-sentence summaries capturing the essence of articles.

C3 (Chinese Multiple-Choice Machine Reading Comprehension) consists of multiple-choice
questions from Chinese proficiency exams and ethnic Chinese exams.

D TASK ARITHMETIC MERGING

Task Arithmetic Ilharco et al. (2022) enhances model capabilities through vector operations by
leveraging weighted combinations of task-specific knowledge. Given a base model with weights θpre

and task-specific fine-tuned weights {θft
t }nt=1, task vectors are defined as τt = θft

t − θpre. The merged
weights are then computed through θMerge = θpre + λ

∑n
t=1 τt, where λ controls the magnitude of

task-specific adaptations.

E DESCRIPTIONS OF SMAC-BASED MULTI-FIDELITY OPTIMIZATION

Our implementation extends SMAC (Lindauer et al., 2022), integrating Hyperband (HB) (Li et al.,
2018) with Bayesian Optimization (BO) (Snoek et al., 2012) and employing Random Forest (Breiman,
2001) as the surrogate model.

The framework operates using minimum and maximum budgets (bmin, bmax) with a spacing pa-
rameter η > 1. The algorithm creates smax = ⌊logη(bmax/bmin)⌋ brackets, each initiating with
ni = ⌊ηsmax−i · η

η−1⌋ configurations. Within each bracket, Successive Halving proceeds through
⌊logη( ni

nmin
)⌋+ 1 rounds, evaluating configurations at increasing budgets while progressively elimi-

nating underperforming candidates. Specifically, after evaluating all configurations at budget b, only
the top ⌊ni

ηl ⌋ performers advance to the next round with an increased budget of ηb.
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A key enhancement is the Random Forest model that learns from all prior configuration-performance
pairs, prioritizing data from higher budgets. This model guides the selection of promising config-
urations via Expected Improvement, balancing exploration and exploitation. As the optimization
progresses, the evaluation of more configurations at higher budgets enables the algorithm to correct
potential misjudgments from lower-fidelity evaluations.

For a detailed algorithmic description, see Algorithm 2, which presents the complete optimization
process incorporating trial limits. This integration of multi-fidelity resource allocation with surrogate-
based modeling delivers efficient configuration space exploration while maintaining evaluation
quality.

F UNDERSTANDING STRATEGY SELECTION VIA LAYER-LEVEL ANALYSIS

To investigate how our approach works for model compression with superior performance, we analyze
the architectural decisions from multiple perspectives: the theoretical foundation of model merging,
empirical observations of Layer-wise Patterns, and post-hoc analysis of layer characteristics.

F.0.1 THEORETICAL FOUNDATION: WHY MODEL MERGING WORKS

The underlying principle of model merging is that fine-tuned variants from a common pre-trained
initialization typically converge to parameters within the same loss basin. While neural network loss
functions are generally non-convex, recent work has demonstrated that parameters from different
training runs can be interpolated without increasing loss, a phenomenon known as mode connectivity
Garipov et al. (2018); Frankle et al. (2020).

Garipov et al. (2018) showed that different optima can be connected by simple curves with nearly
constant accuracy. Frankle et al. (2020) further demonstrated that networks sharing part of their
optimization trajectory converge to linearly connected regions, where the linear interpolation θ(t) =
(1 − t)θA + tθB maintains low loss for all t ∈ [0, 1]. Entezari et al. (2021) conjectured that when
accounting for permutation invariance, SGD solutions exhibit no barrier in linear interpolation.

Crucially, fine-tuned models initialized from the same pre-trained model θ0 share a significant portion
of their optimization trajectory, enabling merging without explicit permutation alignment Wortsman
et al. (2022); Ilharco et al. (2022). This is evidenced by the small Frobenius distance between such
models Yadav et al. (2023):

∥θ(i)t − θ
(j)
t ∥F ≪ ∥θ

(i)
t − θ0∥F (3)

where θ
(i)
t and θ

(j)
t denote models fine-tuned on different tasks i and j. This proximity in param-

eter space, combined with the wide, flat minima characteristic of fine-tuned models, provides the
theoretical foundation for merging complementary capabilities while maintaining performance.

These properties make merging a natural guide for pruning because the shared loss basin reveals
redundant or overlapping layers whose removal does not disrupt the model’s performance.

F.0.2 EMPIRICAL OBSERVATIONS: LAYER-WISE PATTERNS

Pattern 1: Positional preference. To identify systematic patterns in layer operations, we normalize
layer positions (position = layer_index / total_layers) and partition the space [0,1] into eight bins,
computing operation percentages averaged across 7B and 13B families. Figure 4 reveals a clear
pattern: early layers favor SELECT (64.1% at position 0-0.3), middle layers favor MERGE (49.9% at
0.3-0.6), and late layers favor REMOVE (70.7% at 0.6-1.0).

Pattern 2: Robustness (redundancy) scales with model size. From the visualization in Fig.2, we
can see that the 13B model shows a simpler structure, which is mainly merged with LM models,
while the 7B model shows a more complex structure utilizing mixed and specialized models. This
suggests that as model size decreases, more diverse mixing strategies may be needed to maintain
performance. This architectural difference, coupled with the superior preservation rate of the 13B
model compared to the 7B model, demonstrates that robustness (redundancy) scales with model size.
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Algorithm 2 SMAC-based Multi-Fidelity Optimization

Require: Configuration space Θ, minimum budget bmin, maximum budget bmax, spacing factor
η > 1, maximum trials Tmax

Ensure: Optimized configuration θ∗

1: smax ← ⌊logη( bmax
bmin

)⌋ ▷ Maximum brackets
2: D ← ∅ ▷ Observation history
3: θ∗ ← ∅, y∗ ←∞ ▷ Best configuration tracking
4: T ← 0 ▷ Initialize trial counter

5: for i ∈ {smax, smax − 1, . . . , 0} do
6: if T ≥ Tmax then
7: break ▷ Exit if reached maximum trials
8: end if
9: ni ← ⌊ηsmax−i · η

η−1⌋ ▷ Initial configurations
10: M← FitRandomForest(D) ▷ Build surrogate model
11: if |D| = 0 then
12: Θi ← Sample ni random configurations from Θ
13: else
14: Θi ← Select ni configurations with highest EI based onM
15: end if
16: si ← ⌊logη(ni

1 )⌋+ 1 ▷ SH rounds
17: A ← Θi ▷ Set of active configurations
18: b← bmin · ηi ▷ Initial budget
19: for l ∈ {0, 1, . . . , si − 1} do
20: if T ≥ Tmax then
21: break ▷ Exit if reached maximum trials
22: end if
23: ni,l ← ⌊ni

ηl ⌋ ▷ Current pool size
24: for each θ ∈ A do
25: yθ ← f(θ, b) ▷ Evaluate configuration
26: D ← D ∪ {(θ, b, yθ)} ▷ Update history
27: T ← T + 1 ▷ Increment trial counter
28: if b = bmax and yθ < y∗ then
29: y∗ ← yθ, θ∗ ← θ ▷ Update best
30: end if
31: if T ≥ Tmax then
32: break ▷ Exit if reached maximum trials
33: end if
34: end for
35: Sort A by performance
36: A ← Top ⌊ni,l

η ⌋ configurations from A
37: b← min(b · η, bmax) ▷ Increase budget
38: if b = bmax or |A| = 1 then
39: break
40: end if
41: end for
42: end for
43: return θ∗ =0
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Figure 4: Positional preference pattern in layer operations. Operation distribution across normalized
layer positions, averaged over 7B and 13B models. Early layers favor SELECT, middle layers favor
MERGE, and late layers favor REMOVE.
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neighboring layers, merged layers maintain lower cross-model variance and stronger local and global
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Figure 7: Layer-wise roughness comparison. Our method produces consistently lower roughness
scores than ShortGPT, indicating smoother and more coherent depth-wise representation transitions.

F.0.3 WHY DO THESE PATTERNS EMERGE?

We now investigate whether these decisions align with interpretable layer properties. We conduct post-
hoc analysis examining two complementary perspectives: cross-model representational alignment
and within-model layer redundancy. All analyses below are conducted using Llama2-7B models.

We extracted CKA (Centered Kernel Alignment)-based features Kornblith et al. (2019) that capture
both inter-model and intra-model structural properties. First, cross-model variance quantifies repre-
sentational divergence across the four models by measuring the variability of their pairwise CKA
similarities at each layer; higher variance indicates that models have learned different representations
at that depth. Second, we compute local CKA at multiple scales (k = 1, 5, and all layers), measuring
how consistently each layer aligns with its immediate neighbors (surrounding block). These metrics
capture short-range smoothness, block-level coherence, and global structural integration. Lower local
CKA values indicate better representational consistency at the corresponding scale.

Analysis 1: Merged layers exhibit cross-model alignment. Across all extracted features, merged
layers consistently show higher representational consistency both within and across models (Fig. 5).
They exhibit lower cross-model variance, indicating that all four models converge to similar feature
representations at these depths. Their lower local CKA values further suggest that the representations
of merged layers can be aligned and fused without structural conflict. In contrast, pruned layers
demonstrate higher cross-model variance and lower global consistency, revealing that different models
encode incompatible representations in these regions, retaining them during fusion contributes little
useful information and may introduce conflicts.

Analysis 2: Pruned layers show within-model redundancy. We examine within-model layer
similarity by measuring how closely each layer’s representations match its neighbors at different
scales (k=1 to k=5). Results in Fig. 6 demonstrate that pruned layers (red) consistently exhibit higher
representation similarity to their neighbors compared to retained layers (blue) across all neighborhood
sizes. Statistical significance tests (**) confirm that the representations of redundant layers are highly
similar to adjacent layers and thus contribute minimal unique information.

Analysis 3: Our method maintains smoother transitions than baselines. We compared the
representation similarity of the pruned model produced by ShortGPT with that of our searched model.
For each model, we computed the CKA similarity around each layer change relative to its neighboring
layers. As shown in Fig. 7, the merge-based model consistently yields lower roughness values,
indicating smoother and more coherent depth-wise representation transitions. This suggests that our
method preserves the natural progression of representations instead of disrupting the hierarchical
flow. In contrast, ShortGPT introduces sharper local changes, leading to a more fragmented represen-
tational structure. The smoother similarity profile of our model demonstrates a more stable internal
organization, with fewer disruptive shifts between layers.

Together, these analyses reveal that merging and pruning target fundamentally different structural
properties. Merging capitalizes on cross-model consensus: layers where all models have converged
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to similar representations can be safely fused. Pruning exploits within-model redundancy: layers
that duplicate information already present in their neighbors can be removed without information
loss. Critically, these patterns are discovered rather than designed. Our optimization framework
identifies them automatically by maximizing performance under compression constraints. The strong
correlation between discovered patterns and interpretable layer properties validates that our method
captures genuine structural regularities rather than exploiting dataset-specific artifacts.

G FULL BASELINE RESULTS

To validate the efficiency of our proposed method, we conducted comparative experiments against
established baseline techniques. For fair comparison with other baseline methods, we selected the
same pruning ratios matching those used in LaCo (Yang et al., 2024) and ShortGPT (Men et al.,
2024) while being lower than those of other approaches. In order to make a fairer comparison, we
reproduced all the results and evaluated them on OpenCompass (Contributors, 2023) as in LaCo.All
experiments run on NVIDIA Tesla A100 GPUs. For each baseline method, we explored three
scenarios: (1) applying each baseline pruning method individually to all candidate models, (2) first
pruning each candidate model using existing methods and then merging them, and (3) first merging
the candidate models and then applying pruning techniques.

We use the official implement of LLM-pruner and LaCo, It’s worth noting that when reproducing the
LaCo method, we referenced the hyperparameter settings from the original paper. Due to differences
in hardware, we couldn’t fully reproduce the paper’s results: we couldn’t obtain models with pruning
ratios consistent with the paper using the provided hyperparameters. We maintained consistency in
all other parameters while gradually adjusting the threshold from 0.75 until achieving the desired
pruning ratio. The specific parameters are detailed in the Table 5.

For the reproduction of ShortGPT, we implemented the algorithm based on the original paper and
similarly sampled 10,000 instances from the PG19 (Rae et al., 2019) dataset as calibration data,
following the methodology described in the paper. The resulting removed layers are shown in the
Table. The removed layers for the base model align with those reported in the ShortGPT paper, albeit
in a different sequence. We attribute this variation to slight differences in calculated layer importance
scores. The specific configuration of removed layers for each model is detailed in the Table 6.

For the merging process, we employed task arithmetic with weighting parameters in the range of [0.5,
1.0]. The full results of the baseline methods on the 7B model and the 13B model are presented in
Table 7 and Table 8, respectively.

Table 5: Hyperparameter settings for LaCo results. C: Number of layers combined in each merge;
L,H: Layer range [L,H]; I: Minimum interval between two adjacent merged layers; T : Threshold
for representation similarity.

Size Model C L H I T

Llama2-13B

Llama-2-13B 6 1 40 2 0.7
WizardLM-13B 6 1 40 2 0.65
WizardMath-13B 6 1 40 2 0.7
llama-2-13b-code-alpaca 6 1 40 2 0.7
Merge-then-prune 6 1 40 2 0.65
Prune-then-merge 6 1 40 2 0.65

Llama2-7B

Llama-2-7B 6 1 40 2 0.7
Llama-2-7B-Chat 6 1 40 2 0.65
MAmmoTH-7B 6 1 40 2 0.7
Llama-2-Coder-7B 6 1 40 2 0.7
Merge-then-prune 6 1 40 2 0.65
Prune-then-merge 6 1 40 2 0.65
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Table 6: Setup of Removed Layers for Candidate Models in ShortGPT.

Model Removed Layers

Llama-2-7B 25, 27, 24, 28, 26, 29, 23, 22, 21

Llama-2-7B-Chat 27, 25, 24, 28, 29, 26, 23, 22, 21

MAmmoTH-7B 27, 25, 24, 28, 29, 23, 26, 22, 21

Llama-2-Coder-7B 27, 25, 24, 28, 29, 26, 23, 21, 22

Llama-2-13B 33, 32, 31, 30, 34, 35, 29, 28, 27, 26

WizardLM-13B 33, 32, 31, 30, 34, 35, 29, 28, 27, 36

WizardMath-13B 33, 31, 32, 30, 34, 35, 29, 28, 27, 36

llama-2-13b-code-alpaca 33, 31, 32, 30, 34, 35, 29, 28, 27, 26

Table 7: The main results of baseline methods on the 7B model across multiple natural language
benchmarks using candidate models: Llama-2-7B-Chat (LM), MAmmoTH-7B (Math), Llama-2-
Coder-7B (Code), and Llama-2-7B (base). "PTM" (Pruning-then-Merging) refers to first pruning each
candidate model using current pruner and then merging them. "MTP" (Merging-then-Pruning) refers
to first merging the candidate models and then applying pruning. For LLMPruner and SliceGPT, align-
ment challenges exist after pruning. LLMPruner removes different model blocks, while SliceGPT
calculates orthogonal transformation matrices that are highly dependent on each model’s specific
weight distributions and activation patterns, resulting in incompatible transformation spaces. There-
fore, we only implemented "merge then prune".

LLM Pruner Type Reasoning Language Knowledge Understanding
Avg

(ratio/layer) CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Llama
-7B

Dense

Base 32.98 71.34 78.18 41.56 37.50 38.46 55.04 70.70 46.67 31.88 35.53 33.36 19.55 43.84 45.47
Math 32.99 68.60 75.79 39.71 39.42 36.54 50.78 69.36 43.04 32.16 30.36 36.42 20.88 43.45 44.25
LM 31.30 71.28 75.95 36.11 63.46 59.62 64.29 74.77 48.30 33.93 52.52 55.22 22.45 47.56 52.63

Code 32.99 70.27 78.62 41.61 36.54 41.35 57.41 71.04 46.22 32.20 41.25 39.69 18.79 46.25 46.73

LLMPruner
(25.32%)

Base 33.00 58.72 72.25 29.52 41.35 0.00 19.74 57.25 23.69 25.49 22.07 21.10 14.67 28.11 31.93
LM 34.94 59.25 72.85 22.28 43.27 9.62 19.41 57.61 23.77 24.51 21.78 22.42 16.32 28.66 32.62

MATH 32.99 55.74 70.84 25.82 37.50 21.15 18.84 54.31 24.77 25.20 22.87 23.89 10.91 28.00 32.35
Code 32.99 59.57 73.34 30.32 46.15 0.00 20.15 57.28 23.21 25.16 21.56 21.52 15.19 31.07 32.68
MTP 34.71 60.57 73.50 26.62 40.38 5.77 19.90 52.14 24.01 25.30 23.07 22.98 15.51 32.49 32.64

SliceGPT
(26.33%)

Base 31.08 42.90 61.43 19.53 36.54 0.00 20.88 37.95 24.78 24.78 21.24 21.73 6.58 37.42 27.63
LM 31.70 43.50 61.37 18.28 40.38 0.96 21.21 38.96 25.56 25.28 21.93 22.42 13.13 38.36 28.79

MATH 31.89 41.55 58.81 18.43 39.42 4.81 19.49 40.09 25.38 25.02 25.59 26.88 8.78 39.56 28.98
Code 31.81 44.02 63.17 18.48 36.54 13.46 19.74 37.92 24.71 25.22 21.41 21.66 2.59 38.19 28.49
MTP 32.85 37.61 57.56 17.33 53.85 2.88 19.41 42.66 25.22 24.68 25.21 24.72 12.78 40.22 29.78

LACO

Base 32.85 53.33 68.23 31.62 36.54 4.81 20.39 62.02 26.60 25.27 24.70 23.61 9.38 42.47 32.99
LM 32.97 55.24 69.53 31.47 36.54 34.62 22.11 67.22 29.08 26.16 28.53 28.27 14.68 43.51 37.14

Math 32.97 55.24 69.53 31.47 50.00 34.62 22.11 67.22 29.44 26.16 22.53 23.68 14.68 39.34 37.07
Code 32.28 53.68 69.15 32.22 36.54 1.92 20.56 61.99 26.31 25.43 27.10 22.70 11.14 43.07 33.15
MTP 32.43 57.80 71.82 28.97 41.35 16.35 27.52 71.28 30.49 26.88 25.76 27.09 8.27 44.33 36.45
PTM 31.89 56.26 71.22 27.32 39.42 22.12 23.42 72.66 29.30 26.00 25.19 26.81 16.11 43.62 36.52

ShortGPT
(27.1%)

Base 33.09 57.42 66.54 21.53 56.73 48.08 52.5 67.34 43.68 28.31 32.53 31.69 12.40 39.45 42.24
LM 33.85 53.93 63.82 14.59 39.42 22.12 58.48 67.95 35.85 26.60 48.03 51.18 6.93 37.21 40.00

MATH 33.97 56.69 63.38 17.78 54.81 44.23 37.26 69.82 30.68 25.26 28.24 30.29 8.26 31.67 38.02
Code 32.74 56.69 65.07 17.78 58.65 35.58 53.24 67.52 44.82 28.92 35.62 37.53 14.32 40.66 42.08
MTP 34.10 54.18 64.42 16.83 61.54 36.54 55.61 73.21 36.84 25.61 42.94 45.89 10.12 35.73 42.40
PTM 34.10 54.18 64.42 16.83 61.54 36.54 55.61 73.21 36.84 25.61 42.94 45.89 10.12 35.73 42.40
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Table 8: The main results of baseline methods on the 13B model across multiple natural language
benchmarks using candidate models: WizardLM-13B (LM), WizardMath-13B (Math), llama-2-13b-
code-alpaca (Code), and Llama-2-13B (Base). "PTM" (Pruning-then-Merging) refers to first pruning
each candidate model using the current pruner and then merging them. "MTP" (Merging-then-
Pruning) refers to first merging the candidate models and then applying pruning. For LLMPruner
and SliceGPT, alignment challenges exist after pruning. LLMPruner removes different model blocks,
while SliceGPT calculates orthogonal transformation matrices that are highly dependent on each
model’s specific weight distributions and activation patterns, resulting in incompatible transformation
spaces. Therefore, we only implemented "merge then prune"

LLM Pruner Type Reasoning Language Knowledge Understanding
Avg

ratio/layer CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Llama
-13B

Dense

Base 32.99 74.77 79.71 47.35 50.96 63.46 67.24 71.38 55.84 38.74 57.98 60.17 23.47 47.51 55.11
LM 35.36 70.41 78.73 36.21 57.69 60.58 65.03 73.70 53.48 30.85 66.12 71.66 22.44 52.00 55.30

MATH 32.99 68.78 77.26 44.36 36.54 19.23 60.36 78.44 54.21 38.12 47.74 48.82 19.51 44.66 47.93
Code 32.99 74.82 80.14 47.30 51.92 63.46 68.88 72.72 55.92 39.26 58.03 63.72 24.45 48.38 55.86

LLMPruner
(21.2%)

Base 33.27 63.57 75.41 34.17 37.50 0.00 19.57 45.35 23.08 25.36 21.61 21.80 14.41 29.64 31.77
LM 33.49 60.28 75.57 23.68 39.42 0.00 19.00 63.24 23.27 25.23 22.36 21.45 17.13 32.00 32.58

MATH 32.99 55.49 72.91 30.02 41.35 0.00 19.08 53.18 23.06 25.53 21.36 21.31 12.25 29.10 31.26
Code 33.18 64.21 75.52 34.17 43.27 0.00 19.90 47.80 23.19 25.52 21.61 22.08 16.08 29.59 32.58
MTP 33.86 64.11 73.50 22.18 60.58 0.00 21.46 61.96 23.84 25.62 22.16 21.59 14.98 32.11 34.14

SliceGPT
(23.6%)

Base 30.39 46.69 63.22 18.78 42.31 25.96 25.23 37.83 30.43 25.14 23.47 24.65 8.78 39.56 31.60
LM 33.19 42.44 59.90 18.03 54.81 19.23 32.51 41.22 33.09 25.75 29.45 29.87 9.99 37.75 33.37

MATH 32.73 36.27 59.30 17.38 42.31 0.00 21.62 37.83 30.33 25.16 23.84 24.16 1.54 40.82 28.09
Code 30.82 46.69 63.00 19.18 42.31 27.88 24.82 37.83 31.38 25.20 23.47 24.65 8.83 40.00 31.86
MTP 30.98 46.83 62.57 19.33 51.92 49.04 37.76 38.38 33.55 25.22 23.53 23.05 9.95 39.67 35.13

LaCo
(24.6%)

Base 32.97 59.38 73.45 36.26 37.50 37.50 19.41 57.31 25.03 24.41 22.47 23.19 16.39 37.92 35.94
LM 32.33 60.18 70.57 32.67 34.62 34.62 52.58 62.66 36.26 25.80 60.38 62.53 8.79 49.21 44.51

Math 33.97 56.51 72.25 33.52 44.23 44.23 21.38 64.19 25.35 24.55 21.98 21.94 12.77 37.48 36.74
Code 32.99 59.53 75.03 38.41 51.92 0.00 19.49 53.18 24.48 24.72 22.87 22.28 17.70 37.53 34.30
MTP 33.49 62.50 74.37 35.26 63.46 63.46 18.84 64.65 41.83 24.87 26.10 25.97 15.93 39.51 42.16
PTM 31.85 29.80 51.31 12.74 36.54 36.54 19.57 62.08 24.37 25.19 22.10 22.77 0.40 35.12 29.31

ShortGPT
(24.6%)

Base 32.99 67.07 73.45 36.46 42.31 45.19 66.99 58.56 54.74 38.39 56.89 54.06 18.58 46.19 49.42
LM 32.95 62.64 73.50 28.22 36.54 50.96 65.44 67.71 53.50 30.73 65.52 71.38 19.12 48.60 50.49

MATH 32.99 59.63 70.40 31.12 40.38 1.92 59.71 70.00 52.70 36.94 43.51 44.29 7.73 43.84 42.51
Code 32.92 67.03 74.37 36.41 55.77 46.15 68.96 60.55 54.94 38.30 53.60 58.57 8.41 47.18 50.23
MTP 31.07 63.24 68.61 27.17 49.04 43.27 65.68 78.01 51.26 36.88 57.38 62.67 16.94 44.05 49.66
PTM 31.08 63.32 68.66 27.12 49.04 43.27 65.68 77.98 51.23 36.82 57.40 62.47 17.01 43.95 49.65

H ADDITIONAL ANALYSIS

H.1 DIFFERENT CALIBRATION DATASETS AND METRICS

In this study, we leverage multiple-choice datasets as calibration data and optimize for accuracy in
a multi-objective setting. In this section, we further analyze the impact of these design choices by
comparing single-objective optimization and PPL-based optimization:

Single Objective (Single-obj). We used the MMLU validation dataset for calibration and kept
accuracy as the optimization objective. We evaluated the resulting pruned models across our bench-
mark suite. As shown in Table 14, although these models still remain competitive (45.62 average),
the single-objective optimization led to a noticeable decline from our multi-objective approach
(48.55 vs.45.62). Importantly, the single-objective models demonstrated stronger performance on
MMLU-related tasks but showed performance degradation on certain other tasks due to their narrow
optimization focus. This confirms our hypothesis that broad, multi-objective optimization is necessary
to preserve the broad functionality of modern LLMs, rather than overfitting to a single task domain.

Perplexity Objective (PPL-obj). We additionally evaluate with perplexity (PPL) on WikiText (Merity
et al., 2016) as a search metric, using 1500 examples for calibration. As shown in Table 14, the result-
ing pruned models achieve only 25.38 on average, revealing a substantial performance drop relative
to all other configurations. Even when compared to the single-objective MMLU optimization (which
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Table 9: Performance comparison of various model pruning strategies across multiple benchmark
categories. The settings include LR-only (Layer Removal only), LS+LR (combined Layer Selection
and Layer Removal), FL-merge (Folding Layers Merging), Single-obj (Single-objective optimiza-
tion), and PPL-obj (Perplexity-based objective). For multi-objective optimization approaches, three
representative Pareto-optimal solutions (numbered 1-3) are showed.

setting Reasoning Language Knowledge Understanding Avg

CNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

LR-only-LM-1 33.93 57.51 65.49 18.18 62.46 48.03 58.79 62.18 45.76 30.95 49.54 53.36 1.45 38.60 44.73
LR-only-LM-2 33.58 52.10 64.25 19.53 50.00 62.50 63.64 41.80 48.33 32.84 51.03 51.46 5.47 39.56 44.01
LR-only-LM-3 34.96 53.80 66.70 18.58 49.04 58.65 60.61 68.87 47.85 33.54 42.51 43.04 8.05 41.42 44.83
LR-only-Math-1 33.77 54.49 68.23 21.93 62.50 37.50 27.85 57.52 37.08 28.73 31.42 34.05 7.51 37.92 38.61
LR-only-Math-2 31.69 56.56 68.77 27.07 63.46 30.77 36.69 62.35 39.17 29.15 33.39 38.65 4.41 43.34 40.39
LR-only-Math-3 32.94 58.43 69.64 25.97 54.81 25.96 29.89 62.84 33.46 26.92 31.39 32.10 8.06 40.16 38.04
LR-only-Code-1 30.13 57.60 70.35 27.07 63.46 11.54 50.94 65.96 42.64 30.96 36.39 36.77 3.15 43.78 40.77
LR-only-Code-2 34.94 57.37 68.55 28.67 42.31 41.35 54.46 63.00 42.49 27.39 34.88 35.31 4.08 43.78 41.33
LR-only-Code-3 34.93 56.71 69.42 25.92 59.62 31.65 52.83 62.20 43.03 28.80 38.51 39.07 2.87 41.70 41.95
LR-only-Base-1 32.67 54.21 66.00 26.07 36.54 1.92 49.47 64.19 44.47 28.84 38.99 38.86 0.25 41.59 37.43
LR-only-Base-2 32.22 56.48 67.46 26.32 61.54 50.00 41.44 66.91 40.54 28.01 37.94 39.35 0.96 41.92 42.22
LR-only-Base-3 31.13 52.90 67.95 27.97 36.54 0.00 54.63 64.13 43.01 30.03 35.56 37.05 6.79 41.70 37.81

FL-merge-1 32.99 52.90 63.66 19.28 46.15 62.50 60.52 75.20 48.30 34.33 50.77 55.29 6.39 39.40 46.26
FL-merge-2 32.99 51.99 63.44 18.33 46.15 63.46 61.26 74.77 48.80 33.84 51.11 56.34 5.75 37.86 46.15
FL-merge-3 33.89 51.15 62.62 18.63 50.00 61.54 60.44 75.78 48.61 33.96 50.74 55.85 5.72 38.03 46.15

LS+LR-1 34.75 53.65 66.32 17.83 63.46 22.12 59.71 70.61 47.32 33.77 36.62 33.91 8.54 42.35 42.21
LS+LR-2 31.74 55.25 68.39 26.77 63.46 10.58 58.72 66.27 47.40 33.15 40.02 45.26 2.62 44.16 42.41
LS+LR-3 32.92 55.84 65.07 17.98 63.46 26.92 58.97 51.22 48.97 34.61 48.68 49.44 8.33 42.41 43.20

Single-obj 32.15 56.02 67.46 19.08 39.42 48.08 62.33 74.43 47.40 34.14 50.94 52.86 12.35 41.97 45.62
PPL-obj 33.39 23.89 52.07 14.84 45.19 7.69 19.33 39.51 24.25 24.69 22.81 21.17 0.06 26.36 25.38

uses a similarly sized dataset), the PPL-optimized models showed considerably weaker performance
across most tasks. These results show that, although perplexity is a common metric for language
model evaluation, it is not an effective signal for preserving model capabilities during pruning,
especially for tasks that require reasoning or knowledge application beyond fluent text generation.
H.2 ENHANCING LAYER-FOLDING PRUNING POTENTIAL

We design a search space for Layer-Folding Pruning consisting of: (1) A binary selection vector
s = [s1, s2, . . . , sk] indicating which layers to remove, and (2) An importance weight vector w =
[w1, w2, . . . , wk] representing each layer’s importance value. Retained layer L′

i performs a depth-wise
linear combination with itself and adjacent removed layers:

L′
i = βi · Li +

∑
j∈N (i)

βj · Lj · 1sj=1

whereN (i) represents adjacent layers to Li, 1sj=1 indicates layer j is removed, and βj are normalized
weights derived from w such that βi +

∑
j∈N (i) βj · 1(sj = 1) = 1. This ensures retained layers

incorporate information from nearby removed layers, preserving network functionality.

H.3 EFFICIENCY ANALYSIS

Budget allocation to search trials. Our optimizer dynamically adjusts the budget allocation during
the search process, where the budget is defined as the calibration dataset size used for search. As the
allocation of search trials directly determines the overall search duration. Here, we analyze the budget
distribution during the search process, as shown in Table 15. Our analysis reveals that only 22% of
the search trials utilize the full budget, while over 41.4% of the evaluations were conducted with
the minimum budget, which is 5-10 times smaller. This efficient allocation enables our pruning to
significantly increase the chance of discovering superior configurations under the same computational
budget.

Wall-Clock Time Analysis of the Search Process. There are three main phases of our search
process to consider for computational costs. 1) Computation of a new merge: This phase involves
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Table 10: Model Performance Comparison Across Pruning Ratios

Model Prune Ratio Reasoning Language Knowledge Understanding Avg

CNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Base 0 32.98 71.34 78.18 41.56 37.50 38.46 55.04 70.70 46.67 31.88 35.53 33.36 19.55 43.84 45.47
Base 12.5 32.99 67.06 74.92 39.61 36.53 1.92 57.41 69.36 47.15 31.61 39.11 38.65 17.59 44.60 42.75
Base 25 32.98 63.80 69.21 35.37 36.54 0.00 50.78 64.74 40.80 30.31 35.19 35.62 16.11 43.51 39.64
Base 37.5 32.58 45.04 61.53 20.68 36.54 2.88 42.18 64.43 39.87 29.42 31.90 29.74 2.77 41.37 34.35
Base 50 34.51 34.89 55.33 17.08 36.54 11.54 19.82 62.29 28.72 25.10 23.41 26.04 1.21 35.07 29.40
Base 62.5 35.14 29.71 52.83 14.94 39.42 1.92 21.46 50.06 24.55 25.16 26.76 25.42 0.09 27.62 26.80
Base 75 34.94 26.71 51.03 13.59 36.54 8.65 20.56 52.60 24.23 24.47 23.18 22.63 0.08 27.29 26.17

LM 0 31.30 71.28 75.95 36.11 63.46 59.62 64.29 74.77 48.30 33.93 52.52 55.22 22.45 47.56 52.63
LM 12.5 32.42 67.58 72.72 28.91 50.92 60.50 60.92 72.88 46.69 32.02 51.34 54.45 18.26 45.94 49.68
LM 25 30.10 60.63 66.82 20.53 48.96 42.31 65.88 70.82 42.09 32.40 48.23 50.43 15.75 43.62 45.11
LM 37.5 33.29 45.13 60.66 20.03 36.54 11.73 59.38 68.07 39.18 29.64 39.71 42.20 6.36 41.04 39.40
LM 50 34.93 34.67 56.20 16.18 36.54 8.65 22.28 62.14 32.01 26.44 25.39 25.49 2.34 35.01 29.88
LM 62.5 34.11 30.50 53.21 14.34 51.92 2.88 20.56 57.95 24.58 25.21 23.13 23.75 0.18 27.12 27.82
LM 75 34.87 27.03 52.19 14.54 39.42 0.00 20.23 53.87 24.45 24.83 21.41 22.14 0.02 26.69 25.82

Math 0 32.99 68.60 75.79 39.71 39.42 36.54 50.78 69.36 43.04 32.16 30.36 36.42 20.88 43.45 44.25
Math 12.5 32.97 64.72 73.06 37.50 23.08 23.07 51.43 71.16 42.91 31.90 32.99 36.07 19.30 43.83 41.71
Math 25 34.92 46.24 61.92 19.38 36.54 56.73 45.45 72.81 35.07 29.78 31.45 34.33 6.24 39.89 39.34
Math 37.5 32.99 55.42 62.81 23.82 38.38 4.81 37.87 68.68 36.46 27.19 28.02 33.79 13.88 39.37 36.04
Math 50 32.73 35.93 55.06 16.73 39.42 39.42 20.15 64.34 29.94 25.52 26.82 26.60 2.31 35.56 32.15
Math 62.5 34.93 31.06 54.08 13.79 58.65 4.81 20.56 46.24 26.70 25.05 26.56 26.53 0.57 28.33 28.42
Math 75 34.94 27.35 52.07 14.39 43.27 2.88 20.88 56.51 24.25 23.14 24.76 24.79 0.15 27.45 27.20

Code 0 32.99 70.27 78.62 41.61 36.54 41.35 57.41 71.04 46.22 32.20 41.25 39.69 18.79 46.25 46.73
Code 12.5 32.97 65.79 75.78 39.06 36.54 0.96 56.67 71.13 47.09 32.00 44.73 44.84 19.21 47.29 43.86
Code 25 32.99 63.06 72.02 35.67 36.54 0.00 50.59 68.87 40.50 28.87 36.64 38.59 17.59 45.64 40.51
Code 37.5 33.21 44.12 62.13 20.78 36.54 2.88 48.81 63.91 40.29 29.56 36.25 35.52 5.35 42.14 35.82
Code 50 34.93 34.15 54.95 16.73 36.54 17.31 22.03 62.54 28.46 25.16 24.13 24.44 2.03 36.62 30.00
Code 62.5 34.72 29.67 52.99 14.39 40.38 8.65 22.52 50.70 24.78 25.15 27.16 28.04 0.12 27.78 27.50
Code 75 34.94 26.79 50.82 13.99 38.46 5.77 24.08 48.38 24.08 24.52 22.73 22.49 0.13 27.29 26.03

Ours 0 36.88 73.16 78.67 39.46 64.46 45.19 65.37 78.43 49.75 35.08 58.78 61.65 24.50 49.33 54.34
Ours 12.5 33.00 66.78 75.19 34.92 64.42 63.46 63.98 75.87 48.79 34.13 53.89 56.20 20.21 45.37 52.59
Ours 25 32.99 57.31 68.34 22.38 63.46 63.46 57.58 62.17 45.92 30.96 52.20 56.06 7.12 39.67 47.11
Ours 37.5 35.67 51.02 63.44 20.68 62.50 22.00 57.99 67.52 47.09 34.11 44.00 46.38 2.96 39.34 42.00
Ours 50 33.97 41.99 58.16 21.08 38.54 24.12 26.52 46.03 32.32 28.30 28.99 28.88 6.30 36.11 32.23
Ours 62.5 33.30 28.34 51.96 18.09 46.15 6.88 23.88 45.81 26.41 26.95 28.73 28.72 5.09 28.47 28.48
Ours 75 34.93 30.45 49.18 20.48 39.54 10.81 21.98 45.29 25.28 24.68 26.30 26.93 0.46 28.38 27.47

computing a new candidate point to evaluate later with the search procedure. For standard merging
algorithms, such as task arithmetic (which we use in the submission), the cost of the merge is
negligible, coming down to approximately 3 operations per model parameter. The operation can
run on the accelerator (e.g., GPU) when memory permits, or be executed with minimal CPU RAM
by streaming parameter blocks from disk. Although it can be overlapped with the next step, it was
sufficiently fast in practice (e.g., merging two 7B models on GPU takes only 11.2 seconds), we did
not implement this overlap, and there remains room for further optimization. 2) Evaluation of the
merge: Next, the merged point is evaluated, i.e., we measure the accuracy of this checkpoint on our
training task. The cost of this operation is a function of (a) the size of the evaluation set and (b) the
type of evaluation, both of which influence the speed. However, as this step is not specific to our
approach, any inference framework for fast evaluation, such as vLLM, can be used (as we do). For
example, evaluating PIQA requires only prefilling. With vLLM on our GPU V100 (batch size = 16),
it takes us 21.23 seconds to evaluate on 1000 samples. We also note that, due to our multi-fidelity
search approach, we can often end the evaluation early and do not need to check the full dataset
(see Table 15). 3) Updating the coefficients of Bayesian hyperparameter estimation: We use
SMAC, a well-established and optimized package for Bayesian hyperparameter optimization. As the
estimation is based on random forests, it is very cheap to update. For us, one step of the update takes
2.6 seconds.
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Table 11: The main results of the Llama3-8B model across multiple natural language benchmarks
using candidate models: Meta-Llama-3-8B-Instruct (LM), MathCoder2-Llama-3-8B (Math), Code-
Llama-3-8B (Code), and Meta-Llama-3-8B (Base). "PTM" (Pruning-then-Merging) refers to first
pruning each candidate model using the current pruner and then merging them. "MTP" (Merging-
then-Pruning) refers to first merging the candidate models and then applying pruning.

LLM Pruner Type Reasoning Language Knowledge Understanding
Avg

ratio/layer CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Llama3
-8B

Dense

Base 32.98 74.67 80.96 73.78 56.73 36.54 73.79 69.97 64.74 50.79 63.21 70.54 3.28 55.18 57.65
LM 33.00 71.08 80.69 65.53 55.77 69.23 76.66 78.87 65.97 53.64 76.44 81.75 17.97 63.95 63.61

Math 32.99 71.66 77.97 57.09 37.50 58.65 68.22 69.08 62.08 45.85 64.75 69.08 8.68 53.86 55.53
Code 32.98 65.56 74.70 78.42 61.54 61.54 63.47 78.35 48.03 34.55 52.40 58.43 19.36 46.41 55.41

ShortGPT
(24.6%)

Base 36.00 31.36 62.84 25.77 36.54 63.46 53.97 50.61 36.05 33.83 30.73 32.38 1.17 38.96 38.12
LM 32.83 45.06 65.78 23.38 41.35 53.85 39.56 63.73 32.37 28.69 40.14 45.19 3.68 43.51 39.94

Math 32.98 42.89 63.00 17.18 36.54 36.54 45.37 46.30 33.95 29.71 28.87 30.22 1.45 40.49 34.68
Code 32.26 45.99 64.96 17.03 36.54 36.54 36.20 63.98 28.78 26.25 27.27 29.46 3.57 39.01 34.85
MTP 32.98 48.51 64.85 18.33 36.54 35.58 42.83 67.06 33.05 28.73 30.07 32.66 3.64 44.33 37.08
PTM 32.95 48.58 64.96 18.43 36.54 35.58 42.83 67.22 33.05 28.71 30.16 32.45 3.66 44.27 37.10

Table 12: Architecture Parameters of pruned 13B models

Layer Model-1 Model-2 Model-3

Type Merge
Factor

Output
Scale Type Merge

Factor
Output
Scale Type Merge

Factor
Output
Scale

0 Base - 1.00 LM - 1.00 LM - 1.00
1 LM - 1.00 LM+Math 0.64 1.00 Base - 1.00
2 LM - 1.00 LM+Code 0.60 1.05 LM+Code 0.60 1.05
3 LM - 1.00 LM - 1.00 LM+Code 0.60 1.00
4 LM - 1.00 LM - 1.00 LM - 1.00
5 Code - 1.00 LM+Math 0.59 1.00 LM+Math 0.58 1.00
6 Base - 1.00 LM - 1.00 LM - 1.00
7 LM - 1.00 LM+Math 0.60 1.00 LM+Math 0.60 1.00
8 LM - 1.00 LM - 1.00 LM+Code 0.59 1.00
9 LM - 1.00 LM - 0.84 LM - 0.93
10 LM - 1.00 LM - 1.02 LM - 1.22
11 LM - 1.00 LM+Code 0.66 0.77 LM+Math 0.66 1.00
12 LM - 0.91 LM+Code 0.60 1.00 LM+Code 0.60 1.13

13 LM+Code 0.70 1.00 LM+Math 0.60 1.00 LM+Math
+Code 0.60 1.11

14 LM+Math 0.70 1.00 LM+Math 0.60 1.00 LM - 1.00
15 LM - 1.00 LM+Math 0.70 1.00 LM+Math 0.66 1.00
16 Base - 1.00 LM+Math 0.60 1.00 LM+Math 0.60 1.00
17 LM - 1.00 LM - 1.00 LM - 1.00
18 LM - 1.00 REMOVED REMOVED
19 LM+Code 0.70 1.00 LM+Code 0.60 1.00 LM+Code 0.60 1.01
20 LM+Code 0.70 1.00 LM - 1.00 REMOVED
21 LM - 1.00 Base - 1.07 Base - 1.07
22 LM - 1.00 Math - 1.00 LM+Math 0.60 1.09
23 LM - 1.00 REMOVED REMOVED
24 LM - 1.00 Base - 1.01 Base - 1.01
25 REMOVED REMOVED REMOVED
26 REMOVED LM - 1.04 LM - 1.04
27 REMOVED REMOVED REMOVED
28 REMOVED REMOVED REMOVED
29 REMOVED REMOVED REMOVED
30 REMOVED Base - 1.00 Base - 1.00
31 REMOVED REMOVED REMOVED
32 REMOVED REMOVED LM - 1.00
33 REMOVED REMOVED REMOVED
34 LM - 1.00 Base - 1.00 Code - 1.00
35 Base - 1.00 LM - 1.13 LM - 1.28
36 LM - 1.00 REMOVED REMOVED
37 LM - 1.00 LM - 1.00 LM - 1.00
38 LM - 0.75 LM - 1.00 Math - 1.00
39 REMOVED Math - 1.00 Math - 1.00

With our parallel acceleration strategies (e.g., simultaneous merging and evaluation), the evaluation
phase becomes the dominant factor in end-to-end runtime. To provide a clearer picture, we report the
evaluation wall-clock time for different datasets under various computational budgets on Llama2-7B
as shown in Table 16. Model initialization using vLLM takes 19.52 seconds. Overall, our approach
takes 30/35.36/60.36 seconds per round across different fidelity levels, and we run 500 rounds in
total, with 41% of trials requiring only the smallest budget. When evaluation parallelism is disabled
(parallelism = 1), the total wall-time is simply the sum of the individual evaluation times.
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Table 13: Architecture Parameters of pruned 7B models

Layer Model-1 Model-2 Model-3

Type Merge
Factor

Output
Scale Type Merge

Factor
Output
Scale Type Merge

Factor
Output
Scale

0 LM - 1.00 Math+Code 0.48 1.00 LM+Math 0.48 0.92
1 LM+Math+Code 0.50 1.00 LM - 1.00 LM - 1.00
2 LM - 1.03 LM+Code 0.52 1.06 LM - 1.03
3 LM - 1.00 Base - 0.98 Math - 1.05
4 LM - 1.04 LM - 1.11 LM - 1.11
5 LM+Code 0.59 1.08 LM+Math 0.38 1.12 LM - 1.13
6 Code - 1.19 Math - 1.25 Code - 1.11
7 Code - 0.88 LM+Code 0.50 0.77 LM+Code 0.50 0.77
8 LM - 1.28 LM - 1.34 LM - 1.19
9 LM - 0.86 LM - 0.93 LM+Code 0.51 0.56

10 Base - 1.00 LM - 1.00 LM - 1.00
11 LM+Math 0.50 1.00 Math - 1.02 LM - 1.05
12 LM - 1.00 LM+Math 0.41 0.99 LM+Math 0.41 1.00
13 Math - 1.00 LM+Math 0.50 1.20 LM+Math 0.58 1.20
14 LM+Math 0.60 1.00 LM - 1.00 LM+Math 0.54 1.00
15 LM - 1.18 Code - 0.97 Code - 1.05
16 LM+Math 0.50 1.00 LM+Math 0.50 1.00 LM+Math 0.45 1.00
17 LM+Math+Code 0.50 1.00 Code - 1.00 Math+Code 0.50 1.00
18 Math+Code 0.50 1.00 Base - 1.00 Base - 1.01
19 REMOVED REMOVED REMOVED
20 REMOVED REMOVED REMOVED
21 LM - 1.00 REMOVED LM - 1.00
22 REMOVED REMOVED REMOVED
23 REMOVED REMOVED REMOVED
24 REMOVED LM - 1.00 REMOVED
25 REMOVED REMOVED REMOVED
26 REMOVED REMOVED REMOVED
27 LM - 1.00 Base - 0.99 LM - 0.99
28 REMOVED LM - 1.00 REMOVED
29 LM+Code 0.50 1.00 LM - 1.00 LM+Code 0.50 1.00
30 REMOVED REMOVED REMOVED
31 LM+Math 0.50 1.00 REMOVED LM+Math 0.50 1.00

Table 14: Comparison of different searching settings across various benchmarks. Settings: LR-only:
Layer-remove only, LS+LR: Layer-selection + layer-remove, FL-merge: Folding Layers Merging.

Setting Reasoning Language Knowledge Understanding Avg

CNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Ours 35.46 54.43 67.74 23.63 63.46 43.27 62.90 75.08 48.75 33.86 55.35 58.64 12.99 44.16 48.55
LR-only 34.96 53.80 66.70 18.58 49.04 58.65 60.61 68.87 47.85 33.54 42.51 43.04 8.05 41.42 44.83
LS+LR 32.92 55.84 65.07 17.98 63.46 26.92 58.97 51.22 48.97 34.61 48.68 49.44 8.33 42.41 43.20
FL-merge 32.99 52.90 63.66 19.28 46.15 62.50 60.52 75.20 48.30 34.33 50.77 55.29 6.39 39.40 46.26

Post-training Setup. We selected two competitive baseline methods (ShortGPT, LACO) and followed
the recovery-phase setting from LLM-Pruner. We used the cleaned Alpaca dataset (50k samples) and
fine-tuned with the LoRA configuration: rank (d=8), learning rate = 1e-4, 100 warm-up steps, batch
size = 64, AdamW optimizer, and 2 training epochs.

Computational cost scaling with candidate number. The computational cost increases with the
number of candidate models, primarily due to the need for longer search trails to ensure we find
optimal performance points. As shown in the table Table 17.

Table 15: Budget allocation to search trials for pruning. 41% of trials require only the smallest budget
size, significantly increasing efficiency.

Dataset Low Budget Medium Budget High Budget
(41.4%, 207 trials) (36.6%, 183 trials) (22.0%, 110 trials)

PIQA 100 300 1000
WSC 100 200 500

CSQA 100 300 1000
MMLU 100 300 1000
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Table 16: Evaluation runtime for different datasets and sample sizes

Dataset Size Runtime (Seconds)

CSQA
100 2.76
300 6.97

1000 16.51

WSC
100 2.41
200 2.50
500 2.67

PIQA
100 2.75
300 7.00

1000 21.23

MMLU
100 2.56
300 6.49

1000 21.66

Table 17: Scaling of Computational Cost with Number of Models

Number of Models Search Trials FLOPs

1 200 9.85× 1015

2 300 2.26× 1016

3 500 9.35× 1016

H.4 SCALING TO STRONGER THINKING MODEL

We further extend our method to recent thinking models. Specifically, we evaluate our approach using
Qwen3-4B-Instruct (LM) and Qwen3-4B-Thinking (Thinking) models (Team, 2025). The results
are presented in Table 19, demonstrating the effectiveness of our method on this emerging model
architecture.

Table 18: Comparison of efficiency of pruning methods

Metric LACO ShortGPT Ours (Multi-models) Ours (Layer Folding)

Pruning Stage

FLOPS 1.29e+14 4.91e+19 9.35e+16 1.75e+16
Performance (avg) 37.14 42.40 48.55 46.26

Post-training Stage

FLOPS 1.06e+18 1.06e+18 0 0
Performance (avg) 40.03 42.76 48.55 46.26

Overall Summary

Total FLOPS 1.06e+18 4.91e+19 9.35e+16 1.75e+16
Final Accuracy 40.03 42.76 48.55 46.26
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Table 19: Comparison of pruning methods on multiple natural language benchmarks. "Single" refers
to the best performance achieved when pruning a single model directly, while "Merge" refers to the
best performance achieved through either "pruning-then-merging" or "merging-then-pruning". 4B
models: Qwen3-4B-Instruct (LM), Qwen3-4B-Thinking (Thinking).

LLM Pruner Type Reasoning Language Knowledge Understanding
Avg

ratio/layer CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Qwen3
-4B

Dense
Base 38.83 64.20 75.68 79.67 48.08 55.77 80.34 80.37 72.43 73.52 65.95 73.33 14.73 67.62 63.61

Thinking 45.22 60.60 75.52 79.02 62.50 65.38 77.81 82.45 70.57 71.85 69.73 78.13 1.78 67.73 64.88

ShortGPT
Single 35.45 44.78 67.03 53.55 63.46 30.77 49.63 63.39 44.40 46.09 35.96 39.21 12.56 51.95 45.59
Merge 33.09 43.18 67.36 52.65 60.58 20.60 32.76 63.33 32.30 32.16 30.93 28.34 11.34 49.81 39.89

Ours 36.07 45.94 68.39 56.29 64.42 35.60 62.00 67.71 48.56 47.04 37.85 40.81 10.20 52.55 48.10

H.5 SCALING TO MATH AND CODE TASKS

We conducted additional experiments on mathematical and coding tasks using LLaMA-7B, comparing
our approach with the two strongest baseline methods (ShortGPT and LACO) under varying numbers
of pruned layers. As shown in the Table 20, tasks that require structured output formats, such as
mathematical reasoning and code generation, are particularly sensitive to layer removal. The baseline
methods exhibit catastrophic drops in performance, with the removal of just 2-4 layers leading to
near-zero performance. In contrast, our method consistently maintains superior performance
across all pruning ratios.

Table 20: Performance comparison on mathematical and coding tasks across different pruning ratios
using LLaMA-7B.

Method Layers Pruned GSM8K HumanEval

Candidate Models (No Pruning)
base 0 11.30 3.05
lm 0 21.23 3.05
math 0 11.99 0.00
code 0 3.11 14.02

LACO

2 3.80 6.71
4 0.76 1.22
6 0.00 0.00
8 0.00 0.00

ShortGPT

2 1.50 2.44
4 0.00 0.61
6 0.00 0.00
8 0.00 0.00

Ours

2 22.22 12.81
4 15.24 6.10
6 5.31 1.22
8 0.00 0.00
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Table 21: Robustness analysis of candidate model combinations across multiple natural language
benchmarks. Blue-highlighted cells show optimal performance using three specialized models:
Llama-2-7B-Chat (LM), MAmmoTH-7B (Math), and Llama-2-Coder-7B (Code), with Llama-2-7B
serving as the base model.

Model Pool Reasoning Language Knowledge Understanding Avg

CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMMLU RaceH RaceM XSum C3

3-candidate models
Math+LM+Code 35.46 54.43 67.74 23.63 63.46 43.27 62.90 75.08 48.75 33.86 55.35 58.64 12.99 44.16 48.55

2-candidate models
Math+LM 32.93 55.93 67.90 20.93 57.69 57.69 62.24 76.54 45.31 33.25 49.06 53.27 14.42 42.30 47.82
Code+LM 33.00 58.09 67.52 21.08 56.73 50.96 62.65 70.09 46.96 33.85 50.31 55.36 12.38 43.40 47.31
Code+Math 32.93 53.67 69.53 27.27 38.46 34.60 56.35 65.99 41.40 30.97 45.14 44.43 8.11 44.60 43.12

1-candidate model
LM 33.27 51.34 64.20 19.33 62.50 53.85 62.82 64.86 46.47 31.59 47.80 51.39 6.97 39.51 45.42
Math 32.95 60.65 66.49 22.43 36.54 32.50 58.07 71.01 44.13 32.07 40.28 41.57 13.76 41.10 42.40
Code 30.10 54.72 69.75 26.17 63.46 62.50 50.94 65.00 36.42 26.69 31.02 30.99 2.47 38.14 42.03

base only
Base 32.22 56.48 67.46 26.32 61.54 50.00 41.44 66.91 40.54 28.01 37.94 39.35 0.96 41.92 42.20

H.6 SCALING TO OTHER CANDIDATE MODELS

To clarify the role of domain diversity in candidate model selection, we note that strict domain
diversity is not always necessary. The optimal combination depends on the optimization objective: if
the goal is improving performance on language tasks, including more high-quality language models
in the candidate pool is naturally beneficial. However, when access to same-domain models is limited,
a diverse candidate pool can still provide comparable results through complementary capabilities. To
validate this, we conducted an additional experiment using a candidate pool with only two models:
a Llama-7b instruct model(LM) and a Chinese fine-tuned Llama-7b model(CN_LM). As shown in
Table 22, This focused selection of high-quality language models achieved even better performance
than our main results, confirming that strategic model selection can be more effective than broad
diversity when models are well-aligned with the target task.

Table 22: Comparison with other candidate models using high-quality language models. The
experiment shows that using two specialized language models (LM and CN_LM) can achieve
superior performance.

Method Reasoning Language Knowledge Understanding Avg

CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMMLU RaceH RaceM XSum C3

Base 32.98 71.34 78.18 41.56 37.50 38.46 55.04 70.70 46.67 31.88 35.53 33.36 19.55 43.84 45.47
CN_LM 34.02 70.03 76.71 38.31 63.46 59.62 61.51 56.09 46.47 32.64 41.48 45.47 17.64 46.58 49.29
LM 31.30 71.28 75.95 36.11 63.46 59.62 64.29 74.77 48.30 33.93 52.52 55.22 22.45 47.56 52.63
ShortGPT 34.14 33.74 59.85 15.23 61.54 33.46 44.81 55.20 30.70 27.06 40.73 42.78 13.20 34.58 37.64
Ours 33.00 63.24 68.00 22.43 60.69 57.69 63.64 76.02 45.31 33.25 50.08 53.30 14.42 42.26 48.80
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