

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GPTAILOR: LARGE LANGUAGE MODEL PRUNING THROUGH LAYER CUTTING AND STITCHING

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) have shown remarkable capabilities in language understanding and generation. However, such impressive capability typically comes with a substantial model size, which presents significant challenges in deployment and inference. While structured pruning of model parameters offers a promising way to reduce computational costs at deployment time, current methods primarily focus on single model pruning. In this work, we develop a novel strategy to compress models by strategically combining or merging layers from finetuned model variants, which preserves the original model’s abilities by aggregating capabilities accentuated in different finetunes. We pose the optimal tailoring of these LLMs as a zero-order optimization problem, adopting a search space that supports three different operations: (1) Layer removal, (2) Layer selection from different candidate models, and (3) Layer merging. Our experiments demonstrate that this approach leads to competitive model pruning, for example, for the Llama2-13B model families, our compressed models maintain approximately 97.3% of the original performance while removing $\sim 25\%$ of parameters, significantly outperforming previous state-of-the-art methods.

1 INTRODUCTION

The unique strengths of modern Large Language Models (LLMs) in language understanding, generation, and reasoning (Touvron et al., 2023; OpenAI et al., 2023; Chiang et al., 2023) are inextricably linked to their immense size. Research in this field has generally followed a trajectory of scaling model parameters and data to enhance performance, guided by two fundamental principles: scaling laws, which establish that performance improves predictably with increased parameters (Kaplan et al., 2020; Hoffmann et al., 2022; Wei et al., 2022), and over-parameterization theory, which demonstrates that models with excess parameters achieve better optimization and generalization (Allen-Zhu et al., 2019a; b; Li et al., 2020). These principles have led researchers to develop billion-parameter architectures delivering unprecedented performance across diverse language tasks.

Despite these impressive capabilities, deploying LLMs presents significant challenges due to their substantial computational demands. Various post-training techniques have been proposed to address the issues faced when deploying models to consumer GPUs or local devices, or when reducing costs, including model pruning (Frantar & Alistarh, 2023; Dettmers et al., 2023b; Xia et al., 2023; Kim et al., 2024; Ma et al., 2023), knowledge distillation into smaller models (Chen et al., 2022; Hsieh et al., 2023; Shridhar et al., 2023; Tunstall et al., 2023), and quantization of weights (Yao et al., 2022; Gholami et al., 2022; Dettmers et al., 2023a). While quantization reduces parameter precision but requires specific hardware support, and knowledge distillation necessitates costly retraining of smaller models, structured pruning offers a more flexible and hardware-agnostic approach by eliminating redundant parameters to decrease computation costs.

Existing pruning methods typically focus on pruning individual models through manually designing metrics that assess the importance of specific structures or layers based on hidden state changes or gradient (Kim et al., 2024; Men et al., 2024; Ma et al., 2023). However, most of these approaches cause performance degradation and require additional post-training with full parameters to recover performance.

To address these limitations, we take a radically different perspective and re-formulate structured pruning as the problem of *pruning not individual models, but a family of task-specific finetuned*

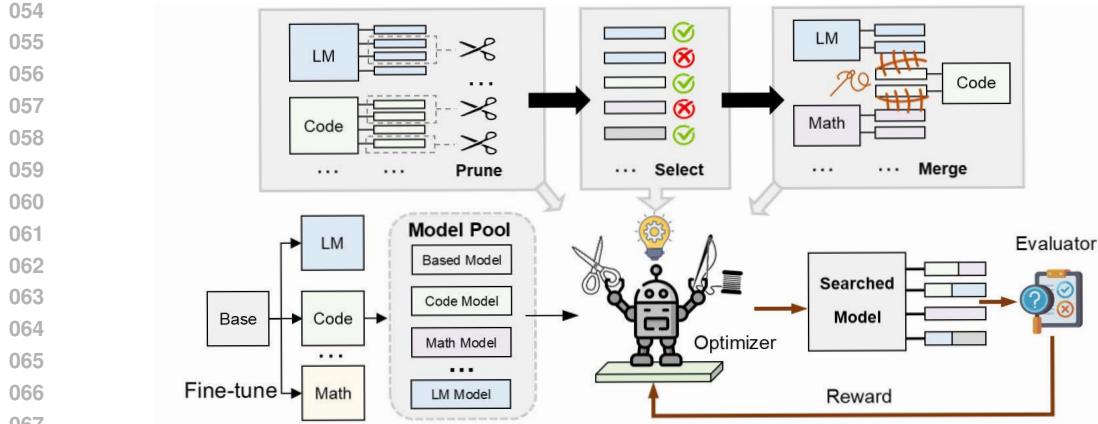


Figure 1: Our Approach: **Model Pruning through Cutting and Stitching**. We achieve competitive model pruning performance by running a zero-order search that tailors layers based on a shared pool of finetuned variants of the original model, selecting and stitching layers if necessary. The model finetunes accentuate task-specific skills, allowing us to merge key components into a smaller model, maintaining, for example, 97% of capabilities of Llama-13B, even after a 25% reduction in layers.

versions of a given model. These finetuned variants are surprisingly helpful for model pruning, as each variant accentuates a particular task, such as coding, math, or language understanding. Further, the variants are close enough that model merging can be employed to re-combine layers from multiple variants, if needed (Wortsman et al., 2022). These observations lead us to our main question: **Can we develop better compressed models by strategically combining or merging layers from different models?** Motivated by this question, we propose a novel structured pruning method based on zero-order optimization that supports three different operations to combine layers from different models into a smaller, more efficient model: **(1) Layer removal, (2) Layer selection from related candidate models, (3) Layer merging.**

For the optimization, we define multiple objective functions that capture different aspects of model performance across different tasks to better preserve the original model’s capabilities and run a fully data-driven zero-order optimization, instead of relying on expert-made heuristics for pruning. We employ SMAC (Lindauer et al., 2022), which strategically allocates computational resources by evaluating configurations at different calibration data sizes, thereby reducing computational costs while boosting the efficiency of finding superior solutions. We rigorously validate our method’s effectiveness by evaluating it on Llama-7B and Llama-13B with four state-of-the-art structural pruning methods across comprehensive benchmarks. Our experimental results demonstrate that our approach maintains excellent performance while outperforming existing pruning methods.

In summary, the main contributions of this paper are:

- We propose a novel structured pruning method that formulates pruning as a zero-order optimization problem over a pool of candidate models, enabling automated discovery of efficient models that leverage capabilities from multiple models.
- We find that this approach allows for a cost-effective model pruning stage that is effective without the need for post-training to heal the pruned model.
- We validate our method’s effectiveness through extensive experiments, comparing against modern LLM pruning methods on 14 benchmark tasks.

Our method maximally preserves the capabilities of the dense model: 92.2% for the 7B model and 97.3% for the 13B model. significantly outperforming previous state-of-the-art methods.

2 RELATED WORK

Compression of Language Models. Large language models (Touvron et al., 2023; OpenAI et al., 2023; Chiang et al., 2023) necessitate efficient compression methods to reduce parameters and latency.

108 These methods include structural pruning (Frantar & Alistarh, 2023; Dettmers et al., 2023b; Xia et al.,
 109 2023; Kim et al., 2024; Ma et al., 2023), knowledge distillation (Chen et al., 2022; Hsieh et al., 2023;
 110 Tunstall et al., 2023), and quantization (Yao et al., 2022; Gholami et al., 2022; Dettmers et al., 2023a).
 111 Our work focuses on structural pruning, which removes sub-components from neural networks for
 112 hardware-friendly compression - instead of pruning through sparsification, which requires significant
 113 effort to materialize gains on standard hardware. Recent pruning methods are typically guided by
 114 expert-designed criteria. LLMPruner (Ma et al., 2023) removes non-critical structures using gradient
 115 information. SliceGPT (Ashkboos et al., 2024) reduces dimensionality by replacing weight matrices
 116 with smaller ones. LaCo (Yang et al., 2024) collapses the weights of later layers into earlier ones
 117 based on activation similarity. ShortGPT (Men et al., 2024) measures layer importance through
 118 Block Influence (BI) derived from hidden state changes. Unlike these metric-based methods targeting
 119 individual models, our approach employs zero-order *search*, namely hyperparameter optimization to
 120 combine pruning and merging across model families. While LaCo also uses layer merging, it focuses
 121 only on merging similar layers for a single model, whereas we focus on strategically combining
 122 or merging layers from different models, which we find to noticeably improve upon within-model
 123 merging. Additionally, our approach differs from the weight-sharing NAS-based pruning method
 124 (Klein et al., 2024), which requires costly training. Instead of searching within a single model, we
 125 directly optimize across fine-tuned models, strategically combining layers from diverse variants.

126 **Model Merging.** Model merging enhances capabilities without additional training data or computa-
 127 tion. The field evolved from simple weighted parameter averaging (Utans, 1996) that often yielded
 128 suboptimal results to advanced techniques like Task Arithmetic (Ilharco et al., 2022) which computes
 129 differences between model parameters and SLERP (White, 2016) which performs interpolation along
 130 spherical paths. Later approaches leveraged neural network sparsity, with TIES-Merging (Yadav
 131 et al., 2024) selecting parameters based on magnitude while addressing sign conflicts, and DARE
 132 (Yu et al., 2024) combining sparsification with parameter rescaling. Recent advances include Evolution-
 133 ary model merging (Akiba et al., 2024) optimizing coefficients through evolutionary search, and
 134 multi-fidelity approach (Su & Geiping, 2025) that enables fine-grained exploration while reducing
 135 costs. Our work also builds upon a multi-fidelity optimization framework to allow for an efficient
 136 search for compressed models.

3 METHODS

137 In this section, we provide a detailed explanation of our approach. Unlike conventional model
 138 compression pipelines, we formulate pruning as a zero-order optimization problem over the layers
 139 and merging hyperparameters of a set of candidate models. We begin in Section 3.1 by outlining our
 140 problem formulation and defining the optimization pipeline for pruning with three key components: a
 141 search space, a target objective, and an optimizer. Section 3.2 follows with a description of the search
 142 spaces. In Section 3.3, we introduce our designed target objective function. Finally, In Section 3.4,
 143 we describe our choice of optimization strategy, which efficiently navigates the defined search space
 144 to identify optimal pruning configurations. An overview of the pipeline is provided in Figure 1.

3.1 PROBLEM SETUP

145 Given a pre-trained base model M_{base} and a set of candidate models $\mathcal{M} = \{M_1, M_2, \dots, M_K\}$
 146 fine-tuned from the same base model, our goal is to find an optimal pruned model that maximizes
 147 performance while adhering to a target sparsity constraint. Let s denote the target sparsity factor,
 148 where $s \in [0, 1]$ indicates the fraction of parameters to be pruned. The pruned model is constructed
 149 through a combination of layers from candidate models, employing operations such as layer-wise
 150 merge, layer selection, and layer removal. These combinations and operations are determined by a
 151 set of hyperparameters $\omega \in \Omega$, with Ω representing the search space of all possible hyperparameter
 152 configurations. Each configuration ω defines a specific way to combine the layers from candidate
 153 models to form a pruned model M_ω . The performance of the pruned model can be evaluated using a
 154 function $f(M_\omega)$, which measures the model's effectiveness on specific datasets and tasks. This leads
 155 to our optimization problem:
 156

$$\omega^* = \arg \min_{\omega \in \Omega} f(M_\omega) \quad \text{subject to} \quad S(M_\omega) \leq s \quad (1)$$

157 where $S(\cdot)$ calculates the fraction of pruned parameters in the model compared to the base model,
 158 and ω^* represents the optimal hyperparameter configuration that yields the performing pruned model.

162
163

3.2 SEARCH SPACE DESIGN

164 The search space Ω encompasses all possible pruning configurations that can be applied to construct
 165 our pruned model. We formulate this space based on structural layer-wise pruning operations. We
 166 aim to support three operations: (1) Layer removal, (2) layer selection, and (3) Layer merging. We
 167 designed our search space as follows:

168 Given a base model with l layers and K candidate models fine-tuned from this base model, we
 169 design the search space through a binary vector $\mathbf{r} = [r_1, r_2, \dots, r_l]$ where $r_i \in \{0, 1\}$ indicates
 170 whether the i -th layer is retained ($r_i = 0$) or removed ($r_i = 1$), satisfying $\sum_{i=1}^l r_i = \lceil l \cdot s \rceil$
 171 to achieve our target sparsity s . For each retained layer position i , we define a selection vector
 172 $\mathbf{c}_i = [c_{i,1}, c_{i,2}, \dots, c_{i,K}]$ where $c_{i,j} \in \{0, 1\}$ indicates whether the layer from the j -th candidate
 173 model is selected. If $\sum_{j=1}^K c_{i,j} = 0$, we retain the layer from the base model instead. When multiple
 174 candidate models contribute to a layer position (i.e., $\sum_{j=1}^K c_{i,j} > 1$), we specify a merge method
 175 $m_i \in \{1, 2, \dots, Z\}$ from Z available merging techniques. Each merge method m_i is associated with a
 176 set of hyperparameters $\mathbf{h}_i = [h_{i,1}, h_{i,2}, \dots, h_{i,P_i}]$, where P_i is the number of hyperparameters for the
 177 specific merge method. These hyperparameters govern the precise mechanism of layer combination,
 178 such as interpolation weights or mask ratio parameters. Therefore, a complete configuration $\omega \in \Omega$ is
 179 represented as $\omega = \{\mathbf{r}, \{\mathbf{c}_i | r_i = 0\}, \{m_i | r_i = 0 \text{ and } \sum_{j=1}^K c_{i,j} > 1\}, \{\mathbf{h}_i | r_i = 0 \text{ and } \sum_{j=1}^K c_{i,j} > 1\}\}$. The total cardinality of the search space can be calculated as: $|\Omega| = \binom{l}{\lceil l \cdot s \rceil} \times \prod_{i:r_i=0} 2^K \times \prod_{i:r_i=0, \sum_{j=1}^K c_{i,j} > 1} Z \times \prod_{i:r_i=0, \sum_{j=1}^K c_{i,j} > 1} |\mathbf{h}_i|$. which enables a wide exploration of pruning
 180 strategies while maintaining the target sparsity constraint.
 181
 182

183

3.3 TARGET OBJECTIVE FUNCTION

184

185 To evaluate the quality of a pruned model, we define a multi-objective function that measures the
 186 model’s effectiveness across tasks. Specifically, we measure performance on calibration datasets
 187 $\mathcal{D}_{\text{calibration}}$, quantifying metrics such as accuracy for classification tasks or perplexity for language
 188 modeling tasks. This provides a direct assessment of how well the pruned model preserves the
 189 capabilities of the original model. We define a multi-task objective function that captures different
 190 aspects of model performance across a range of tasks to produce a comprehensive pruned model.
 191 Let $\mathcal{T} = \{T_1, T_2, \dots, T_m\}$ be a set of m tasks. For a pruned model M_ω with configuration ω , we
 192 employ Pareto Efficient Global Optimization (ParEGO) (Knowles, 2006) to identify Pareto-optimal
 193 solutions across different objectives. Specifically, the ParEGO algorithm transforms multi-objective
 194 optimization problems into a series of single-objective problems through scalarization methods:
 195
 196

$$f_{\text{multi}}(M_\omega, \lambda) = \max_{i=1, \dots, m} \{\lambda_i \cdot f_i(M_\omega)\} + \alpha \sum_{i=1}^m \lambda_i \cdot f_i(M_\omega) \quad (2)$$

197

198 where $f_i(M_\omega)$ is the i -th objective function, λ_i is the corresponding weight satisfying $\sum_{i=1}^m \lambda_i = 1$
 199 and $\lambda_i \geq 0$, and α is a small positive constant (typically set to 0.05). The Chebyshev norm component
 $\max_{i=1, \dots, m} \{\lambda_i \cdot f_i(M_\omega)\}$ ensures that all non-dominated solutions on the non-convex Pareto front
 200 can be identified, while the term $\alpha \sum_{i=1}^m \lambda_i \cdot f_i(M_\omega)$ enhances the algorithm’s stability. The final
 201 output of our optimizer is a Pareto front of pruning configurations, where each configuration represents
 202 a different trade-off between performance on various tasks. In our experiments, we selected the
 203 configurations from the best performing Pareto front and report their results.
 204
 205

206

3.4 SEARCH OPTIMIZER

207

208 To efficiently navigate the search space and find optimal pruning configurations, we employ SMAC
 209 (Lindauer et al., 2022), which strategically allocates computational resources by evaluating con-
 210 figurations at different fidelity levels. we use calibration dataset size as fidelity type, represented
 211 by budgets b where $b_{\min} \leq b \leq b_{\max}$. Each budget value corresponds to a specific portion of the
 212 calibration data used for evaluation - smaller budgets (lower fidelity) use fewer samples for faster
 213 but less precise evaluations, while larger budgets (higher fidelity) use more samples for slower but
 214 more accurate assessments. We use Random Forest (Breiman, 2001) as a surrogate model to sample
 215

216 new configurations. Given configuration space Ω , minimum budget b_{\min} , maximum budget b_{\max} ,
 217 reduction factor η and the maximum trials T_{\max} , the whole process is described in [Algorithm 1](#).
 218

219 **Algorithm 1** The optimization process of Gptailor.

220 **Require:** Configuration space Ω , minimum budget b_{\min} , maximum budget b_{\max} , reduction factor η ,
 221 maximum trials T_{\max}
 222 **Ensure:** Optimized configuration ω^*

223 1: $s_{\max} = \lfloor \log_{\eta} \frac{b_{\max}}{b_{\min}} \rfloor$, $D \leftarrow \emptyset$, $T \leftarrow 0$ ▷ Initialization
 224 2: **for** $s \in \{s_{\max}, s_{\max} - 1, \dots, 0\}$ and $T < T_{\max}$ **do**
 225 3: $n \leftarrow \lceil \frac{(s_{\max}+1)}{(s+1)} \cdot \eta^s \rceil$, $r \leftarrow b_{\min} \cdot \eta^s$ ▷ Config count & budget
 226 4: $\mathcal{C} \leftarrow \text{Sample Configurations}(n, D, \Omega)$ ▷ Sample configurations
 227 5: **for** $i \in \{0, 1, \dots, s\}$ and $T < T_{\max}$ **do**
 228 6: $n_i \leftarrow \lfloor n \cdot \eta^{-i} \rfloor$, $r_i \leftarrow r \cdot \eta^i$ ▷ Stage parameters
 229 7: **for** each $w \in \mathcal{C}$ and $T < T_{\max}$ **do**
 230 8: Evaluate $y_w \leftarrow f_{\text{multi}}(M_w, \lambda)$ using r_i samples from calibration set, $D \leftarrow D \cup$
 231 $\{(w, r_i, y_w)\}$, $T \leftarrow T + 1$
 232 9: **end for**
 233 10: Sort \mathcal{C} by performance, keep the top $\lfloor n_i / \eta \rfloor$ configurations in \mathcal{C}
 234 11: **end for**
 235 12: **end for**
 236 13: **return** the best-performing configuration ω^* evaluated at highest budget

238 This efficient optimization strategy enables us to handle the search space defined in [Section 3.2](#),
 239 identifying high-performing pruned models that satisfy our multi-objective function from [Section 3.3](#),
 240 with significantly reduced computational cost compared to exhaustive search approaches.
 241

242 4 EXPERIMENTAL SETTINGS

243 **Benchmarks.** To evaluate the pruned model’s capabilities, we utilized the OpenCompass evaluation
 244 framework ([Contributors, 2023](#)). Specifically, we conduct evaluations in five aspects: Reasoning,
 245 Language, Knowledge, Examination and Understanding. Reasoning: CMNLI (CNLI) ([Xu et al., 2020](#)),
 246 HellaSwag (HeSw) ([Zellers et al., 2019](#)), PIQA ([Bisk et al., 2020](#)). Language: CHID ([Zheng et al., 2019](#)),
 247 WSC ([Levesque et al., 2012](#)). Knowledge: CommonSenseQA (CSQA) ([Talmor et al., 2018](#)),
 248 BoolQ ([Clark et al., 2019](#)). Examination: MMLU ([Hendrycks et al., 2020](#)), CMMLU (CMLU)
 249 ([Li et al., 2023](#)). Understanding: Race-High/Middle (H/M) ([Lai et al., 2017](#)), XSum ([Narayan et al., 2018](#)),
 250 C3 ([Sun et al., 2020](#)). For CHID and XSum, we use generative evaluation. For the WSC dataset,
 251 we use cloze log-likelihood (WSCP) and generative (WSCG) evaluation. The remaining
 252 benchmarks are evaluated using cloze log-likelihood. See more details in Supplementary [Section C](#).
 253

254 **Baselines.** To evaluate the effectiveness of our method, we compared with four state-of-the-art struc-
 255 tured pruning methods: LLM-Pruner (LLMPru) ([Ma et al., 2023](#)), SliceGPT ([Ashkboos et al., 2024](#)),
 256 LaCo ([Yang et al., 2024](#)), and ShortGPT ([Men et al., 2024](#)). In our experiments, we set the pruning
 257 ratios of our method to be equivalent to ShortGPT and LaCo. Furthermore, as our method is based
 258 on multiple candidate models, we check three comprehensive comparison scenarios to guarantee
 259 fairness: (1) Applying each baseline pruning method individually to all candidate models and picking
 260 the strongest one, (2) First pruning each candidate model using the baseline method and then merging
 261 them, and (3) First merging the candidate models and then applying pruning. For model merging
 262 across baseline experiments, we employ the task-arithmetic merging ([Ilharco et al., 2022](#)) technique
 263 used in our search space, with merging factors within the range $[0.5, 1.0]$ ([Ilharco et al., 2022](#)).

264 **Model Selection.** To assess the effectiveness of the proposed method, we search for pruned versions of
 265 the popular Llama2-7B and Llama2-13B ([Touvron et al., 2023](#)). For 7B models, we use Llama-2-7B
 266 ([Touvron et al., 2023](#)) as our base model, with three candidate models: Llama-2-7B-Chat ([Touvron et al., 2023](#)) (LM),
 267 MAMmoTH-7B ([Yue et al., 2023](#)) (Math), and Llama-2-Coder-7B ([Manuel Romero, 2023](#)) (Code). For 13B models, we use Llama-2-13B ([Touvron et al., 2023](#)) as the base
 268 model, with WizardLM-13B ([Xu et al., 2023](#)) (LM), WizardMath-13B ([Luo et al., 2023](#)) (Math), and
 269 Llama-2-13B-Code-Alpaca ([Chaudhary, 2023](#)) (Code) as candidate models. We selected these models

270 for their wide availability to ensure reproducible evaluation. For the 7B models, we set the sparsity
 271 ratio to 9/32, removing approximately 28% of the layers. For the 13B models, we set the sparsity ratio
 272 to 10/40, removing approximately 25% of the layers. These two ratios are matching the best settings
 273 from prior work in ShortGPT and LaCo, while being slightly higher than other baseline methods,
 274 allowing for fair comparisons. For layer merging, we implement task-arithmetic (Ilharco et al., 2022)
 275 merging with a configurable merging factor that controls the magnitude of task-specific adaptations.

276 **Calibration Data.** For our calibration dataset, we selected multiple-choice datasets to ensure the
 277 model’s generalization ability across different capabilities. Specifically, we sampled from diverse
 278 datasets: 1000 examples from the PIQA (Bisk et al., 2020) training set, 500 examples from the WSC
 279 (Levesque et al., 2012) training set, 1000 examples from the CSQA Talmor et al. (2018) training set,
 280 and 1000 examples from the MMLU (Hendrycks et al., 2020) validation set (which is distinct from
 281 the MMLU test set). This diverse collection allows us to calibrate our model across a broad spectrum
 282 of linguistic and reasoning capabilities.

283 **Objective and Optimizer.** Our implementation builds upon SMAC (Lindauer et al., 2022) for opti-
 284 mization. We allocate 500 search trials for both 13B and 7B experiments. To improve optimization ef-
 285 ficiency, we use models with randomly removed middle layers as starting points, since models are rel-
 286 atively robust to changes in these intermediate layers (Su & Geiping, 2025). We set the minimum bud-
 287 get b_{\min} as 100, maximum budget b_{\max} as the 1000, and reduction factor η as 3. This resulted in budgets
 288 of {100, 300, 1000} for PIQA, CSQA, and MMLU. For the WSC, we set budgets to {100, 200, 500}

290 5 RESULTS AND ANALYSIS

292 5.1 MAIN RESULTS

294 To validate the effectiveness of our method, we compared it with the four baselines: LLM-Pruner
 295 (LLMPru) (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024), LaCo (Yang et al., 2024), and
 296 ShortGPT (Men et al., 2024). We reproduce the results from these methods and evaluate on Open-
 297 Compass (Contributors, 2023). As mentioned in the experiment section, we evaluate the results based
 298 on three settings, i.e., individual pruning, pruning-then-merging, and merging-then-pruning.

299 **Table 1** reports the best single model pruning and best merge results of all baselines, with full results
 300 in Supplementary Section G. Our approach achieves the best results across multiple benchmarks
 301 compared to all tested LLM pruning methods. In terms of overall performance, our method maximally
 302 preserves the capabilities of the dense model: 92.2% (48.55/52.63) for the 7B model and 97.3%
 303 (54.33/55.86) for the 13B model. To ensure our results were not biased by our calibration data, we also
 304 calculate an avg* excluding the four benchmarks from which training data was selected for calibration
 305 (MMLU, CSQA, WSC, PIQA). As shown in the avg* column, our method still outperformed all
 306 baselines, further validating our approach. Notably, our method achieved comparable or even better
 307 results than dense models on most tasks. We attribute these gains to: 1) Pruning might mitigate
 308 "overthinking" effects (Kaya et al., 2019), as evidenced by benchmarks such as CNLI and WSC,
 309 where other pruning methods also yielded performance gains, and 2) Our merging strategy might
 310 mitigate the information loss caused by pruning, stemming from the merging process.

311 **Figure 2** illustrates our best-performing 7B-pruned model and best-performing 13B-pruned models’
 312 structure (See Supplementary Table 12 and Table 13 for details). We observe that both models tend to
 313 remove middle-to-later layers, with the 13B model removing layers from layer 25 and the 7B model
 314 from layer 19. This suggests information redundancy in these layers, aligning with findings that later
 315 layers exhibit high similarity and redundancy (Men et al., 2024; Gromov et al., 2024).

316 5.2 WHICH PARTS OF THE SEARCH SPACE ARE CRITICAL ?

318 To determine where the benefits of our approach come from, we designed ablation experiments to
 319 evaluate the contribution of different components in our search space. As our framework supports:
 320 (1) Layer Selection (LS) from different candidate models, (2) layer merging, and (3) Layer Removal
 321 (LR), we conducted ablation studies to isolate the impact of each component. **Table 2** summarizes
 322 the performance comparison across various benchmarks (More results in Supplementary Table 9).

323 **Layer Removal Only (LR-only).** We restricted the search space to allow only layer removal
 324 operations on a single model. Consequently, our method in this setting supports only single-model

Table 1: Comparison of pruning methods on multiple natural language benchmarks. "Single" refers to the performance achieved when pruning a single model directly, while "Merge" refers to the performance achieved through either "pruning-then-merging" or "merging-then-pruning". 7B models: Llama-2-7B-Chat (LM), MAMmoTH-7B (Math), Llama-2-Coder-7B (Code), and Llama-2-7B (Base). 13B models: WizardLM-13B (LM), WizardMath-13B (Math), llama-2-13B-code-alpaca (Code), and Llama-2-13B (Base).

LLM	Pruner	Type (ratio)	Reasoning			Language			Knowledge					Understanding				Avg	Avg*
			CNL1	HeSw	PIQA	CHID	WSC _P	WSC _G	CSQA	BoolQ	MMLU	CMLU	Race _H	Race _M	XSum	C3			
Llama-7B	Dense (0.0%)	Base	32.98	71.34	78.18	41.56	37.50	38.46	55.04	70.70	46.67	31.88	35.53	33.36	19.55	43.84	45.47	42.30	
		Math	32.99	68.60	75.79	39.71	39.42	36.54	50.78	69.36	43.04	32.16	30.36	36.42	20.88	43.45	44.25	41.70	
		LM	31.30	71.28	75.95	36.11	63.46	59.62	64.29	74.77	48.30	33.93	52.52	55.22	22.45	47.56	52.63	47.24	
		Code	32.99	70.27	78.62	41.61	36.54	41.35	57.41	71.04	46.22	32.20	41.25	39.69	18.79	46.25	46.73	43.79	
	LLMPru (25.3%)	Single	32.99	59.57	73.34	30.32	46.15	0.00	20.15	57.28	23.21	25.16	21.56	21.52	15.19	31.07	32.68	32.74	
		Merge	34.71	60.57	73.50	26.62	40.38	5.77	19.90	52.14	24.01	25.30	23.07	22.98	15.51	32.49	32.64	32.60	
	SliceGPT (26.3%)	Single	31.89	41.55	58.81	18.43	39.42	4.81	19.49	40.09	25.38	25.02	25.59	26.88	8.78	39.56	28.98	28.64	
		Merge	32.85	37.61	57.56	17.33	53.85	2.88	19.41	42.66	25.22	24.68	25.21	24.72	12.78	40.22	29.78	28.67	
	LaCo (27.1%)	Single	32.97	55.24	69.53	31.47	36.54	34.62	22.11	67.22	29.08	26.16	28.53	28.27	14.68	43.51	37.14	36.45	
		Merge	31.89	56.26	71.22	27.32	39.42	22.12	23.42	72.66	29.30	26.00	25.19	26.81	16.11	43.62	36.52	36.21	
	ShortGPT (27.1%)	Single	33.09	57.42	66.54	21.53	56.73	48.08	52.50	67.34	43.68	28.31	32.53	31.69	12.40	39.45	42.24	35.97	
		Merge	34.10	54.18	64.42	16.83	61.54	36.54	55.61	73.21	36.84	25.61	42.94	45.89	10.12	35.73	42.40	37.62	
	Ours (27.1%)		35.46	54.43	67.74	23.63	63.46	43.27	62.90	75.08	48.75	33.86	55.35	58.64	12.99	44.16	48.55	43.73	
Llama-13B	Dense (0.0%)	Base	32.99	74.77	79.71	47.35	50.96	63.46	67.24	71.38	55.84	38.74	57.98	60.17	23.47	47.51	55.11	50.48	
		LM	35.36	70.41	78.73	36.21	57.69	60.58	65.03	73.70	53.48	30.85	66.12	71.66	22.44	52.00	55.30	50.97	
		Math	32.99	68.78	77.26	44.36	36.54	19.23	60.36	78.44	54.21	38.12	47.74	48.82	19.51	44.66	47.93	47.05	
		Code	32.99	74.82	80.14	47.30	51.92	63.46	68.88	72.72	55.92	39.26	58.03	63.72	24.45	48.38	55.86	51.30	
	LLMPru (21.2%)	Single	33.49	60.28	75.57	23.68	39.42	0.00	19.00	63.24	23.27	25.23	22.36	21.45	17.13	32.00	32.58	33.21	
		Merge	33.86	64.11	73.50	22.18	60.58	0.00	21.46	61.96	23.84	25.62	22.16	21.59	14.98	32.11	34.14	33.17	
	SliceGPT (23.6%)	Single	33.19	42.44	59.90	18.03	54.81	19.23	32.51	41.22	33.09	25.75	29.45	29.87	9.99	37.75	33.37	29.74	
		Merge	30.98	46.83	62.57	19.33	51.92	49.04	37.76	38.38	33.55	25.22	23.53	23.05	9.95	39.67	35.13	28.55	
	LaCo (24.6%)	Single	32.33	60.18	70.57	32.67	34.62	34.62	52.58	62.66	36.26	25.80	60.38	62.53	8.79	49.21	44.51	43.84	
		Merge	33.49	62.50	74.37	35.26	63.46	18.84	64.65	41.83	24.87	26.10	25.97	15.93	39.51	42.16	34.71		
	ShortGPT (24.6%)	Single	32.95	62.64	73.50	28.22	36.54	50.96	65.44	67.71	53.50	30.73	65.52	71.38	19.12	48.60	50.49	47.43	
		Merge	31.07	63.24	68.61	27.17	49.04	43.27	65.68	78.01	51.26	36.88	57.38	62.67	16.94	44.05	49.66	46.38	
	Ours (24.6%)		32.99	66.81	75.03	29.07	54.81	62.50	69.37	74.28	55.90	39.71	65.52	71.03	16.80	46.74	54.33	49.22	

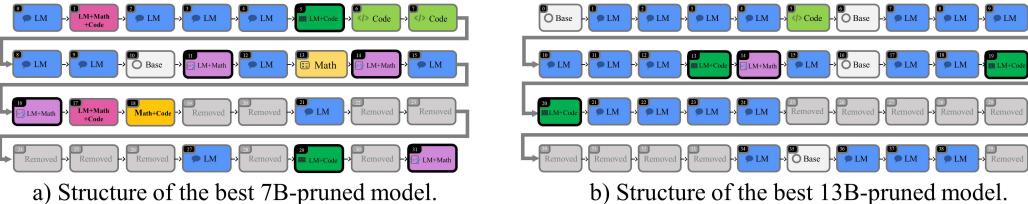


Figure 2: (a) Structure of our best-performing 7B-pruned model. The model integrates layers from multiple candidates: Llama-2-7B-Chat (LM), MAMMO-TH-7B (Math), Llama-2-Coder-7B (Code), and Llama-2-7B (Base). The pruning ratio is 9/32, removing 9 layers out of 32 total layers. (b) Structure of our best-performing 13B-pruned model. The model integrates layers from multiple candidates: WizardLM-13B (LM), WizardMath-13B (Math), llama-2-13b-code-alpaca (Code), and Llama-2-13B (Base). The pruning ratio is 10/40, removing 10 layers out of 40 total layers.

pruning without merging, similar to most conventional pruning approaches. As shown in Table 2, there is a significant performance drop (48.55% vs. 44.83%), confirming that merely pruning layers from a single model is insufficient. Moreover, it is worth noting that even with layer-removal only pruning on a single model our method still outperforms the best baseline, ShortGPT (44.83% vs. 42.24%). This highlights the superiority of our approach to pruning, even in a simplified setting.

Layer Selection and Removal (LS+LR). In this setting, we enabled both layer selection from different candidate models and layer removal operations, while disabling the layer merging functionality. Compared with LR-only, LS+LR yields an even larger performance drop (48.55 vs.

43.20 on average). This suggests that merely combining layers from different models without proper
 379 integration through merging is ineffective.
 380

381 Table 2: Comparison of different searching settings across various benchmarks. Settings: LR-only:
 382 Layer-remove only, LS+LR: Layer-selection + layer-remove, FL-merge: Folding Layers Merging.
 383

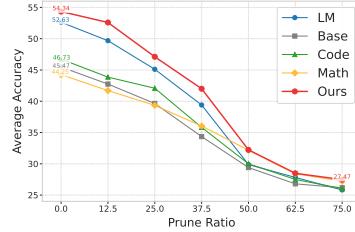
Setting	Reasoning	Language			Knowledge			Understanding			Avg	
	CNL1 HeSw PIQA CHID WSC _P WSC _G CSQA BoolQ	MMLU	CMLU	Race _H	Race _M	XSum	C3					
Ours	35.46	54.43	67.74	23.63	63.46	43.27	62.90	75.08	48.75	33.86	55.35	58.64
LR-only	34.96	53.80	66.70	18.58	49.04	58.65	60.61	68.87	47.85	33.54	42.51	43.04
LS+LR	32.92	55.84	65.07	17.98	63.46	26.92	58.97	51.22	48.97	34.61	48.68	49.44
FL-merge	32.99	52.90	63.66	19.28	46.15	62.50	60.52	75.20	48.30	34.33	50.77	55.29

390 5.3 ROBUSTNESS AND GENERALIZATION ANALYSIS

391 To comprehensively evaluate the robustness and generalizability of our framework, we conduct
 392 extensive analysis across three critical dimensions: pruning ratio sensitivity, candidate pool scalability
 393 and Generalization to next-generation models. These experiments aim to validate our method’s
 394 effectiveness under diverse deployment constraints and resource limitations.
 395

396 Table 3: Impact of Candidate Pool Composition
 397 on Performance.

Model Pool	Average Performance
Math&LM&Code	48.55
Math&LM	47.82
Code&LM	47.31
Code&Math	43.12
LM	45.42
Math	42.40
Code	42.03
Base	42.20



406 Figure 3: Performance Comparison Across Different Pruning Ratios.
 407

408 **Performance Across Pruning Ratios.** To further evaluate the generalizability of our method under
 409 different pruning ratios, we validate its performance across varying pruning ratios. Since we have
 410 already shown that even the layer-removal variant of our method surpasses other baselines such
 411 as ShortGPT, here we focus specifically on layer removal. Moreover, we examine its impact on
 412 different task-specific models, using this experiment to highlight the additional benefits of merging,
 413 rather than simply pruning a single model. The results are visualized in Figure 3 with the average
 414 accuracy among benchmark performances at different pruning ratios. More details are supplied in
 415 Supplementary Table 10. From the results, we can see that the accuracy of all models decreases as
 416 the pruning ratio increases. Our model achieves the best performance at all pruning ratios, especially
 417 in the low pruning ratio range of 0%-37.5%. When pruning reaches 50%, every model suffers
 418 performance collapse, leading to a reduced gap across models. This represents a clear elbow point,
 419 indicating that beyond it, excessive parameter removal renders models unable to sustain effective
 420 functionality without further post-training.

421 **Scaling with Candidate Model Pool Size.** To validate the generalizability of our method across
 422 different candidate models, we conducted experiments by varying both the number of models and
 423 their combinations in the pool. As shown in Table 3, with full results in Supplementary Table 21 the
 424 results show that performance is indeed affected by the choice of candidate models. Specifically,
 425 including language models (LM) in the candidate pool consistently yields substantial improvements,
 426 while code models tend to contribute more modest gains. Importantly, we find that increasing the
 427 number of candidate models consistently leads to improved overall performance. Our findings
 428 highlight three key properties of the proposed method. (1) Incorporating high-quality models, such
 429 as strong language models, consistently improves performance across benchmarks. (2) Adding
 430 lower-performing models does not harm the overall results, demonstrating the stability of our search
 431 strategy. (3) Enlarging the candidate pool generally yields further improvements, reflecting the
 432 scalability and robustness of our approach.

433 **Generalization to Next-Generation Models (Llama-3).** We further extend our validation to Meta’s
 434 Llama-3 8B model (Grattafiori et al., 2024), which is larger, more densely parameterized, and trained

on 15T tokens with architectural improvements such as universal GQA and a longer context window. Despite a similar model size, Llama-3 8B surpasses Llama-2 7B (Touvron et al., 2023). Pruning such advanced models poses new challenges due to their semantic density, making validation on this next-generation model crucial for establishing the practical applicability of our method in rapidly evolving LLM landscapes. We compare our method with the best-performing baseline, ShortGPT. As shown in Table 4 (full results in Supplementary Table 11), our method retains 84.55% of the original performance (53.17/63.61) after pruning 9 layers, clearly outperforming ShortGPT’s 62.79% (39.94/63.61) under the same compression ratio. Both results are lower than our Llama-2 7B retention (92.2%) despite the similar model size, indicating that Llama-3 is less compressible. Nevertheless, our method consistently surpasses the baseline, demonstrating its robustness across model generations.

Table 4: Comparison of pruning methods on multiple natural language benchmarks. For 8B model: Meta-Llama-3-8B-Instruct (LM), MathCoder2-Llama-3-8B (Math), Code-Llama-3-8B (Code), and Meta-Llama-3-8B (Base).

LLM	Pruner	Type	Reasoning			Language			Knowledge			Understanding			Avg	
			CMNLI	HeSw	PIQA	CHID	WSC _P	WSC _G	CSQA	BoolQ	MMLU	CMLU	Race _H	Race _M	XSum	
		Base	32.98	74.67	80.96	73.78	56.73	36.54	73.79	69.97	64.74	50.79	63.21	70.54	3.28	55.18
		LM	33.00	71.08	80.69	65.53	55.77	69.23	76.66	78.87	65.97	53.64	76.44	81.75	17.97	63.95
		Dense	32.99	71.66	77.97	57.09	37.50	58.65	68.22	69.08	62.08	45.85	64.75	69.08	8.68	53.86
		Math	32.98	65.56	74.70	78.42	61.54	61.54	63.47	78.35	48.03	34.55	52.40	58.43	19.36	46.41
		Code	32.98	45.06	65.78	23.38	41.35	53.85	39.56	63.73	32.37	28.69	40.14	45.19	3.68	43.51
Llama3		-8B	32.83	48.58	64.96	18.43	36.54	35.58	42.83	67.22	33.05	28.71	30.16	32.45	3.66	44.27
		ShortGPT	32.95	48.58	64.96	73.79	64.34	63.13	50.04	72.81	77.65	3.00	46.52	53.78		
		Ours	33.42	54.83	69.75	34.02	47.12	62.50								

5.4 ENHANCING LAYER-FOLDING PRUNING POTENTIAL

LaCo (Yang et al., 2024) is a merging-based pruning approach that performs within-model pruning by folding later layers into earlier ones based on activation similarity. While effective, its potential is constrained by suboptimal layer selection and merging strategies. To validate the effectiveness and potential of this type of within-model merge operation, we use our hyperparameter optimization framework with a specially designed search space (described in Section H.2). Empirically, As shown in Table 2, our framework achieves improved performance (46.26) on this configuration, unlocking greater potential from layer-folding pruning through optimized selection and merging strategies. This validates that our approach can enhance various pruning paradigms beyond cross-model scenarios, offering an effective solution when fine-tuned candidate models are unavailable.

5.5 COMPUTATIONAL EFFICIENCY ANALYSIS

We conducted a computational efficiency analysis against two competitive baselines, ShortGPT and LaCo, on Llama7b using post-training settings from the LLMPruner paper. We test our framework with two strategies: multi-candidate model searching (3 candidates) and single-model layer folding. We choose these strategies because they cover complementary deployment scenarios when candidate models are available versus unavailable. As shown in Supplementary Table 18 , both strategies consistently outperform baselines with reduced computational overhead.

6 CONCLUSION

In this work, we presented a novel LLM compression approach that strategically combines layers from fine-tuned model variants instead of pruning single models. By formulating this as a zero-order optimization problem with a newly designed search space that supports layer removal, selection, and merging, our method effectively preserves model capabilities while reducing size. Experiments on Llama2-7B and Llama2-13B demonstrated that our compressed models retain 92.2% and 97.3% of original performance, respectively, despite removing $\sim 25\%$ of parameters, outperforming previous state-of-the-art methods without requiring expensive post-training. Overall, our work demonstrates that cutting and stitching layers from multiple fine-tuned variants of a model is a more effective approach to LLM compression than traditional single-model pruning. While the search complexity increases with the number of candidate models, this computational aspect represents an opportunity for future optimization techniques to further enhance efficiency.

486
487 ETHICS STATEMENT

488 In this work, we carefully ensure that all methods and experimental protocols conform to established
 489 ethical guidelines. Our investigation centers on layer pruning as a strategy to improve the efficiency
 490 of LLMs and to lower computational demands, contributing to more sustainable AI practices. In
 491 addition, every model and dataset employed in this research is obtained from openly accessible
 492 sources, guaranteeing respect for intellectual property and protection of personal privacy. Apart from
 493 the models used as experimental subjects (Llama2-7B, Llama-2-7B-Chat, MAMmoTH-7B, Llama-2-
 494 Coder-7B, Llama2-13B, WizardLM-13B, WizardMath-13B, Llama-2-13B-Code-Alpaca, Qwen3-8B,
 495 Qwen3-4B-Instruct, and Qwen3-4B-Thinking), we also utilized LLMs as writing assistants, as
 496 detailed in Section A. All uses of LLMs in this work comply with the ICLR Code of Ethics.
 497

498 REPRODUCIBILITY STATEMENT

499 We made several efforts to ensure reproducibility. First, we provide detailed experimental settings and
 500 hyperparameters used throughout this paper in Section 4, Appendix B, and Section 5.5, and report all
 501 evaluation metrics in Section 5. Second, our code will be submitted with the paper, accompanied by
 502 detailed usage instructions and scripts to reproduce all reported results.
 503

504 REFERENCES

505
 506 Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
 507 model merging recipes. *arXiv preprint arXiv:2403.13187*, 2024.

508 Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized
 509 neural networks, going beyond two layers. *Advances in neural information processing systems*, 32,
 510 2019a.

511 Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
 512 parameterization. In *International conference on machine learning*, pp. 242–252. PMLR, 2019b.

513
 514 Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefer, and James
 515 Hensman. Slicecpt: Compress large language models by deleting rows and columns. *arXiv
 516 preprint arXiv:2401.15024*, 2024.

517
 518 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
 519 commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
 520 volume 34, pp. 7432–7439, 2020.

521
 522 Leo Breiman. Random forests. *Machine learning*, 45:5–32, 2001.

523
 524 Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation. <https://github.com/sahil280114/codealpaca>, 2023.

525
 526 Zeming Chen, Qiyue Gao, Antoine Bosselut, Ashish Sabharwal, and Kyle Richardson. Disco:
 527 Distilling counterfactuals with large language models. *arXiv preprint arXiv:2212.10534*, 2022.

528
 529 Wei-Lin Chiang, Zhuohan Li, Ziqing Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
 530 Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
 531 impressing gpt-4 with 90%* chatgpt quality. See <https://vicuna.lmsys.org> (accessed 14 April
 2023), 2(3):6, 2023.

532
 533 Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
 534 Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. *arXiv preprint
 535 arXiv:1905.10044*, 2019.

536
 537 OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
 538 <https://github.com/open-compass/opencompass>, 2023.

539
 540 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
 541 of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023a.

540 Tim Dettmers, Ruslan Svirchevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
 541 boos, Alexander Borzunov, Torsten Hoefer, and Dan Alistarh. Spqr: A sparse-quantized represen-
 542 tation for near-lossless llm weight compression. *arXiv preprint arXiv:2306.03078*, 2023b.

543

544 Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
 545 invariance in linear mode connectivity of neural networks. *arXiv preprint arXiv:2110.06296*, 2021.

546

547 Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
 548 connectivity and the lottery ticket hypothesis. In *International Conference on Machine Learning*,
 549 pp. 3259–3269. PMLR, 2020.

550

551 Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
 552 one-shot. In *International Conference on Machine Learning*, pp. 10323–10337. PMLR, 2023.

553

554 Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
 555 Loss surfaces, mode connectivity, and fast ensembling of dnns. *Advances in neural information
 556 processing systems*, 31, 2018.

557

558 Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
 559 survey of quantization methods for efficient neural network inference. In *Low-power computer
 560 vision*, pp. 291–326. Chapman and Hall/CRC, 2022.

561

562 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 563 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 564 models. *arXiv preprint arXiv:2407.21783*, 2024.

565

566 Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
 567 unreasonable ineffectiveness of the deeper layers. *arXiv preprint arXiv:2403.17887*, 2024.

568

569 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 570 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint
 571 arXiv:2009.03300*, 2020.

572

573 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 574 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
 575 Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

576

577 Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
 578 Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger
 579 language models with less training data and smaller model sizes. *arXiv preprint arXiv:2305.02301*,
 580 2023.

581

582 Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
 583 Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. *arXiv preprint
 584 arXiv:2212.04089*, 2022.

585

586 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 587 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
 588 *arXiv preprint arXiv:2001.08361*, 2020.

589

590 Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-deep networks: Understanding and
 591 mitigating network overthinking. In *International conference on machine learning*, pp. 3301–3310.
 592 PMLR, 2019.

593

594 Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
 595 Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models. *arXiv
 596 preprint arXiv:2402.02834*, 11, 2024.

597

598 Aaron Klein, Jacek Golebiowski, Xingchen Ma, Valerio Perrone, and Cedric Archambeau. Struc-
 599 tural pruning of pre-trained language models via neural architecture search. *arXiv preprint
 600 arXiv:2405.02267*, 2024.

594 Joshua Knowles. Parego: A hybrid algorithm with on-line landscape approximation for expensive
 595 multiobjective optimization problems. *IEEE transactions on evolutionary computation*, 10(1):
 596 50–66, 2006.

597

598 Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
 599 network representations revisited. In *International conference on machine learning*, pp. 3519–3529.
 600 PMIR, 2019.

601 Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
 602 comprehension dataset from examinations. *arXiv preprint arXiv:1704.04683*, 2017.

603

604 Hector J Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. *KR*,
 605 2012:13th, 2012.

606

607 Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timothy
 608 Baldwin. Cmmlu: Measuring massive multitask language understanding in chinese. *arXiv preprint*
 609 *arXiv:2306.09212*, 2023.

610

611 Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
 612 A novel bandit-based approach to hyperparameter optimization. *Journal of Machine Learning
 Research*, 18(185):1–52, 2018.

613

614 Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, and Joey Gonzalez.
 615 Train big, then compress: Rethinking model size for efficient training and inference of transformers.
 616 In *International Conference on machine learning*, pp. 5958–5968. PMLR, 2020.

617

618 Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin
 619 Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian optimization
 620 package for hyperparameter optimization. *Journal of Machine Learning Research*, 23(54):1–9,
 621 2022. URL <http://jmlr.org/papers/v23/21-0888.html>.

622

623 Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
 624 Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
 625 reasoning for large language models via reinforced evol-instruct. *arXiv preprint arXiv:2308.09583*,
 626 2023.

627

628 Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
 629 language models. *Advances in neural information processing systems*, 36:21702–21720, 2023.

630

631 Manuel Romero. llama-2-coder-7b (revision d30d193), 2023. URL <https://huggingface.co/mrm8488/llama-2-coder-7b>.

632

633 Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
 634 Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
 635 *arXiv preprint arXiv:2403.03853*, 2024.

636

637 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 638 models, 2016.

639

640 Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the sum-
 641 mary! topic-aware convolutional neural networks for extreme summarization. *arXiv preprint*
 642 *arXiv:1808.08745*, 2018.

643

644 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
 645 Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
 646 technical report. *arXiv preprint arXiv:2303.08774*, 2023.

647

648 Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
 649 transformers for long-range sequence modelling. *arXiv preprint arXiv:1911.05507*, 2019.

650

651 Kumar Shridhar, Alessandro Stolfo, and Mrinmaya Sachan. Distilling reasoning capabilities into
 652 smaller language models. *Findings of the Association for Computational Linguistics: ACL 2023*,
 653 pp. 7059–7073, 2023.

648 Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
 649 learning algorithms. *Advances in neural information processing systems*, 25, 2012.
 650

651 Guinan Su and Jonas Geiping. Fine, i'll merge it myself: A multi-fidelity framework for automated
 652 model merging. *arXiv preprint arXiv:2502.04030*, 2025.

653 Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. Investigating prior knowledge for challenging chinese
 654 machine reading comprehension. *Transactions of the Association for Computational Linguistics*,
 655 8:141–155, 2020.

656

657 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
 658 answering challenge targeting commonsense knowledge. *arXiv preprint arXiv:1811.00937*, 2018.

659

660 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

661

662 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 663 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambrø, Faisal Azhar, et al. Llama: Open and
 664 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

665

666 Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
 667 Shengyi Huang, Leandro Von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
 668 distillation of lm alignment. *arXiv preprint arXiv:2310.16944*, 2023.

669

670 Joachim Utans. Weight averaging for neural networks and local resampling schemes. In *Proc.
 671 AAAI-96 Workshop on Integrating Multiple Learned Models*. AAAI Press, pp. 133–138. Citeseer,
 672 1996.

673

674 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
 675 Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
 676 *arXiv preprint arXiv:2206.07682*, 2022.

677

678 Tom White. Sampling generative networks. *arXiv preprint arXiv:1609.04468*, 2016.

679

680 Mitchell Wortzman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
 681 Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
 682 soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
 683 inference time. In *International conference on machine learning*, pp. 23965–23998. PMLR, 2022.

684

685 Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
 686 model pre-training via structured pruning. *arXiv preprint arXiv:2310.06694*, 2023.

687

688 Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Dixin
 689 Jiang. Wizardlm: Empowering large language models to follow complex instructions. *arXiv
 690 preprint arXiv:2304.12244*, 2023.

691

692 Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao, Yudong Li, Yechen Xu, Kai Sun, Dian Yu,
 693 Cong Yu, et al. Clue: A chinese language understanding evaluation benchmark. *arXiv preprint
 694 arXiv:2004.05986*, 2020.

695

696 Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
 697 Resolving interference when merging models. *Advances in Neural Information Processing Systems*,
 698 36:7093–7115, 2023.

699

700 Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
 701 Resolving interference when merging models. *Advances in Neural Information Processing Systems*,
 702 36, 2024.

703

704 Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse.
 705 *arXiv preprint arXiv:2402.11187*, 2024.

706

707 Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
 708 He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
 709 *Advances in Neural Information Processing Systems*, 35:27168–27183, 2022.

702 Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
 703 Absorbing abilities from homologous models as a free lunch. In *Forty-first International Conference*
 704 *on Machine Learning*, 2024.

705 Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhui Chen.
 706 Mammoth: Building math generalist models through hybrid instruction tuning. *arXiv preprint*
 707 *arXiv:2309.05653*, 2023.

708 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 709 really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

710 Chujie Zheng, Minlie Huang, and Aixin Sun. Chid: A large-scale chinese idiom dataset for cloze test.
 711 *arXiv preprint arXiv:1906.01265*, 2019.

714 A THE USE OF LARGE LANGUAGE MODELS

715 We used large language models solely as a general-purpose writing aid to help improve the clarity and
 716 readability of the text, and to suggest minor wording improvements. The LLMs did not contribute to
 717 the research ideation, experimental design, analysis, or interpretation of results. All technical content,
 718 experiments, and conclusions presented in this paper are entirely the work of the authors.

722 B BASELINE

724 To ensure fair comparison, we applied various baseline pruning methods including LLM-
 725 Pruner(LLMPru) (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024), LaCo (Yang et al., 2024) and
 726 ShortGPT (Men et al., 2024):

727 **LLM-Pruner** adopts structural pruning that selectively removes non-critical coupled structures based
 728 on gradient information, maximally preserving the majority of the LLM’s functionality. It applies
 729 post-training to the pruned model, for fair comparison, we do not apply post training to it.

731 **SliceGPT** is a post-training sparsification scheme that replaces each weight matrix with a smaller
 732 matrix, reducing the embedding dimension of the network. Specifically, they applied PCA to the
 733 hidden representation from shallow to deep layers, and incorporated the dimension reduction matrix
 734 into existing network parameters.

735 **LaCo** is a pruning method for large language models based on reducing layers. LaCo gradually
 736 merges similar layers from deep to shallow and sets a threshold to avoid merging too many layers.

737 **ShortGPT** introduced the Block Influence (BI) metric, which uses the similarity between layer’s
 738 input and output to measure the importance of each layer.

740 C EVALUATION BENCHMARKS

743 **CMNLI (Chinese Multi-Genre Natural Language Inference) (CNLI)** consists of two parts: XNLI
 744 and MNLI. It contains text from various domains, including fiction, telephone conversations, travel,
 745 and government sources. XNLI is a cross-lingual extension of the MultiNLI corpus, professionally
 746 translated into multiple languages, including Chinese, providing a robust framework for assessing
 747 language understanding across linguistic boundaries. Models must determine whether pairs of
 748 sentences exhibit entailment, contradiction, or neutrality.

749 **HellaSwag (HeSw)** tests commonsense reasoning about physical situations. The dataset uses a
 750 "Goldilocks" zone of complexity where examples are obviously nonsensical to humans but challeng-
 751 ing for state-of-the-art models. Despite being trivial for humans (>95% accuracy), even advanced
 752 models struggled with this benchmark upon its release, making it effective for measuring progress in
 753 commonsense inference.

754 **PIQA (Physical Interaction Question Answering)** is a multi-choice question and answer dataset
 755 that focuses on everyday scenarios, exploring models’ understanding of real-world physical laws
 through daily situations.

756 **CHID (Chinese IDiom)** is an idiom cloze test focusing on the representation and selection of Chinese
 757 idioms, requiring cultural and linguistic knowledge specific to Chinese.
 758

759 **WSC (Winograd Schema Challenge)** serves as a prominent benchmark for evaluating machine
 760 understanding through pronouns resolution problems that are trivial for humans but require common-
 761 sense reasoning for machines to solve correctly. The dataset consists of pairs of sentences differing in
 762 one or two words with ambiguous pronouns resolved differently in the two sentences, designed to
 763 test a system’s commonsense reasoning abilities.
 764

765 **CommonSenseQA (CSQA)** is a multiple-choice question answering dataset containing 12,102 ques-
 766 tions with one correct answer and four distractor answers, requiring different types of commonsense
 767 knowledge to predict the correct answers. The dataset was constructed using ConceptNet relations
 768 and crowd-sourced questions to test commonsense reasoning.
 769

770 **BoolQ** provides 15,942 yes/no questions that occur naturally in unconstrained environments, testing
 771 models’ binary decision-making abilities.
 772

773 **MMLU (Massive Multitask Language Understanding)** evaluates models across 57 diverse subjects
 774 covering STEM, humanities, and social sciences. The benchmark tests knowledge and problem-
 775 solving ability with content ranging from elementary to professional levels. This benchmark has
 776 become a standard evaluation metric in the field, with scores prominently reported for virtually all
 777 language models, and uses multiple-choice questions that allow for simple accuracy calculations.
 778

779 **CMMLU (Chinese Massive Multitask Language Understanding) (CMLU)** Developed to address
 780 the gap in evaluating knowledge and reasoning capabilities in Chinese, CMMLU is a comprehensive
 781 benchmark covering 67 subjects from elementary to advanced professional levels across natural
 782 sciences, social sciences, engineering, and humanities. The benchmark includes topics with Chinese-
 783 specific answers that may not be universally applicable in other regions or languages, making it a
 784 fully Chinese-oriented evaluation tool.
 785

786 **RACE (Reading Comprehension from Examinations)** is collected from English examinations in
 787 China designed for middle and high school students, providing a culturally diverse reading assessment.
 788

789 **XSum** evaluates abstract single document summarization systems, focusing on the ability to create
 790 concise one-sentence summaries capturing the essence of articles.
 791

792 **C3 (Chinese Multiple-Choice Machine Reading Comprehension)** consists of multiple-choice
 793 questions from Chinese proficiency exams and ethnic Chinese exams.
 794

795 D TASK ARITHMETIC MERGING

796 Task Arithmetic Ilharco et al. (2022) enhances model capabilities through vector operations by
 797 leveraging weighted combinations of task-specific knowledge. Given a base model with weights θ_{pre}
 798 and task-specific fine-tuned weights $\{\theta_t^{\text{ft}}\}_{t=1}^n$, task vectors are defined as $\tau_t = \theta_t^{\text{ft}} - \theta_{\text{pre}}$. The merged
 799 weights are then computed through $\theta_{\text{Merge}} = \theta_{\text{pre}} + \lambda \sum_{t=1}^n \tau_t$, where λ controls the magnitude of
 800 task-specific adaptations.
 801

802 E DESCRIPTIONS OF SMAC-BASED MULTI-FIDELITY OPTIMIZATION

803 Our implementation extends SMAC (Lindauer et al., 2022), integrating Hyperband (HB) (Li et al.,
 804 2018) with Bayesian Optimization (BO) (Snoek et al., 2012) and employing Random Forest (Breiman,
 805 2001) as the surrogate model.
 806

807 The framework operates using minimum and maximum budgets (b_{\min}, b_{\max}) with a spacing pa-
 808 rameter $\eta > 1$. The algorithm creates $s_{\max} = \lfloor \log_{\eta}(b_{\max}/b_{\min}) \rfloor$ brackets, each initiating with
 809 $n_i = \lfloor \eta^{s_{\max}-i} \cdot \frac{\eta}{\eta-1} \rfloor$ configurations. Within each bracket, Successive Halving proceeds through
 $\lfloor \log_{\eta}(\frac{n_i}{n_{\min}}) \rfloor + 1$ rounds, evaluating configurations at increasing budgets while progressively eli-
 810 minating underperforming candidates. Specifically, after evaluating all configurations at budget b , only
 811 the top $\lfloor \frac{n_i}{\eta^i} \rfloor$ performers advance to the next round with an increased budget of ηb .
 812

810 A key enhancement is the Random Forest model that learns from all prior configuration-performance
 811 pairs, prioritizing data from higher budgets. This model guides the selection of promising config-
 812urations via Expected Improvement, balancing exploration and exploitation. As the optimization
 813 progresses, the evaluation of more configurations at higher budgets enables the algorithm to correct
 814 potential misjudgments from lower-fidelity evaluations.

815 For a detailed algorithmic description, see Algorithm 2, which presents the complete optimization
 816 process incorporating trial limits. This integration of multi-fidelity resource allocation with surrogate-
 817 based modeling delivers efficient configuration space exploration while maintaining evaluation
 818 quality.

820 F UNDERSTANDING STRATEGY SELECTION VIA LAYER-LEVEL ANALYSIS

823 To investigate how our approach works for model compression with superior performance, we analyze
 824 the architectural decisions from multiple perspectives: **the theoretical foundation of model merging**,
 825 **empirical observations of Layer-wise Patterns**, and **post-hoc analysis of layer characteristics**.

827 F.0.1 THEORETICAL FOUNDATION: WHY MODEL MERGING WORKS

829 The underlying principle of model merging is that fine-tuned variants from a common pre-trained
 830 initialization typically converge to parameters within the same loss basin. While neural network loss
 831 functions are generally non-convex, recent work has demonstrated that parameters from different
 832 training runs can be interpolated without increasing loss, a phenomenon known as mode connectivity
 833 Garipov et al. (2018); Frankle et al. (2020).

834 Garipov et al. (2018) showed that different optima can be connected by simple curves with nearly
 835 constant accuracy. Frankle et al. (2020) further demonstrated that networks sharing part of their
 836 optimization trajectory converge to linearly connected regions, where the linear interpolation $\theta(t) =$
 837 $(1-t)\theta_A + t\theta_B$ maintains low loss for all $t \in [0, 1]$. Entezari et al. (2021) conjectured that when
 838 accounting for permutation invariance, SGD solutions exhibit no barrier in linear interpolation.

839 Crucially, fine-tuned models initialized from the same pre-trained model θ_0 share a significant portion
 840 of their optimization trajectory, enabling merging without explicit permutation alignment Wortsman
 841 et al. (2022); Ilharco et al. (2022). This is evidenced by the small Frobenius distance between such
 842 models Yadav et al. (2023):

$$843 \quad \|\theta_t^{(i)} - \theta_t^{(j)}\|_F \ll \|\theta_t^{(i)} - \theta_0\|_F \quad (3)$$

845 where $\theta_t^{(i)}$ and $\theta_t^{(j)}$ denote models fine-tuned on different tasks i and j . This proximity in param-
 846 eter space, combined with the wide, flat minima characteristic of fine-tuned models, provides the
 847 theoretical foundation for merging complementary capabilities while maintaining performance.

849 These properties make merging a natural guide for pruning because the shared loss basin reveals
 850 redundant or overlapping layers whose removal does not disrupt the model’s performance.

852 F.0.2 EMPIRICAL OBSERVATIONS: LAYER-WISE PATTERNS

854 **Pattern 1: Positional preference.** To identify systematic patterns in layer operations, we normalize
 855 layer positions (position = layer_index / total_layers) and partition the space [0,1] into eight bins,
 856 computing operation percentages averaged across 7B and 13B families. Figure 4 reveals a clear
 857 pattern: early layers favor SELECT (64.1% at position 0-0.3), middle layers favor MERGE (49.9% at
 858 0.3-0.6), and late layers favor REMOVE (70.7% at 0.6-1.0).

859 **Pattern 2: Robustness (redundancy) scales with model size.** From the visualization in Fig.2, we
 860 can see that the 13B model shows a simpler structure, which is mainly merged with LM models,
 861 while the 7B model shows a more complex structure utilizing mixed and specialized models. This
 862 suggests that as model size decreases, more diverse mixing strategies may be needed to maintain
 863 performance. This architectural difference, coupled with the superior preservation rate of the 13B
 model compared to the 7B model, demonstrates that robustness (redundancy) scales with model size.

864
 865
 866
 867
 868
 869

Algorithm 2 SMAC-based Multi-Fidelity Optimization

870 **Require:** Configuration space Θ , minimum budget b_{\min} , maximum budget b_{\max} , spacing factor
 871 $\eta > 1$, maximum trials T_{\max}

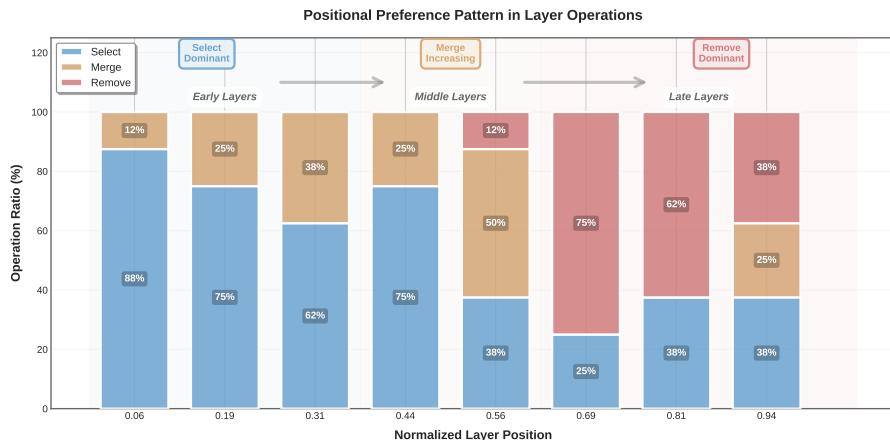
872 **Ensure:** Optimized configuration θ^*

873 1: $s_{\max} \leftarrow \lfloor \log_{\eta}(\frac{b_{\max}}{b_{\min}}) \rfloor$ ▷ Maximum brackets
 874 2: $\mathcal{D} \leftarrow \emptyset$ ▷ Observation history
 875 3: $\theta^* \leftarrow \emptyset, y^* \leftarrow \infty$ ▷ Best configuration tracking
 876 4: $T \leftarrow 0$ ▷ Initialize trial counter

877 5: **for** $i \in \{s_{\max}, s_{\max} - 1, \dots, 0\}$ **do**
 878 6: **if** $T \geq T_{\max}$ **then** ▷ Exit if reached maximum trials
 879 **break**
 880 7: **end if**
 881 8: $n_i \leftarrow \lfloor \eta^{s_{\max}-i} \cdot \frac{\eta}{\eta-1} \rfloor$ ▷ Initial configurations
 882 9: $\mathcal{M} \leftarrow \text{FitRandomForest}(\mathcal{D})$ ▷ Build surrogate model
 883 10: **if** $|\mathcal{D}| = 0$ **then**
 884 11: $\Theta_i \leftarrow \text{Sample } n_i \text{ random configurations from } \Theta$
 885 12: **else**
 886 13: $\Theta_i \leftarrow \text{Select } n_i \text{ configurations with highest EI based on } \mathcal{M}$
 887 14: **end if**
 888 15: **end if** ▷ SH rounds
 889 16: $s_i \leftarrow \lfloor \log_{\eta}(\frac{n_i}{1}) \rfloor + 1$ ▷ Set of active configurations
 890 17: $\mathcal{A} \leftarrow \Theta_i$ ▷ Initial budget
 891 18: $b \leftarrow b_{\min} \cdot \eta^i$
 892 19: **for** $l \in \{0, 1, \dots, s_i - 1\}$ **do**
 893 20: **if** $T \geq T_{\max}$ **then** ▷ Exit if reached maximum trials
 894 **break**
 895 21: **end if** ▷ Current pool size
 896 22: $n_{i,l} \leftarrow \lfloor \frac{n_i}{\eta^l} \rfloor$
 897 23: **for** each $\theta \in \mathcal{A}$ **do** ▷ Evaluate configuration
 898 24: $y_{\theta} \leftarrow f(\theta, b)$ ▷ Update history
 899 25: $\mathcal{D} \leftarrow \mathcal{D} \cup \{(\theta, b, y_{\theta})\}$ ▷ Increment trial counter
 900 26: $T \leftarrow T + 1$
 901 27: **if** $b = b_{\max}$ and $y_{\theta} < y^*$ **then** ▷ Update best
 902 28: $y^* \leftarrow y_{\theta}, \theta^* \leftarrow \theta$
 903 29: **end if**
 904 30: **end if** ▷ Exit if reached maximum trials
 905 31: **if** $T \geq T_{\max}$ **then**
 906 32: **break**
 907 33: **end if** ▷ Sort \mathcal{A} by performance
 908 34: **end for** ▷ Sort \mathcal{A} by performance
 909 35: $\mathcal{A} \leftarrow \text{Top } \lfloor \frac{n_{i,l}}{\eta} \rfloor \text{ configurations from } \mathcal{A}$ ▷ Increase budget
 910 36: $b \leftarrow \min(b \cdot \eta, b_{\max})$ ▷ Increase budget
 911 37: **if** $b = b_{\max}$ or $|\mathcal{A}| = 1$ **then**
 912 38: **break**
 913 39: **end if**
 914 40: **end for**
 915 41: **end for**
 916 42: **end for**
 917 43: **return** $\theta^* = 0$

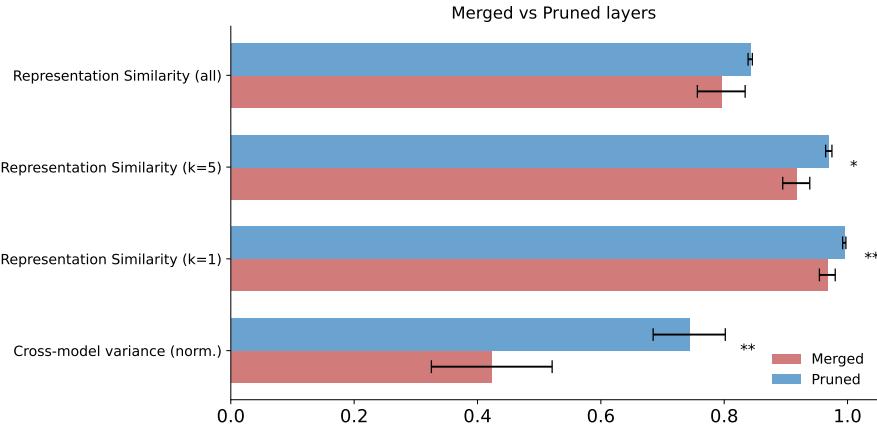
914
 915
 916
 917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932



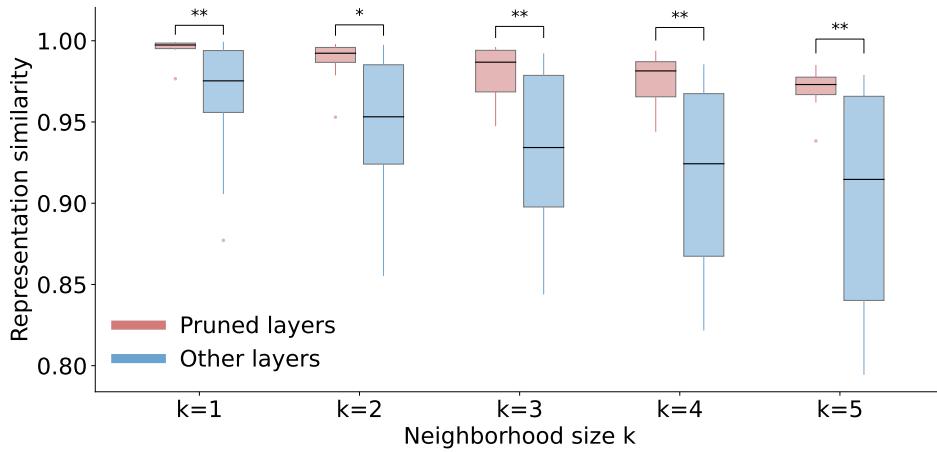
933 Figure 4: Positional preference pattern in layer operations. Operation distribution across normalized
934 layer positions, averaged over 7B and 13B models. Early layers favor SELECT, middle layers favor
935 MERGE, and late layers favor REMOVE.

936
937
938
939
940
941
942
943
944
945
946
947
948
949



950 Figure 5: Comparison of CKA (Centered Kernel Alignment)-based features between merged and
951 pruned layers with the mean and standard error. Stars indicate statistical significance (*: $p < 0.05$,
952 **: $p < 0.01$). Although both merged and pruned layers both exhibit high similarity with their
953 neighboring layers, merged layers maintain lower cross-model variance and stronger local and global
954 CKA coherence, while pruned layers exhibit higher representational divergence.

955
956
957
958
959
960
961
962
963
964
965
966
967
968
969



970 Figure 6: Representation similarity of pruned versus retained layers across neighborhood sizes
971 (k=1) to (k=5). Pruned layers (red) exhibit significantly higher similarity than retained layers (blue),
972 indicating that pruning primarily removes redundant layers (** $p < 0.01$).

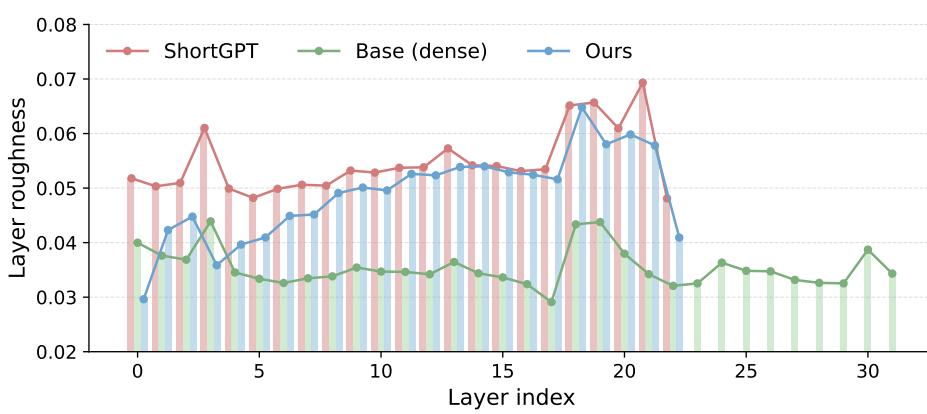


Figure 7: Layer-wise roughness comparison. Our method produces consistently lower roughness scores than ShortGPT, indicating smoother and more coherent depth-wise representation transitions.

F.O.3 WHY DO THESE PATTERNS EMERGE?

We now investigate whether these decisions align with interpretable layer properties. We conduct post-hoc analysis examining two complementary perspectives: cross-model representational alignment and within-model layer redundancy. All analyses below are conducted using Llama2-7B models.

We extracted CKA (Centered Kernel Alignment)-based features Kornblith et al. (2019) that capture both inter-model and intra-model structural properties. First, *cross-model variance* quantifies representational divergence across the four models by measuring the variability of their pairwise CKA similarities at each layer; higher variance indicates that models have learned different representations at that depth. Second, we compute *local CKA* at multiple scales ($k = 1, 5$, and all layers), measuring how consistently each layer aligns with its immediate neighbors (surrounding block). These metrics capture short-range smoothness, block-level coherence, and global structural integration. Lower local CKA values indicate better representational consistency at the corresponding scale.

Analysis 1: Merged layers exhibit cross-model alignment. Across all extracted features, merged layers consistently show higher representational consistency both within and across models (Fig. 5). They exhibit lower cross-model variance, indicating that all four models converge to similar feature representations at these depths. Their lower local CKA values further suggest that the representations of merged layers can be aligned and fused without structural conflict. In contrast, pruned layers demonstrate higher cross-model variance and lower global consistency, revealing that different models encode incompatible representations in these regions, retaining them during fusion contributes little useful information and may introduce conflicts.

Analysis 2: Pruned layers show within-model redundancy. We examine within-model layer similarity by measuring how closely each layer’s representations match its neighbors at different scales ($k=1$ to $k=5$). Results in Fig. 6 demonstrate that pruned layers (red) consistently exhibit higher representation similarity to their neighbors compared to retained layers (blue) across all neighborhood sizes. Statistical significance tests (**) confirm that the representations of redundant layers are highly similar to adjacent layers and thus contribute minimal unique information.

Analysis 3: Our method maintains smoother transitions than baselines. We compared the representation similarity of the pruned model produced by ShortGPT with that of our searched model. For each model, we computed the CKA similarity around each layer change relative to its neighboring layers. As shown in Fig. 7, the merge-based model consistently yields lower roughness values, indicating smoother and more coherent depth-wise representation transitions. This suggests that our method preserves the natural progression of representations instead of disrupting the hierarchical flow. In contrast, ShortGPT introduces sharper local changes, leading to a more fragmented representational structure. The smoother similarity profile of our model demonstrates a more stable internal organization, with fewer disruptive shifts between layers.

Together, these analyses reveal that merging and pruning target fundamentally different structural properties. Merging capitalizes on *cross-model consensus*: layers where all models have converged

1026 to similar representations can be safely fused. Pruning exploits *within-model redundancy*: layers
 1027 that duplicate information already present in their neighbors can be removed without information
 1028 loss. Critically, these patterns are *discovered* rather than *designed*. Our optimization framework
 1029 identifies them automatically by maximizing performance under compression constraints. The strong
 1030 correlation between discovered patterns and interpretable layer properties validates that our method
 1031 captures genuine structural regularities rather than exploiting dataset-specific artifacts.

G FULL BASELINE RESULTS

1035 To validate the efficiency of our proposed method, we conducted comparative experiments against
 1036 established baseline techniques. For fair comparison with other baseline methods, we selected the
 1037 same pruning ratios matching those used in LaCo (Yang et al., 2024) and ShortGPT (Men et al.,
 1038 2024) while being lower than those of other approaches. In order to make a fairer comparison, we
 1039 reproduced all the results and evaluated them on OpenCompass (Contributors, 2023) as in LaCo. All
 1040 experiments run on NVIDIA Tesla A100 GPUs. For each baseline method, we explored three
 1041 scenarios: (1) applying each baseline pruning method individually to all candidate models, (2) first
 1042 pruning each candidate model using existing methods and then merging them, and (3) first merging
 1043 the candidate models and then applying pruning techniques.

1044 We use the official implement of LLM-pruner and LaCo, It's worth noting that when reproducing the
 1045 LaCo method, we referenced the hyperparameter settings from the original paper. Due to differences
 1046 in hardware, we couldn't fully reproduce the paper's results: we couldn't obtain models with pruning
 1047 ratios consistent with the paper using the provided hyperparameters. We maintained consistency in
 1048 all other parameters while gradually adjusting the threshold from 0.75 until achieving the desired
 1049 pruning ratio. The specific parameters are detailed in the [Table 5](#).

1050 For the reproduction of ShortGPT, we implemented the algorithm based on the original paper and
 1051 similarly sampled 10,000 instances from the PG19 (Rae et al., 2019) dataset as calibration data,
 1052 following the methodology described in the paper. The resulting removed layers are shown in the
 1053 Table. The removed layers for the base model align with those reported in the ShortGPT paper, albeit
 1054 in a different sequence. We attribute this variation to slight differences in calculated layer importance
 1055 scores. The specific configuration of removed layers for each model is detailed in the [Table 6](#).

1056 For the merging process, we employed task arithmetic with weighting parameters in the range of [0.5,
 1057 1.0]. The full results of the baseline methods on the 7B model and the 13B model are presented in
 1058 [Table 7](#) and [Table 8](#), respectively.

1060 [Table 5](#): Hyperparameter settings for LaCo results. \mathcal{C} : Number of layers combined in each merge;
 1061 \mathcal{L}, \mathcal{H} : Layer range $[\mathcal{L}, \mathcal{H}]$; \mathcal{I} : Minimum interval between two adjacent merged layers; \mathcal{T} : Threshold
 1062 for representation similarity.

Size	Model	\mathcal{C} \mathcal{L} \mathcal{H} \mathcal{I} \mathcal{T}
Llama2-13B	Llama-2-13B	6 1 40 2 0.7
	WizardLM-13B	6 1 40 2 0.65
	WizardMath-13B	6 1 40 2 0.7
	llama-2-13b-code-alpaca	6 1 40 2 0.7
	Merge-then-prune	6 1 40 2 0.65
	Prune-then-merge	6 1 40 2 0.65
Llama2-7B	Llama-2-7B	6 1 40 2 0.7
	Llama-2-7B-Chat	6 1 40 2 0.65
	MAmmoTH-7B	6 1 40 2 0.7
	Llama-2-Coder-7B	6 1 40 2 0.7
	Merge-then-prune	6 1 40 2 0.65
	Prune-then-merge	6 1 40 2 0.65

Table 6: Setup of Removed Layers for Candidate Models in ShortGPT.

Model	Removed Layers
Llama-2-7B	25, 27, 24, 28, 26, 29, 23, 22, 21
Llama-2-7B-Chat	27, 25, 24, 28, 29, 26, 23, 22, 21
MAmmoTH-7B	27, 25, 24, 28, 29, 23, 26, 22, 21
Llama-2-Coder-7B	27, 25, 24, 28, 29, 26, 23, 21, 22
Llama-2-13B	33, 32, 31, 30, 34, 35, 29, 28, 27, 26
WizardLM-13B	33, 32, 31, 30, 34, 35, 29, 28, 27, 36
WizardMath-13B	33, 31, 32, 30, 34, 35, 29, 28, 27, 36
llama-2-13b-code-alpaca	33, 31, 32, 30, 34, 35, 29, 28, 27, 26

Table 7: The main results of baseline methods on the 7B model across multiple natural language benchmarks using candidate models: Llama-2-7B-Chat (LM), MAmmoTH-7B (Math), Llama-2-Coder-7B (Code), and Llama-2-7B (base). "PTM" (Pruning-then-Merging) refers to first pruning each candidate model using current pruner and then merging them. "MTP" (Merging-then-Pruning) refers to first merging the candidate models and then applying pruning. For LLMPruner and SliceGPT, alignment challenges exist after pruning. LLMPruner removes different model blocks, while SliceGPT calculates orthogonal transformation matrices that are highly dependent on each model's specific weight distributions and activation patterns, resulting in incompatible transformation spaces. Therefore, we only implemented "merge then prune".

LLM	Pruner	Type (ratio/layer)	Reasoning			Language			Knowledge			Understanding			Avg	
			CMNLI	HeSw	PIQA	CHID	WSC _P	WSC _G	CSQA	BoolQ	MMLU	CMLU	Race _H	Race _M	XSum	
Dense	LLMPruner (25.32%)	Base	32.98	71.34	78.18	41.56	37.50	38.46	55.04	70.70	46.67	31.88	35.53	33.36	19.55	43.84
		Math	32.99	68.60	75.79	39.71	39.42	36.54	50.78	69.36	43.04	32.16	30.36	36.42	20.88	43.45
		LM	31.30	71.28	75.95	36.11	63.46	59.62	64.29	74.77	48.30	33.93	52.52	55.22	22.45	47.56
		Code	32.99	70.27	78.62	41.61	36.54	41.35	57.41	71.04	46.22	32.20	41.25	39.69	18.79	46.25
SliceGPT (26.33%)	Llama-7B	Base	33.00	58.72	72.25	29.52	41.35	0.00	19.74	57.25	23.69	25.49	22.07	21.10	14.67	28.11
		LM	34.94	59.25	72.85	22.28	43.27	9.62	19.41	57.61	23.77	24.51	21.78	22.42	16.32	28.66
		MATH	32.99	55.74	70.84	25.82	37.50	21.15	18.84	54.31	24.77	25.20	22.87	23.89	10.91	28.00
		Code	32.99	59.57	73.34	30.32	46.15	0.00	20.15	57.28	23.21	25.16	21.56	21.52	15.19	31.07
LACO	ShortGPT (27.1%)	MTP	34.71	60.57	73.50	26.62	40.38	5.77	19.90	52.14	24.01	25.30	23.07	22.98	15.51	32.49
		Base	31.08	42.90	61.43	19.53	36.54	0.00	20.88	37.95	24.78	24.78	21.24	21.73	6.58	37.42
		LM	31.70	43.50	61.37	18.28	40.38	0.96	21.21	38.96	25.56	25.28	21.93	22.42	13.13	38.36
		MATH	31.89	41.55	58.81	18.43	39.42	4.81	19.49	40.09	25.38	25.02	25.59	26.88	8.78	39.56
PTM	ShortGPT (27.1%)	Code	31.81	44.02	63.17	18.48	36.54	13.46	19.74	37.92	24.71	25.22	21.41	21.66	2.59	38.19
		MTP	32.85	37.61	57.56	17.33	53.85	2.88	19.41	42.66	25.22	24.68	25.21	24.72	12.78	40.22
		Base	32.85	53.33	68.23	31.62	36.54	4.81	20.39	62.02	26.60	25.27	24.70	23.61	9.38	42.47
		LM	32.97	55.24	69.53	31.47	36.54	34.62	22.11	67.22	29.08	26.16	28.53	28.27	14.68	43.51
PTM	ShortGPT (27.1%)	Math	32.97	55.24	69.53	31.47	50.00	34.62	22.11	67.22	29.44	26.16	22.53	23.68	14.68	39.34
		Code	32.28	53.68	69.15	32.22	36.54	1.92	20.56	61.99	26.31	25.43	27.10	22.70	11.14	43.07
		MTP	32.43	57.80	71.82	28.97	41.35	16.35	27.52	71.28	30.49	26.88	25.76	27.09	8.27	44.33
		Base	31.89	56.26	71.22	27.32	39.42	22.12	23.42	72.66	29.30	26.00	25.19	26.81	16.11	43.62
MTP	ShortGPT (27.1%)	LM	33.09	57.42	66.54	21.53	56.73	48.08	52.5	67.34	43.68	28.31	32.53	31.69	12.40	39.45
		MATH	33.85	53.93	63.82	14.59	39.42	22.12	58.48	67.95	35.85	26.60	48.03	51.18	6.93	37.21
		Code	32.74	56.69	65.07	17.78	58.65	35.58	53.24	67.52	44.82	28.92	35.62	37.53	14.32	40.66
		MTP	34.10	54.18	64.42	16.83	61.54	36.54	55.61	73.21	36.84	25.61	42.94	45.89	10.12	35.73
PTM	ShortGPT (27.1%)	PTM	34.10	54.18	64.42	16.83	61.54	36.54	55.61	73.21	36.84	25.61	42.94	45.89	10.12	35.73

Table 8: The main results of baseline methods on the 13B model across multiple natural language benchmarks using candidate models: WizardLM-13B (LM), WizardMath-13B (Math), llama-2-13b-code-alpaca (Code), and Llama-2-13B (Base). "PTM" (Pruning-then-Merging) refers to first pruning each candidate model using the current pruner and then merging them. "MTP" (Merging-then-Pruning) refers to first merging the candidate models and then applying pruning. For LLMPruner and SliceGPT, alignment challenges exist after pruning. LLMPruner removes different model blocks, while SliceGPT calculates orthogonal transformation matrices that are highly dependent on each model’s specific weight distributions and activation patterns, resulting in incompatible transformation spaces. Therefore, we only implemented "merge then prune"

LLM	Pruner	Type	Reasoning			Language			Knowledge			Understanding			Avg		
			CMNLI	HeSw	PIQA	CHID	WSC _P	WSC _G	CSQA	BoolQ	MMLU	CMLU	Race _H	Race _M	XSum		
Dense	LLMPruner (21.2%)	Base	32.99	74.77	79.71	47.35	50.96	63.46	67.24	71.38	55.84	38.74	57.98	60.17	23.47	47.51	55.11
		LM	35.36	70.41	78.73	36.21	57.69	60.58	65.03	73.70	53.48	30.85	66.12	71.66	22.44	52.00	55.30
		MATH	32.99	68.78	77.26	44.36	36.54	19.23	60.36	78.44	54.21	38.12	47.74	48.82	19.51	44.66	47.93
		Code	32.99	74.82	80.14	47.30	51.92	63.46	68.88	72.72	55.92	39.26	58.03	63.72	24.45	48.38	55.86
	SliceGPT (23.6%)	Base	33.27	63.57	75.41	34.17	37.50	0.00	19.57	45.35	23.08	25.36	21.61	21.80	14.41	29.64	31.77
		LM	33.49	60.28	75.57	23.68	39.42	0.00	19.00	63.24	23.27	25.23	22.36	21.45	17.13	32.00	32.58
		MATH	32.99	55.49	72.91	30.02	41.35	0.00	19.08	53.18	23.06	25.53	21.36	21.31	12.25	29.10	31.26
		Code	33.18	64.21	75.52	34.17	43.27	0.00	19.90	47.80	23.19	25.52	21.61	22.08	16.08	29.59	32.58
		MTP	33.86	64.11	73.50	22.18	60.58	0.00	21.46	61.96	23.84	25.62	22.16	21.59	14.98	32.11	34.14
		Base	30.39	46.69	63.22	18.78	42.31	25.96	25.23	37.83	30.43	25.14	23.47	24.65	8.78	39.56	31.60
	Llama-13B	LM	33.19	42.44	59.90	18.03	54.81	19.23	32.51	41.22	33.09	25.75	29.45	29.87	9.99	37.75	33.37
		MATH	32.73	36.27	59.30	17.38	42.31	0.00	21.62	37.83	30.33	25.16	23.84	24.16	1.54	40.82	28.09
		Code	30.82	46.69	63.00	19.18	42.31	27.88	24.82	37.83	31.38	25.20	23.47	24.65	8.83	40.00	31.86
		MTP	30.98	46.83	62.57	19.33	51.92	49.04	37.76	38.38	33.55	25.22	23.53	23.05	9.95	39.67	35.13
LaCo (24.6%)	Base	LM	32.97	59.38	73.45	36.26	37.50	37.50	19.41	57.31	25.03	24.41	22.47	23.19	16.39	37.92	35.94
		Math	33.97	56.51	72.25	33.52	44.23	44.23	21.38	64.19	25.35	24.55	21.98	21.94	12.77	37.48	36.74
		Code	32.99	59.53	75.03	38.41	51.92	0.00	19.49	53.18	24.48	24.72	22.87	22.28	17.70	37.53	34.30
		MTP	33.49	62.50	74.37	35.26	63.46	63.46	18.84	64.65	41.83	24.87	26.10	25.97	15.93	39.51	42.16
	ShortGPT (24.6%)	PTM	31.85	29.80	51.31	12.74	36.54	36.54	19.57	62.08	24.37	25.19	22.10	22.77	0.40	35.12	29.31
		Base	32.99	67.07	73.45	36.46	42.31	45.19	66.99	58.56	54.74	38.39	56.89	54.06	18.58	46.19	49.42
		LM	32.95	62.64	73.50	28.22	36.54	50.96	65.44	67.71	53.50	30.73	65.52	71.38	19.12	48.60	50.49
		MATH	32.99	59.63	70.40	31.12	40.38	1.92	59.71	70.00	52.70	36.94	43.51	44.29	7.73	43.84	42.51
H ADDITIONAL ANALYSIS	Code	MTP	32.92	67.03	74.37	36.41	55.77	46.15	68.96	60.55	54.94	38.30	53.60	58.57	8.41	47.18	50.23
		MTP	31.07	63.24	68.61	27.17	49.04	43.27	65.68	78.01	51.26	36.88	57.38	62.67	16.94	44.05	49.66
		PTM	31.08	63.32	68.66	27.12	49.04	43.27	65.68	77.98	51.23	36.82	57.40	62.47	17.01	43.95	49.65

H ADDITIONAL ANALYSIS

H.1 DIFFERENT CALIBRATION DATASETS AND METRICS

In this study, we leverage multiple-choice datasets as calibration data and optimize for accuracy in a multi-objective setting. In this section, we further analyze the impact of these design choices by comparing single-objective optimization and PPL-based optimization:

Single Objective (Single-obj). We used the MMLU validation dataset for calibration and kept accuracy as the optimization objective. We evaluated the resulting pruned models across our benchmark suite. As shown in Table 14, although these models still remain competitive (45.62 average), the single-objective optimization led to a noticeable decline from our multi-objective approach (48.55 vs. 45.62). Importantly, the single-objective models demonstrated stronger performance on MMLU-related tasks but showed performance degradation on certain other tasks due to their narrow optimization focus. This confirms our hypothesis that broad, multi-objective optimization is necessary to preserve the broad functionality of modern LLMs, rather than overfitting to a single task domain.

Perplexity Objective (PPL-obj). We additionally evaluate with perplexity (PPL) on WikiText (Merity et al., 2016) as a search metric, using 1500 examples for calibration. As shown in Table 14, the resulting pruned models achieve only 25.38 on average, revealing a substantial performance drop relative to all other configurations. Even when compared to the single-objective MMLU optimization (which

1188
 1189 Table 9: Performance comparison of various model pruning strategies across multiple benchmark
 1190 categories. The settings include LR-only (Layer Removal only), LS+LR (combined Layer Selection
 1191 and Layer Removal), FL-merge (Folding Layers Merging), Single-obj (Single-objective optimiza-
 1192 tion), and PPL-obj (Perplexity-based objective). For multi-objective optimization approaches, three
 1193 representative Pareto-optimal solutions (numbered 1-3) are showed.

setting	Reasoning			Language			Knowledge			Understanding			Avg		
	CNLI	HeSw	PIQA	CHID	WSC _P	WSC _G	CSQA	BoolQ	MMLU	CMLU	Race _H	Race _M	XSum	C3	
LR-only-LM-1	33.93	57.51	65.49	18.18	62.46	48.03	58.79	62.18	45.76	30.95	49.54	53.36	1.45	38.60	44.73
LR-only-LM-2	33.58	52.10	64.25	19.53	50.00	62.50	63.64	41.80	48.33	32.84	51.03	51.46	5.47	39.56	44.01
LR-only-LM-3	34.96	53.80	66.70	18.58	49.04	58.65	60.61	68.87	47.85	33.54	42.51	43.04	8.05	41.42	44.83
LR-only-Math-1	33.77	54.49	68.23	21.93	62.50	37.50	27.85	57.52	37.08	28.73	31.42	34.05	7.51	37.92	38.61
LR-only-Math-2	31.69	56.56	68.77	27.07	63.46	30.77	36.69	62.35	39.17	29.15	33.39	38.65	4.41	43.34	40.39
LR-only-Math-3	32.94	58.43	69.64	25.97	54.81	25.96	29.89	62.84	33.46	26.92	31.39	32.10	8.06	40.16	38.04
LR-only-Code-1	30.13	57.60	70.35	27.07	63.46	11.54	50.94	65.96	42.64	30.96	36.39	36.77	3.15	43.78	40.77
LR-only-Code-2	34.94	57.37	68.55	28.67	42.31	41.35	54.46	63.00	42.49	27.39	34.88	35.31	4.08	43.78	41.33
LR-only-Code-3	34.93	56.71	69.42	25.92	59.62	31.65	52.83	62.20	43.03	28.80	38.51	39.07	2.87	41.70	41.95
LR-only-Base-1	32.67	54.21	66.00	26.07	36.54	1.92	49.47	64.19	44.47	28.84	38.99	38.86	0.25	41.59	37.43
LR-only-Base-2	32.22	56.48	67.46	26.32	61.54	50.00	41.44	66.91	40.54	28.01	37.94	39.35	0.96	41.92	42.22
LR-only-Base-3	31.13	52.90	67.95	27.97	36.54	0.00	54.63	64.13	43.01	30.03	35.56	37.05	6.79	41.70	37.81
FL-merge-1	32.99	52.90	63.66	19.28	46.15	62.50	60.52	75.20	48.30	34.33	50.77	55.29	6.39	39.40	46.26
FL-merge-2	32.99	51.99	63.44	18.33	46.15	63.46	61.26	74.77	48.80	33.84	51.11	56.34	5.75	37.86	46.15
FL-merge-3	33.89	51.15	62.62	18.63	50.00	61.54	60.44	75.78	48.61	33.96	50.74	55.85	5.72	38.03	46.15
LS+LR-1	34.75	53.65	66.32	17.83	63.46	22.12	59.71	70.61	47.32	33.77	36.62	33.91	8.54	42.35	42.21
LS+LR-2	31.74	55.25	68.39	26.77	63.46	10.58	58.72	66.27	47.40	33.15	40.02	45.26	2.62	44.16	42.41
LS+LR-3	32.92	55.84	65.07	17.98	63.46	26.92	58.97	51.22	48.97	34.61	48.68	49.44	8.33	42.41	43.20
Single-obj	32.15	56.02	67.46	19.08	39.42	48.08	62.33	74.43	47.40	34.14	50.94	52.86	12.35	41.97	45.62
PPL-obj	33.39	23.89	52.07	14.84	45.19	7.69	19.33	39.51	24.25	24.69	22.81	21.17	0.06	26.36	25.38

1214
 1215 uses a similarly sized dataset), the PPL-optimized models showed considerably weaker performance
 1216 across most tasks. These results show that, although perplexity is a common metric for language
 1217 model evaluation, it is not an effective signal for preserving model capabilities during pruning,
 1218 especially for tasks that require reasoning or knowledge application beyond fluent text generation.

1219 H.2 ENHANCING LAYER-FOLDING PRUNING POTENTIAL

1220 We design a search space for Layer-Folding Pruning consisting of: (1) A binary selection vector
 1221 $\mathbf{s} = [s_1, s_2, \dots, s_k]$ indicating which layers to remove, and (2) An importance weight vector $\mathbf{w} =$
 1222 $[w_1, w_2, \dots, w_k]$ representing each layer’s importance value. Retained layer L'_i performs a depth-wise
 1223 linear combination with itself and adjacent removed layers:

$$L'_i = \beta_i \cdot L_i + \sum_{j \in \mathcal{N}(i)} \beta_j \cdot L_j \cdot \mathbb{1}_{s_j=1}$$

1224 where $\mathcal{N}(i)$ represents adjacent layers to L_i , $\mathbb{1}_{s_j=1}$ indicates layer j is removed, and β_j are normalized
 1225 weights derived from \mathbf{w} such that $\beta_i + \sum_{j \in \mathcal{N}(i)} \beta_j \cdot \mathbb{1}(s_j = 1) = 1$. This ensures retained layers
 1226 incorporate information from nearby removed layers, preserving network functionality.

1231 H.3 EFFICIENCY ANALYSIS

1232 **Budget allocation to search trials.** Our optimizer dynamically adjusts the budget allocation during
 1233 the search process, where the budget is defined as the calibration dataset size used for search. As the
 1234 allocation of search trials directly determines the overall search duration. Here, we analyze the budget
 1235 distribution during the search process, as shown in Table 15. Our analysis reveals that only 22% of
 1236 the search trials utilize the full budget, while over 41.4% of the evaluations were conducted with
 1237 the minimum budget, which is 5-10 times smaller. This efficient allocation enables our pruning to
 1238 significantly increase the chance of discovering superior configurations under the same computational
 1239 budget.

1240 **Wall-Clock Time Analysis of the Search Process.** There are three main phases of our search
 1241 process to consider for computational costs. **1) Computation of a new merge:** This phase involves

Table 10: Model Performance Comparison Across Pruning Ratios

Model	Prune Ratio	Reasoning				Language				Knowledge				Understanding			Avg
		CNLI	HeSw	PIQA	CHID	WSC _P	WSC _G	CSQA	BoolQ	MMLU	CMLU	Race _H	Race _M	XSum	C3		
Base	0	32.98	71.34	78.18	41.56	37.50	38.46	55.04	70.70	46.67	31.88	35.53	33.36	19.55	43.84	45.47	
Base	12.5	32.99	67.06	74.92	39.61	36.53	1.92	57.41	69.36	47.15	31.61	39.11	38.65	17.59	44.60	42.75	
Base	25	32.98	63.80	69.21	35.37	36.54	0.00	50.78	64.74	40.80	30.31	35.19	35.62	16.11	43.51	39.64	
Base	37.5	32.58	45.04	61.53	20.68	36.54	2.88	42.18	64.43	39.87	29.42	31.90	29.74	2.77	41.37	34.35	
Base	50	34.51	34.89	55.33	17.08	36.54	11.54	19.82	62.29	28.72	25.10	23.41	26.04	1.21	35.07	29.40	
Base	62.5	35.14	29.71	52.83	14.94	39.42	1.92	21.46	50.06	24.55	25.16	26.76	25.42	0.09	27.62	26.80	
Base	75	34.94	26.71	51.03	13.59	36.54	8.65	20.56	52.60	24.23	24.47	23.18	22.63	0.08	27.29	26.17	
LM	0	31.30	71.28	75.95	36.11	63.46	59.62	64.29	74.77	48.30	33.93	52.52	55.22	22.45	47.56	52.63	
LM	12.5	32.42	67.58	72.72	28.91	50.92	60.50	60.92	72.88	46.69	32.02	51.34	54.45	18.26	45.94	49.68	
LM	25	30.10	60.63	66.82	20.53	48.96	42.31	65.88	70.82	42.09	32.40	48.23	50.43	15.75	43.62	45.11	
LM	37.5	33.29	45.13	60.66	20.03	36.54	11.73	59.38	68.07	39.18	29.64	39.71	42.20	6.36	41.04	39.40	
LM	50	34.93	34.67	56.20	16.18	36.54	8.65	22.28	62.14	32.01	26.44	25.39	25.49	2.34	35.01	29.88	
LM	62.5	34.11	30.50	53.21	14.34	51.92	2.88	20.56	57.95	24.58	25.21	23.13	23.75	0.18	27.12	27.82	
LM	75	34.87	27.03	52.19	14.54	39.42	0.00	20.23	53.87	24.45	24.83	21.41	22.14	0.02	26.69	25.82	
Math	0	32.99	68.60	75.79	39.71	39.42	36.54	50.78	69.36	43.04	32.16	30.36	36.42	20.88	43.45	44.25	
Math	12.5	32.97	64.72	73.06	37.50	23.08	23.07	51.43	71.16	42.91	31.90	32.99	36.07	19.30	43.83	41.71	
Math	25	34.92	46.24	61.92	19.38	36.54	56.73	45.45	72.81	35.07	29.78	31.45	34.33	6.24	39.89	39.34	
Math	37.5	32.99	55.42	62.81	23.82	38.38	4.81	37.87	68.68	36.46	27.19	28.02	33.79	13.88	39.37	36.04	
Math	50	32.73	35.93	55.06	16.73	39.42	39.42	20.15	64.34	29.94	25.52	26.82	26.60	2.31	35.56	32.15	
Math	62.5	34.93	31.06	54.08	13.79	58.65	4.81	20.56	46.24	26.70	25.05	26.56	26.53	0.57	28.33	28.42	
Math	75	34.94	27.35	52.07	14.39	43.27	2.88	20.88	56.51	24.25	23.14	24.76	24.79	0.15	27.45	27.20	
Code	0	32.99	70.27	78.62	41.61	36.54	41.35	57.41	71.04	46.22	32.20	41.25	39.69	18.79	46.25	46.73	
Code	12.5	32.97	65.79	75.78	39.06	36.54	0.96	56.67	71.13	47.09	32.00	44.73	44.84	19.21	47.29	43.86	
Code	25	32.99	63.06	72.02	35.67	36.54	0.00	50.59	68.87	40.50	28.87	36.64	38.59	17.59	45.64	40.51	
Code	37.5	33.21	44.12	62.13	20.78	36.54	2.88	48.81	63.91	40.29	29.56	36.25	35.52	5.35	42.14	35.82	
Code	50	34.93	34.15	54.95	16.73	36.54	17.31	22.03	62.54	28.46	25.16	24.13	24.44	2.03	36.62	30.00	
Code	62.5	34.72	29.67	52.99	14.39	40.38	8.65	22.52	50.70	24.78	25.15	27.16	28.04	0.12	27.78	27.50	
Code	75	34.94	26.79	50.82	13.99	38.46	5.77	24.08	48.38	24.08	24.52	22.73	22.49	0.13	27.29	26.03	
Ours	0	36.88	73.16	78.67	39.46	64.46	45.19	65.37	78.43	49.75	35.08	58.78	61.65	24.50	49.33	54.34	
Ours	12.5	33.00	66.78	75.19	34.92	64.42	63.46	63.98	75.87	48.79	34.13	53.89	56.20	20.21	45.37	52.59	
Ours	25	32.99	57.31	68.34	22.38	63.46	63.46	57.58	62.17	45.92	30.96	52.20	56.06	7.12	39.67	47.11	
Ours	37.5	35.67	51.02	63.44	20.68	62.50	22.00	57.99	67.52	47.09	34.11	44.00	46.38	2.96	39.34	42.00	
Ours	50	33.97	41.99	58.16	21.08	38.54	24.12	26.52	46.03	32.32	28.30	28.99	28.88	6.30	36.11	32.23	
Ours	62.5	33.30	28.34	51.96	18.09	46.15	6.88	23.88	45.81	26.41	26.95	28.73	28.72	5.09	28.47	28.48	
Ours	75	34.93	30.45	49.18	20.48	39.54	10.81	21.98	45.29	25.28	24.68	26.30	26.93	0.46	28.38	27.47	

computing a new candidate point to evaluate later with the search procedure. For standard merging algorithms, such as task arithmetic (which we use in the submission), the cost of the merge is negligible, coming down to approximately 3 operations per model parameter. The operation can run on the accelerator (e.g., GPU) when memory permits, or be executed with minimal CPU RAM by streaming parameter blocks from disk. Although it can be overlapped with the next step, it was sufficiently fast in practice (e.g., merging two 7B models on GPU takes only 11.2 seconds), we did not implement this overlap, and there remains room for further optimization. **2) Evaluation of the merge:** Next, the merged point is evaluated, i.e., we measure the accuracy of this checkpoint on our training task. The cost of this operation is a function of (a) the size of the evaluation set and (b) the type of evaluation, both of which influence the speed. However, as this step is not specific to our approach, any inference framework for fast evaluation, such as vLLM, can be used (as we do). For example, evaluating PIQA requires only prefilling. With vLLM on our GPU V100 (batch size = 16), it takes us 21.23 seconds to evaluate on 1000 samples. We also note that, due to our multi-fidelity search approach, we can often end the evaluation early and do not need to check the full dataset (see Table 15). **3) Updating the coefficients of Bayesian hyperparameter estimation:** We use SMAC, a well-established and optimized package for Bayesian hyperparameter optimization. As the estimation is based on random forests, it is very cheap to update. For us, one step of the update takes 2.6 seconds.

1296 Table 11: The main results of the Llama3-8B model across multiple natural language benchmarks
1297 using candidate models: Meta-Llama-3-8B-Instruct (LM), MathCoder2-Llama-3-8B (Math), Code-
1298 Llama-3-8B (Code), and Meta-Llama-3-8B (Base). "PTM" (Pruning-then-Merging) refers to first
1299 pruning each candidate model using the current pruner and then merging them. "MTP" (Merging-
1300 then-Pruning) refers to first merging the candidate models and then applying pruning.

1302 LLM	Pruner	Type	Reasoning			Language			Knowledge					Understanding			Avg
			CMNLI	HeSw	PIQA	CHID	WSC _P	WSC _G	CSQA	BoolQ	MMLU	CMLU	Race _H	Race _M	XSum	C3	
1304 Llama3-8B	Dense	Base	32.98	74.67	80.96	73.78	56.73	36.54	73.79	69.97	64.74	50.79	63.21	70.54	3.28	55.18	57.65
		LM	33.00	71.08	80.69	65.53	55.77	69.23	76.66	78.87	65.97	53.64	76.44	81.75	17.97	63.95	63.61
		Math	32.99	71.66	77.97	57.09	37.50	58.65	68.22	69.08	62.08	45.85	64.75	69.08	8.68	53.86	55.53
	Code	32.98	65.56	74.70	78.42	61.54	61.54	63.47	78.35	48.03	34.55	52.40	58.43	19.36	46.41	55.41	
		Base	36.00	31.36	62.84	25.77	36.54	63.46	53.97	50.61	36.05	33.83	30.73	32.38	1.17	38.96	38.12
		LM	32.83	45.06	65.78	23.38	41.35	53.85	39.56	63.73	32.37	28.69	40.14	45.19	3.68	43.51	39.94
	(24.6%)	ShortGPT	32.98	42.89	63.00	17.18	36.54	36.54	45.37	46.30	33.95	29.71	28.87	30.22	1.45	40.49	34.68
		Code	32.26	45.99	64.96	17.03	36.54	36.54	36.20	63.98	28.78	26.25	27.27	29.46	3.57	39.01	34.85
	MTP	32.98	48.51	64.85	18.33	36.54	35.58	42.83	67.06	33.05	28.73	30.07	32.66	3.64	44.33	37.08	
	PTM	32.95	48.58	64.96	18.43	36.54	35.58	42.83	67.22	33.05	28.71	30.16	32.45	3.66	44.27	37.10	

1313 Table 12: Architecture Parameters of pruned 13B models

1315 Layer	1316 Type	Model-1 Merge Factor	Output Scale	1317 Type	Model-2 Merge Factor	Output Scale	1318 Type	Model-3 Merge Factor	Output Scale
0	Base	-	1.00	LM	-	1.00	LM	-	1.00
1	LM	-	1.00	LM+Math	0.64	1.00	Base	-	1.00
2	LM	-	1.00	LM+Code	0.60	1.05	LM+Code	0.60	1.05
3	LM	-	1.00	LM	-	1.00	LM+Code	0.60	1.00
4	LM	-	1.00	LM	-	1.00	LM	-	1.00
5	Code	-	1.00	LM+Math	0.59	1.00	LM+Math	0.58	1.00
6	Base	-	1.00	LM	-	1.00	LM	-	1.00
7	LM	-	1.00	LM+Math	0.60	1.00	LM+Math	0.60	1.00
8	LM	-	1.00	LM	-	1.00	LM+Code	0.59	1.00
9	LM	-	1.00	LM	-	0.84	LM	-	0.93
10	LM	-	1.00	LM	-	1.02	LM	-	1.22
11	LM	-	1.00	LM+Code	0.66	0.77	LM+Math	0.66	1.00
12	LM	-	0.91	LM+Code	0.60	1.00	LM+Code	0.60	1.13
13	LM+Code	0.70	1.00	LM+Math	0.60	1.00	LM+Math+Code	0.60	1.11
14	LM+Math	0.70	1.00	LM+Math	0.60	1.00	LM	-	1.00
15	LM	-	1.00	LM+Math	0.70	1.00	LM+Math	0.66	1.00
16	Base	-	1.00	LM+Math	0.60	1.00	LM+Math	0.60	1.00
17	LM	-	1.00	LM	-	1.00	LM	-	1.00
18	LM	-	1.00	REMOVED			REMOVED		
19	LM+Code	0.70	1.00	LM+Code	0.60	1.00	LM+Code	0.60	1.01
20	LM+Code	0.70	1.00	LM	-	1.00	REMOVED		
21	LM	-	1.00	Base	-	1.07	Base	-	1.07
22	LM	-	1.00	Math	-	1.00	LM+Math	0.60	1.09
23	LM	-	1.00	REMOVED			REMOVED		
24	LM	-	1.00	Base	-	1.01	Base	-	1.01
25	REMOVED			REMOVED			REMOVED		
26	REMOVED			LM	-	1.04	LM	-	1.04
27	REMOVED			REMOVED			REMOVED		
28	REMOVED			REMOVED			REMOVED		
29	REMOVED			REMOVED			REMOVED		
30	REMOVED			Base	-	1.00	Base	-	1.00
31	REMOVED			REMOVED			REMOVED		
32	REMOVED			REMOVED			LM	-	1.00
33	REMOVED			REMOVED			REMOVED		
34	LM	-	1.00	Base	-	1.00	Code	-	1.00
35	Base	-	1.00	LM	-	1.13	LM	-	1.28
36	LM	-	1.00	REMOVED			REMOVED		
37	LM	-	1.00	LM	-	1.00	LM	-	1.00
38	LM	-	0.75	LM	-	1.00	Math	-	1.00
39	REMOVED			Math	-	1.00	Math	-	1.00

1344 With our parallel acceleration strategies (e.g., simultaneous merging and evaluation), the evaluation
1345 phase becomes the dominant factor in end-to-end runtime. To provide a clearer picture, we report the
1346 evaluation wall-clock time for different datasets under various computational budgets on Llama2-7B
1347 as shown in Table 16. Model initialization using vLLM takes 19.52 seconds. Overall, our approach
1348 takes 30/35.36/60.36 seconds per round across different fidelity levels, and we run 500 rounds in
1349 total, with 41% of trials requiring only the smallest budget. When evaluation parallelism is disabled
(parallelism = 1), the total wall-time is simply the sum of the individual evaluation times.

Table 13: Architecture Parameters of pruned 7B models

Layer	Type	Model-1 Merge Factor	Output Scale	Type	Model-2 Merge Factor	Output Scale	Type	Model-3 Merge Factor	Output Scale
0	LM	-	1.00	Math+Code	0.48	1.00	LM+Math	0.48	0.92
1	LM+Math+Code	0.50	1.00	LM	-	1.00	LM	-	1.00
2	LM	-	1.03	LM+Code	0.52	1.06	LM	-	1.03
3	LM	-	1.00	Base	-	0.98	Math	-	1.05
4	LM	-	1.04	LM	-	1.11	LM	-	1.11
5	LM+Code	0.59	1.08	LM+Math	0.38	1.12	LM	-	1.13
6	Code	-	1.19	Math	-	1.25	Code	-	1.11
7	Code	-	0.88	LM+Code	0.50	0.77	LM+Code	0.50	0.77
8	LM	-	1.28	LM	-	1.34	LM	-	1.19
9	LM	-	0.86	LM	-	0.93	LM+Code	0.51	0.56
10	Base	-	1.00	LM	-	1.00	LM	-	1.00
11	LM+Math	0.50	1.00	Math	-	1.02	LM	-	1.05
12	LM	-	1.00	LM+Math	0.41	0.99	LM+Math	0.41	1.00
13	Math	-	1.00	LM+Math	0.50	1.20	LM+Math	0.58	1.20
14	LM+Math	0.60	1.00	LM	-	1.00	LM+Math	0.54	1.00
15	LM	-	1.18	Code	-	0.97	Code	-	1.05
16	LM+Math	0.50	1.00	LM+Math	0.50	1.00	LM+Math	0.45	1.00
17	LM+Math+Code	0.50	1.00	Code	-	1.00	Math+Code	0.50	1.00
18	Math+Code	0.50	1.00	Base	-	1.00	Base	-	1.01
19	REMOVED			REMOVED			REMOVED		
20	REMOVED			REMOVED			REMOVED		
21	LM	-	1.00	REMOVED			LM	-	1.00
22	REMOVED			REMOVED			REMOVED		
23	REMOVED			REMOVED			REMOVED		
24	REMOVED			LM	-	1.00	REMOVED		
25	REMOVED			REMOVED			REMOVED		
26	REMOVED			REMOVED			REMOVED		
27	LM	-	1.00	Base	-	0.99	LM	-	0.99
28	REMOVED			LM	-	1.00	REMOVED		
29	LM+Code	0.50	1.00	LM	-	1.00	LM+Code	0.50	1.00
30	REMOVED			REMOVED			REMOVED		
31	LM+Math	0.50	1.00	REMOVED			LM+Math	0.50	1.00

Table 14: Comparison of different searching settings across various benchmarks. Settings: LR-only: Layer-remove only, LS+LR: Layer-selection + layer-remove, FL-merge: Folding Layers Merging.

Setting	Reasoning		Language		Knowledge		Understanding		Avg						
	CNL1	HeSw	PIQA	CHID	WSC _P	WSC _G	CSQA	BoolQ	MMLU	CMLU	Race _H	Race _M	XSum	C3	
Ours	35.46	54.43	67.74	23.63	63.46	43.27	62.90	75.08	48.75	33.86	55.35	58.64	12.99	44.16	48.55
LR-only	34.96	53.80	66.70	18.58	49.04	58.65	60.61	68.87	47.85	33.54	42.51	43.04	8.05	41.42	44.83
LS+LR	32.92	55.84	65.07	17.98	63.46	26.92	58.97	51.22	48.97	34.61	48.68	49.44	8.33	42.41	43.20
FL-merge	32.99	52.90	63.66	19.28	46.15	62.50	60.52	75.20	48.30	34.33	50.77	55.29	6.39	39.40	46.26

Post-training Setup. We selected two competitive baseline methods (ShortGPT, LACO) and followed the recovery-phase setting from LLM-Pruner. We used the cleaned Alpaca dataset (50k samples) and fine-tuned with the LoRA configuration: rank (d=8), learning rate = 1e-4, 100 warm-up steps, batch size = 64, AdamW optimizer, and 2 training epochs.

Computational cost scaling with candidate number. The computational cost increases with the number of candidate models, primarily due to the need for longer search trails to ensure we find optimal performance points. As shown in the table Table 17.

Table 15: Budget allocation to search trials for pruning. 41% of trials require only the smallest budget size, significantly increasing efficiency.

Dataset	Low Budget	Medium Budget	High Budget
	(41.4%, 207 trials)	(36.6%, 183 trials)	(22.0%, 110 trials)
PIQA	100	300	1000
WSC	100	200	500
CSQA	100	300	1000
MMLU	100	300	1000

Table 16: Evaluation runtime for different datasets and sample sizes

Dataset	Size	Runtime (Seconds)
CSQA	100	2.76
	300	6.97
	1000	16.51
WSC	100	2.41
	200	2.50
	500	2.67
PIQA	100	2.75
	300	7.00
	1000	21.23
MMLU	100	2.56
	300	6.49
	1000	21.66

Table 17: Scaling of Computational Cost with Number of Models

Number of Models	Search Trials	FLOPs
1	200	9.85×10^{15}
2	300	2.26×10^{16}
3	500	9.35×10^{16}

H.4 SCALING TO STRONGER THINKING MODEL

We further extend our method to recent thinking models. Specifically, we evaluate our approach using Qwen3-4B-Instruct (LM) and Qwen3-4B-Thinking (Thinking) models (Team, 2025). The results are presented in Table 19, demonstrating the effectiveness of our method on this emerging model architecture.

Table 18: Comparison of efficiency of pruning methods

Metric	LACO	ShortGPT	Ours (Multi-models)	Ours (Layer Folding)
Pruning Stage				
FLOPS	1.29e+14	4.91e+19	9.35e+16	1.75e+16
Performance (avg)	37.14	42.40	48.55	46.26
Post-training Stage				
FLOPS	1.06e+18	1.06e+18	0	0
Performance (avg)	40.03	42.76	48.55	46.26
Overall Summary				
Total FLOPS	1.06e+18	4.91e+19	9.35e+16	1.75e+16
Final Accuracy	40.03	42.76	48.55	46.26

1458
 1459 Table 19: Comparison of pruning methods on multiple natural language benchmarks. "Single" refers
 1460 to the best performance achieved when pruning a single model directly, while "Merge" refers to the
 1461 best performance achieved through either "pruning-then-merging" or "merging-then-pruning". 4B
 1462 models: Qwen3-4B-Instruct (LM), Qwen3-4B-Thinking (Thinking).

LLM	Pruner	Type	Reasoning			Language			Knowledge				Understanding				Avg
			CMNLI	HeSw	PIQA	CHID	WSC _P	WSC _G	CSQA	BoolQ	MMLU	CMLU	Race _H	Race _M	XSum	C3	
Qwen3-4B	Dense	Base	38.83	64.20	75.68	79.67	48.08	55.77	80.34	80.37	72.43	73.52	65.95	73.33	14.73	67.62	63.61
		Thinking	45.22	60.60	75.52	79.02	62.50	65.38	77.81	82.45	70.57	71.85	69.73	78.13	1.78	67.73	64.88
	ShortGPT	Single	35.45	44.78	67.03	53.55	63.46	30.77	49.63	63.39	44.40	46.09	35.96	39.21	12.56	51.95	45.59
		Merge	33.09	43.18	67.36	52.65	60.58	20.60	32.76	63.33	32.30	32.16	30.93	28.34	11.34	49.81	39.89
	Ours		36.07	45.94	68.39	56.29	64.42	35.60	62.00	67.71	48.56	47.04	37.85	40.81	10.20	52.55	48.10

1469

1470

1471 H.5 SCALING TO MATH AND CODE TASKS

1472

1473 We conducted additional experiments on mathematical and coding tasks using LLaMA-7B, comparing
 1474 our approach with the two strongest baseline methods (ShortGPT and LACO) under varying numbers
 1475 of pruned layers. As shown in the [Table 20](#), tasks that require structured output formats, such as
 1476 mathematical reasoning and code generation, are particularly sensitive to layer removal. The baseline
 1477 methods exhibit catastrophic drops in performance, with the removal of just 2-4 layers leading to
 1478 near-zero performance. In contrast, our method **consistently maintains superior performance**
 1479 **across all pruning ratios**.

1480

1481

Table 20: Performance comparison on mathematical and coding tasks across different pruning ratios
 using LLaMA-7B.

1482

Method	Layers Pruned	GSM8K	HumanEval
Candidate Models (No Pruning)			
base	0	11.30	3.05
lm	0	21.23	3.05
math	0	11.99	0.00
code	0	3.11	14.02
	2	3.80	6.71
LACO	4	0.76	1.22
	6	0.00	0.00
	8	0.00	0.00
	2	1.50	2.44
ShortGPT	4	0.00	0.61
	6	0.00	0.00
	8	0.00	0.00
	2	22.22	12.81
Ours	4	15.24	6.10
	6	5.31	1.22
	8	0.00	0.00

1505

1506

1507

1508

1509

1510

1511

1512 Table 21: Robustness analysis of candidate model combinations across multiple natural language
 1513 benchmarks. Blue-highlighted cells show optimal performance using three specialized models:
 1514 Llama-2-7B-Chat (LM), MAMmoTH-7B (Math), and Llama-2-Coder-7B (Code), with Llama-2-7B
 1515 serving as the base model.

Model Pool	Reasoning			Language			Knowledge			Understanding			Avg	
	CMNLI	HeSw	PIQA	CHID	WSCP	WSCG	CSQA	BoolQ	MMLU	CMMLU	RaceH	RaceM	XSum	
3-candidate models														
Math+LM+Code	35.46	54.43	67.74	23.63	63.46	43.27	62.90	75.08	48.75	33.86	55.35	58.64	12.99	44.16 48.55
2-candidate models														
Math+LM	32.93	55.93	67.90	20.93	57.69	57.69	62.24	76.54	45.31	33.25	49.06	53.27	14.42	42.30 47.82
Code+LM	33.00	58.09	67.52	21.08	56.73	50.96	62.65	70.09	46.96	33.85	50.31	55.36	12.38	43.40 47.31
Code+Math	32.93	53.67	69.53	27.27	38.46	34.60	56.35	65.99	41.40	30.97	45.14	44.43	8.11	44.60 43.12
1-candidate model														
LM	33.27	51.34	64.20	19.33	62.50	53.85	62.82	64.86	46.47	31.59	47.80	51.39	6.97	39.51 45.42
Math	32.95	60.65	66.49	22.43	36.54	32.50	58.07	71.01	44.13	32.07	40.28	41.57	13.76	41.10 42.40
Code	30.10	54.72	69.75	26.17	63.46	62.50	50.94	65.00	36.42	26.69	31.02	30.99	2.47	38.14 42.03
base only														
Base	32.22	56.48	67.46	26.32	61.54	50.00	41.44	66.91	40.54	28.01	37.94	39.35	0.96	41.92 42.20

1533 H.6 SCALING TO OTHER CANDIDATE MODELS

1535 To clarify the role of domain diversity in candidate model selection, we note that strict domain
 1536 diversity is not always necessary. The optimal combination depends on the optimization objective: if
 1537 the goal is improving performance on language tasks, including more high-quality language models
 1538 in the candidate pool is naturally beneficial. However, when access to same-domain models is limited,
 1539 a diverse candidate pool can still provide comparable results through complementary capabilities. To
 1540 validate this, we conducted an additional experiment using a candidate pool with only two models:
 1541 a Llama-7b instruct model(LM) and a Chinese fine-tuned Llama-7b model(CN_LM). As shown in
 1542 [Table 22](#), This focused selection of high-quality language models achieved even better performance
 1543 than our main results, confirming that strategic model selection can be more effective than broad
 1544 diversity when models are well-aligned with the target task.

1545 Table 22: Comparison with other candidate models using high-quality language models. The
 1546 experiment shows that using two specialized language models (LM and CN_LM) can achieve
 1547 superior performance.

Method	Reasoning			Language			Knowledge			Understanding			Avg	
	CMNLI	HeSw	PIQA	CHID	WSCP	WSCG	CSQA	BoolQ	MMLU	CMMLU	RaceH	RaceM	XSum	
Base	32.98	71.34	78.18	41.56	37.50	38.46	55.04	70.70	46.67	31.88	35.53	33.36	19.55	43.84 45.47
CN_LM	34.02	70.03	76.71	38.31	63.46	59.62	61.51	56.09	46.47	32.64	41.48	45.47	17.64	46.58 49.29
LM	31.30	71.28	75.95	36.11	63.46	59.62	64.29	74.77	48.30	33.93	52.52	55.22	22.45	47.56 52.63
ShortGPT	34.14	33.74	59.85	15.23	61.54	33.46	44.81	55.20	30.70	27.06	40.73	42.78	13.20	34.58 37.64
Ours	33.00	63.24	68.00	22.43	60.69	57.69	63.64	76.02	45.31	33.25	50.08	53.30	14.42	42.26 48.80