Under review as a conference paper at ICLR 2026

GPTAILOR: LARGE LANGUAGE MODEL PRUNING
THROUGH LAYER CUTTING AND STITCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have shown remarkable capabilities in language
understanding and generation. However, such impressive capability typically
comes with a substantial model size, which presents significant challenges in
deployment and inference. While structured pruning of model parameters offers a
promising way to reduce computational costs at deployment time, current methods
primarily focus on single model pruning. In this work, we develop a novel strategy
to compress models by strategically combining or merging layers from finetuned
model variants, which preserves the original model’s abilities by aggregating
capabilities accentuated in different finetunes. We pose the optimal tailoring of
these LLMs as a zero-order optimization problem, adopting a search space that
supports three different operations: (1) Layer removal, (2) Layer selection from
different candidate models, and (3) Layer merging. Our experiments demonstrate
that this approach leads to competitive model pruning, for example, for the Llama2-
13B model families, our compressed models maintain approximately 97.3% of
the original performance while removing ~ 25% of parameters, significantly
outperforming previous state-of-the-art methods.

1 INTRODUCTION

The unique strengths of modern Large Language Models (LLMs) in language understanding, genera-
tion, and reasoning (Touvron et al., 2023; OpenAl et al., 2023; Chiang et al., 2023) are inextricably
linked to their immense size. Research in this field has generally followed a trajectory of scaling
model parameters and data to enhance performance, guided by two fundamental principles: scaling
laws, which establish that performance improves predictably with increased parameters (Kaplan
et al., 2020; Hoffmann et al., 2022; Wei et al., 2022), and over-parameterization theory, which demon-
strates that models with excess parameters achieve better optimization and generalization (Allen-Zhu
et al.,, 2019a;b; Li et al., 2020). These principles have led researchers to develop billion-parameter
architectures delivering unprecedented performance across diverse language tasks.

Despite these impressive capabilities, deploying LL.Ms presents significant challenges due to their
substantial computational demands. Various post-training techniques have been proposed to address
the issues faced when deploying models to consumer GPUs or local devices, or when reducing costs,
including model pruning (Frantar & Alistarh, 2023; Dettmers et al., 2023b; Xia et al., 2023; Kim
et al., 2024; Ma et al., 2023), knowledge distillation into smaller models (Chen et al., 2022; Hsieh
et al., 2023; Shridhar et al., 2023; Tunstall et al., 2023), and quantization of weights (Yao et al., 2022;
Gholami et al., 2022; Dettmers et al., 2023a). While quantization reduces parameter precision but
requires specific hardware support, and knowledge distillation necessitates costly retraining of smaller
models, structured pruning offers a more flexible and hardware-agnostic approach by eliminating
redundant parameters to decrease computation costs.

Existing pruning methods typically focus on pruning individual models through manually designing
metrics that assess the importance of specific structures or layers based on hidden state changes or
gradient (Kim et al., 2024; Men et al., 2024; Ma et al., 2023). However, most of these approaches
cause performance degradation and require additional post-training with full parameters to recover
performance.

To address these limitations, we take a radically different perspective and re-formulate structured
pruning as the problem of pruning not individual models, but a family of task-specific finetuned

Under review as a conference paper at ICLR 2026

M —:—I:Ii__yé

Code | ——

Model Pool

Based Model
Code Model

—
Math Model

Fine-tunels| math

LM Evaluator

Searched
g N |)
Model L1
|

Base Code

Reward

Figure 1: Our Approach: Model Pruning through Cutting and Stitching. We achieve competitive
model pruning performance by running a zero-order search that tailors layers based on a shared pool
of finetuned variants of the original model, selecting and stitching layers if necessary. The model
finetunes accentuate task-specific skills, allowing us to merge key components into a smaller model,
maintaining, for example, 97% of capabilities of Llama-13B, even after a 25% reduction in layers.

versions of a given model. These finetuned variants are surprisingly helpful for model pruning, as
each variant accentuates a particular task, such as coding, math, or language understanding. Further,
the variants are close enough that model merging can be employed to re-combine layers from multiple
variants, if needed (Wortsman et al., 2022). These observations lead us to our main question: Can we
develop better compressed models by strategically combining or merging layers from different
models? Motivated by this question, we propose a novel structured pruning method based on zero-
order optimization that supports three different operations to combine layers from different models
into a smaller, more efficient model: (1) Layer removal, (2) Layer selection from related candidate
models, (3) Layer merging.

For the optimization, we define multiple objective functions that capture different aspects of model
performance across different tasks to better preserve the original model’s capabilities and run a fully
data-driven zero-order optimization, instead of relying on expert-made heuristics for pruning. We
employ SMAC (Lindauer et al., 2022), which strategically allocates computational resources by
evaluating configurations at different calibration data sizes, thereby reducing computational costs
while boosting the efficiency of finding superior solutions. We rigorously validate our method’s
effectiveness by evaluating it on Llama-7B and Llama-13B with four state-of-the-art structural
pruning methods across comprehensive benchmarks. Our experimental results demonstrate that our
approach maintains excellent performance while outperforming existing pruning methods.

In summary, the main contributions of this paper are:
* We propose a novel structured pruning method that formulates pruning as a zero-order

optimization problem over a pool of candidate models, enabling automated discovery of
efficient models that leverage capabilities from multiple models.

* We find that this approach allows for a cost-effective model pruning stage that is effective
without the need for post-training to heal the pruned model.

* We validate our method’s effectiveness through extensive experiments, comparing against
modern LLM pruning methods on 14 benchmark tasks.

Our method maximally preserves the capabilities of the dense model: 92.2% for the 7B model and
97.3% for the 13B model. significantly outperforming previous state-of-the-art methods.

2 RELATED WORK

Compression of Language Models. Large language models (Touvron et al., 2023; OpenAl et al.,
2023; Chiang et al., 2023) necessitate efficient compression methods to reduce parameters and latency.

Under review as a conference paper at ICLR 2026

These methods include structural pruning (Frantar & Alistarh, 2023; Dettmers et al., 2023b; Xia et al.,
2023; Kim et al., 2024; Ma et al., 2023), knowledge distillation (Chen et al., 2022; Hsieh et al., 2023;
Tunstall et al., 2023), and quantization (Yao et al., 2022; Gholami et al., 2022; Dettmers et al., 2023a).
Our work focuses on structural pruning, which removes sub-components from neural networks for
hardware-friendly compression - instead of pruning through sparsification, which requires significant
effort to materialize gains on standard hardware. Recent pruning methods are typically guided by
expert-designed criteria. LLMPruner (Ma et al., 2023) removes non-critical structures using gradient
information. SliceGPT (Ashkboos et al., 2024) reduces dimensionality by replacing weight matrices
with smaller ones. LaCo (Yang et al., 2024) collapses the weights of later layers into earlier ones
based on activation similarity. ShortGPT (Men et al., 2024) measures layer importance through
Block Influence (BI) derived from hidden state changes. Unlike these metric-based methods targeting
individual models, our approach employs zero-order search, namely hyperparameter optimization to
combine pruning and merging across model families. While LaCo also uses layer merging, it focuses
only on merging similar layers for a single model, whereas we focus on strategically combining
or merging layers from different models, which we find to noticeably improve upon within-model
merging. Additionally, our approach differs from the weight-sharing NAS-based pruning method
(Klein et al., 2024), which requires costly training. Instead of searching within a single model, we
directly optimize across fine-tuned models, strategically combining layers from diverse variants.

Model Merging. Model merging enhances capabilities without additional training data or computa-
tion. The field evolved from simple weighted parameter averaging (Utans, 1996) that often yielded
suboptimal results to advanced techniques like Task Arithmetic (Ilharco et al., 2022) which computes
differences between model parameters and SLERP (White, 2016) which performs interpolation along
spherical paths. Later approaches leveraged neural network sparsity, with TIES-Merging (Yadav
et al., 2024) selecting parameters based on magnitude while addressing sign conflicts, and DARE
(Yu et al., 2024) combining sparsification with parameter rescaling. Recent advances include Evolu-
tionary model merging (Akiba et al., 2024) optimizing coefficients through evolutionary search, and
multi-fidelity approach (Su & Geiping, 2025) that enables fine-grained exploration while reducing
costs. Our work also builds upon a multi-fidelity optimization framework to allow for an efficient
search for compressed models.

3 METHODS

In this section, we provide a detailed explanation of our approach. Unlike conventional model
compression pipelines, we formulate pruning as a zero-order optimization problem over the layers
and merging hyperparameters of a set of candidate models. We begin in Section 3.1 by outlining our
problem formulation and defining the optimization pipeline for pruning with three key components: a
search space, a target objective, and an optimizer. Section 3.2 follows with a description of the search
spaces. In Section 3.3, we introduce our designed target objective function. Finally, In Section 3.4,
we describe our choice of optimization strategy, which efficiently navigates the defined search space
to identify optimal pruning configurations. An overview of the pipeline is provided in Figure 1.

3.1 PROBLEM SETUP

Given a pre-trained base model My, and a set of candidate models M = {My, My, ..., Mk}
fine-tuned from the same base model, our goal is to find an optimal pruned model that maximizes
performance while adhering to a target sparsity constraint. Let s denote the target sparsity factor,
where s € [0, 1] indicates the fraction of parameters to be pruned. The pruned model is constructed
through a combination of layers from candidate models, employing operations such as layer-wise
merge, layer selection, and layer removal. These combinations and operations are determined by a
set of hyperparameters w € €2, with 2 representing the search space of all possible hyperparameter
configurations. Each configuration w defines a specific way to combine the layers from candidate
models to form a pruned model M,,. The performance of the pruned model can be evaluated using a
function f(M,,), which measures the model’s effectiveness on specific datasets and tasks. This leads
to our optimization problem:

w* = argmeigf(Mw) subjectto S(M,,) < 's (D
where S(-) calculates the fraction of pruned parameters in the model compared to the base model,
and w* represents the optimal hyperparameter configuration that yields the performing pruned model.

Under review as a conference paper at ICLR 2026

3.2 SEARCH SPACE DESIGN

The search space {2 encompasses all possible pruning configurations that can be applied to construct
our pruned model. We formulate this space based on structural layer-wise pruning operations. We
aim to support three operations: (1) Layer removal, (2) layer selection, and (3) Layer merging. We
designed our search space as follows:

Given a base model with [layers and K candidate models fine-tuned from this base model, we
design the search space through a binary vector r = [r1,72,...,7] where r; € {0,1} indicates
whether the i-th layer is retained (r; = 0) or removed (r; = 1), satisfying 22:1 r; = [l s8]
to achieve our target sparsity s. For each retained layer position ¢, we define a selection vector
¢; = [€i1,Ci2,...,Ci k] where ¢; j € {0,1} indicates whether the layer from the j-th candidate
model is selected. If Z;il ¢i,; = 0, we retain the layer from the base model instead. When multiple

candidate models contribute to a layer position (i.e., Zjil ¢i,; > 1), we specify a merge method
m; € {1,2,...,Z} from Z available merging techniques. Each merge method m; is associated with a
set of hyperparameters h; = [h; 1, hi 2, .. ., hi p,], where P; is the number of hyperparameters for the
specific merge method. These hyperparameters govern the precise mechanism of layer combination,
such as interpolation weights or mask ratio parameters. Therefore, a complete configuration w € €2 is

represented as w = {r, {c;|r; = 0}, {m;|r; = 0 and Z;il ¢i; > 1}, {h;|r; = 0 and Z]K:1 Cij >
1}}. The total cardinality of the search space can be calculated as: || = (”_ls]) X [0 25 X
Hi:m:O,Zj;l 514 % Hi:m:O,Zﬁil ciy>1 |h;|. which enables a wide exploration of pruning
strategies while maintaining the target sparsity constraint.

3.3 TARGET OBJECTIVE FUNCTION

To evaluate the quality of a pruned model, we define a multi-objective function that measures the
model’s effectiveness across tasks. Specifically, we measure performance on calibration datasets
Deatibration, quantifying metrics such as accuracy for classification tasks or perplexity for language
modeling tasks. This provides a direct assessment of how well the pruned model preserves the
capabilities of the original model. We define a multi-task objective function that captures different
aspects of model performance across a range of tasks to produce a comprehensive pruned model.
Let T = {T1,T»,..., T} be a set of m tasks. For a pruned model M, with configuration w, we
employ Pareto Efficient Global Optimization (ParEGO) (Knowles, 2006) to identify Pareto-optimal
solutions across different objectives. Specifically, the ParEGO algorithm transforms multi-objective
optimization problems into a series of single-objective problems through scalarization methods:

fai (Moo, \) = max {Xi fi(Mu)}+a Y A fi(Mo) @
i=1

where f;(M,,) is the i-th objective function,); is the corresponding weight satisfying >\ | \; = 1
and A\; > 0, and « is a small positive constant (typically set to 0.05). The Chebyshev norm component
max;=1, . m{N - fi(M.,)} ensures that all non-dominated solutions on the non-convex Pareto front
can be identified, while the term o) ;- | A; - fi(M,,) enhances the algorithm’s stability. The final
output of our optimizer is a Pareto front of pruning configurations, where each configuration represents
a different trade-off between performance on various tasks. In our experiments, we selected the
configurations from the best performing Pareto front and report their results.

3.4 SEARCH OPTIMIZER

To efficiently navigate the search space and find optimal pruning configurations, we employ SMAC
(Lindauer et al., 2022), which strategically allocates computational resources by evaluating con-
figurations at different fidelity levels. we use calibration dataset size as fidelity type, represented
by budgets b where by, < b < bn.x. Each budget value corresponds to a specific portion of the
calibration data used for evaluation - smaller budgets (lower fidelity) use fewer samples for faster
but less precise evaluations, while larger budgets (higher fidelity) use more samples for slower but
more accurate assessments. We use Random Forest (Breiman, 2001) as a surrogate model to sample

Under review as a conference paper at ICLR 2026

new configurations. Given configuration space €2, minimum budget b,,,;,, maximum budget by,
reduction factor n and the maximum trials 7},,,x, the whole process is described in Algorithm 1.

Algorithm 1 The optimization process of Gptailor.

Require: Configuration space {2, minimum budget b,;,, maximum budget by,.x, reduction factor 7,
maximum trials 77, .«

Ensure: Optimized configuration w*

Smax = [log,, Z‘:ﬁj, D+ (0, T+0 > Initialization
: for s € {Smax, Smax — 1,...,0} and T' < Tiax do

n f% ‘%], 7 4 bin * 1° > Config count & budget
C + Sample Configurations(n, D,) > Sample configurations

2
3
4
5: foric {0,1,...,s}and T' < Ty do
6.
7
8

—

nig< |n-n7t,r;—r-n > Stage parameters
foreachw € Cand T < Tyax do
: Evaluate y,, < foui(Mw, A) using r; samples from calibration set, D + D U
{(w,ri,y0)}, T T +1

9: end for

10 Sort C by performance, keep the top |n; /7| configurations in C

11: end for

12: end for

13: return the best-performing configuration w* evaluated at highest budget

This efficient optimization strategy enables us to handle the search space defined in Section 3.2,
identifying high-performing pruned models that satisfy our multi-objective function from Section 3.3,
with significantly reduced computational cost compared to exhaustive search approaches.

4 EXPERIMENTAL SETTINGS

Benchmarks. To evaluate the pruned model’s capabilities, we utilized the OpenCompass evaluation
framework (Contributors, 2023). Specifically, we conduct evaluations in five aspects: Reasoning,
Language, Knowledge, Examination and Understanding. Reasoning: CMNLI (CNLI)(Xu et al.,
2020), HellaSwag (HeSw)(Zellers et al., 2019), PIQA (Bisk et al., 2020). Language: CHID (Zheng
etal.,, 2019), WSC (Levesque et al., 2012). Knowledge: CommonSenseQA (CSQA) (Talmor et al.,
2018), BoolQ (Clark et al., 2019). Examination: MMLU (Hendrycks et al., 2020), CMMLU (CMLU)
(Lietal, 2023). Understanding: Race-High/Middle (H/M) (Lai et al., 2017), XSum (Narayan et al.,
2018), C3 (Sun et al., 2020). For CHID and XSum, we use generative evaluation. For the WSC
dataset, we use cloze log-likelihood (WSCP) and generative (WSCG) evaluation. The remaining
benchmarks are evaluated using cloze log-likelihood. See more details in Supplementary Section C.

Baselines. To evaluate the effectiveness of our method, we compared with four state-of-the-art struc-
tured pruning methods: LLM-Pruner (LLMPru) (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024),
LaCo (Yang et al., 2024), and ShortGPT (Men et al., 2024). In our experiments, we set the pruning
ratios of our method to be equivalent to ShortGPT and LaCo. Furthermore, as our method is based
on multiple candidate models, we check three comprehensive comparison scenarios to guarantee
fairness: (1) Applying each baseline pruning method individually to all candidate models and picking
the strongest one, (2) First pruning each candidate model using the baseline method and then merging
them, and (3) First merging the candidate models and then applying pruning. For model merging
across baseline experiments, we employ the task-arithmetic merging (Ilharco et al., 2022) technique
used in our search space, with merging factors within the range [0.5, 1.0] (Ilharco et al., 2022).

Model Selection. To assess the effectiveness of the proposed method, we search for pruned versions of
the popular Llama2-7B and Llama2-13B (Touvron et al., 2023). For 7B models, we use Llama-2-7B
(Touvron et al., 2023) as our base model, with three candidate models: Llama-2-7B-Chat (Touvron
et al., 2023) (LM), MAmmoTH-7B (Yue et al., 2023) (Math), and Llama-2-Coder-7B (Manuel
Romero, 2023) (Code). For 13B models, we use Llama-2-13B (Touvron et al., 2023) as the base
model, with WizardLM-13B (Xu et al., 2023) (LM), WizardMath-13B (L.uo et al., 2023) (Math), and
Llama-2-13B-Code-Alpaca (Chaudhary, 2023) (Code) as candidate models. We selected these models

Under review as a conference paper at ICLR 2026

for their wide availability to ensure reproducible evaluation. For the 7B models, we set the sparsity
ratio to 9/32, removing approximately 28% of the layers. For the 13B models, we set the sparsity ratio
to 10/40, removing approximately 25% of the layers. These two ratios are matching the best settings
from prior work in ShortGPT and LaCo, while being slightly higher than other baseline methods,
allowing for fair comparisons. For layer merging, we implement task-arithmetic (Ilharco et al., 2022

merging with a configurable merging factor that controls the magnitude of task-specific adaptations.

Calibration Data. For our calibration dataset, we selected multiple-choice datasets to ensure the
model’s generalization ability across different capabilities. Specifically, we sampled from diverse
datasets: 1000 examples from the PIQA (Bisk et al., 2020) training set, 500 examples from the WSC
(Levesque et al., 2012) training set, 1000 examples from the CSQA Talmor et al. (2018) training set,
and 1000 examples from the MMLU (Hendrycks et al., 2020) validation set (which is distinct from
the MMLU test set). This diverse collection allows us to calibrate our model across a broad spectrum
of linguistic and reasoning capabilities.

Objective and Optimizer. Our implementation builds upon SMAC (Lindauer et al., 2022) for opti-
mization. We allocate 500 search trials for both 13B and 7B experiments. To improve optimization ef-
ficiency, we use models with randomly removed middle layers as starting points, since models are rel-
atively robust to changes in these intermediate layers (Su & Geiping, 2025). We set the minimum bud-
get byin as 100, maximum budget by, as the 1000, and reduction factor 7 as 3. This resulted in budgets
of {100, 300, 1000} for PIQA, CSQA, and MMLU. For the WSC, we set budgets to {100, 200, 500}

5 RESULTS AND ANALYSIS

5.1 MAIN RESULTS

To validate the effectiveness of our method, we compared it with the four baselines: LLM-Pruner
(LLMPru) (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024), LaCo (Yang et al., 2024), and
ShortGPT (Men et al., 2024). We reproduce the results from these methods and evaluate on Open-
Compass (Contributors, 2023). As mentioned in the experiment section, we evaluate the results based
on three settings, i.e., individual pruning, pruning-then-merging, and merging-then-pruning.

Table 1 reports the best single model pruning and best merge results of all baselines, with full results
in Supplementary Section G. Our approach achieves the best results across multiple benchmarks
compared to all tested LLM pruning methods. In terms of overall performance, our method maximally
preserves the capabilities of the dense model: 92.2% (48.55/52.63) for the 7B model and 97.3%
(54.33/55.86) for the 13B model. To ensure our results were not biased by our calibration data, we also
calculate an avg* excluding the four benchmarks from which training data was selected for calibration
(MMLU, CSQA, WSC, PIQA). As shown in the avg* column, our method still outperformed all
baselines, further validating our approach. Notably, our method achieved comparable or even better
results than dense models on most tasks. We attribute these gains to: 1) Pruning might mitigate
"overthinking" effects (Kaya et al., 2019), as evidenced by benchmarks such as CNLI and WSC,
where other pruning methods also yielded performance gains, and 2) Our merging strategy might
mitigate the information loss caused by pruning, stemming from the merging process.

Figure 2 illustrates our best-performing 7B-pruned model and best-performing 13B-pruned models’
structure (See Supplementray Table 12 and Table 13 for details). We observe that both models tend to
remove middle-to-later layers, with the 13B model removing layers from layer 25 and the 7B model
from layer 19. This suggests information redundancy in these layers, aligning with findings that later
layers exhibit high similarity and redundancy (Men et al., 2024; Gromov et al., 2024).

5.2 WHICH PARTS OF THE SEARCH SPACE ARE CRITICAL ?

To determine where the benefits of our approach come from, we designed ablation experiments to
evaluate the contribution of different components in our search space. As our framework supports:
(1) Layer Selection (LS) from different candidate models, (2) layer merging, and (3) Layer Removal
(LR), we conducted ablation studies to isolate the impact of each component. Table 2 summarizes
the performance comparison across various benchmarks (More results in Supplementary Table 9).

Layer Removal Only (LR-only). We restricted the search space to allow only layer removal
operations on a single model. Consequently, our method in this setting supports only single-model

Under review as a conference paper at ICLR 2026

Table 1: Comparison of pruning methods on multiple natural language benchmarks. "Single" refers
to the performance achieved when pruning a single model directly, while "Merge" refers to the
performance achieved through either "pruning-then-merging" or "merging-then-pruning”. 7B models:
Llama-2-7B-Chat (LM), MAmmoTH-7B (Math), Llama-2-Coder-7B (Code), and Llama-2-7B (Base).
13B models: WizardLM-13B (LM), WizardMath-13B (Math), llama-2-13B-code-alpaca (Code), and
Llama-2-13B (Base).

LLM Pruner Type Reasoning Language Knowledge Understanding Avg | Avg*
(ratio) CNLI HeSw PIQA|CHID WSCp WSC¢ [CSQA BoolQ MMLU CMLU|Race; Racey; XSum C3

Base [32.98 71.34 78.18|41.56 37.50 38.46 |55.04 70.70 46.67 31.88 | 3553 33.36 19.55 43.84(45.47|42.30
Dense Math [32.99 68.60 75.79(39.71 39.42 36.54 [50.78 69.36 43.04 32.16 | 30.36 36.42 20.88 43.4544.25|41.70
0.0%) LM |31.30 71.28 75.95|36.11 63.46 59.62 |64.29 74.77 4830 33.93 | 52.52 55.22 22.45 47.56|52.63|47.24
Code [32.99 70.27 78.62|41.61 36.54 4135|5741 71.04 4622 32.20 | 4125 39.69 18.79 46.25|46.73|43.79

LLMPru Single|32.99 59.57 73.34|30.32 46.15 0.00 |[20.15 57.28 23.21 25.16 | 21.56 21.52 15.19 31.07|32.68|32.74
Llama (25.3%) Merge|34.71 60.57 73.50|26.62 4038 577 |19.90 52.14 24.01 2530 | 23.07 22.98 15.51 32.49|32.64|32.60

-7B SliceGPT Single|31.89 41.55 58.81|18.43 39.42 4.81 |19.49 40.09 2538 25.02 | 2559 26.88 8.78 39.56(28.98|28.64
(26.3%) Merge|32.85 37.61 57.56|17.33 53.85 2.88 |19.41 42.66 2522 24.68 | 2521 24.72 12.78 40.22|29.78|28.67

LaCo Single|32.97 55.24 69.53|31.47 36.54 34.62 |22.11 67.22 29.08 26.16 | 28.53 28.27 14.68 43.51|37.14|36.45
(27.1%) Merge|31.89 56.26 71.22|27.32 39.42 22.12 |23.42 72.66 29.30 26.00 | 25.19 26.81 16.11 43.62|36.52|36.21

ShortGPT Single|33.09 57.42 66.54|21.53 56.73 48.08 [52.50 67.34 43.68 28.31 | 32.53 31.69 12.40 39.45|42.24|35.97
(27.1%) Merge|34.10 54.18 64.42|16.83 61.54 36.54 |55.61 73.21 36.84 2561 | 42.94 45.89 10.12 35.73|42.40|37.62

Ours
(27.1%) 35.46 54.43 67.74|23.63 63.46 43.27 | 62.90 75.08 48.75 33.86 | 55.35 58.64 12.99 44.16|48.55| 43.73

Base |32.99 74.77 79.71|47.35 50.96 63.46 |67.24 71.38 55.84 38.74 | 57.98 60.17 23.47 47.51|55.11|50.48
Dense LM |35.36 70.41 78.73|36.21 57.69 60.58 |65.03 73.70 53.48 30.85 | 66.12 71.66 22.44 52.00{55.30{50.97
(0.0%) Math |32.99 68.78 77.26|44.36 36.54 19.23 | 60.36 78.44 54.21 38.12 | 47.74 48.82 19.51 44.66|47.93|47.05
Code |32.99 74.82 80.14|47.30 51.92 63.46 |68.88 72.72 5592 39.26 | 58.03 63.72 24.45 48.38/55.86/51.30

LLMPru Single|33.49 60.28 75.57|23.68 39.42 0.00 |19.00 63.24 2327 2523|2236 21.45 17.13 32.00{32.58/33.21
Llama (21.2%) Merge|33.86 64.11 73.50|22.18 60.58 0.00 |21.46 61.96 23.84 25.62 | 22.16 21.59 14.98 32.11(34.14/33.17

-13B SliceGPT Single|33.19 42.44 59.90(18.03 54.81 19.23 [32.51 41.22 33.09 2575|2945 29.87 9.99 37.75(33.37(29.74
(23.6%) Merge|30.98 46.83 62.57|19.33 51.92 49.04 |37.76 38.38 33.55 2522 |23.53 23.05 9.95 39.67|35.13|28.55

LaCo Single|32.33 60.18 70.57|32.67 34.62 34.62 |52.58 62.66 36.26 25.80 | 60.38 62.53 8.79 49.21/44.51|43.84
(24.6%) Merge|33.49 62.50 74.37|35.26 63.46 63.46 | 18.84 64.65 41.83 24.87 [26.10 25.97 15.93 39.51]42.16/34.71

ShortGPT Single|32.95 62.64 73.50(28.22 36.54 50.96 | 65.44 67.71 53.50 30.73 | 65.52 71.38 19.12 48.60(50.49|47.43
(24.6%) Merge|31.07 63.24 68.61|27.17 49.04 43.27 |65.68 78.01 51.26 36.83 | 57.38 62.67 16.94 44.05/49.66|46.38

(2212%) 32.99 66.81 75.03/29.07 54.81 62.50 | 69.37 74.28 55.90 39.71 | 65.52 71.03 16.80 46.74|54.33/49.22

Lt e -) 1ﬁw}>-| L-.... ..!1

a) Structure of the best 7B-pruned model. b) Structure of the best 13B-pruned model.

Figure 2: (a) Structure of our best-performing 7B-pruned model. The model integrates layers from
multiple candidates: Llama-2-7B-Chat (LM), MAmmoTH-7B (Math), Llama-2-Coder-7B (Code),
and Llama-2-7B (Base). The pruning ratio is 9/32, removing 9 layers out of 32 total layers. (b)
Structure of our best-performing 13B-pruned model. The model integrates layers from multiple
candidates: WizardLM-13B (LM), WizardMath-13B (Math), llama-2-13b-code-alpaca (Code), and
Llama-2-13B (Base). The pruning ratio is 10/40, removing 10 layers out of 40 total layers.

pruning without merging, similar to most conventional pruning approaches. As shown in Table 2,
there is a significant performance drop (48.55% vs. 44.83%), confirming that merely pruning layers
from a single model is insufficient. Moreover, it is worth noting that even with layer-removal only
pruning on a single model our method still outperforms the best baseline, ShortGPT (44.83% vs.
42.24%). This highlights the superiority of our approach to pruning, even in a simplified setting.

Layer Selection and Removal (LS+LR). In this setting, we enabled both layer selection from
different candidate models and layer removal operations, while disabling the layer merging
functionality. Compared with LR-only, LS+LR yields an even larger performance drop (48.55 vs.

Under review as a conference paper at ICLR 2026

43.20 on average). This suggests that merely combining layers from different models without proper
integration through merging is ineffective.

Table 2: Comparison of different searching settings across various benchmarks. Settings: LR-only:
Layer-remove only, LS+LR: Layer-selection + layer-remove, FL-merge: Folding Layers Merging.

Setting Reasoning Language Knowledge Understanding Avg

CNLI HeSw PIQA CHID WSCp WSCqs CSQA BoolQ MMLU CMLU Race;; Raceys XSum C3

Ours 35.46 5443 67.74 23.63 63.46 4327 6290 75.08 4875 3386 5535 58.64 12.99 44.16 48.55
LR-only 3496 53.80 66.70 18.58 49.04 58.65 60.61 68.87 47.85 33.54 4251 43.04 8.05 41.4244.83
LS+LR 3292 5584 65.07 17.98 6346 2692 5897 5122 4897 34.61 48.68 49.44 833 4241 43.20
FL-merge 32.99 52.90 63.66 19.28 46.15 62.50 60.52 7520 4830 3433 50.77 5529 6.39 39.40 46.26

5.3 ROBUSTNESS AND GENERALIZATION ANALYSIS

To comprehensively evaluate the robustness and generalizability of our framework, we conduct
extensive analysis across three critical dimensions: pruning ratio sensitivity, candidate pool scalability
and Generalization to next-generation models. These experiments aim to validate our method’s
effectiveness under diverse deployment constraints and resource limitations.

Table 3: Impact of Candidate Pool Composition
on Performance.

Average Accuracy
5
B

Model Pool Average Performance

Math&LM&Code 48.55 3571

Math& LM 47.82 301

Code&LM 47.31

Code&Math 43.12 = 0’0 125 25.0 375 50.0 625 75.0

LM 45.42 Prune Ratio

Math 42.40

Code 42.03 Figure 3: Performance Comparison Across Dif-
Base (o ferent Pruning Ratios.

Performance Across Pruning Ratios. To further evaluate the generalizability of our method under
different pruning ratios, we validate its performance across varying pruning ratios. Since we have
already shown that even the layer-removal variant of our method surpasses other baselines such
as ShortGPT, here we focus specifically on layer removal. Moreover, we examine its impact on
different task-specific models, using this experiment to highlight the additional benefits of merging,
rather than simply pruning a single model. The results are visualized in Figure 3 with the average
accuracy among benchmark performances at different pruning ratios. More details are supplied in
Supplementary Table 10. From the results, we can see that the accuracy of all models decreases as
the pruning ratio increases. Our model achieves the best performance at all pruning ratios, especially
in the low pruning ratio range of 0%-37.5%. When pruning reaches 50%, every model suffers
performance collapse, leading to a reduced gap across models. This represents a clear elbow point,
indicating that beyond it, excessive parameter removal renders models unable to sustain effective
functionality without further post-training.

Scaling with Candidate Model Pool Size. To validate the generalizability of our method across
different candidate models, we conducted experiments by varying both the number of models and
their combinations in the pool. As shown in Table 3, with full results in Supplementary Table 21 the
results show that performance is indeed affected by the choice of candidate models. Specifically,
including language models (LM) in the candidate pool consistently yields substantial improvements,
while code models tend to contribute more modest gains. Importantly, we find that increasing the
number of candidate models consistently leads to improved overall performance. Our findings
highlight three key properties of the proposed method. (1) Incorporating high-quality models, such
as strong language models, consistently improves performance across benchmarks. (2) Adding
lower-performing models does not harm the overall results, demonstrating the stability of our search
strategy. (3) Enlarging the candidate pool generally yields further improvements, reflecting the
scalability and robustness of our approach.

Generalization to Next-Generation Models (Llama-3). We further extend our validation to Meta’s
Llama-3 8B model (Grattafiori et al., 2024), which is larger, more densely parameterized, and trained

Under review as a conference paper at ICLR 2026

on 15T tokens with architectural improvements such as universal GQA and a longer context window.
Despite a similar model size, Llama-3 8B surpasses Llama-2 7B (Touvron et al., 2023). Pruning
such advanced models poses new challenges due to their semantic density, making validation on this
next-generation model crucial for establishing the practical applicability of our method in rapidly
evolving LLM landscapes. We compare our method with the best-performing baseline, ShortGPT.
As shown in Table 4 (full results in Supplementary Table 11), our method retains 84.55% of the
original performance (53.17/63.61) after pruning 9 layers, clearly outperforming ShortGPT’s 62.79%
(39.94/63.61) under the same compression ratio. Both results are lower than our Llama-2 7B retention
(92.2%) despite the similar model size, indicating that Llama-3 is less compressible. Nevertheless, our
method consistently surpasses the baseline, demonstrating its robustness across model generations.

Table 4: Comparison of pruning methods on multiple natural language benchmarks. For 8B model:
Meta-Llama-3-8B-Instruct (LM), MathCoder2-Llama-3-8B (Math), Code-Llama-3-8B (Code), and
Meta-Llama-3-8B (Base).

LLM Pruner Type Reasoning Language Knowledge Understanding
ratio/layer CMNLI HeSw PIQA |CHID WSCp WSC¢|CSQA BoolQ MMLU CMLU|Race Raceps XSum C3
Base | 32.98 74.67 80.96|73.78 56.73 36.54 |73.79 69.97 64.74 50.79 | 63.21 70.54 3.28 55.18|57.65
LM | 33.00 71.08 80.69(65.53 55.77 69.23 | 76.66 78.87 6597 53.64 | 76.44 81.75 17.97 63.95/63.61
Math | 32.99 71.66 77.97(57.09 37.50 58.65 | 68.22 69.08 62.08 45.85|64.75 69.08 8.68 53.86/55.53
Llama3 Code | 32.98 65.56 74.70(78.42 61.54 61.54 |63.47 78.35 48.03 34.55|52.40 58.43 19.36 46.41|55.41
Single| 32.83 45.06 65.78(23.38 41.35 53.85 [39.56 63.73 3237 28.69|40.14 45.19 3.68 435139.94
Merge| 32.95 48.58 64.96/18.43 36.54 35.58 |42.83 67.22 33.05 28.71 | 30.16 32.45 3.66 44.27|37.10
Ours 33.42 54.83 69.75/34.02 47.12 62.50 | 73.79 64.34 63.13 50.04 | 72.81 77.65 3.00 46.52|53.78

Avg

Dense

ShortGPT

5.4 ENHANCING LAYER-FOLDING PRUNING POTENTIAL

LaCo (Yang et al., 2024) is a merging-based pruning approach that performs within-model pruning
by folding later layers into earlier ones based on activation similarity. While effective, its potential
is constrained by suboptimal layer selection and merging strategies. To validate the effectiveness
and potential of this type of within-model merge operation, we use our hyperparameter optimization
framework with a specially designed search space (described in Section H.2). Empirically, As shown
in Table 2, our framework achieves improved performance (46.26) on this configuration, unlocking
greater potential from layer-folding pruning through optimized selection and merging strategies. This
validates that our approach can enhance various pruning paradigms beyond cross-model scenarios,
offering an effective solution when fine-tuned candidate models are unavailable.

5.5 COMPUTATIONAL EFFICIENCY ANALYSIS

We conducted a computational efficiency analysis against two competitive baselines, ShortGPT and
LaCo, on Llama7b using post-training settings from the LLMPruner paper. We test our framework
with two strategies: multi-candidate model searching (3 candidates) and single-model layer folding.
We choose these strategies because they cover complementary deployment scenarios when candidate
models are available versus unavailable. As shown in Supplementary Table 18 , both strategies
consistently outperform baselines with reduced computational overhead.

6 CONCLUSION

In this work, we presented a novel LLM compression approach that strategically combines layers
from fine-tuned model variants instead of pruning single models. By formulating this as a zero-order
optimization problem with a newly designed search space that supports layer removal, selection, and
merging, our method effectively preserves model capabilities while reducing size. Experiments on
Llama2-7B and Llama2-13B demonstrated that our compressed models retain 92.2% and 97.3% of
original performance, respectively, despite removing ~ 25% of parameters, outperforming previous
state-of-the-art methods without requiring expensive post-training. Overall, our work demonstrates
that cutting and stitching layers from multiple fine-tuned variants of a model is a more effective
approach to LLM compression than traditional single-model pruning. While the search complexity
increases with the number of candidate models, this computational aspect represents an opportunity
for future optimization techniques to further enhance efficiency.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

In this work, we carefully ensure that all methods and experimental protocols conform to established
ethical guidelines. Our investigation centers on layer pruning as a strategy to improve the efficiency
of LLMs and to lower computational demands, contributing to more sustainable Al practices. In
addition, every model and dataset employed in this research is obtained from openly accessible
sources, guaranteeing respect for intellectual property and protection of personal privacy. Apart from
the models used as experimental subjects (Llama2-7B, Llama-2-7B-Chat, MAmmoTH-7B, Llama-2-
Coder-7B, Llama2-13B, WizardLM-13B, WizardMath-13B, Llama-2-13B-Code-Alpaca, Qwen3-8B,
Qwen3-4B-Instruct, and Qwen3-4B-Thinking), we also utilized LLMs as writing assistants, as
detailed in Section A. All uses of LLMs in this work comply with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We made several efforts to ensure reproducibility. First, we provide detailed experimental settings and
hyperparameters used throughout this paper in Section 4, Appendix B, and Section 5.5, and report all
evaluation metrics in Section 5. Second, our code will be submitted with the paper, accompanied by
detailed usage instructions and scripts to reproduce all reported results.

REFERENCES

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
model merging recipes. arXiv preprint arXiv:2403.13187, 2024.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized
neural networks, going beyond two layers. Advances in neural information processing systems, 32,
2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242-252. PMLR, 2019b.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 74327439, 2020.

Leo Breiman. Random forests. Machine learning, 45:5-32, 2001.

Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation. https:
//github.com/sahi1280114/codealpaca, 2023.

Zeming Chen, Qiyue Gao, Antoine Bosselut, Ashish Sabharwal, and Kyle Richardson. Disco:
Distilling counterfactuals with large language models. arXiv preprint arXiv:2212.10534, 2022.

Wei-Lin Chiang, Zhuohan Li, Ziging Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. Imsys. org (accessed 14 April
2023), 2(3):6, 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
https://github.com/open—-compass/opencompass, 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088—10115, 2023a.

10

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://github.com/open-compass/opencompass

Under review as a conference paper at ICLR 2026

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized represen-
tation for near-lossless 1lm weight compression. arXiv preprint arXiv:2306.03078, 2023b.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. arXiv preprint arXiv:2110.06296, 2021.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pp- 3259-3269. PMLR, 2020.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323-10337. PMLR, 2023.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information
processing systems, 31, 2018.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-power computer
vision, pp. 291-326. Chapman and Hall/CRC, 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger
language models with less training data and smaller model sizes. arXiv preprint arXiv:2305.02301,
2023.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-deep networks: Understanding and
mitigating network overthinking. In International conference on machine learning, pp. 3301-3310.
PMLR, 2019.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models. arXiv
preprint arXiv:2402.02834, 11, 2024.

Aaron Klein, Jacek Golebiowski, Xingchen Ma, Valerio Perrone, and Cedric Archambeau. Struc-

tural pruning of pre-trained language models via neural architecture search. arXiv preprint
arXiv:2405.02267, 2024.

11

Under review as a conference paper at ICLR 2026

Joshua Knowles. Parego: A hybrid algorithm with on-line landscape approximation for expensive
multiobjective optimization problems. IEEE transactions on evolutionary computation, 10(1):
50-66, 2006.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519-3529.
PMIR, 2019.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations. arXiv preprint arXiv:1704.04683,2017.

Hector J Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. KR,
2012:13th, 2012.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timothy
Baldwin. Cmmlu: Measuring massive multitask language understanding in chinese. arXiv preprint
arXiv:2306.09212, 2023.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research, 18(185):1-52, 2018.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, and Joey Gonzalez.
Train big, then compress: Rethinking model size for efficient training and inference of transformers.
In International Conference on machine learning, pp. 5958-5968. PMLR, 2020.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin
Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian optimization
package for hyperparameter optimization. Journal of Machine Learning Research, 23(54):1-9,
2022. URL http://jmlr.org/papers/v23/21-0888.html.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702-21720, 2023.

Manuel Romero. llama-2-coder-7b (revision d30d193), 2023. URL https://huggingface.
co/mrm8488/1lama—-2-coder—"Th.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the sum-
mary! topic-aware convolutional neural networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya Sachan. Distilling reasoning capabilities into
smaller language models. Findings of the Association for Computational Linguistics: ACL 2023,
pp- 7059-7073, 2023.

12

http://jmlr.org/papers/v23/21-0888.html
https://huggingface.co/mrm8488/llama-2-coder-7b
https://huggingface.co/mrm8488/llama-2-coder-7b

Under review as a conference paper at ICLR 2026

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Guinan Su and Jonas Geiping. Fine, i’ll merge it myself: A multi-fidelity framework for automated
model merging. arXiv preprint arXiv:2502.04030, 2025.

Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. Investigating prior knowledge for challenging chinese
machine reading comprehension. Transactions of the Association for Computational Linguistics,

8:141-155, 2020.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro Von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
distillation of Im alignment. arXiv preprint arXiv:2310.16944, 2023.

Joachim Utans. Weight averaging for neural networks and local resampling schemes. In Proc.
AAAI-96 Workshop on Integrating Multiple Learned Models. AAAI Press, pp. 133—138. Citeseer,
1996.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Tom White. Sampling generative networks. arXiv preprint arXiv:1609.04468, 2016.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965-23998. PMLR, 2022.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv
preprint arXiv:2304.12244, 2023.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao, Yudong Li, Yechen Xu, Kai Sun, Dian Yu,
Cong Yu, et al. Clue: A chinese language understanding evaluation benchmark. arXiv preprint
arXiv:2004.05986, 2020.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. Advances in Neural Information Processing Systems,
36:7093-7115, 2023.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. Advances in Neural Information Processing Systems,
36, 2024.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187, 2024.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems, 35:27168-27183, 2022.

13

https://arxiv.org/abs/2505.09388

Under review as a conference paper at ICLR 2026

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. In Forty-first International Conference
on Machine Learning, 2024.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Chujie Zheng, Minlie Huang, and Aixin Sun. Chid: A large-scale chinese idiom dataset for cloze test.
arXiv preprint arXiv:1906.01265, 2019.

A THE USE OF LARGE LANGUAGE MODELS

We used large language models solely as a general-purpose writing aid to help improve the clarity and
readability of the text, and to suggest minor wording improvements. The LLMs did not contribute to
the research ideation, experimental design, analysis, or interpretation of results. All technical content,
experiments, and conclusions presented in this paper are entirely the work of the authors.

B BASELINE

To ensure fair comparison, we applied various baseline pruning methods including LLM-
Pruner(LLMPru) (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024), LaCo (Yang et al., 2024) and
ShortGPT (Men et al., 2024):

LLM-Pruner adopts structural pruning that selectively removes non-critical coupled structures based
on gradient information, maximally preserving the majority of the LLM’s functionality. It applies
post-training to the pruned model, for fair comparison, we do not apply post training to it.

SliceGPT is a post-training sparsification scheme that replaces each weight matrix with a smaller
matrix, reducing the embedding dimension of the network. Specifically, they applied PCA to the
hidden representation from shallow to deep layers, and incorporated the dimension reduction matrix
into existing network parameters.

LaCo is a pruning method for large language models based on reducing layers. LaCo gradually
merges similar layers from deep to shallow and sets a threshold to avoid merging too many layers.

ShortGPT introduced the Block Influence (BI) metric, which uses the similarity between layer’s
input and output to measure the importance of each layer.

C EVALUATION BENCHMARKS

CMNLI (Chinese Multi-Genre Natural Language Inference) (CNLI) consists of two parts: XNLI
and MNLLI. It contains text from various domains, including fiction, telephone conversations, travel,
and government sources. XNLI is a cross-lingual extension of the MultiNLI corpus, professionally
translated into multiple languages, including Chinese, providing a robust framework for assessing
language understanding across linguistic boundaries. Models must determine whether pairs of
sentences exhibit entailment, contradiction, or neutrality.

HellaSwag (HeSw) tests commonsense reasoning about physical situations. The dataset uses a
"Goldilocks" zone of complexity where examples are obviously nonsensical to humans but challeng-
ing for state-of-the-art models. Despite being trivial for humans (>95% accuracy), even advanced
models struggled with this benchmark upon its release, making it effective for measuring progress in
commonsense inference.

PIQA (Physical Interaction Question Answering) is a multi-choice question and answer dataset
that focuses on everyday scenarios, exploring models’ understanding of real-world physical laws
through daily situations.

14

Under review as a conference paper at ICLR 2026

CHID (Chinese IDiom) is an idiom cloze test focusing on the representation and selection of Chinese
idioms, requiring cultural and linguistic knowledge specific to Chinese.

WSC (Winograd Schema Challenge) serves as a prominent benchmark for evaluating machine
understanding through pronouns resolution problems that are trivial for humans but require common-
sense reasoning for machines to solve correctly. The dataset consists of pairs of sentences differing in
one or two words with ambiguous pronouns resolved differently in the two sentences, designed to
test a system’s commonsense reasoning abilities.

CommonSenseQA (CSQA) is a multiple-choice question answering dataset containing 12,102 ques-
tions with one correct answer and four distractor answers, requiring different types of commonsense
knowledge to predict the correct answers. The dataset was constructed using ConceptNet relations
and crowd-sourced questions to test commonsense reasoning.

BoolQ provides 15,942 yes/no questions that occur naturally in unconstrained environments, testing
models’ binary decision-making abilities.

MMLU (Massive Multitask Language Understanding) evaluates models across 57 diverse subjects
covering STEM, humanities, and social sciences. The benchmark tests knowledge and problem-
solving ability with content ranging from elementary to professional levels. This benchmark has
become a standard evaluation metric in the field, with scores prominently reported for virtually all
language models, and uses multiple-choice questions that allow for simple accuracy calculations.

CMMLU (Chinese Massive Multitask Language Understanding) (CMLU) Developed to address
the gap in evaluating knowledge and reasoning capabilities in Chinese, CMMLU is a comprehensive
benchmark covering 67 subjects from elementary to advanced professional levels across natural
sciences, social sciences, engineering, and humanities. The benchmark includes topics with Chinese-
specific answers that may not be universally applicable in other regions or languages, making it a
fully Chinese-oriented evaluation tool.

RACE (Reading Comprehension from Examinations) is collected from English examinations in
China designed for middle and high school students, providing a culturally diverse reading assessment.

XSum evaluates abstract single document summarization systems, focusing on the ability to create
concise one-sentence summaries capturing the essence of articles.

C3 (Chinese Multiple-Choice Machine Reading Comprehension) consists of multiple-choice
questions from Chinese proficiency exams and ethnic Chinese exams.

D TASK ARITHMETIC MERGING

Task Arithmetic Ilharco et al. (2022) enhances model capabilities through vector operations by
leveraging weighted combinations of task-specific knowledge. Given a base model with weights Oy
and task-specific fine-tuned weights {6f'}7"_,, task vectors are defined as 7, = 01 — 6,y The merged
weights are then computed through Oyerge = Opre + A Zle 7+, Wwhere A controls the magnitude of
task-specific adaptations.

E DESCRIPTIONS OF SMAC-BASED MULTI-FIDELITY OPTIMIZATION

Our implementation extends SMAC (Lindauer et al., 2022), integrating Hyperband (HB) (Li et al.,
2018) with Bayesian Optimization (BO) (Snoek et al., 2012) and employing Random Forest (Breiman,
2001) as the surrogate model.

The framework operates using minimum and maximum budgets (bmin, bmax) With a spacing pa-
rameter 7 > 1. The algorithm creates Syax = Llogn(bmax /bmin) | brackets, each initiating with

n; = |[ptoet. #J configurations. Within each bracket, Successive Halving proceeds through
[logn(—#) | + 1 rounds, evaluating configurations at increasing budgets while progressively elimi-

nating underperforming candidates. Specifically, after evaluating all configurations at budget b, only
the top L%J performers advance to the next round with an increased budget of nb.

2

15

Under review as a conference paper at ICLR 2026

A key enhancement is the Random Forest model that learns from all prior configuration-performance
pairs, prioritizing data from higher budgets. This model guides the selection of promising config-
urations via Expected Improvement, balancing exploration and exploitation. As the optimization
progresses, the evaluation of more configurations at higher budgets enables the algorithm to correct
potential misjudgments from lower-fidelity evaluations.

For a detailed algorithmic description, see Algorithm 2, which presents the complete optimization
process incorporating trial limits. This integration of multi-fidelity resource allocation with surrogate-
based modeling delivers efficient configuration space exploration while maintaining evaluation
quality.

F UNDERSTANDING STRATEGY SELECTION VIA LAYER-LEVEL ANALYSIS

To investigate how our approach works for model compression with superior performance, we analyze
the architectural decisions from multiple perspectives: the theoretical foundation of model merging,
empirical observations of Layer-wise Patterns, and post-hoc analysis of layer characteristics.

F.0.1 THEORETICAL FOUNDATION: WHY MODEL MERGING WORKS

The underlying principle of model merging is that fine-tuned variants from a common pre-trained
initialization typically converge to parameters within the same loss basin. While neural network loss
functions are generally non-convex, recent work has demonstrated that parameters from different
training runs can be interpolated without increasing loss, a phenomenon known as mode connectivity
Garipov et al. (2018); Frankle et al. (2020).

Garipov et al. (2018) showed that different optima can be connected by simple curves with nearly
constant accuracy. Frankle et al. (2020) further demonstrated that networks sharing part of their
optimization trajectory converge to linearly connected regions, where the linear interpolation 6(t) =
(1 —t)04 + t0p maintains low loss for all ¢ € [0, 1]. Entezari et al. (2021) conjectured that when
accounting for permutation invariance, SGD solutions exhibit no barrier in linear interpolation.

Crucially, fine-tuned models initialized from the same pre-trained model 6 share a significant portion
of their optimization trajectory, enabling merging without explicit permutation alignment Wortsman
et al. (2022); Tlharco et al. (2022). This is evidenced by the small Frobenius distance between such
models Yadav et al. (2023):

1657 — 69| < (165 — B|| 3)

where 91@ and ng) denote models fine-tuned on different tasks i and j. This proximity in param-
eter space, combined with the wide, flat minima characteristic of fine-tuned models, provides the
theoretical foundation for merging complementary capabilities while maintaining performance.

These properties make merging a natural guide for pruning because the shared loss basin reveals
redundant or overlapping layers whose removal does not disrupt the model’s performance.

F.0.2 EMPIRICAL OBSERVATIONS: LAYER-WISE PATTERNS

Pattern 1: Positional preference. To identify systematic patterns in layer operations, we normalize
layer positions (position = layer_index / total_layers) and partition the space [0,1] into eight bins,
computing operation percentages averaged across 7B and 13B families. Figure 4 reveals a clear
pattern: early layers favor SELECT (64.1% at position 0-0.3), middle layers favor MERGE (49.9% at
0.3-0.6), and late layers favor REMOVE (70.7% at 0.6-1.0).

Pattern 2: Robustness (redundancy) scales with model size. From the visualization in Fig.2, we
can see that the 13B model shows a simpler structure, which is mainly merged with LM models,
while the 7B model shows a more complex structure utilizing mixed and specialized models. This
suggests that as model size decreases, more diverse mixing strategies may be needed to maintain
performance. This architectural difference, coupled with the superior preservation rate of the 13B
model compared to the 7B model, demonstrates that robustness (redundancy) scales with model size.

16

Under review as a conference paper at ICLR 2026

Algorithm 2 SMAC-based Multi-Fidelity Optimization

Require: Configuration space ©, minimum budget by, maximum budget bnax, spacing factor

n > 1, maximum trials T«

Ensure: Optimized configuration 6*

1:

Rl

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:

Smax LIOgn(%)J > Maximum brackets
D« 0 > Observation history
0* 0, y* + oo > Best configuration tracking
T+ 0 > Initialize trial counter

for i € {smax;, Smax — 1,...,0} do
if T > T.x then

break > Exit if reached maximum trials
end if
ng < |mtmet. %J > Initial configurations
M < FitRandomForest(D) > Build surrogate model
if |D| = 0 then

©; < Sample n; random configurations from ©
else

O, < Select n; configurations with highest EI based on M
end if
s; < [log, (35)] +1 > SH rounds
A<+ 06, > Set of active configurations
b < bmin - 1° > Initial budget

fori €{0,1,...,s;, — 1} do
if T > T.x then
break > Exit if reached maximum trials
end if
N L%J > Current pool size
for each 0 € A do
yg < [(6,D) > Evaluate configuration
D+« DU{(0,b,y0)} > Update history
T+ T+1 > Increment trial counter
if b = bax and yp < y* then
y* < yg, 0F +— 0 > Update best
end if
if T > T,.x then
break > Exit if reached maximum trials
end if
end for

Sort A by performance
A «+ Top L%j configurations from A
b« min(b - 1, byax) > Increase budget
if b = by or | A| = 1 then
break
end if
end for
end for
return 0* =0

17

Under review as a conference paper at ICLR 2026

Positional Preference Pattern in Layer Operations
91 9 Select Merge Remove
120| | = Select Dominant Increasing Dominant
920 = Merge
we= Remove e e
921 Early Layers Middle Layers Late Layers

100!

25%
923 "
1.

924

925

Operation Ratio (%)
38

926
927 4
928

929 »
930
931
932
933 Figure 4: Positional preference pattern in layer operations. Operation distribution across normalized

934 layer positions, averaged over 7B and 13B models. Early layers favor SELECT, middle layers favor
935 MERGE, and late layers favor REMOVE.

019 . 0.44
Normalized Layer Position

936 Merged vs Pruned layers
937
938 Representation Similarity (all)
939
940
941 Representation Similarity (k=5) *
942
943
944 Representation Similarity (k=1) Hox
945
946
947 Cross-model variance (norm.) B Merged
048 ')) ' ' | Prun?d
049 0.0 0.2 0.4 0.6 0.8 1.0
950 . . .
951 Figure 5: Comparison of CKA (Centered Kernel Alignment)-based features between merged and
oeo pruned layers with the mean and standard error. Stars indicate statistical significance (*: p < 0.05,
**: p <0.01). Although both merged and pruned layers both exhibit high similarity with their
958 neighboring layers, merged layers maintain lower cross-model variance and stronger local and global
954 CKA coherence, while pruned layers exhibit higher representational divergence.
955 *ok * *% Kk
956 100 ——_ C T T —
957 ey) *
958 o *
959 -g 0.95] .
wn
960 g
et = 0.901
962 3
o .
963 9
964 9 0.851
(o}
965 2 mmms Pruned layers
966 0.80{ === Other layers
967
968 k=1 k=2 k=3 k=4 k=5
Neighborhood size k
969
3;(1) Figure 6: Representation similarity of pruned versus retained layers across neighborhood sizes

(k=1) to (k=5). Pruned layers (red) exhibit significantly higher similarity than retained layers (blue),
indicating that pruning primarily removes redundant layers (**p < 0.01).

18

Under review as a conference paper at ICLR 2026

—o— ShortGPT Base (dense) Ours

\—/\/,—/f/* \

Layer roughness

o o o o

o o o o

@ B o &
! ! ! |

0.02

0 5 10 15 20 25 30
Layer index

Figure 7: Layer-wise roughness comparison. Our method produces consistently lower roughness
scores than ShortGPT, indicating smoother and more coherent depth-wise representation transitions.

F.0.3 WHY DO THESE PATTERNS EMERGE?

We now investigate whether these decisions align with interpretable layer properties. We conduct post-
hoc analysis examining two complementary perspectives: cross-model representational alignment
and within-model layer redundancy. All analyses below are conducted using Llama2-7B models.

We extracted CKA (Centered Kernel Alignment)-based features Kornblith et al. (2019) that capture
both inter-model and intra-model structural properties. First, cross-model variance quantifies repre-
sentational divergence across the four models by measuring the variability of their pairwise CKA
similarities at each layer; higher variance indicates that models have learned different representations
at that depth. Second, we compute local CKA at multiple scales (k = 1, 5, and all layers), measuring
how consistently each layer aligns with its immediate neighbors (surrounding block). These metrics
capture short-range smoothness, block-level coherence, and global structural integration. Lower local
CKA values indicate better representational consistency at the corresponding scale.

Analysis 1: Merged layers exhibit cross-model alignment. Across all extracted features, merged
layers consistently show higher representational consistency both within and across models (Fig. 5).
They exhibit lower cross-model variance, indicating that all four models converge to similar feature
representations at these depths. Their lower local CKA values further suggest that the representations
of merged layers can be aligned and fused without structural conflict. In contrast, pruned layers
demonstrate higher cross-model variance and lower global consistency, revealing that different models
encode incompatible representations in these regions, retaining them during fusion contributes little
useful information and may introduce conflicts.

Analysis 2: Pruned layers show within-model redundancy. We examine within-model layer
similarity by measuring how closely each layer’s representations match its neighbors at different
scales (k=1 to k=5). Results in Fig. 6 demonstrate that pruned layers (red) consistently exhibit higher
representation similarity to their neighbors compared to retained layers (blue) across all neighborhood
sizes. Statistical significance tests (**) confirm that the representations of redundant layers are highly
similar to adjacent layers and thus contribute minimal unique information.

Analysis 3: Our method maintains smoother transitions than baselines. We compared the
representation similarity of the pruned model produced by ShortGPT with that of our searched model.
For each model, we computed the CKA similarity around each layer change relative to its neighboring
layers. As shown in Fig. 7, the merge-based model consistently yields lower roughness values,
indicating smoother and more coherent depth-wise representation transitions. This suggests that our
method preserves the natural progression of representations instead of disrupting the hierarchical
flow. In contrast, ShortGPT introduces sharper local changes, leading to a more fragmented represen-
tational structure. The smoother similarity profile of our model demonstrates a more stable internal
organization, with fewer disruptive shifts between layers.

Together, these analyses reveal that merging and pruning target fundamentally different structural
properties. Merging capitalizes on cross-model consensus: layers where all models have converged

19

Under review as a conference paper at ICLR 2026

to similar representations can be safely fused. Pruning exploits within-model redundancy: layers
that duplicate information already present in their neighbors can be removed without information
loss. Critically, these patterns are discovered rather than designed. Our optimization framework
identifies them automatically by maximizing performance under compression constraints. The strong
correlation between discovered patterns and interpretable layer properties validates that our method
captures genuine structural regularities rather than exploiting dataset-specific artifacts.

G FULL BASELINE RESULTS

To validate the efficiency of our proposed method, we conducted comparative experiments against
established baseline techniques. For fair comparison with other baseline methods, we selected the
same pruning ratios matching those used in LaCo (Yang et al., 2024) and ShortGPT (Men et al.,
2024) while being lower than those of other approaches. In order to make a fairer comparison, we
reproduced all the results and evaluated them on OpenCompass (Contributors, 2023) as in LaCo.All
experiments run on NVIDIA Tesla A100 GPUs. For each baseline method, we explored three
scenarios: (1) applying each baseline pruning method individually to all candidate models, (2) first
pruning each candidate model using existing methods and then merging them, and (3) first merging
the candidate models and then applying pruning techniques.

We use the official implement of LLM-pruner and LaCo, It’s worth noting that when reproducing the
LaCo method, we referenced the hyperparameter settings from the original paper. Due to differences
in hardware, we couldn’t fully reproduce the paper’s results: we couldn’t obtain models with pruning
ratios consistent with the paper using the provided hyperparameters. We maintained consistency in
all other parameters while gradually adjusting the threshold from 0.75 until achieving the desired
pruning ratio. The specific parameters are detailed in the Table 5.

For the reproduction of ShortGPT, we implemented the algorithm based on the original paper and
similarly sampled 10,000 instances from the PG19 (Rae et al., 2019) dataset as calibration data,
following the methodology described in the paper. The resulting removed layers are shown in the
Table. The removed layers for the base model align with those reported in the ShortGPT paper, albeit
in a different sequence. We attribute this variation to slight differences in calculated layer importance
scores. The specific configuration of removed layers for each model is detailed in the Table 6.

For the merging process, we employed task arithmetic with weighting parameters in the range of [0.5,
1.0]. The full results of the baseline methods on the 7B model and the 13B model are presented in
Table 7 and Table 8, respectively.

Table 5: Hyperparameter settings for LaCo results. C: Number of layers combined in each merge;
L,H: Layer range [£, H]; Z: Minimum interval between two adjacent merged layers; 7: Threshold
for representation similarity.

Size |Model CLHIT T
Llama-2-13B 61402 0.7
WizardLM-13B 6 1402 0.65
WizardMath-13B 61402 0.7

Llama2-13B llama-2-13b-code-alpaca|6 1 40 2 0.7
Merge-then-prune 6 140 2 0.65
Prune-then-merge 6 140 2 0.65
Llama-2-7B 61402 0.7
Llama-2-7B-Chat 6 1402 0.65
MAmmoTH-7B 61402 0.7

Llama2-7B Llama-2-Coder-7B 61402 0.7
Merge-then-prune 6 140 2 0.65
Prune-then-merge 6 140 2 0.65

20

Under review as a conference paper at ICLR 2026

Table 6: Setup of Removed Layers for Candidate Models in ShortGPT.

Model Removed Layers

Llama-2-7B 25,27, 24,28, 26, 29, 23,22, 21
Llama-2-7B-Chat 27,25, 24,28, 29, 26, 23,22, 21
MAmmoTH-7B 27,25, 24,28, 29, 23, 26, 22, 21
Llama-2-Coder-7B 27,25, 24, 28, 29, 26, 23, 21, 22
Llama-2-13B 33, 32, 31, 30, 34, 35, 29, 28, 27, 26

WizardLM-13B
WizardMath-13B

Ilama-2-13b-code-alpaca

33, 32, 31, 30, 34, 35, 29, 28, 27, 36
33,31, 32, 30, 34, 35, 29, 28, 27, 36

33,31, 32, 30, 34, 35, 29, 28, 27, 26

Table 7: The main results of baseline methods on the 7B model across multiple natural language
benchmarks using candidate models: Llama-2-7B-Chat (LM), MAmmoTH-7B (Math), Llama-2-
Coder-7B (Code), and Llama-2-7B (base). "PTM" (Pruning-then-Merging) refers to first pruning each
candidate model using current pruner and then merging them. "MTP" (Merging-then-Pruning) refers
to first merging the candidate models and then applying pruning. For LLMPruner and SliceGPT, align-
ment challenges exist after pruning. LLMPruner removes different model blocks, while SliceGPT
calculates orthogonal transformation matrices that are highly dependent on each model’s specific
weight distributions and activation patterns, resulting in incompatible transformation spaces. There-
fore, we only implemented "merge then prune".

LLM Pruner

(ratio/layer)

Reasoning
CMNLI HeSw PIQA

Type

Language
CHID WSCp WSCq

CSQA BoolQ MMLU CMLU

Knowledge

Understanding
Racey Raceps XSum C3

Avg

Dense

LLMPruner
(25.32%)

MATH

3298 71.34 78.18
32.99 68.60 75.79
31.30 71.28 75.95
32.99 70.27 78.62
33.00 58.72 72.25
34.94 59.25 72.85
32.99 55.74 70.84
32.99 59.57 73.34
34.71 60.57 73.50

Base
Math
LM
Code
Base
LM

Code
MTP

41.56 37.50 38.46
39.71 3942 36.54
36.11 63.46 59.62
41.61 36.54 41.35
29.52 41.35 0.00
2228 4327 9.62
25.82 37.50 21.15
30.32 46.15 0.00
26.62 40.38 5.77

55.04
50.78
64.29
57.41
19.74
19.41
18.84
20.15
19.90

70.70
69.36
74.77
71.04
57.25
57.61
54.31
57.28
52.14

46.67
43.04
48.30
46.22
23.69
23.77
24.77
23.21
24.01

31.88
32.16
33.93
32.20
25.49
24.51
25.20
25.16
25.30

35.53 33.36 19.55 43.84
30.36 36.42 20.88 43.45
52.52 5522 22.45 47.56
41.25 39.69 18.79 46.25
22.07 21.10 14.67 28.11
21.78 22.42 16.32 28.66
22.87 23.89 10.91 28.00
21.56 21.52 15.19 31.07
23.07 2298 15.51 32.49

45.47
44.25
52.63
46.73
31.93
32.62
32.35
32.68
32.64

SliceGPT
Llama (26.33%)
-7B

LM
MATH

31.08 42.90 61.43
31.70 43.50 61.37
31.89 41.55 58.81
31.81 44.02 63.17
32.85 37.61 57.56

Base

Code
MTP

19.53 36.54 0.00
18.28 40.38 0.96
18.43 3942 481
18.48 36.54 13.46
17.33 53.85 2.88

20.88
21.21
19.49
19.74
19.41

37.95
38.96
40.09
37.92
42.66

24.78
25.56
25.38
24.71
2522

24.78
25.28
25.02
2522
24.68

21.24 21.73 6.58 37.42
21.93 22.42 13.13 38.36
25.59 26.88 8.78 39.56
21.41 21.66 2.59 38.19
2521 2472 12.78 40.22

27.63
28.79
28.98
28.49
29.78

LACO

32.85 53.33 68.23
32.97 55.24 69.53
3297 55.24 69.53
32.28 53.68 69.15
32.43 57.80 71.82
31.89 56.26 71.22

Base
LM
Math
Code
MTP
PTM

31.62 36.54 4.81
31.47 36.54 34.62
31.47 50.00 34.62
3222 36.54 192
28.97 4135 16.35
27.32 3942 22.12

20.39
22.11
22.11
20.56
27.52
23.42

62.02
67.22
67.22
61.99
71.28
72.66

26.60
29.08
29.44
26.31
30.49
29.30

25.27
26.16
26.16
25.43
26.88
26.00

2470 23.61 9.38 42.47
28.53 28.27 14.68 43.51
22.53 23.68 14.68 39.34
27.10 22770 11.14 43.07
2576 27.09 8.27 44.33
25.19 26.81 16.11 43.62

32.99
37.14
37.07
33.15
36.45
36.52

ShortGPT MATH

(27.1%)

Base
LM

33.09 57.42 66.54
33.85 53.93 63.82
33.97 56.69 63.38
32.74 56.69 65.07
34.10 54.18 64.42
34.10 54.18 64.42

Code
MTP
PTM

21.53 56.73 48.08
1459 39.42 22.12
17.78 54.81 44.23
17.78 58.65 35.58
16.83 61.54 36.54
16.83 61.54 36.54

52.5
58.48
37.26
53.24
55.61
55.61

67.34
67.95
69.82
67.52
73.21
73.21

43.68
35.85
30.68
44.82
36.84
36.84

28.31
26.60
25.26
28.92
25.61
25.61

32,53 31.69 12.40 39.45
48.03 51.18 6.93 37.21
2824 30.29 8.26 31.67
35.62 37.53 14.32 40.66
42,94 45.89 10.12 35.73
4294 45.89 10.12 35.73

42.24
40.00
38.02
42.08
42.40
42.40

21

Under review as a conference paper at ICLR 2026

Table 8: The main results of baseline methods on the 13B model across multiple natural language
benchmarks using candidate models: WizardLM-13B (LM), WizardMath-13B (Math), llama-2-13b-
code-alpaca (Code), and Llama-2-13B (Base). "PTM" (Pruning-then-Merging) refers to first pruning
each candidate model using the current pruner and then merging them. "MTP" (Merging-then-
Pruning) refers to first merging the candidate models and then applying pruning. For LLMPruner
and SliceGPT, alignment challenges exist after pruning. LLMPruner removes different model blocks,
while SliceGPT calculates orthogonal transformation matrices that are highly dependent on each
model’s specific weight distributions and activation patterns, resulting in incompatible transformation
spaces. Therefore, we only implemented "merge then prune"

LLM Pruner Type Reasoning Language Knowledge Understanding
ratio/layer CMNLI HeSw PIQA |CHID WSCp WSCq|CSQA BoolQ MMLU CMLU|Racerr Raceps XSum C3
Base | 32.99 74.77 79.71|47.35 50.96 63.46 |67.24 71.38 55.84 38.74|57.98 60.17 23.47 47.51|55.11
LM | 3536 70.41 78.73|36.21 57.69 60.58 |65.03 73.70 53.48 30.85|66.12 71.66 22.44 52.00|55.30
MATH| 32.99 68.78 77.26|44.36 36.54 19.23 |60.36 7844 5421 38.12 |47.74 48.82 19.51 44.66/47.93
Code | 32.99 74.82 80.14|47.30 51.92 63.46 |68.88 72.72 55.92 39.26 | 58.03 63.72 24.45 48.38|55.86
Base | 3327 63.57 75.41|34.17 37.50 0.00 |19.57 4535 23.08 25.36|21.61 21.80 14.41 29.64/31.77
LM | 3349 60.28 75.57|23.68 39.42 0.00 |19.00 63.24 2327 2523|2236 21.45 17.13 32.00/32.58
MATH| 32.99 55.49 72.91(30.02 41.35 0.00 [19.08 53.18 23.06 25.53|21.36 21.31 12.2529.10/31.26
Code | 33.18 64.21 75.52|34.17 4327 0.00 |19.90 47.80 23.19 25.52|21.61 22.08 16.08 29.59|32.58
MTP | 33.86 64.11 73.50(22.18 60.58 0.00 [21.46 61.96 23.84 25.62 |22.16 21.59 14.98 32.11|34.14
Base | 30.39 46.69 6322|1878 4231 25.96 [2523 37.83 30.43 25.14|2347 24.65 8.78 39.56/31.60
LM | 33.19 42.44 59.9018.03 54.81 19.23 [32.51 41.22 33.09 25.75|29.45 29.87 9.99 37.75[33.37
MATH| 3273 36.27 59.30(17.38 4231 0.00 |21.62 37.83 30.33 25.16|23.84 24.16 1.54 40.82(28.09
Code | 30.82 46.69 63.00(19.18 4231 27.88 [24.82 37.83 31.38 25.20 | 23.47 24.65 8.83 40.00|31.86
MTP | 30.98 46.83 62.57|19.33 51.92 49.04 |37.76 38.38 33.55 25.22|23.53 23.05 9.95 39.67|35.13
Base | 32.97 59.38 73.45|36.26 37.50 37.50 [19.41 57.31 25.03 24.41|2247 23.19 16.39 37.92[35.94
LM | 32.33 60.18 70.57|32.67 34.62 34.62 |52.58 62.66 36.26 25.80 | 60.38 62.53 8.79 49.21]44.51
LaCo Math | 33.97 56.51 72.25|33.52 44.23 4423 [21.38 64.19 2535 24.55|21.98 21.94 12.77 37.48|36.74
(24.6%) Code | 32.99 59.53 75.0338.41 51.92 0.00 |19.49 53.18 24.48 2472|2287 2228 17.70 37.53|34.30
MTP | 33.49 62.50 74.37|35.26 63.46 63.46 | 18.84 64.65 41.83 24.87 [26.10 25.97 15.93 39.51/42.16
PTM | 31.85 29.80 51.31|12.74 36.54 36.54 |19.57 62.08 24.37 25.19|22.10 22.77 0.40 35.12(29.31
Base | 32.99 67.07 73.45|36.46 4231 45.19 [66.99 58.56 54.74 3839 |56.89 54.06 18.58 46.19[49.42
LM | 32.95 62.64 73.50(28.22 36.54 50.96 |65.44 67.71 53.50 30.73 | 65.52 71.38 19.12 48.60|50.49
ShortGPT MATH| 32.99 59.63 70.40(31.12 4038 1.92 |59.71 70.00 52.70 36.94 | 43.51 44.29 7.73 43.84[42.51
(24.6%) Code | 32.92 67.03 74.37|36.41 55.77 46.15 |68.96 60.55 54.94 3830 |53.60 5857 8.41 47.18/50.23
MTP | 31.07 63.24 68.61|27.17 49.04 4327 [65.68 78.01 51.26 36.88 | 57.38 62.67 16.94 44.05/49.66
PTM | 31.08 63.32 68.66(27.12 49.04 4327 |65.68 77.98 51.23 36.82|57.40 62.47 17.01 43.95/49.65

Avg

Dense

LLMPruner
(21.2%)

SliceGPT
Llama (23.6%)
-13B

H ADDITIONAL ANALYSIS

H.1 DIFFERENT CALIBRATION DATASETS AND METRICS

In this study, we leverage multiple-choice datasets as calibration data and optimize for accuracy in
a multi-objective setting. In this section, we further analyze the impact of these design choices by
comparing single-objective optimization and PPL-based optimization:

Single Objective (Single-obj). We used the MMLU validation dataset for calibration and kept
accuracy as the optimization objective. We evaluated the resulting pruned models across our bench-
mark suite. As shown in Table 14, although these models still remain competitive (45.62 average),
the single-objective optimization led to a noticeable decline from our multi-objective approach
(48.55 vs.45.62). Importantly, the single-objective models demonstrated stronger performance on
MMLU-related tasks but showed performance degradation on certain other tasks due to their narrow
optimization focus. This confirms our hypothesis that broad, multi-objective optimization is necessary
to preserve the broad functionality of modern LLMs, rather than overfitting to a single task domain.

Perplexity Objective (PPL-obj). We additionally evaluate with perplexity (PPL) on WikiText (Merity
et al., 2016) as a search metric, using 1500 examples for calibration. As shown in Table 14, the result-
ing pruned models achieve only 25.38 on average, revealing a substantial performance drop relative
to all other configurations. Even when compared to the single-objective MMLU optimization (which

22

Under review as a conference paper at ICLR 2026

Table 9: Performance comparison of various model pruning strategies across multiple benchmark
categories. The settings include LR-only (Layer Removal only), LS+LR (combined Layer Selection
and Layer Removal), FL-merge (Folding Layers Merging), Single-obj (Single-objective optimiza-
tion), and PPL-obj (Perplexity-based objective). For multi-objective optimization approaches, three
representative Pareto-optimal solutions (numbered 1-3) are showed.

setting Reasoning Language Knowledge Understanding Avg

CNLI HeSw PIQA CHID WSCp WSCs CSQA BoolQ MMLU CMLU Racey Racep; XSum C3

LR-only-LM-1 33.93 57.51 6549 18.18 6246 48.03 5879 62.18 4576 3095 49.54 5336 145 38.60 44.73
LR-only-LM-2 33.58 52.10 64.25 19.53 50.00 62.50 63.64 41.80 4833 32.84 51.03 5146 547 39.56 44.01
LR-only-LM-3 34.96 53.80 66.70 18.58 49.04 58.65 60.61 6887 47.85 33.54 4251 43.04 8.05 41.42 44.83
LR-only-Math-1 33.77 54.49 68.23 21.93 62.50 37.50 27.85 57.52 37.08 28.73 31.42 34.05 7.51 37.92 38.61
LR-only-Math-2 31.69 56.56 68.77 27.07 63.46 30.77 36.69 6235 39.17 29.15 3339 38.65 4.41 43.34 40.39
LR-only-Math-3 32.94 58.43 69.64 2597 5481 2596 29.89 62.84 3346 2692 3139 3210 8.06 40.16 38.04
LR-only-Code-1 30.13 57.60 70.35 27.07 63.46 11.54 50.94 6596 42.64 3096 36.39 36.77 3.15 43.78 40.77
LR-only-Code-2 34.94 57.37 68.55 28.67 4231 4135 5446 63.00 4249 2739 3488 3531 4.08 43.78 41.33
LR-only-Code-3 34.93 56.71 69.42 2592 59.62 31.65 52.83 6220 43.03 28.80 3851 39.07 2.87 41.70 41.95
LR-only-Base-1 32.67 54.21 66.00 26.07 36.54 192 4947 64.19 4447 2884 3899 38.86 0.25 41.59 3743
LR-only-Base-2 32.22 56.48 67.46 2632 61.54 50.00 41.44 6691 40.54 28.01 37.94 3935 0.96 41.92 42.22
LR-only-Base-3 31.13 52.90 67.95 27.97 36.54 0.00 54.63 64.13 43.01 30.03 35.56 37.05 6.79 41.70 37.81

FL-merge-1 32.99 52.90 63.66 19.28 46.15 62.50 60.52 7520 4830 3433 50.77 5529 639 39.40 46.26
FL-merge-2 3299 51.99 63.44 1833 46.15 6346 6126 7477 48.80 33.84 51.11 5634 575 37.86 46.15
FL-merge-3 33.89 51.15 62.62 18.63 50.00 61.54 6044 7578 48.61 3396 50.74 55.85 5.72 38.03 46.15

LS+LR-1 3475 53.65 66.32 17.83 63.46 22.12 59.71 70.61 4732 3377 36.62 3391 854 42354221
LS+LR-2 31.74 55.25 68.39 26.77 6346 10.58 58.72 66.27 47.40 33.15 40.02 4526 2.62 44.16 4241
LS+LR-3 3292 55.84 65.07 1798 6346 2692 5897 5122 4897 3461 48.68 49.44 833 42.4143.20
Single-obj 32.15 56.02 67.46 19.08 39.42 48.08 6233 7443 4740 34.14 5094 5286 12.35 41.97 45.62
PPL-obj 33.39 23.89 52.07 14.84 45.19 7.69 19.33 39.51 2425 2469 2281 21.17 0.06 26.36 25.38

uses a similarly sized dataset), the PPL-optimized models showed considerably weaker performance
across most tasks. These results show that, although perplexity is a common metric for language
model evaluation, it is not an effective signal for preserving model capabilities during pruning,
especially for tasks that require reasoning or knowledge application beyond fluent text generation.
H.2 ENHANCING LAYER-FOLDING PRUNING POTENTIAL

We design a search space for Layer-Folding Pruning consisting of: (1) A binary selection vector
s = [s1, $2, . . ., 8] indicating which layers to remove, and (2) An importance weight vector w =
[wy,wa, ..., wy] representing each layer’s importance value. Retained layer L performs a depth-wise
linear combination with itself and adjacent removed layers:

L= Li + Z Bj-Lj-1s;=1
JEN ()
where N (1) represents adjacent layers to L;, 1,,=1 indicates layer j is removed, and 3; are normalized
weights derived from w such that 8; + Zj N) Bj - 1(s; = 1) = 1. This ensures retained layers
incorporate information from nearby removed layers, preserving network functionality.

H.3 EFFICIENCY ANALYSIS

Budget allocation to search trials. Our optimizer dynamically adjusts the budget allocation during
the search process, where the budget is defined as the calibration dataset size used for search. As the
allocation of search trials directly determines the overall search duration. Here, we analyze the budget
distribution during the search process, as shown in Table 15. Our analysis reveals that only 22% of
the search trials utilize the full budget, while over 41.4% of the evaluations were conducted with
the minimum budget, which is 5-10 times smaller. This efficient allocation enables our pruning to
significantly increase the chance of discovering superior configurations under the same computational
budget.

Wall-Clock Time Analysis of the Search Process. There are three main phases of our search
process to consider for computational costs. 1) Computation of a new merge: This phase involves

23

Under review as a conference paper at ICLR 2026

Table 10: Model Performance Comparison Across Pruning Ratios

Model Prune Ratio Reasoning Language Knowledge Understanding Avg

CNLI HeSw PIQA CHID WSCp WSCg CSQA BoolQ MMLU CMLU Racer; Raceps XSum C3

Base 0 3298 71.34 78.18 41.56 37.50 38.46 55.04 70.70 46.67 31.88 3553 33.36 19.55 43.84 4547
Base 12.5 3299 67.06 7492 39.61 36.53 192 5741 6936 47.15 31.61 39.11 38.65 17.59 44.60 42.75
Base 25 32.98 63.80 69.21 3537 36.54 0.00 50.78 64.74 4080 30.31 35.19 35.62 16.11 43.51 39.64
Base 37.5 32.58 45.04 61.53 20.68 36.54 288 42.18 64.43 39.87 2942 3190 29.74 277 41.37 3435
Base 50 34.51 34.89 55.33 17.08 36.54 11.54 19.82 6229 28.72 2510 2341 26.04 121 35.07 29.40
Base 62.5 35.14 29.71 52.83 1494 3942 192 2146 50.06 24.55 25.16 26.76 2542 0.09 27.62 26.80
Base 75 3494 26.71 51.03 13.59 36.54 8.65 20.56 52.60 2423 2447 23.18 22.63 0.08 27.29 26.17
LM 0 31.30 71.28 7595 36.11 6346 59.62 6429 7477 4830 3393 5252 5522 2245 47.56 52.63
LM 125 3242 67.58 7272 2891 5092 60.50 60.92 72.88 46.69 32.02 5134 5445 18.26 45.94 49.68
LM 25 30.10 60.63 66.82 20.53 4896 4231 65.88 70.82 42.09 3240 4823 5043 15.75 43.6245.11
LM 375 3329 45.13 60.66 20.03 36.54 11.73 59.38 68.07 39.18 29.64 39.71 4220 6.36 41.04 39.40
LM 50 3493 34.67 5620 16.18 36.54 8.65 2228 62.14 32.01 2644 2539 2549 234 35.01 29.88
LM 625 34.11 30.50 53.21 14.34 5192 288 20.56 57.95 2458 2521 23.13 2375 0.18 27.12 27.82
LM 75 34.87 27.03 52.19 14.54 3942 0.00 2023 53.87 2445 2483 2141 2214 0.02 26.69 25.82
Math 0 32.99 68.60 75.79 39.71 39.42 36.54 50.78 69.36 43.04 32.16 3036 3642 20.88 43.45 4425
Math 125 3297 64.72 73.06 37.50 23.08 23.07 5143 71.16 4291 3190 3299 36.07 19.30 43.83 41.71
Math 25 3492 46.24 61.92 19.38 36.54 56.73 4545 72.81 3507 29.78 3145 3433 6.24 39.89 39.34
Math 37.5 32.99 5542 62.81 23.82 3838 4.81 37.87 68.68 36.46 27.19 28.02 33.79 13.88 39.37 36.04
Math 50 3273 3593 55.06 16.73 3942 3942 20.15 6434 2994 2552 2682 26.60 231 35.56 32.15
Math 62.5 3493 31.06 54.08 13.79 58.65 4.81 20.56 46.24 2670 25.05 26.56 26.53 0.57 28.33 28.42
Math 75 34.94 2735 52.07 1439 4327 288 20.88 56.51 2425 23.14 2476 2479 0.15 27.4527.20
Code 0 32.99 70.27 78.62 41.61 36.54 4135 5741 71.04 4622 3220 4125 39.69 18.79 46.25 46.73
Code 12.5 3297 65.79 75.78 39.06 36.54 0.96 56.67 71.13 47.09 32.00 44.73 44.84 19.21 47.29 43.86
Code 25 32.99 63.06 72.02 35.67 36.54 0.00 50.59 68.87 40.50 28.87 36.64 38.59 17.59 45.64 40.51
Code 37.5 33.21 44.12 62.13 20.78 36.54 2.88 48.81 6391 4029 2956 3625 3552 535 42.14 3582
Code 50 3493 34.15 5495 16.73 36.54 1731 22.03 62.54 2846 25.16 24.13 2444 2.03 36.62 30.00
Code 62.5 34.72 29.67 5299 1439 4038 8.65 2252 50.70 24.78 25.15 27.16 28.04 0.12 27.78 27.50
Code 75 3494 26.79 50.82 13.99 38.46 577 24.08 4838 24.08 2452 2273 2249 0.13 27.29 26.03
Ours 0 36.88 73.16 78.67 39.46 6446 45.19 6537 7843 4975 3508 58.78 61.65 24.50 49.33 54.34
Ours 12.5 33.00 66.78 75.19 3492 6442 6346 6398 75.87 4879 34.13 5389 56.20 20.21 45.37 52.59
Ours 25 3299 57.31 68.34 2238 6346 6346 57.58 62.17 4592 3096 5220 56.06 7.12 39.67 47.11
Ours 37.5 35.67 51.02 63.44 20.68 62.50 22.00 57.99 67.52 47.09 34.11 4400 4638 2.96 39.34 42.00
Ours 50 33.97 41.99 58.16 21.08 38.54 24.12 26.52 46.03 3232 2830 2899 28.88 630 36.11 32.23
Ours 625 33.30 28.34 51.96 18.09 46.15 6.88 23.88 4581 2641 2695 2873 2872 5.09 28.47 2848
Ours 75 3493 30.45 49.18 2048 39.54 10.81 2198 4529 2528 2468 2630 2693 046 28.38 27.47

computing a new candidate point to evaluate later with the search procedure. For standard merging
algorithms, such as task arithmetic (which we use in the submission), the cost of the merge is
negligible, coming down to approximately 3 operations per model parameter. The operation can
run on the accelerator (e.g., GPU) when memory permits, or be executed with minimal CPU RAM
by streaming parameter blocks from disk. Although it can be overlapped with the next step, it was
sufficiently fast in practice (e.g., merging two 7B models on GPU takes only 11.2 seconds), we did
not implement this overlap, and there remains room for further optimization. 2) Evaluation of the
merge: Next, the merged point is evaluated, i.e., we measure the accuracy of this checkpoint on our
training task. The cost of this operation is a function of (a) the size of the evaluation set and (b) the
type of evaluation, both of which influence the speed. However, as this step is not specific to our
approach, any inference framework for fast evaluation, such as vLLM, can be used (as we do). For
example, evaluating PIQA requires only prefilling. With vLLM on our GPU V100 (batch size = 16),
it takes us 21.23 seconds to evaluate on 1000 samples. We also note that, due to our multi-fidelity
search approach, we can often end the evaluation early and do not need to check the full dataset
(see Table 15). 3) Updating the coefficients of Bayesian hyperparameter estimation: We use
SMAC, a well-established and optimized package for Bayesian hyperparameter optimization. As the
estimation is based on random forests, it is very cheap to update. For us, one step of the update takes
2.6 seconds.

24

Under review as a conference paper at ICLR 2026

Table 11: The main results of the Llama3-8B model across multiple natural language benchmarks
using candidate models: Meta-Llama-3-8B-Instruct (LM), MathCoder2-Llama-3-8B (Math), Code-
Llama-3-8B (Code), and Meta-Llama-3-8B (Base). "PTM" (Pruning-then-Merging) refers to first
pruning each candidate model using the current pruner and then merging them. "MTP" (Merging-
then-Pruning) refers to first merging the candidate models and then applying pruning.

LLM Pruner Type Reasoning Language Knowledge Understanding
ratio/layer CMNLI HeSw PIQA |CHID WSCp WSC¢|CSQA BoolQ MMLU CMLU|Race Raceps XSum C3
Base| 32.98 74.67 80.96|73.78 56.73 36.54 |73.79 69.97 64.74 50.79 | 63.21 70.54 3.28 55.18|57.65
LM | 33.00 71.08 80.69|65.53 55.77 69.23 |76.66 78.87 65.97 53.64 | 76.44 81.75 17.97 63.95/63.61

Avg

Dense
Math| 32.99 71.66 77.97|57.09 37.50 58.65 |68.22 69.08 62.08 45.85|64.75 69.08 8.68 53.86|55.53
Llama3 Code| 32.98 65.56 74.70|78.42 61.54 61.54 |63.47 78.35 48.03 34.55|52.40 58.43 19.36 46.41|55.41
-8B Base| 36.00 31.36 62.84(25.77 36.54 63.46 |53.97 50.61 36.05 33.83|30.73 32.38 1.17 38.96/38.12

LM | 32.83 45.06 65.7823.38 41.35 53.85 |39.56 63.73 32.37 28.69 | 40.14 45.19 3.68 43.51(39.94
ShortGPT Math| 32.98 42.89 63.00({17.18 36.54 36.54 |45.37 46.30 33.95 29.71 | 28.87 30.22 1.45 40.49(34.68
(24.6%) Code| 32.26 45.99 64.96(17.03 36.54 36.54 |36.20 63.98 28.78 26.25|27.27 29.46 3.57 39.01|34.85

MTP| 32,98 48.51 64.85|18.33 36.54 35.58 |42.83 67.06 33.05 28.73 | 30.07 32.66 3.64 44.33|37.08

PTM| 32.95 48.58 64.96|18.43 36.54 35.58 |42.83 67.22 33.05 28.71 | 30.16 32.45 3.66 44.27|37.10

Table 12: Architecture Parameters of pruned 13B models

Layer Model-1 Model-2 Model-3
Merge Output Merge Output Merge Output
Type Fact%r Sc&ﬂe Type Fact%r Sc&ﬁe Type Fact(g;r Scaﬂe
0 Base - 1.00 LM - 1.00 LM - 1.00
1 LM - 1.00 LM+Math 0.64 1.00 Base - 1.00
2 LM - 1.00 LM+Code 0.60 1.05 LM+Code 0.60 1.05
3 LM - 1.00 LM - 1.00 LM+Code 0.60 1.00
4 LM - 1.00 LM - 1.00 LM - 1.00
5 Code - 1.00 LM+Math 0.59 1.00 LM+Math 0.58 1.00
6 Base - 1.00 LM - 1.00 LM - 1.00
7 LM - 1.00 LM+Math 0.60 1.00 LM+Math 0.60 1.00
8 LM - 1.00 LM - 1.00 LM+Code 0.59 1.00
9 LM - 1.00 LM - 0.84 LM - 0.93
10 LM - 1.00 LM - 1.02 LM - 1.22
11 LM - 1.00 LM+Code 0.66 0.77 LM+Math 0.66 1.00
12 LM - 0.91 LM+Code 0.60 1.00 LM+Code 0.60 1.13
13 LM+Code 0.70 1.00 LM+Math 0.60 1.00 LI_\:I&I)\g:th 0.60 1.11
14 LM+Math 0.70 1.00 LM+Math 0.60 1.00 LM - 1.00
15 LM - 1.00 LM+Math 0.70 1.00 LM+Math 0.66 1.00
16 Base - 1.00 LM+Math 0.60 1.00 LM+Math 0.60 1.00
17 LM - 1.00 LM - 1.00 LM - 1.00
18 LM - 1.00 REMOVED REMOVED
19 LM+Code 0.70 1.00 LM+Code 0.60 1.00 LM+Code | 0.60 [1.01
20 LM+Code 0.70 1.00 LM - 1.00 REMOVED
21 LM - 1.00 Base - 1.07 Base [- [1.07
22 LM - 1.00 Math - 1.00 LM+Math | 0.60 | 1.09
23 LM - 1.00 REMOVED REMOVED
24 LM - 1.00 Base | - 1.01 Base [- [1.01
25 REMOVED REMOVED REMOVED
26 REMOVED LM [- [1.04 LM [- [1.04
27 REMOVED REMOVED REMOVED
28 REMOVED REMOVED REMOVED
29 REMOVED REMOVED REMOVED
30 REMOVED Base | - [1.00 Base [- [1.00
31 REMOVED REMOVED REMOVED
32 REMOVED REMOVED LM [- [1.00
33 REMOVED REMOVED REMOVED
34 LM - 1.00 Base [- [1.00 Code [- [1.00
35 Base - 1.00 M| - .13 LM [B [128
36 LM - 1.00 REMOVED REMOVED
37 LM - 1.00 LM - 1.00 LM - 1.00
38 LM - 0.75 LM - 1.00 Math - 1.00
39 REMOVED Math - 1.00 Math - 1.00

With our parallel acceleration strategies (e.g., simultaneous merging and evaluation), the evaluation
phase becomes the dominant factor in end-to-end runtime. To provide a clearer picture, we report the
evaluation wall-clock time for different datasets under various computational budgets on Llama2-7B
as shown in Table 16. Model initialization using vVLLM takes 19.52 seconds. Overall, our approach
takes 30/35.36/60.36 seconds per round across different fidelity levels, and we run 500 rounds in
total, with 41% of trials requiring only the smallest budget. When evaluation parallelism is disabled
(parallelism = 1), the total wall-time is simply the sum of the individual evaluation times.

25

Under review as a conference paper at ICLR 2026

Table 13: Architecture Parameters of pruned 7B models

Layer Model-1 Model-2 Model-3
Merge Output Merge Output Merge Output
Type Factﬁr Scaﬂe Type Factir Sc:ﬁe Type Factir Sc::e

0 LM - 1.00 Math+Code 0.48 1.00 LM+Math 0.48 0.92
1 LM-+Math+Code 0.50 1.00 LM - 1.00 LM - 1.00
2 LM - 1.03 LM+Code 0.52 1.06 LM - 1.03
3 LM - 1.00 Base - 0.98 Math - 1.05
4 LM - 1.04 LM - 1.11 LM - 1.11
5 LM+Code 0.59 1.08 LM-+Math 0.38 1.12 LM - 1.13
6 Code - 1.19 Math - 1.25 Code - 1.11
7 Code - 0.88 LM+Code 0.50 0.77 LM+Code 0.50 0.77
8 LM - 1.28 LM - 1.34 LM - 1.19
9 LM - 0.86 LM - 0.93 LM+Code 0.51 0.56
10 Base - 1.00 LM - 1.00 LM - 1.00
11 LM-+Math 0.50 1.00 Math - 1.02 LM - 1.05
12 LM - 1.00 LM-+Math 0.41 0.99 LM+Math 0.41 1.00
13 Math - 1.00 LM-+Math 0.50 1.20 LM+Math 0.58 1.20
14 LM+Math 0.60 1.00 LM - 1.00 LM+Math 0.54 1.00
15 LM - 1.18 Code - 0.97 Code - 1.05
16 LM+Math 0.50 1.00 LM+Math 0.50 1.00 LM+Math 0.45 1.00
17 LM+Math+Code 0.50 1.00 Code - 1.00 Math+Code 0.50 1.00
18 Math+Code 0.50 1.00 Base - 1.00 Base - 1.01
19 REMOVED REMOVED REMOVED

20 REMOVED REMOVED REMOVED

21 LM | - [100 REMOVED LM | - [100
22 REMOVED REMOVED REMOVED

23 REMOVED REMOVED REMOVED

24 REMOVED LM | - [100 REMOVED

25 REMOVED REMOVED REMOVED

26 REMOVED REMOVED REMOVED

27 LM [- [1.00 Base - 0.99 LM [- [0.99
28 REMOVED LM - 1.00 REMOVED

29 LM+Code [0.50 [1.00 LM - 1.00 LM+Code | 0.50 [1.00
30 REMOVED REMOVED REMOVED

31 LM+Math [050] 1.00 REMOVED LM+Math [050] 1.00

Table 14: Comparison of different searching settings across various benchmarks. Settings: LR-only:
Layer-remove only, LS+LR: Layer-selection + layer-remove, FL-merge: Folding Layers Merging.

Setting Reasoning Language Knowledge Understanding Avg

CNLI HeSw PIQA CHID WSCp WSCgs CSQA BoolQ MMLU CMLU Racey Racep; XSum C3

Ours 35.46 54.43 67.74 23.63 63.46 4327 6290 75.08 4875 3386 5535 58.64 12.99 44.16 48.55
LR-only 34.96 53.80 66.70 18.58 49.04 58.65 60.61 68.87 47.85 33.54 4251 43.04 8.05 41.4244.83
LS+LR 3292 55.84 65.07 17.98 6346 2692 5897 5122 4897 3461 48.68 49.44 833 42.4143.20
FL-merge 32.99 52.90 63.66 19.28 46.15 62.50 60.52 7520 4830 3433 50.77 5529 639 39.40 46.26

Post-training Setup. We selected two competitive baseline methods (ShortGPT, LACO) and followed
the recovery-phase setting from LLM-Pruner. We used the cleaned Alpaca dataset (50k samples) and
fine-tuned with the LoRA configuration: rank (d=8), learning rate = le-4, 100 warm-up steps, batch
size = 64, AdamW optimizer, and 2 training epochs.

Computational cost scaling with candidate number. The computational cost increases with the
number of candidate models, primarily due to the need for longer search trails to ensure we find
optimal performance points. As shown in the table Table 17.

Table 15: Budget allocation to search trials for pruning. 41% of trials require only the smallest budget
size, significantly increasing efficiency.

Dataset Low Budget Medium Budget High Budget
(41.4%, 207 trials) (36.6%, 183 trials) (22.0%, 110 trials)

PIQA 100 300 1000
WSC 100 200 500
CSQA 100 300 1000
MMLU 100 300 1000

26

Under review as a conference paper at ICLR 2026

Table 16: Evaluation runtime for different datasets and sample sizes

Dataset Size Runtime (Seconds)

100 2.76

CSQA 300 6.97
1000 16.51

100 241

WSC 200 2.50
500 2.67

100 2.75

PIQA 300 7.00
1000 21.23

100 2.56

MMLU 300 6.49
1000 21.66

Table 17: Scaling of Computational Cost with Number of Models

Number of Models Search Trials FLOPs

1 200 9.85 x 10'®
300 2.26 x 1016
3 500 9.35 x 106

H.4 SCALING TO STRONGER THINKING MODEL

We further extend our method to recent thinking models. Specifically, we evaluate our approach using
Qwen3-4B-Instruct (LM) and Qwen3-4B-Thinking (Thinking) models (Team, 2025). The results
are presented in Table 19, demonstrating the effectiveness of our method on this emerging model
architecture.

Table 18: Comparison of efficiency of pruning methods

Metric LACO ShortGPT Ours (Multi-models) Ours (Layer Folding)
Pruning Stage

FLOPS 1.29e+14 4.91e+19 9.35e+16 1.75e+16

Performance (avg) 37.14 42.40 48.55 46.26

Post-training Stage

FLOPS 1.06e+18 1.06e+18 0 0

Performance (avg) 40.03 42.76 48.55 46.26
Overall Summary

Total FLOPS 1.06e+18 4.91e+19 9.35e+16 1.75e+16

Final Accuracy 40.03 42.76 48.55 46.26

27

Under review as a conference paper at ICLR 2026

Table 19: Comparison of pruning methods on multiple natural language benchmarks. "Single" refers
to the best performance achieved when pruning a single model directly, while "Merge" refers to the
best performance achieved through either "pruning-then-merging" or "merging-then-pruning". 4B
models: Qwen3-4B-Instruct (LM), Qwen3-4B-Thinking (Thinking).

LLM Pruner Type Reasoning Language Knowledge Understanding A
v
ratio/layer CMNLI HeSw PIQA|CHID WSCp WSCq|CSQA BoolQ MMLU CMLU|Race ;r Raceps XSum C3 ¢
Dense Base | 38.83 64.20 75.68|79.67 48.08 55.77 |80.34 80.37 72.43 73.52|65.95 73.33 14.73 67.62|63.61

3 Thinking| 45.22 60.60 75.52/79.02 62.50 65.38 | 77.81 82.45 70.57 71.85|69.73 78.13 1.78 67.73|64.88
ngl ShortGPT Single | 35.45 44.78 67.03|53.55 63.46 30.77 |49.63 63.39 44.40 46.09 | 35.96 39.21 12.56 51.95(45.59
Merge | 33.09 43.18 67.36|52.65 60.58 20.60 |32.76 63.33 3230 32.16 | 30.93 28.34 11.34 49.81(39.89

Ours 36.07 45.94 68.39/56.29 64.42 35.60 | 62.00 67.71 48.56 47.04 | 37.85 40.81 10.20 52.5548.10

H.5 SCALING TO MATH AND CODE TASKS

We conducted additional experiments on mathematical and coding tasks using LLaMA-7B, comparing
our approach with the two strongest baseline methods (ShortGPT and LACO) under varying numbers
of pruned layers. As shown in the Table 20, tasks that require structured output formats, such as
mathematical reasoning and code generation, are particularly sensitive to layer removal. The baseline
methods exhibit catastrophic drops in performance, with the removal of just 2-4 layers leading to
near-zero performance. In contrast, our method consistently maintains superior performance
across all pruning ratios.

Table 20: Performance comparison on mathematical and coding tasks across different pruning ratios
using LLaMA-7B.

Method Layers Pruned GSMSK HumanEval
Candidate Models (No Pruning)
base 0 11.30 3.05
Im 0 21.23 3.05
math 0 11.99 0.00
code 0 3.11 14.02
2 3.80 6.71
LACO 4 0.76 1.22
6 0.00 0.00
8 0.00 0.00
2 1.50 2.44
ShortGPT 4 0.00 0.61
6 0.00 0.00
8 0.00 0.00
2 22.22 12.81
4 15.24 6.10
Ours
6 5.31 1.22
8 0.00 0.00

28

Under review as a conference paper at ICLR 2026

Table 21: Robustness analysis of candidate model combinations across multiple natural language
benchmarks. Blue-highlighted cells show optimal performance using three specialized models:
Llama-2-7B-Chat (LM), MAmmoTH-7B (Math), and Llama-2-Coder-7B (Code), with Llama-2-7B
serving as the base model.

Model Pool Reasoning Language Knowledge Understanding Avg

CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMMLU RaceH RaceM XSum C3

3-candidate models
Math+LM+Code 35.46 5443 67.74 23.63 6346 4327 6290 75.08 48.75 33.86 55.35 58.64 1299 44.16 48.55

2-candidate models

Math+LM 3293 5593 6790 2093 57.69 57.69 6224 76.54 4531 3325 49.06 5327 1442 4230 47.82
Code+LM 33.00 58.09 67.52 21.08 56.73 50.96 62.65 70.09 46.96 33.85 5031 5536 1238 43.40 47.31
Code+Math 3293 53.67 69.53 27.27 3846 34.60 56.35 6599 41.40 3097 4514 4443 811 44.60 43.12

1-candidate model

LM 3327 51.34 6420 1933 62.50 53.85 62.82 64.86 4647 31.59 47.80 51.39 697 39.51 4542

Math 3295 60.65 6649 2243 36.54 3250 58.07 71.01 44.13 32.07 4028 41.57 13.76 41.10 42.40

Code 30.10 54.72 69.75 26.17 63.46 6250 5094 65.00 36.42 26.69 31.02 3099 247 38.14 42.03
base only

Base 3222 5648 67.46 2632 61.54 50.00 41.44 6691 40.54 28.01 3794 3935 0.96 41.92 4220

H.6 SCALING TO OTHER CANDIDATE MODELS

To clarify the role of domain diversity in candidate model selection, we note that strict domain
diversity is not always necessary. The optimal combination depends on the optimization objective: if
the goal is improving performance on language tasks, including more high-quality language models
in the candidate pool is naturally beneficial. However, when access to same-domain models is limited,
a diverse candidate pool can still provide comparable results through complementary capabilities. To
validate this, we conducted an additional experiment using a candidate pool with only two models:
a Llama-7b instruct model(LM) and a Chinese fine-tuned Llama-7b model(CN_LM). As shown in
Table 22, This focused selection of high-quality language models achieved even better performance
than our main results, confirming that strategic model selection can be more effective than broad
diversity when models are well-aligned with the target task.

Table 22: Comparison with other candidate models using high-quality language models. The
experiment shows that using two specialized language models (LM and CN_LM) can achieve
superior performance.

Method Reasoning Language Knowledge Understanding Avg

CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMMLU RaceH RaceM XSum C3

Base 3298 71.34 78.18 4156 37.50 3846 55.04 70.70 46.67 31.88 3553 3336 19.55 43.84 45.47
CN_LM 34.02 70.03 76.71 3831 6346 59.62 6151 56.09 46.47 32.64 4148 4547 17.64 46.58 49.29
LM 3130 7128 7595 36.11 63.46 59.62 6429 7477 48.30 3393 5252 5522 2245 47.56 52.63
ShortGPT 34.14 3374 59.85 1523 61.54 33.46 4481 5520 30.70 27.06 40.73 4278 13.20 34.58 37.64
Ours 33.00 6324 68.00 2243 60.69 57.69 63.64 76.02 4531 3325 50.08 5330 14.42 42.26 48.80

29

	Introduction
	Related Work
	Methods
	Problem Setup
	Search Space Design
	Target Objective Function
	Search Optimizer

	Experimental Settings
	Results and Analysis
	Main Results
	Which Parts of the Search Space are Critical ?
	Robustness and Generalization Analysis
	Enhancing Layer-Folding Pruning Potential
	Computational Efficiency Analysis

	Conclusion
	The Use of Large Language Models
	Baseline
	Evaluation Benchmarks
	Task Arithmetic Merging
	kaistblueDescriptions of SMAC-based Multi-Fidelity Optimization
	kaistblueUnderstanding Strategy Selection via Layer-Level Analysis
	kaistblueTheoretical Foundation: Why Model Merging Works
	kaistblueEmpirical Observations: Layer-wise Patterns
	kaistblueWhy do these patterns emerge?

	Full Baseline results
	ADDITIONAL ANALYSIS
	Different Calibration Datasets and Metrics
	Enhancing Layer-Folding Pruning Potential
	Efficiency Analysis
	Scaling to Stronger Thinking model
	Scaling to Math and Code Tasks
	Scaling to other candidate models

