
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GPTAILOR: LARGE LANGUAGE MODEL PRUNING
THROUGH LAYER CUTTING AND STITCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have shown remarkable capabilities in language
understanding and generation. However, such impressive capability typically
comes with a substantial model size, which presents significant challenges in
deployment and inference. While structured pruning of model parameters offers a
promising way to reduce computational costs at deployment time, current methods
primarily focus on single model pruning. In this work, we develop a novel strategy
to compress models by strategically combining or merging layers from finetuned
model variants, which preserves the original model’s abilities by aggregating
capabilities accentuated in different finetunes. We pose the optimal tailoring of
these LLMs as a zero-order optimization problem, adopting a search space that
supports three different operations: (1) Layer removal, (2) Layer selection from
different candidate models, and (3) Layer merging. Our experiments demonstrate
that this approach leads to competitive model pruning, for example, for the Llama2-
13B model families, our compressed models maintain approximately 97.3% of
the original performance while removing ∼ 25% of parameters, significantly
outperforming previous state-of-the-art methods.

1 INTRODUCTION

The unique strengths of modern Large Language Models (LLMs) in language understanding, genera-
tion, and reasoning (Touvron et al., 2023; OpenAI et al., 2023; Chiang et al., 2023) are inextricably
linked to their immense size. Research in this field has generally followed a trajectory of scaling
model parameters and data to enhance performance, guided by two fundamental principles: scaling
laws, which establish that performance improves predictably with increased parameters (Kaplan
et al., 2020; Hoffmann et al., 2022; Wei et al., 2022), and over-parameterization theory, which demon-
strates that models with excess parameters achieve better optimization and generalization (Allen-Zhu
et al., 2019a;b; Li et al., 2020). These principles have led researchers to develop billion-parameter
architectures delivering unprecedented performance across diverse language tasks.

Despite these impressive capabilities, deploying LLMs presents significant challenges due to their
substantial computational demands. Various post-training techniques have been proposed to address
the issues faced when deploying models to consumer GPUs or local devices, or when reducing costs,
including model pruning (Frantar & Alistarh, 2023; Dettmers et al., 2023b; Xia et al., 2023; Kim
et al., 2024; Ma et al., 2023), knowledge distillation into smaller models (Chen et al., 2022; Hsieh
et al., 2023; Shridhar et al., 2023; Tunstall et al., 2023), and quantization of weights (Yao et al., 2022;
Gholami et al., 2022; Dettmers et al., 2023a). While quantization reduces parameter precision but
requires specific hardware support, and knowledge distillation necessitates costly retraining of smaller
models, structured pruning offers a more flexible and hardware-agnostic approach by eliminating
redundant parameters to decrease computation costs.

Existing pruning methods typically focus on pruning individual models through manually designing
metrics that assess the importance of specific structures or layers based on hidden state changes or
gradient (Kim et al., 2024; Men et al., 2024; Ma et al., 2023). However, most of these approaches
cause performance degradation and require additional post-training with full parameters to recover
performance.

To address these limitations, we take a radically different perspective and re-formulate structured
pruning as the problem of pruning not individual models, but a family of task-specific finetuned

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Our Approach: Model Pruning through Cutting and Stitching. We achieve competitive
model pruning performance by running a zero-order search that tailors layers based on a shared pool
of finetuned variants of the original model, selecting and stitching layers if necessary. The model
finetunes accentuate task-specific skills, allowing us to merge key components into a smaller model,
maintaining, for example, 97% of capabilities of Llama-13B, even after a 25% reduction in layers.

versions of a given model. These finetuned variants are surprisingly helpful for model pruning, as
each variant accentuates a particular task, such as coding, math, or language understanding. Further,
the variants are close enough that model merging can be employed to re-combine layers from multiple
variants, if needed (Wortsman et al., 2022). These observations lead us to our main question: Can we
develop better compressed models by strategically combining or merging layers from different
models? Motivated by this question, we propose a novel structured pruning method based on zero-
order optimization that supports three different operations to combine layers from different models
into a smaller, more efficient model: (1) Layer removal, (2) Layer selection from related candidate
models, (3) Layer merging.

For the optimization, we define multiple objective functions that capture different aspects of model
performance across different tasks to better preserve the original model’s capabilities and run a fully
data-driven zero-order optimization, instead of relying on expert-made heuristics for pruning. We
employ SMAC (Lindauer et al., 2022), which strategically allocates computational resources by
evaluating configurations at different calibration data sizes, thereby reducing computational costs
while boosting the efficiency of finding superior solutions. We rigorously validate our method’s
effectiveness by evaluating it on Llama-7B and Llama-13B with four state-of-the-art structural
pruning methods across comprehensive benchmarks. Our experimental results demonstrate that our
approach maintains excellent performance while outperforming existing pruning methods.

In summary, the main contributions of this paper are:

• We propose a novel structured pruning method that formulates pruning as a zero-order
optimization problem over a pool of candidate models, enabling automated discovery of
efficient models that leverage capabilities from multiple models.

• We find that this approach allows for a cost-effective model pruning stage that is effective
without the need for post-training to heal the pruned model.

• We validate our method’s effectiveness through extensive experiments, comparing against
modern LLM pruning methods on 14 benchmark tasks.

Our method maximally preserves the capabilities of the dense model: 92.2% for the 7B model and
97.3% for the 13B model. significantly outperforming previous state-of-the-art methods.

2 RELATED WORK

Compression of Language Models. Large language models (Touvron et al., 2023; OpenAI et al.,
2023; Chiang et al., 2023) necessitate efficient compression methods to reduce parameters and latency.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

These methods include structural pruning (Frantar & Alistarh, 2023; Dettmers et al., 2023b; Xia et al.,
2023; Kim et al., 2024; Ma et al., 2023), knowledge distillation (Chen et al., 2022; Hsieh et al., 2023;
Tunstall et al., 2023), and quantization (Yao et al., 2022; Gholami et al., 2022; Dettmers et al., 2023a).
Our work focuses on structural pruning, which removes sub-components from neural networks for
hardware-friendly compression - instead of pruning through sparsification, which requires significant
effort to materialize gains on standard hardware. Recent pruning methods are typically guided by
expert-designed criteria. LLMPruner (Ma et al., 2023) removes non-critical structures using gradient
information. SliceGPT (Ashkboos et al., 2024) reduces dimensionality by replacing weight matrices
with smaller ones. LaCo (Yang et al., 2024) collapses the weights of later layers into earlier ones
based on activation similarity. ShortGPT (Men et al., 2024) measures layer importance through
Block Influence (BI) derived from hidden state changes. Unlike these metric-based methods targeting
individual models, our approach employs zero-order search, namely hyperparameter optimization to
combine pruning and merging across model families. While LaCo also uses layer merging, it focuses
only on merging similar layers for a single model, whereas we focus on strategically combining
or merging layers from different models, which we find to noticeably improve upon within-model
merging. Additionally, our approach differs from the weight-sharing NAS-based pruning method
(Klein et al., 2024), which requires costly training. Instead of searching within a single model, we
directly optimize across fine-tuned models, strategically combining layers from diverse variants.

Model Merging. Model merging enhances capabilities without additional training data or computa-
tion. The field evolved from simple weighted parameter averaging (Utans, 1996) that often yielded
suboptimal results to advanced techniques like Task Arithmetic (Ilharco et al., 2022) which computes
differences between model parameters and SLERP (White, 2016) which performs interpolation along
spherical paths. Later approaches leveraged neural network sparsity, with TIES-Merging (Yadav
et al., 2024) selecting parameters based on magnitude while addressing sign conflicts, and DARE
(Yu et al., 2024) combining sparsification with parameter rescaling. Recent advances include Evolu-
tionary model merging (Akiba et al., 2024) optimizing coefficients through evolutionary search, and
multi-fidelity approach (Su & Geiping, 2025) that enables fine-grained exploration while reducing
costs. Our work also builds upon a multi-fidelity optimization framework to allow for an efficient
search for compressed models.

3 METHODS

In this section, we provide a detailed explanation of our approach. Unlike conventional model
compression pipelines, we formulate pruning as a zero-order optimization problem over the layers
and merging hyperparameters of a set of candidate models. We begin in Section 3.1 by outlining our
problem formulation and defining the optimization pipeline for pruning with three key components: a
search space, a target objective, and an optimizer. Section 3.2 follows with a description of the search
spaces. In Section 3.3, we introduce our designed target objective function. Finally, In Section 3.4,
we describe our choice of optimization strategy, which efficiently navigates the defined search space
to identify optimal pruning configurations. An overview of the pipeline is provided in Figure 1.

3.1 PROBLEM SETUP

Given a pre-trained base model Mbase and a set of candidate models M = {M1,M2, ...,MK}
fine-tuned from the same base model, our goal is to find an optimal pruned model that maximizes
performance while adhering to a target sparsity constraint. Let s denote the target sparsity factor,
where s ∈ [0, 1] indicates the fraction of parameters to be pruned. The pruned model is constructed
through a combination of layers from candidate models, employing operations such as layer-wise
merge, layer selection, and layer removal. These combinations and operations are determined by a
set of hyperparameters ω ∈ Ω, with Ω representing the search space of all possible hyperparameter
configurations. Each configuration ω defines a specific way to combine the layers from candidate
models to form a pruned model Mω . The performance of the pruned model can be evaluated using a
function f(Mω), which measures the model’s effectiveness on specific datasets and tasks. This leads
to our optimization problem:

ω∗ = argmin
ω∈Ω

f(Mω) subject to S(Mω) ≤ s (1)

where S(·) calculates the fraction of pruned parameters in the model compared to the base model,
and ω∗ represents the optimal hyperparameter configuration that yields the performing pruned model.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 SEARCH SPACE DESIGN

The search space Ω encompasses all possible pruning configurations that can be applied to construct
our pruned model. We formulate this space based on structural layer-wise pruning operations. We
aim to support three operations: (1) Layer removal, (2) layer selection, and (3) Layer merging. We
designed our search space as follows:

Given a base model with l layers and K candidate models fine-tuned from this base model, we
design the search space through a binary vector r = [r1, r2, . . . , rl] where ri ∈ {0, 1} indicates
whether the i-th layer is retained (ri = 0) or removed (ri = 1), satisfying

∑l
i=1 ri = ⌈l · s⌉

to achieve our target sparsity s. For each retained layer position i, we define a selection vector
ci = [ci,1, ci,2, . . . , ci,K] where ci,j ∈ {0, 1} indicates whether the layer from the j-th candidate
model is selected. If

∑K
j=1 ci,j = 0, we retain the layer from the base model instead. When multiple

candidate models contribute to a layer position (i.e.,
∑K

j=1 ci,j > 1), we specify a merge method
mi ∈ {1, 2, . . . , Z} from Z available merging techniques. Each merge method mi is associated with a
set of hyperparameters hi = [hi,1, hi,2, . . . , hi,Pi], where Pi is the number of hyperparameters for the
specific merge method. These hyperparameters govern the precise mechanism of layer combination,
such as interpolation weights or mask ratio parameters. Therefore, a complete configuration ω ∈ Ω is
represented as ω = {r, {ci|ri = 0}, {mi|ri = 0 and

∑K
j=1 ci,j > 1}, {hi|ri = 0 and

∑K
j=1 ci,j >

1}}. The total cardinality of the search space can be calculated as: |Ω| =
(

l
⌈l·s⌉

)
×

∏
i:ri=0 2

K ×∏
i:ri=0,

∑K
j=1 ci,j>1 Z ×

∏
i:ri=0,

∑K
j=1 ci,j>1 |hi|. which enables a wide exploration of pruning

strategies while maintaining the target sparsity constraint.

3.3 TARGET OBJECTIVE FUNCTION

To evaluate the quality of a pruned model, we define a multi-objective function that measures the
model’s effectiveness across tasks. Specifically, we measure performance on calibration datasets
Dcalibration, quantifying metrics such as accuracy for classification tasks or perplexity for language
modeling tasks. This provides a direct assessment of how well the pruned model preserves the
capabilities of the original model. We define a multi-task objective function that captures different
aspects of model performance across a range of tasks to produce a comprehensive pruned model.
Let T = {T1, T2, . . . , Tm} be a set of m tasks. For a pruned model Mω with configuration ω, we
employ Pareto Efficient Global Optimization (ParEGO) (Knowles, 2006) to identify Pareto-optimal
solutions across different objectives. Specifically, the ParEGO algorithm transforms multi-objective
optimization problems into a series of single-objective problems through scalarization methods:

fmulti(Mω, λ) = max
i=1,...,m

{λi · fi(Mω)}+ α

m∑
i=1

λi · fi(Mω) (2)

where fi(Mω) is the i-th objective function, λi is the corresponding weight satisfying
∑m

i=1 λi = 1
and λi ≥ 0, and α is a small positive constant (typically set to 0.05). The Chebyshev norm component
maxi=1,...,m{λi · fi(Mω)} ensures that all non-dominated solutions on the non-convex Pareto front
can be identified, while the term α

∑m
i=1 λi · fi(Mω) enhances the algorithm’s stability. The final

output of our optimizer is a Pareto front of pruning configurations, where each configuration represents
a different trade-off between performance on various tasks. In our experiments, we selected the
configurations from the best performing Pareto front and report their results.

3.4 SEARCH OPTIMIZER

To efficiently navigate the search space and find optimal pruning configurations, we employ SMAC
(Lindauer et al., 2022), which strategically allocates computational resources by evaluating con-
figurations at different fidelity levels. we use calibration dataset size as fidelity type, represented
by budgets b where bmin ≤ b ≤ bmax. Each budget value corresponds to a specific portion of the
calibration data used for evaluation - smaller budgets (lower fidelity) use fewer samples for faster
but less precise evaluations, while larger budgets (higher fidelity) use more samples for slower but
more accurate assessments. We use Random Forest (Breiman, 2001) as a surrogate model to sample

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

new configurations. Given configuration space Ω, minimum budget bmin, maximum budget bmax,
reduction factor η and the maximum trials Tmax, the whole process is described in Algorithm 1.

Algorithm 1 The optimization process of Gptailor.

Require: Configuration space Ω, minimum budget bmin, maximum budget bmax, reduction factor η,
maximum trials Tmax

Ensure: Optimized configuration ω∗

1: smax = ⌊logη bmax

bmin
⌋, D ← ∅, T ← 0 ▷ Initialization

2: for s ∈ {smax, smax − 1, . . . , 0} and T < Tmax do
3: n← ⌈ (smax+1)

(s+1) · η
s⌉, r ← bmin · ηs ▷ Config count & budget

4: C ← Sample Configurations(n, D, Ω) ▷ Sample configurations
5: for i ∈ {0, 1, . . . , s} and T < Tmax do
6: ni ← ⌊n · η−i⌋, ri ← r · ηi ▷ Stage parameters
7: for each w ∈ C and T < Tmax do
8: Evaluate yw ← fmulti(Mw, λ) using ri samples from calibration set, D ← D ∪
{(w, ri, yw)}, T ← T + 1

9: end for
10: Sort C by performance, keep the top ⌊ni/η⌋ configurations in C
11: end for
12: end for
13: return the best-performing configuration ω∗ evaluated at highest budget

This efficient optimization strategy enables us to handle the search space defined in Section 3.2,
identifying high-performing pruned models that satisfy our multi-objective function from Section 3.3,
with significantly reduced computational cost compared to exhaustive search approaches.

4 EXPERIMENTAL SETTINGS

Benchmarks. To evaluate the pruned model’s capabilities, we utilized the OpenCompass evaluation
framework (Contributors, 2023). Specifically, we conduct evaluations in five aspects: Reasoning,
Language, Knowledge, Examination and Understanding. Reasoning: CMNLI (CNLI)(Xu et al.,
2020), HellaSwag (HeSw)(Zellers et al., 2019), PIQA (Bisk et al., 2020). Language: CHID (Zheng
et al., 2019), WSC (Levesque et al., 2012). Knowledge: CommonSenseQA (CSQA) (Talmor et al.,
2018), BoolQ (Clark et al., 2019). Examination: MMLU (Hendrycks et al., 2020), CMMLU (CMLU)
(Li et al., 2023). Understanding: Race-High/Middle (H/M) (Lai et al., 2017), XSum (Narayan et al.,
2018), C3 (Sun et al., 2020). For CHID and XSum, we use generative evaluation. For the WSC
dataset, we use cloze log-likelihood (WSCP) and generative (WSCG) evaluation. The remaining
benchmarks are evaluated using cloze log-likelihood. See more details in Supplementary Section C.

Baselines. To evaluate the effectiveness of our method, we compared with four state-of-the-art struc-
tured pruning methods: LLM-Pruner (LLMPru) (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024),
LaCo (Yang et al., 2024), and ShortGPT (Men et al., 2024). In our experiments, we set the pruning
ratios of our method to be equivalent to ShortGPT and LaCo. Furthermore, as our method is based
on multiple candidate models, we check three comprehensive comparison scenarios to guarantee
fairness: (1) Applying each baseline pruning method individually to all candidate models and picking
the strongest one, (2) First pruning each candidate model using the baseline method and then merging
them, and (3) First merging the candidate models and then applying pruning. For model merging
across baseline experiments, we employ the task-arithmetic merging (Ilharco et al., 2022) technique
used in our search space, with merging factors within the range [0.5, 1.0] (Ilharco et al., 2022).

Model Selection. To assess the effectiveness of the proposed method, we search for pruned versions of
the popular Llama2-7B and Llama2-13B (Touvron et al., 2023). For 7B models, we use Llama-2-7B
(Touvron et al., 2023) as our base model, with three candidate models: Llama-2-7B-Chat (Touvron
et al., 2023) (LM), MAmmoTH-7B (Yue et al., 2023) (Math), and Llama-2-Coder-7B (Manuel
Romero, 2023) (Code). For 13B models, we use Llama-2-13B (Touvron et al., 2023) as the base
model, with WizardLM-13B (Xu et al., 2023) (LM), WizardMath-13B (Luo et al., 2023) (Math), and
Llama-2-13B-Code-Alpaca (Chaudhary, 2023) (Code) as candidate models. We selected these models

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

for their wide availability to ensure reproducible evaluation. For the 7B models, we set the sparsity
ratio to 9/32, removing approximately 28% of the layers. For the 13B models, we set the sparsity ratio
to 10/40, removing approximately 25% of the layers. These two ratios are matching the best settings
from prior work in ShortGPT and LaCo, while being slightly higher than other baseline methods,
allowing for fair comparisons. For layer merging, we implement task-arithmetic (Ilharco et al., 2022)
merging with a configurable merging factor that controls the magnitude of task-specific adaptations.

Calibration Data. For our calibration dataset, we selected multiple-choice datasets to ensure the
model’s generalization ability across different capabilities. Specifically, we sampled from diverse
datasets: 1000 examples from the PIQA (Bisk et al., 2020) training set, 500 examples from the WSC
(Levesque et al., 2012) training set, 1000 examples from the CSQA Talmor et al. (2018) training set,
and 1000 examples from the MMLU (Hendrycks et al., 2020) validation set (which is distinct from
the MMLU test set). This diverse collection allows us to calibrate our model across a broad spectrum
of linguistic and reasoning capabilities.

Objective and Optimizer. Our implementation builds upon SMAC (Lindauer et al., 2022) for opti-
mization. We allocate 500 search trials for both 13B and 7B experiments. To improve optimization ef-
ficiency, we use models with randomly removed middle layers as starting points, since models are rel-
atively robust to changes in these intermediate layers (Su & Geiping, 2025). We set the minimum bud-
get bmin as 100, maximum budget bmax as the 1000, and reduction factor η as 3. This resulted in budgets
of {100, 300, 1000} for PIQA, CSQA, and MMLU. For the WSC, we set budgets to {100, 200, 500}

5 RESULTS AND ANALYSIS

5.1 MAIN RESULTS

To validate the effectiveness of our method, we compared it with the four baselines: LLM-Pruner
(LLMPru) (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024), LaCo (Yang et al., 2024), and
ShortGPT (Men et al., 2024). We reproduce the results from these methods and evaluate on Open-
Compass (Contributors, 2023). As mentioned in the experiment section, we evaluate the results based
on three settings, i.e., individual pruning, pruning-then-merging, and merging-then-pruning.

Table 1 reports the best single model pruning and best merge results of all baselines, with full results
in Supplementary Section G. Our approach achieves the best results across multiple benchmarks
compared to all tested LLM pruning methods. In terms of overall performance, our method maximally
preserves the capabilities of the dense model: 92.2% (48.55/52.63) for the 7B model and 97.3%
(54.33/55.86) for the 13B model. To ensure our results were not biased by our calibration data, we also
calculate an avg* excluding the four benchmarks from which training data was selected for calibration
(MMLU, CSQA, WSC, PIQA). As shown in the avg* column, our method still outperformed all
baselines, further validating our approach. Notably, our method achieved comparable or even better
results than dense models on most tasks. We attribute these gains to: 1) Pruning might mitigate
"overthinking" effects (Kaya et al., 2019), as evidenced by benchmarks such as CNLI and WSC,
where other pruning methods also yielded performance gains, and 2) Our merging strategy might
mitigate the information loss caused by pruning, stemming from the merging process.

Figure 2 illustrates our best-performing 7B-pruned model and best-performing 13B-pruned models’
structure (See Supplementray Table 12 and Table 13 for details). We observe that both models tend to
remove middle-to-later layers, with the 13B model removing layers from layer 25 and the 7B model
from layer 19. This suggests information redundancy in these layers, aligning with findings that later
layers exhibit high similarity and redundancy (Men et al., 2024; Gromov et al., 2024).

5.2 WHICH PARTS OF THE SEARCH SPACE ARE CRITICAL ?

To determine where the benefits of our approach come from, we designed ablation experiments to
evaluate the contribution of different components in our search space. As our framework supports:
(1) Layer Selection (LS) from different candidate models, (2) layer merging, and (3) Layer Removal
(LR), we conducted ablation studies to isolate the impact of each component. Table 2 summarizes
the performance comparison across various benchmarks (More results in Supplementary Table 9).
Layer Removal Only (LR-only). We restricted the search space to allow only layer removal
operations on a single model. Consequently, our method in this setting supports only single-model

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of pruning methods on multiple natural language benchmarks. "Single" refers
to the performance achieved when pruning a single model directly, while "Merge" refers to the
performance achieved through either "pruning-then-merging" or "merging-then-pruning". 7B models:
Llama-2-7B-Chat (LM), MAmmoTH-7B (Math), Llama-2-Coder-7B (Code), and Llama-2-7B (Base).
13B models: WizardLM-13B (LM), WizardMath-13B (Math), llama-2-13B-code-alpaca (Code), and
Llama-2-13B (Base).

LLM Pruner Type Reasoning Language Knowledge Understanding Avg Avg*
(ratio) CNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Llama
-7B

Dense
(0.0%)

Base 32.98 71.34 78.18 41.56 37.50 38.46 55.04 70.70 46.67 31.88 35.53 33.36 19.55 43.84 45.47 42.30
Math 32.99 68.60 75.79 39.71 39.42 36.54 50.78 69.36 43.04 32.16 30.36 36.42 20.88 43.45 44.25 41.70
LM 31.30 71.28 75.95 36.11 63.46 59.62 64.29 74.77 48.30 33.93 52.52 55.22 22.45 47.56 52.63 47.24

Code 32.99 70.27 78.62 41.61 36.54 41.35 57.41 71.04 46.22 32.20 41.25 39.69 18.79 46.25 46.73 43.79
LLMPru
(25.3%)

Single 32.99 59.57 73.34 30.32 46.15 0.00 20.15 57.28 23.21 25.16 21.56 21.52 15.19 31.07 32.68 32.74
Merge 34.71 60.57 73.50 26.62 40.38 5.77 19.90 52.14 24.01 25.30 23.07 22.98 15.51 32.49 32.64 32.60

SliceGPT
(26.3%)

Single 31.89 41.55 58.81 18.43 39.42 4.81 19.49 40.09 25.38 25.02 25.59 26.88 8.78 39.56 28.98 28.64
Merge 32.85 37.61 57.56 17.33 53.85 2.88 19.41 42.66 25.22 24.68 25.21 24.72 12.78 40.22 29.78 28.67

LaCo
(27.1%)

Single 32.97 55.24 69.53 31.47 36.54 34.62 22.11 67.22 29.08 26.16 28.53 28.27 14.68 43.51 37.14 36.45
Merge 31.89 56.26 71.22 27.32 39.42 22.12 23.42 72.66 29.30 26.00 25.19 26.81 16.11 43.62 36.52 36.21

ShortGPT
(27.1%)

Single 33.09 57.42 66.54 21.53 56.73 48.08 52.50 67.34 43.68 28.31 32.53 31.69 12.40 39.45 42.24 35.97
Merge 34.10 54.18 64.42 16.83 61.54 36.54 55.61 73.21 36.84 25.61 42.94 45.89 10.12 35.73 42.40 37.62

Ours
(27.1%) 35.46 54.43 67.74 23.63 63.46 43.27 62.90 75.08 48.75 33.86 55.35 58.64 12.99 44.16 48.55 43.73

Llama
-13B

Dense
(0.0%)

Base 32.99 74.77 79.71 47.35 50.96 63.46 67.24 71.38 55.84 38.74 57.98 60.17 23.47 47.51 55.11 50.48
LM 35.36 70.41 78.73 36.21 57.69 60.58 65.03 73.70 53.48 30.85 66.12 71.66 22.44 52.00 55.30 50.97

Math 32.99 68.78 77.26 44.36 36.54 19.23 60.36 78.44 54.21 38.12 47.74 48.82 19.51 44.66 47.93 47.05
Code 32.99 74.82 80.14 47.30 51.92 63.46 68.88 72.72 55.92 39.26 58.03 63.72 24.45 48.38 55.86 51.30

LLMPru
(21.2%)

Single 33.49 60.28 75.57 23.68 39.42 0.00 19.00 63.24 23.27 25.23 22.36 21.45 17.13 32.00 32.58 33.21
Merge 33.86 64.11 73.50 22.18 60.58 0.00 21.46 61.96 23.84 25.62 22.16 21.59 14.98 32.11 34.14 33.17

SliceGPT
(23.6%)

Single 33.19 42.44 59.90 18.03 54.81 19.23 32.51 41.22 33.09 25.75 29.45 29.87 9.99 37.75 33.37 29.74
Merge 30.98 46.83 62.57 19.33 51.92 49.04 37.76 38.38 33.55 25.22 23.53 23.05 9.95 39.67 35.13 28.55

LaCo
(24.6%)

Single 32.33 60.18 70.57 32.67 34.62 34.62 52.58 62.66 36.26 25.80 60.38 62.53 8.79 49.21 44.51 43.84
Merge 33.49 62.50 74.37 35.26 63.46 63.46 18.84 64.65 41.83 24.87 26.10 25.97 15.93 39.51 42.16 34.71

ShortGPT
(24.6%)

Single 32.95 62.64 73.50 28.22 36.54 50.96 65.44 67.71 53.50 30.73 65.52 71.38 19.12 48.60 50.49 47.43
Merge 31.07 63.24 68.61 27.17 49.04 43.27 65.68 78.01 51.26 36.88 57.38 62.67 16.94 44.05 49.66 46.38

Ours
(24.6%) 32.99 66.81 75.03 29.07 54.81 62.50 69.37 74.28 55.90 39.71 65.52 71.03 16.80 46.74 54.33 49.22

Figure 2: (a) Structure of our best-performing 7B-pruned model. The model integrates layers from
multiple candidates: Llama-2-7B-Chat (LM), MAmmoTH-7B (Math), Llama-2-Coder-7B (Code),
and Llama-2-7B (Base). The pruning ratio is 9/32, removing 9 layers out of 32 total layers. (b)
Structure of our best-performing 13B-pruned model. The model integrates layers from multiple
candidates: WizardLM-13B (LM), WizardMath-13B (Math), llama-2-13b-code-alpaca (Code), and
Llama-2-13B (Base). The pruning ratio is 10/40, removing 10 layers out of 40 total layers.

pruning without merging, similar to most conventional pruning approaches. As shown in Table 2,
there is a significant performance drop (48.55% vs. 44.83%), confirming that merely pruning layers
from a single model is insufficient. Moreover, it is worth noting that even with layer-removal only
pruning on a single model our method still outperforms the best baseline, ShortGPT (44.83% vs.
42.24%). This highlights the superiority of our approach to pruning, even in a simplified setting.

Layer Selection and Removal (LS+LR). In this setting, we enabled both layer selection from
different candidate models and layer removal operations, while disabling the layer merging
functionality. Compared with LR-only, LS+LR yields an even larger performance drop (48.55 vs.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

43.20 on average). This suggests that merely combining layers from different models without proper
integration through merging is ineffective.

Table 2: Comparison of different searching settings across various benchmarks. Settings: LR-only:
Layer-remove only, LS+LR: Layer-selection + layer-remove, FL-merge: Folding Layers Merging.

Setting Reasoning Language Knowledge Understanding Avg

CNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Ours 35.46 54.43 67.74 23.63 63.46 43.27 62.90 75.08 48.75 33.86 55.35 58.64 12.99 44.16 48.55
LR-only 34.96 53.80 66.70 18.58 49.04 58.65 60.61 68.87 47.85 33.54 42.51 43.04 8.05 41.42 44.83
LS+LR 32.92 55.84 65.07 17.98 63.46 26.92 58.97 51.22 48.97 34.61 48.68 49.44 8.33 42.41 43.20
FL-merge 32.99 52.90 63.66 19.28 46.15 62.50 60.52 75.20 48.30 34.33 50.77 55.29 6.39 39.40 46.26

5.3 ROBUSTNESS AND GENERALIZATION ANALYSIS

To comprehensively evaluate the robustness and generalizability of our framework, we conduct
extensive analysis across three critical dimensions: pruning ratio sensitivity, candidate pool scalability
and Generalization to next-generation models. These experiments aim to validate our method’s
effectiveness under diverse deployment constraints and resource limitations.

Table 3: Impact of Candidate Pool Composition
on Performance.

Model Pool Average Performance

Math&LM&Code 48.55

Math&LM 47.82
Code&LM 47.31
Code&Math 43.12

LM 45.42
Math 42.40
Code 42.03

Base 42.20

0.0 12.5 25.0 37.5 50.0 62.5 75.0
Prune Ratio

25

30

35

40

45

50

55

Av
er

ag
e

Ac
cu

ra
cy

52.63

45.47
46.73

44.25

54.34

27.47

LM
Base
Code
Math
Ours

Figure 3: Performance Comparison Across Dif-
ferent Pruning Ratios.

Performance Across Pruning Ratios. To further evaluate the generalizability of our method under
different pruning ratios, we validate its performance across varying pruning ratios. Since we have
already shown that even the layer-removal variant of our method surpasses other baselines such
as ShortGPT, here we focus specifically on layer removal. Moreover, we examine its impact on
different task-specific models, using this experiment to highlight the additional benefits of merging,
rather than simply pruning a single model. The results are visualized in Figure 3 with the average
accuracy among benchmark performances at different pruning ratios. More details are supplied in
Supplementary Table 10. From the results, we can see that the accuracy of all models decreases as
the pruning ratio increases. Our model achieves the best performance at all pruning ratios, especially
in the low pruning ratio range of 0%-37.5%. When pruning reaches 50%, every model suffers
performance collapse, leading to a reduced gap across models. This represents a clear elbow point,
indicating that beyond it, excessive parameter removal renders models unable to sustain effective
functionality without further post-training.

Scaling with Candidate Model Pool Size. To validate the generalizability of our method across
different candidate models, we conducted experiments by varying both the number of models and
their combinations in the pool. As shown in Table 3, with full results in Supplementary Table 21 the
results show that performance is indeed affected by the choice of candidate models. Specifically,
including language models (LM) in the candidate pool consistently yields substantial improvements,
while code models tend to contribute more modest gains. Importantly, we find that increasing the
number of candidate models consistently leads to improved overall performance. Our findings
highlight three key properties of the proposed method. (1) Incorporating high-quality models, such
as strong language models, consistently improves performance across benchmarks. (2) Adding
lower-performing models does not harm the overall results, demonstrating the stability of our search
strategy. (3) Enlarging the candidate pool generally yields further improvements, reflecting the
scalability and robustness of our approach.

Generalization to Next-Generation Models (Llama-3). We further extend our validation to Meta’s
Llama-3 8B model (Grattafiori et al., 2024), which is larger, more densely parameterized, and trained

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

on 15T tokens with architectural improvements such as universal GQA and a longer context window.
Despite a similar model size, Llama-3 8B surpasses Llama-2 7B (Touvron et al., 2023). Pruning
such advanced models poses new challenges due to their semantic density, making validation on this
next-generation model crucial for establishing the practical applicability of our method in rapidly
evolving LLM landscapes. We compare our method with the best-performing baseline, ShortGPT.
As shown in Table 4 (full results in Supplementary Table 11), our method retains 84.55% of the
original performance (53.17/63.61) after pruning 9 layers, clearly outperforming ShortGPT’s 62.79%
(39.94/63.61) under the same compression ratio. Both results are lower than our Llama-2 7B retention
(92.2%) despite the similar model size, indicating that Llama-3 is less compressible. Nevertheless, our
method consistently surpasses the baseline, demonstrating its robustness across model generations.

Table 4: Comparison of pruning methods on multiple natural language benchmarks. For 8B model:
Meta-Llama-3-8B-Instruct (LM), MathCoder2-Llama-3-8B (Math), Code-Llama-3-8B (Code), and
Meta-Llama-3-8B (Base).

LLM Pruner Type Reasoning Language Knowledge Understanding
Avg

ratio/layer CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Llama3
-8B

Dense

Base 32.98 74.67 80.96 73.78 56.73 36.54 73.79 69.97 64.74 50.79 63.21 70.54 3.28 55.18 57.65
LM 33.00 71.08 80.69 65.53 55.77 69.23 76.66 78.87 65.97 53.64 76.44 81.75 17.97 63.95 63.61

Math 32.99 71.66 77.97 57.09 37.50 58.65 68.22 69.08 62.08 45.85 64.75 69.08 8.68 53.86 55.53
Code 32.98 65.56 74.70 78.42 61.54 61.54 63.47 78.35 48.03 34.55 52.40 58.43 19.36 46.41 55.41

ShortGPT
Single 32.83 45.06 65.78 23.38 41.35 53.85 39.56 63.73 32.37 28.69 40.14 45.19 3.68 43.51 39.94
Merge 32.95 48.58 64.96 18.43 36.54 35.58 42.83 67.22 33.05 28.71 30.16 32.45 3.66 44.27 37.10

Ours 33.42 54.83 69.75 34.02 47.12 62.50 73.79 64.34 63.13 50.04 72.81 77.65 3.00 46.52 53.78

5.4 ENHANCING LAYER-FOLDING PRUNING POTENTIAL

LaCo (Yang et al., 2024) is a merging-based pruning approach that performs within-model pruning
by folding later layers into earlier ones based on activation similarity. While effective, its potential
is constrained by suboptimal layer selection and merging strategies. To validate the effectiveness
and potential of this type of within-model merge operation, we use our hyperparameter optimization
framework with a specially designed search space (described in Section H.2). Empirically, As shown
in Table 2, our framework achieves improved performance (46.26) on this configuration, unlocking
greater potential from layer-folding pruning through optimized selection and merging strategies. This
validates that our approach can enhance various pruning paradigms beyond cross-model scenarios,
offering an effective solution when fine-tuned candidate models are unavailable.

5.5 COMPUTATIONAL EFFICIENCY ANALYSIS

We conducted a computational efficiency analysis against two competitive baselines, ShortGPT and
LaCo, on Llama7b using post-training settings from the LLMPruner paper. We test our framework
with two strategies: multi-candidate model searching (3 candidates) and single-model layer folding.
We choose these strategies because they cover complementary deployment scenarios when candidate
models are available versus unavailable. As shown in Supplementary Table 18 , both strategies
consistently outperform baselines with reduced computational overhead.

6 CONCLUSION

In this work, we presented a novel LLM compression approach that strategically combines layers
from fine-tuned model variants instead of pruning single models. By formulating this as a zero-order
optimization problem with a newly designed search space that supports layer removal, selection, and
merging, our method effectively preserves model capabilities while reducing size. Experiments on
Llama2-7B and Llama2-13B demonstrated that our compressed models retain 92.2% and 97.3% of
original performance, respectively, despite removing ∼ 25% of parameters, outperforming previous
state-of-the-art methods without requiring expensive post-training. Overall, our work demonstrates
that cutting and stitching layers from multiple fine-tuned variants of a model is a more effective
approach to LLM compression than traditional single-model pruning. While the search complexity
increases with the number of candidate models, this computational aspect represents an opportunity
for future optimization techniques to further enhance efficiency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

In this work, we carefully ensure that all methods and experimental protocols conform to established
ethical guidelines. Our investigation centers on layer pruning as a strategy to improve the efficiency
of LLMs and to lower computational demands, contributing to more sustainable AI practices. In
addition, every model and dataset employed in this research is obtained from openly accessible
sources, guaranteeing respect for intellectual property and protection of personal privacy. Apart from
the models used as experimental subjects (Llama2-7B, Llama-2-7B-Chat, MAmmoTH-7B, Llama-2-
Coder-7B, Llama2-13B, WizardLM-13B, WizardMath-13B, Llama-2-13B-Code-Alpaca, Qwen3-8B,
Qwen3-4B-Instruct, and Qwen3-4B-Thinking), we also utilized LLMs as writing assistants, as
detailed in Section A. All uses of LLMs in this work comply with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We made several efforts to ensure reproducibility. First, we provide detailed experimental settings and
hyperparameters used throughout this paper in Section 4, Appendix B, and Section 5.5, and report all
evaluation metrics in Section 5. Second, our code will be submitted with the paper, accompanied by
detailed usage instructions and scripts to reproduce all reported results.

REFERENCES

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
model merging recipes. arXiv preprint arXiv:2403.13187, 2024.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized
neural networks, going beyond two layers. Advances in neural information processing systems, 32,
2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019b.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation. https:
//github.com/sahil280114/codealpaca, 2023.

Zeming Chen, Qiyue Gao, Antoine Bosselut, Ashish Sabharwal, and Kyle Richardson. Disco:
Distilling counterfactuals with large language models. arXiv preprint arXiv:2212.10534, 2022.

Wei-Lin Chiang, Zhuohan Li, Ziqing Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2(3):6, 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
https://github.com/open-compass/opencompass, 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023a.

10

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://github.com/open-compass/opencompass

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized represen-
tation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023b.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. arXiv preprint arXiv:2110.06296, 2021.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pp. 3259–3269. PMLR, 2020.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information
processing systems, 31, 2018.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-power computer
vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger
language models with less training data and smaller model sizes. arXiv preprint arXiv:2305.02301,
2023.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-deep networks: Understanding and
mitigating network overthinking. In International conference on machine learning, pp. 3301–3310.
PMLR, 2019.

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models. arXiv
preprint arXiv:2402.02834, 11, 2024.

Aaron Klein, Jacek Golebiowski, Xingchen Ma, Valerio Perrone, and Cedric Archambeau. Struc-
tural pruning of pre-trained language models via neural architecture search. arXiv preprint
arXiv:2405.02267, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Joshua Knowles. Parego: A hybrid algorithm with on-line landscape approximation for expensive
multiobjective optimization problems. IEEE transactions on evolutionary computation, 10(1):
50–66, 2006.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–3529.
PMlR, 2019.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations. arXiv preprint arXiv:1704.04683, 2017.

Hector J Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. KR,
2012:13th, 2012.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timothy
Baldwin. Cmmlu: Measuring massive multitask language understanding in chinese. arXiv preprint
arXiv:2306.09212, 2023.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research, 18(185):1–52, 2018.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, and Joey Gonzalez.
Train big, then compress: Rethinking model size for efficient training and inference of transformers.
In International Conference on machine learning, pp. 5958–5968. PMLR, 2020.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin
Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian optimization
package for hyperparameter optimization. Journal of Machine Learning Research, 23(54):1–9,
2022. URL http://jmlr.org/papers/v23/21-0888.html.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Manuel Romero. llama-2-coder-7b (revision d30d193), 2023. URL https://huggingface.
co/mrm8488/llama-2-coder-7b.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the sum-
mary! topic-aware convolutional neural networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya Sachan. Distilling reasoning capabilities into
smaller language models. Findings of the Association for Computational Linguistics: ACL 2023,
pp. 7059–7073, 2023.

12

http://jmlr.org/papers/v23/21-0888.html
https://huggingface.co/mrm8488/llama-2-coder-7b
https://huggingface.co/mrm8488/llama-2-coder-7b

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Guinan Su and Jonas Geiping. Fine, i’ll merge it myself: A multi-fidelity framework for automated
model merging. arXiv preprint arXiv:2502.04030, 2025.

Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. Investigating prior knowledge for challenging chinese
machine reading comprehension. Transactions of the Association for Computational Linguistics,
8:141–155, 2020.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937, 2018.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro Von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
distillation of lm alignment. arXiv preprint arXiv:2310.16944, 2023.

Joachim Utans. Weight averaging for neural networks and local resampling schemes. In Proc.
AAAI-96 Workshop on Integrating Multiple Learned Models. AAAI Press, pp. 133–138. Citeseer,
1996.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Tom White. Sampling generative networks. arXiv preprint arXiv:1609.04468, 2016.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv
preprint arXiv:2304.12244, 2023.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao, Yudong Li, Yechen Xu, Kai Sun, Dian Yu,
Cong Yu, et al. Clue: A chinese language understanding evaluation benchmark. arXiv preprint
arXiv:2004.05986, 2020.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. Advances in Neural Information Processing Systems,
36:7093–7115, 2023.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. Advances in Neural Information Processing Systems,
36, 2024.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187, 2024.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
Advances in Neural Information Processing Systems, 35:27168–27183, 2022.

13

https://arxiv.org/abs/2505.09388

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. In Forty-first International Conference
on Machine Learning, 2024.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Chujie Zheng, Minlie Huang, and Aixin Sun. Chid: A large-scale chinese idiom dataset for cloze test.
arXiv preprint arXiv:1906.01265, 2019.

A THE USE OF LARGE LANGUAGE MODELS

We used large language models solely as a general-purpose writing aid to help improve the clarity and
readability of the text, and to suggest minor wording improvements. The LLMs did not contribute to
the research ideation, experimental design, analysis, or interpretation of results. All technical content,
experiments, and conclusions presented in this paper are entirely the work of the authors.

B BASELINE

To ensure fair comparison, we applied various baseline pruning methods including LLM-
Pruner(LLMPru) (Ma et al., 2023), SliceGPT (Ashkboos et al., 2024), LaCo (Yang et al., 2024) and
ShortGPT (Men et al., 2024):

LLM-Pruner adopts structural pruning that selectively removes non-critical coupled structures based
on gradient information, maximally preserving the majority of the LLM’s functionality. It applies
post-training to the pruned model, for fair comparison, we do not apply post training to it.

SliceGPT is a post-training sparsification scheme that replaces each weight matrix with a smaller
matrix, reducing the embedding dimension of the network. Specifically, they applied PCA to the
hidden representation from shallow to deep layers, and incorporated the dimension reduction matrix
into existing network parameters.

LaCo is a pruning method for large language models based on reducing layers. LaCo gradually
merges similar layers from deep to shallow and sets a threshold to avoid merging too many layers.

ShortGPT introduced the Block Influence (BI) metric, which uses the similarity between layer’s
input and output to measure the importance of each layer.

C EVALUATION BENCHMARKS

CMNLI (Chinese Multi-Genre Natural Language Inference) (CNLI) consists of two parts: XNLI
and MNLI. It contains text from various domains, including fiction, telephone conversations, travel,
and government sources. XNLI is a cross-lingual extension of the MultiNLI corpus, professionally
translated into multiple languages, including Chinese, providing a robust framework for assessing
language understanding across linguistic boundaries. Models must determine whether pairs of
sentences exhibit entailment, contradiction, or neutrality.

HellaSwag (HeSw) tests commonsense reasoning about physical situations. The dataset uses a
"Goldilocks" zone of complexity where examples are obviously nonsensical to humans but challeng-
ing for state-of-the-art models. Despite being trivial for humans (>95% accuracy), even advanced
models struggled with this benchmark upon its release, making it effective for measuring progress in
commonsense inference.

PIQA (Physical Interaction Question Answering) is a multi-choice question and answer dataset
that focuses on everyday scenarios, exploring models’ understanding of real-world physical laws
through daily situations.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

CHID (Chinese IDiom) is an idiom cloze test focusing on the representation and selection of Chinese
idioms, requiring cultural and linguistic knowledge specific to Chinese.

WSC (Winograd Schema Challenge) serves as a prominent benchmark for evaluating machine
understanding through pronouns resolution problems that are trivial for humans but require common-
sense reasoning for machines to solve correctly. The dataset consists of pairs of sentences differing in
one or two words with ambiguous pronouns resolved differently in the two sentences, designed to
test a system’s commonsense reasoning abilities.

CommonSenseQA (CSQA) is a multiple-choice question answering dataset containing 12,102 ques-
tions with one correct answer and four distractor answers, requiring different types of commonsense
knowledge to predict the correct answers. The dataset was constructed using ConceptNet relations
and crowd-sourced questions to test commonsense reasoning.

BoolQ provides 15,942 yes/no questions that occur naturally in unconstrained environments, testing
models’ binary decision-making abilities.

MMLU (Massive Multitask Language Understanding) evaluates models across 57 diverse subjects
covering STEM, humanities, and social sciences. The benchmark tests knowledge and problem-
solving ability with content ranging from elementary to professional levels. This benchmark has
become a standard evaluation metric in the field, with scores prominently reported for virtually all
language models, and uses multiple-choice questions that allow for simple accuracy calculations.

CMMLU (Chinese Massive Multitask Language Understanding) (CMLU) Developed to address
the gap in evaluating knowledge and reasoning capabilities in Chinese, CMMLU is a comprehensive
benchmark covering 67 subjects from elementary to advanced professional levels across natural
sciences, social sciences, engineering, and humanities. The benchmark includes topics with Chinese-
specific answers that may not be universally applicable in other regions or languages, making it a
fully Chinese-oriented evaluation tool.

RACE (Reading Comprehension from Examinations) is collected from English examinations in
China designed for middle and high school students, providing a culturally diverse reading assessment.

XSum evaluates abstract single document summarization systems, focusing on the ability to create
concise one-sentence summaries capturing the essence of articles.

C3 (Chinese Multiple-Choice Machine Reading Comprehension) consists of multiple-choice
questions from Chinese proficiency exams and ethnic Chinese exams.

D TASK ARITHMETIC MERGING

Task Arithmetic Ilharco et al. (2022) enhances model capabilities through vector operations by
leveraging weighted combinations of task-specific knowledge. Given a base model with weights θpre

and task-specific fine-tuned weights {θft
t }nt=1, task vectors are defined as τt = θft

t − θpre. The merged
weights are then computed through θMerge = θpre + λ

∑n
t=1 τt, where λ controls the magnitude of

task-specific adaptations.

E DESCRIPTIONS OF SMAC-BASED MULTI-FIDELITY OPTIMIZATION

Our implementation extends SMAC (Lindauer et al., 2022), integrating Hyperband (HB) (Li et al.,
2018) with Bayesian Optimization (BO) (Snoek et al., 2012) and employing Random Forest (Breiman,
2001) as the surrogate model.

The framework operates using minimum and maximum budgets (bmin, bmax) with a spacing pa-
rameter η > 1. The algorithm creates smax = ⌊logη(bmax/bmin)⌋ brackets, each initiating with
ni = ⌊ηsmax−i · η

η−1⌋ configurations. Within each bracket, Successive Halving proceeds through
⌊logη(ni

nmin
)⌋+ 1 rounds, evaluating configurations at increasing budgets while progressively elimi-

nating underperforming candidates. Specifically, after evaluating all configurations at budget b, only
the top ⌊ni

ηl ⌋ performers advance to the next round with an increased budget of ηb.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A key enhancement is the Random Forest model that learns from all prior configuration-performance
pairs, prioritizing data from higher budgets. This model guides the selection of promising config-
urations via Expected Improvement, balancing exploration and exploitation. As the optimization
progresses, the evaluation of more configurations at higher budgets enables the algorithm to correct
potential misjudgments from lower-fidelity evaluations.

For a detailed algorithmic description, see Algorithm 2, which presents the complete optimization
process incorporating trial limits. This integration of multi-fidelity resource allocation with surrogate-
based modeling delivers efficient configuration space exploration while maintaining evaluation
quality.

F UNDERSTANDING STRATEGY SELECTION VIA LAYER-LEVEL ANALYSIS

To investigate how our approach works for model compression with superior performance, we analyze
the architectural decisions from multiple perspectives: the theoretical foundation of model merging,
empirical observations of Layer-wise Patterns, and post-hoc analysis of layer characteristics.

F.0.1 THEORETICAL FOUNDATION: WHY MODEL MERGING WORKS

The underlying principle of model merging is that fine-tuned variants from a common pre-trained
initialization typically converge to parameters within the same loss basin. While neural network loss
functions are generally non-convex, recent work has demonstrated that parameters from different
training runs can be interpolated without increasing loss, a phenomenon known as mode connectivity
Garipov et al. (2018); Frankle et al. (2020).

Garipov et al. (2018) showed that different optima can be connected by simple curves with nearly
constant accuracy. Frankle et al. (2020) further demonstrated that networks sharing part of their
optimization trajectory converge to linearly connected regions, where the linear interpolation θ(t) =
(1 − t)θA + tθB maintains low loss for all t ∈ [0, 1]. Entezari et al. (2021) conjectured that when
accounting for permutation invariance, SGD solutions exhibit no barrier in linear interpolation.

Crucially, fine-tuned models initialized from the same pre-trained model θ0 share a significant portion
of their optimization trajectory, enabling merging without explicit permutation alignment Wortsman
et al. (2022); Ilharco et al. (2022). This is evidenced by the small Frobenius distance between such
models Yadav et al. (2023):

∥θ(i)t − θ
(j)
t ∥F ≪ ∥θ

(i)
t − θ0∥F (3)

where θ
(i)
t and θ

(j)
t denote models fine-tuned on different tasks i and j. This proximity in param-

eter space, combined with the wide, flat minima characteristic of fine-tuned models, provides the
theoretical foundation for merging complementary capabilities while maintaining performance.

These properties make merging a natural guide for pruning because the shared loss basin reveals
redundant or overlapping layers whose removal does not disrupt the model’s performance.

F.0.2 EMPIRICAL OBSERVATIONS: LAYER-WISE PATTERNS

Pattern 1: Positional preference. To identify systematic patterns in layer operations, we normalize
layer positions (position = layer_index / total_layers) and partition the space [0,1] into eight bins,
computing operation percentages averaged across 7B and 13B families. Figure 4 reveals a clear
pattern: early layers favor SELECT (64.1% at position 0-0.3), middle layers favor MERGE (49.9% at
0.3-0.6), and late layers favor REMOVE (70.7% at 0.6-1.0).

Pattern 2: Robustness (redundancy) scales with model size. From the visualization in Fig.2, we
can see that the 13B model shows a simpler structure, which is mainly merged with LM models,
while the 7B model shows a more complex structure utilizing mixed and specialized models. This
suggests that as model size decreases, more diverse mixing strategies may be needed to maintain
performance. This architectural difference, coupled with the superior preservation rate of the 13B
model compared to the 7B model, demonstrates that robustness (redundancy) scales with model size.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 2 SMAC-based Multi-Fidelity Optimization

Require: Configuration space Θ, minimum budget bmin, maximum budget bmax, spacing factor
η > 1, maximum trials Tmax

Ensure: Optimized configuration θ∗

1: smax ← ⌊logη(bmax
bmin

)⌋ ▷ Maximum brackets
2: D ← ∅ ▷ Observation history
3: θ∗ ← ∅, y∗ ←∞ ▷ Best configuration tracking
4: T ← 0 ▷ Initialize trial counter

5: for i ∈ {smax, smax − 1, . . . , 0} do
6: if T ≥ Tmax then
7: break ▷ Exit if reached maximum trials
8: end if
9: ni ← ⌊ηsmax−i · η

η−1⌋ ▷ Initial configurations
10: M← FitRandomForest(D) ▷ Build surrogate model
11: if |D| = 0 then
12: Θi ← Sample ni random configurations from Θ
13: else
14: Θi ← Select ni configurations with highest EI based onM
15: end if
16: si ← ⌊logη(ni

1)⌋+ 1 ▷ SH rounds
17: A ← Θi ▷ Set of active configurations
18: b← bmin · ηi ▷ Initial budget
19: for l ∈ {0, 1, . . . , si − 1} do
20: if T ≥ Tmax then
21: break ▷ Exit if reached maximum trials
22: end if
23: ni,l ← ⌊ni

ηl ⌋ ▷ Current pool size
24: for each θ ∈ A do
25: yθ ← f(θ, b) ▷ Evaluate configuration
26: D ← D ∪ {(θ, b, yθ)} ▷ Update history
27: T ← T + 1 ▷ Increment trial counter
28: if b = bmax and yθ < y∗ then
29: y∗ ← yθ, θ∗ ← θ ▷ Update best
30: end if
31: if T ≥ Tmax then
32: break ▷ Exit if reached maximum trials
33: end if
34: end for
35: Sort A by performance
36: A ← Top ⌊ni,l

η ⌋ configurations from A
37: b← min(b · η, bmax) ▷ Increase budget
38: if b = bmax or |A| = 1 then
39: break
40: end if
41: end for
42: end for
43: return θ∗ =0

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0.06 0.19 0.31 0.44 0.56 0.69 0.81 0.94

Normalized Layer Position

0

20

40

60

80

100

120

O
pe

ra
tio

n
R

at
io

 (%
)

88%

12%

75%

25%

62%

38%

75%

25%

38%

50%

12%

25%

75%

38%

62%

38%

25%

38%

Select
Dominant

Merge
Increasing

Remove
Dominant

Early Layers Middle Layers Late Layers

Positional Preference Pattern in Layer Operations

Select
Merge
Remove

Figure 4: Positional preference pattern in layer operations. Operation distribution across normalized
layer positions, averaged over 7B and 13B models. Early layers favor SELECT, middle layers favor
MERGE, and late layers favor REMOVE.

0.0 0.2 0.4 0.6 0.8 1.0

Cross-model variance (norm.)

Representation Similarity (k=1)

Representation Similarity (k=5)

Representation Similarity (all)

**

**

*

Merged vs Pruned layers

Merged
Pruned

Figure 5: Comparison of CKA (Centered Kernel Alignment)-based features between merged and
pruned layers with the mean and standard error. Stars indicate statistical significance (*: p < 0.05,
**: p < 0.01). Although both merged and pruned layers both exhibit high similarity with their
neighboring layers, merged layers maintain lower cross-model variance and stronger local and global
CKA coherence, while pruned layers exhibit higher representational divergence.

k=1 k=2 k=3 k=4 k=5
Neighborhood size k

0.80

0.85

0.90

0.95

1.00

Re
pr

es
en

ta
tio

n
sim

ila
rit

y

** * ** ** **

Pruned layers
Other layers

Figure 6: Representation similarity of pruned versus retained layers across neighborhood sizes
(k=1) to (k=5). Pruned layers (red) exhibit significantly higher similarity than retained layers (blue),
indicating that pruning primarily removes redundant layers (**p < 0.01).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
Layer index

0.02

0.03

0.04

0.05

0.06

0.07

0.08

La
ye

r r
ou

gh
ne

ss

ShortGPT Base (dense) Ours

Figure 7: Layer-wise roughness comparison. Our method produces consistently lower roughness
scores than ShortGPT, indicating smoother and more coherent depth-wise representation transitions.

F.0.3 WHY DO THESE PATTERNS EMERGE?

We now investigate whether these decisions align with interpretable layer properties. We conduct post-
hoc analysis examining two complementary perspectives: cross-model representational alignment
and within-model layer redundancy. All analyses below are conducted using Llama2-7B models.

We extracted CKA (Centered Kernel Alignment)-based features Kornblith et al. (2019) that capture
both inter-model and intra-model structural properties. First, cross-model variance quantifies repre-
sentational divergence across the four models by measuring the variability of their pairwise CKA
similarities at each layer; higher variance indicates that models have learned different representations
at that depth. Second, we compute local CKA at multiple scales (k = 1, 5, and all layers), measuring
how consistently each layer aligns with its immediate neighbors (surrounding block). These metrics
capture short-range smoothness, block-level coherence, and global structural integration. Lower local
CKA values indicate better representational consistency at the corresponding scale.

Analysis 1: Merged layers exhibit cross-model alignment. Across all extracted features, merged
layers consistently show higher representational consistency both within and across models (Fig. 5).
They exhibit lower cross-model variance, indicating that all four models converge to similar feature
representations at these depths. Their lower local CKA values further suggest that the representations
of merged layers can be aligned and fused without structural conflict. In contrast, pruned layers
demonstrate higher cross-model variance and lower global consistency, revealing that different models
encode incompatible representations in these regions, retaining them during fusion contributes little
useful information and may introduce conflicts.

Analysis 2: Pruned layers show within-model redundancy. We examine within-model layer
similarity by measuring how closely each layer’s representations match its neighbors at different
scales (k=1 to k=5). Results in Fig. 6 demonstrate that pruned layers (red) consistently exhibit higher
representation similarity to their neighbors compared to retained layers (blue) across all neighborhood
sizes. Statistical significance tests (**) confirm that the representations of redundant layers are highly
similar to adjacent layers and thus contribute minimal unique information.

Analysis 3: Our method maintains smoother transitions than baselines. We compared the
representation similarity of the pruned model produced by ShortGPT with that of our searched model.
For each model, we computed the CKA similarity around each layer change relative to its neighboring
layers. As shown in Fig. 7, the merge-based model consistently yields lower roughness values,
indicating smoother and more coherent depth-wise representation transitions. This suggests that our
method preserves the natural progression of representations instead of disrupting the hierarchical
flow. In contrast, ShortGPT introduces sharper local changes, leading to a more fragmented represen-
tational structure. The smoother similarity profile of our model demonstrates a more stable internal
organization, with fewer disruptive shifts between layers.

Together, these analyses reveal that merging and pruning target fundamentally different structural
properties. Merging capitalizes on cross-model consensus: layers where all models have converged

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

to similar representations can be safely fused. Pruning exploits within-model redundancy: layers
that duplicate information already present in their neighbors can be removed without information
loss. Critically, these patterns are discovered rather than designed. Our optimization framework
identifies them automatically by maximizing performance under compression constraints. The strong
correlation between discovered patterns and interpretable layer properties validates that our method
captures genuine structural regularities rather than exploiting dataset-specific artifacts.

G FULL BASELINE RESULTS

To validate the efficiency of our proposed method, we conducted comparative experiments against
established baseline techniques. For fair comparison with other baseline methods, we selected the
same pruning ratios matching those used in LaCo (Yang et al., 2024) and ShortGPT (Men et al.,
2024) while being lower than those of other approaches. In order to make a fairer comparison, we
reproduced all the results and evaluated them on OpenCompass (Contributors, 2023) as in LaCo.All
experiments run on NVIDIA Tesla A100 GPUs. For each baseline method, we explored three
scenarios: (1) applying each baseline pruning method individually to all candidate models, (2) first
pruning each candidate model using existing methods and then merging them, and (3) first merging
the candidate models and then applying pruning techniques.

We use the official implement of LLM-pruner and LaCo, It’s worth noting that when reproducing the
LaCo method, we referenced the hyperparameter settings from the original paper. Due to differences
in hardware, we couldn’t fully reproduce the paper’s results: we couldn’t obtain models with pruning
ratios consistent with the paper using the provided hyperparameters. We maintained consistency in
all other parameters while gradually adjusting the threshold from 0.75 until achieving the desired
pruning ratio. The specific parameters are detailed in the Table 5.

For the reproduction of ShortGPT, we implemented the algorithm based on the original paper and
similarly sampled 10,000 instances from the PG19 (Rae et al., 2019) dataset as calibration data,
following the methodology described in the paper. The resulting removed layers are shown in the
Table. The removed layers for the base model align with those reported in the ShortGPT paper, albeit
in a different sequence. We attribute this variation to slight differences in calculated layer importance
scores. The specific configuration of removed layers for each model is detailed in the Table 6.

For the merging process, we employed task arithmetic with weighting parameters in the range of [0.5,
1.0]. The full results of the baseline methods on the 7B model and the 13B model are presented in
Table 7 and Table 8, respectively.

Table 5: Hyperparameter settings for LaCo results. C: Number of layers combined in each merge;
L,H: Layer range [L,H]; I: Minimum interval between two adjacent merged layers; T : Threshold
for representation similarity.

Size Model C L H I T

Llama2-13B

Llama-2-13B 6 1 40 2 0.7
WizardLM-13B 6 1 40 2 0.65
WizardMath-13B 6 1 40 2 0.7
llama-2-13b-code-alpaca 6 1 40 2 0.7
Merge-then-prune 6 1 40 2 0.65
Prune-then-merge 6 1 40 2 0.65

Llama2-7B

Llama-2-7B 6 1 40 2 0.7
Llama-2-7B-Chat 6 1 40 2 0.65
MAmmoTH-7B 6 1 40 2 0.7
Llama-2-Coder-7B 6 1 40 2 0.7
Merge-then-prune 6 1 40 2 0.65
Prune-then-merge 6 1 40 2 0.65

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 6: Setup of Removed Layers for Candidate Models in ShortGPT.

Model Removed Layers

Llama-2-7B 25, 27, 24, 28, 26, 29, 23, 22, 21

Llama-2-7B-Chat 27, 25, 24, 28, 29, 26, 23, 22, 21

MAmmoTH-7B 27, 25, 24, 28, 29, 23, 26, 22, 21

Llama-2-Coder-7B 27, 25, 24, 28, 29, 26, 23, 21, 22

Llama-2-13B 33, 32, 31, 30, 34, 35, 29, 28, 27, 26

WizardLM-13B 33, 32, 31, 30, 34, 35, 29, 28, 27, 36

WizardMath-13B 33, 31, 32, 30, 34, 35, 29, 28, 27, 36

llama-2-13b-code-alpaca 33, 31, 32, 30, 34, 35, 29, 28, 27, 26

Table 7: The main results of baseline methods on the 7B model across multiple natural language
benchmarks using candidate models: Llama-2-7B-Chat (LM), MAmmoTH-7B (Math), Llama-2-
Coder-7B (Code), and Llama-2-7B (base). "PTM" (Pruning-then-Merging) refers to first pruning each
candidate model using current pruner and then merging them. "MTP" (Merging-then-Pruning) refers
to first merging the candidate models and then applying pruning. For LLMPruner and SliceGPT, align-
ment challenges exist after pruning. LLMPruner removes different model blocks, while SliceGPT
calculates orthogonal transformation matrices that are highly dependent on each model’s specific
weight distributions and activation patterns, resulting in incompatible transformation spaces. There-
fore, we only implemented "merge then prune".

LLM Pruner Type Reasoning Language Knowledge Understanding
Avg

(ratio/layer) CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Llama
-7B

Dense

Base 32.98 71.34 78.18 41.56 37.50 38.46 55.04 70.70 46.67 31.88 35.53 33.36 19.55 43.84 45.47
Math 32.99 68.60 75.79 39.71 39.42 36.54 50.78 69.36 43.04 32.16 30.36 36.42 20.88 43.45 44.25
LM 31.30 71.28 75.95 36.11 63.46 59.62 64.29 74.77 48.30 33.93 52.52 55.22 22.45 47.56 52.63

Code 32.99 70.27 78.62 41.61 36.54 41.35 57.41 71.04 46.22 32.20 41.25 39.69 18.79 46.25 46.73

LLMPruner
(25.32%)

Base 33.00 58.72 72.25 29.52 41.35 0.00 19.74 57.25 23.69 25.49 22.07 21.10 14.67 28.11 31.93
LM 34.94 59.25 72.85 22.28 43.27 9.62 19.41 57.61 23.77 24.51 21.78 22.42 16.32 28.66 32.62

MATH 32.99 55.74 70.84 25.82 37.50 21.15 18.84 54.31 24.77 25.20 22.87 23.89 10.91 28.00 32.35
Code 32.99 59.57 73.34 30.32 46.15 0.00 20.15 57.28 23.21 25.16 21.56 21.52 15.19 31.07 32.68
MTP 34.71 60.57 73.50 26.62 40.38 5.77 19.90 52.14 24.01 25.30 23.07 22.98 15.51 32.49 32.64

SliceGPT
(26.33%)

Base 31.08 42.90 61.43 19.53 36.54 0.00 20.88 37.95 24.78 24.78 21.24 21.73 6.58 37.42 27.63
LM 31.70 43.50 61.37 18.28 40.38 0.96 21.21 38.96 25.56 25.28 21.93 22.42 13.13 38.36 28.79

MATH 31.89 41.55 58.81 18.43 39.42 4.81 19.49 40.09 25.38 25.02 25.59 26.88 8.78 39.56 28.98
Code 31.81 44.02 63.17 18.48 36.54 13.46 19.74 37.92 24.71 25.22 21.41 21.66 2.59 38.19 28.49
MTP 32.85 37.61 57.56 17.33 53.85 2.88 19.41 42.66 25.22 24.68 25.21 24.72 12.78 40.22 29.78

LACO

Base 32.85 53.33 68.23 31.62 36.54 4.81 20.39 62.02 26.60 25.27 24.70 23.61 9.38 42.47 32.99
LM 32.97 55.24 69.53 31.47 36.54 34.62 22.11 67.22 29.08 26.16 28.53 28.27 14.68 43.51 37.14

Math 32.97 55.24 69.53 31.47 50.00 34.62 22.11 67.22 29.44 26.16 22.53 23.68 14.68 39.34 37.07
Code 32.28 53.68 69.15 32.22 36.54 1.92 20.56 61.99 26.31 25.43 27.10 22.70 11.14 43.07 33.15
MTP 32.43 57.80 71.82 28.97 41.35 16.35 27.52 71.28 30.49 26.88 25.76 27.09 8.27 44.33 36.45
PTM 31.89 56.26 71.22 27.32 39.42 22.12 23.42 72.66 29.30 26.00 25.19 26.81 16.11 43.62 36.52

ShortGPT
(27.1%)

Base 33.09 57.42 66.54 21.53 56.73 48.08 52.5 67.34 43.68 28.31 32.53 31.69 12.40 39.45 42.24
LM 33.85 53.93 63.82 14.59 39.42 22.12 58.48 67.95 35.85 26.60 48.03 51.18 6.93 37.21 40.00

MATH 33.97 56.69 63.38 17.78 54.81 44.23 37.26 69.82 30.68 25.26 28.24 30.29 8.26 31.67 38.02
Code 32.74 56.69 65.07 17.78 58.65 35.58 53.24 67.52 44.82 28.92 35.62 37.53 14.32 40.66 42.08
MTP 34.10 54.18 64.42 16.83 61.54 36.54 55.61 73.21 36.84 25.61 42.94 45.89 10.12 35.73 42.40
PTM 34.10 54.18 64.42 16.83 61.54 36.54 55.61 73.21 36.84 25.61 42.94 45.89 10.12 35.73 42.40

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 8: The main results of baseline methods on the 13B model across multiple natural language
benchmarks using candidate models: WizardLM-13B (LM), WizardMath-13B (Math), llama-2-13b-
code-alpaca (Code), and Llama-2-13B (Base). "PTM" (Pruning-then-Merging) refers to first pruning
each candidate model using the current pruner and then merging them. "MTP" (Merging-then-
Pruning) refers to first merging the candidate models and then applying pruning. For LLMPruner
and SliceGPT, alignment challenges exist after pruning. LLMPruner removes different model blocks,
while SliceGPT calculates orthogonal transformation matrices that are highly dependent on each
model’s specific weight distributions and activation patterns, resulting in incompatible transformation
spaces. Therefore, we only implemented "merge then prune"

LLM Pruner Type Reasoning Language Knowledge Understanding
Avg

ratio/layer CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Llama
-13B

Dense

Base 32.99 74.77 79.71 47.35 50.96 63.46 67.24 71.38 55.84 38.74 57.98 60.17 23.47 47.51 55.11
LM 35.36 70.41 78.73 36.21 57.69 60.58 65.03 73.70 53.48 30.85 66.12 71.66 22.44 52.00 55.30

MATH 32.99 68.78 77.26 44.36 36.54 19.23 60.36 78.44 54.21 38.12 47.74 48.82 19.51 44.66 47.93
Code 32.99 74.82 80.14 47.30 51.92 63.46 68.88 72.72 55.92 39.26 58.03 63.72 24.45 48.38 55.86

LLMPruner
(21.2%)

Base 33.27 63.57 75.41 34.17 37.50 0.00 19.57 45.35 23.08 25.36 21.61 21.80 14.41 29.64 31.77
LM 33.49 60.28 75.57 23.68 39.42 0.00 19.00 63.24 23.27 25.23 22.36 21.45 17.13 32.00 32.58

MATH 32.99 55.49 72.91 30.02 41.35 0.00 19.08 53.18 23.06 25.53 21.36 21.31 12.25 29.10 31.26
Code 33.18 64.21 75.52 34.17 43.27 0.00 19.90 47.80 23.19 25.52 21.61 22.08 16.08 29.59 32.58
MTP 33.86 64.11 73.50 22.18 60.58 0.00 21.46 61.96 23.84 25.62 22.16 21.59 14.98 32.11 34.14

SliceGPT
(23.6%)

Base 30.39 46.69 63.22 18.78 42.31 25.96 25.23 37.83 30.43 25.14 23.47 24.65 8.78 39.56 31.60
LM 33.19 42.44 59.90 18.03 54.81 19.23 32.51 41.22 33.09 25.75 29.45 29.87 9.99 37.75 33.37

MATH 32.73 36.27 59.30 17.38 42.31 0.00 21.62 37.83 30.33 25.16 23.84 24.16 1.54 40.82 28.09
Code 30.82 46.69 63.00 19.18 42.31 27.88 24.82 37.83 31.38 25.20 23.47 24.65 8.83 40.00 31.86
MTP 30.98 46.83 62.57 19.33 51.92 49.04 37.76 38.38 33.55 25.22 23.53 23.05 9.95 39.67 35.13

LaCo
(24.6%)

Base 32.97 59.38 73.45 36.26 37.50 37.50 19.41 57.31 25.03 24.41 22.47 23.19 16.39 37.92 35.94
LM 32.33 60.18 70.57 32.67 34.62 34.62 52.58 62.66 36.26 25.80 60.38 62.53 8.79 49.21 44.51

Math 33.97 56.51 72.25 33.52 44.23 44.23 21.38 64.19 25.35 24.55 21.98 21.94 12.77 37.48 36.74
Code 32.99 59.53 75.03 38.41 51.92 0.00 19.49 53.18 24.48 24.72 22.87 22.28 17.70 37.53 34.30
MTP 33.49 62.50 74.37 35.26 63.46 63.46 18.84 64.65 41.83 24.87 26.10 25.97 15.93 39.51 42.16
PTM 31.85 29.80 51.31 12.74 36.54 36.54 19.57 62.08 24.37 25.19 22.10 22.77 0.40 35.12 29.31

ShortGPT
(24.6%)

Base 32.99 67.07 73.45 36.46 42.31 45.19 66.99 58.56 54.74 38.39 56.89 54.06 18.58 46.19 49.42
LM 32.95 62.64 73.50 28.22 36.54 50.96 65.44 67.71 53.50 30.73 65.52 71.38 19.12 48.60 50.49

MATH 32.99 59.63 70.40 31.12 40.38 1.92 59.71 70.00 52.70 36.94 43.51 44.29 7.73 43.84 42.51
Code 32.92 67.03 74.37 36.41 55.77 46.15 68.96 60.55 54.94 38.30 53.60 58.57 8.41 47.18 50.23
MTP 31.07 63.24 68.61 27.17 49.04 43.27 65.68 78.01 51.26 36.88 57.38 62.67 16.94 44.05 49.66
PTM 31.08 63.32 68.66 27.12 49.04 43.27 65.68 77.98 51.23 36.82 57.40 62.47 17.01 43.95 49.65

H ADDITIONAL ANALYSIS

H.1 DIFFERENT CALIBRATION DATASETS AND METRICS

In this study, we leverage multiple-choice datasets as calibration data and optimize for accuracy in
a multi-objective setting. In this section, we further analyze the impact of these design choices by
comparing single-objective optimization and PPL-based optimization:

Single Objective (Single-obj). We used the MMLU validation dataset for calibration and kept
accuracy as the optimization objective. We evaluated the resulting pruned models across our bench-
mark suite. As shown in Table 14, although these models still remain competitive (45.62 average),
the single-objective optimization led to a noticeable decline from our multi-objective approach
(48.55 vs.45.62). Importantly, the single-objective models demonstrated stronger performance on
MMLU-related tasks but showed performance degradation on certain other tasks due to their narrow
optimization focus. This confirms our hypothesis that broad, multi-objective optimization is necessary
to preserve the broad functionality of modern LLMs, rather than overfitting to a single task domain.

Perplexity Objective (PPL-obj). We additionally evaluate with perplexity (PPL) on WikiText (Merity
et al., 2016) as a search metric, using 1500 examples for calibration. As shown in Table 14, the result-
ing pruned models achieve only 25.38 on average, revealing a substantial performance drop relative
to all other configurations. Even when compared to the single-objective MMLU optimization (which

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 9: Performance comparison of various model pruning strategies across multiple benchmark
categories. The settings include LR-only (Layer Removal only), LS+LR (combined Layer Selection
and Layer Removal), FL-merge (Folding Layers Merging), Single-obj (Single-objective optimiza-
tion), and PPL-obj (Perplexity-based objective). For multi-objective optimization approaches, three
representative Pareto-optimal solutions (numbered 1-3) are showed.

setting Reasoning Language Knowledge Understanding Avg

CNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

LR-only-LM-1 33.93 57.51 65.49 18.18 62.46 48.03 58.79 62.18 45.76 30.95 49.54 53.36 1.45 38.60 44.73
LR-only-LM-2 33.58 52.10 64.25 19.53 50.00 62.50 63.64 41.80 48.33 32.84 51.03 51.46 5.47 39.56 44.01
LR-only-LM-3 34.96 53.80 66.70 18.58 49.04 58.65 60.61 68.87 47.85 33.54 42.51 43.04 8.05 41.42 44.83
LR-only-Math-1 33.77 54.49 68.23 21.93 62.50 37.50 27.85 57.52 37.08 28.73 31.42 34.05 7.51 37.92 38.61
LR-only-Math-2 31.69 56.56 68.77 27.07 63.46 30.77 36.69 62.35 39.17 29.15 33.39 38.65 4.41 43.34 40.39
LR-only-Math-3 32.94 58.43 69.64 25.97 54.81 25.96 29.89 62.84 33.46 26.92 31.39 32.10 8.06 40.16 38.04
LR-only-Code-1 30.13 57.60 70.35 27.07 63.46 11.54 50.94 65.96 42.64 30.96 36.39 36.77 3.15 43.78 40.77
LR-only-Code-2 34.94 57.37 68.55 28.67 42.31 41.35 54.46 63.00 42.49 27.39 34.88 35.31 4.08 43.78 41.33
LR-only-Code-3 34.93 56.71 69.42 25.92 59.62 31.65 52.83 62.20 43.03 28.80 38.51 39.07 2.87 41.70 41.95
LR-only-Base-1 32.67 54.21 66.00 26.07 36.54 1.92 49.47 64.19 44.47 28.84 38.99 38.86 0.25 41.59 37.43
LR-only-Base-2 32.22 56.48 67.46 26.32 61.54 50.00 41.44 66.91 40.54 28.01 37.94 39.35 0.96 41.92 42.22
LR-only-Base-3 31.13 52.90 67.95 27.97 36.54 0.00 54.63 64.13 43.01 30.03 35.56 37.05 6.79 41.70 37.81

FL-merge-1 32.99 52.90 63.66 19.28 46.15 62.50 60.52 75.20 48.30 34.33 50.77 55.29 6.39 39.40 46.26
FL-merge-2 32.99 51.99 63.44 18.33 46.15 63.46 61.26 74.77 48.80 33.84 51.11 56.34 5.75 37.86 46.15
FL-merge-3 33.89 51.15 62.62 18.63 50.00 61.54 60.44 75.78 48.61 33.96 50.74 55.85 5.72 38.03 46.15

LS+LR-1 34.75 53.65 66.32 17.83 63.46 22.12 59.71 70.61 47.32 33.77 36.62 33.91 8.54 42.35 42.21
LS+LR-2 31.74 55.25 68.39 26.77 63.46 10.58 58.72 66.27 47.40 33.15 40.02 45.26 2.62 44.16 42.41
LS+LR-3 32.92 55.84 65.07 17.98 63.46 26.92 58.97 51.22 48.97 34.61 48.68 49.44 8.33 42.41 43.20

Single-obj 32.15 56.02 67.46 19.08 39.42 48.08 62.33 74.43 47.40 34.14 50.94 52.86 12.35 41.97 45.62
PPL-obj 33.39 23.89 52.07 14.84 45.19 7.69 19.33 39.51 24.25 24.69 22.81 21.17 0.06 26.36 25.38

uses a similarly sized dataset), the PPL-optimized models showed considerably weaker performance
across most tasks. These results show that, although perplexity is a common metric for language
model evaluation, it is not an effective signal for preserving model capabilities during pruning,
especially for tasks that require reasoning or knowledge application beyond fluent text generation.
H.2 ENHANCING LAYER-FOLDING PRUNING POTENTIAL

We design a search space for Layer-Folding Pruning consisting of: (1) A binary selection vector
s = [s1, s2, . . . , sk] indicating which layers to remove, and (2) An importance weight vector w =
[w1, w2, . . . , wk] representing each layer’s importance value. Retained layer L′

i performs a depth-wise
linear combination with itself and adjacent removed layers:

L′
i = βi · Li +

∑
j∈N (i)

βj · Lj · 1sj=1

whereN (i) represents adjacent layers to Li, 1sj=1 indicates layer j is removed, and βj are normalized
weights derived from w such that βi +

∑
j∈N (i) βj · 1(sj = 1) = 1. This ensures retained layers

incorporate information from nearby removed layers, preserving network functionality.

H.3 EFFICIENCY ANALYSIS

Budget allocation to search trials. Our optimizer dynamically adjusts the budget allocation during
the search process, where the budget is defined as the calibration dataset size used for search. As the
allocation of search trials directly determines the overall search duration. Here, we analyze the budget
distribution during the search process, as shown in Table 15. Our analysis reveals that only 22% of
the search trials utilize the full budget, while over 41.4% of the evaluations were conducted with
the minimum budget, which is 5-10 times smaller. This efficient allocation enables our pruning to
significantly increase the chance of discovering superior configurations under the same computational
budget.

Wall-Clock Time Analysis of the Search Process. There are three main phases of our search
process to consider for computational costs. 1) Computation of a new merge: This phase involves

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 10: Model Performance Comparison Across Pruning Ratios

Model Prune Ratio Reasoning Language Knowledge Understanding Avg

CNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Base 0 32.98 71.34 78.18 41.56 37.50 38.46 55.04 70.70 46.67 31.88 35.53 33.36 19.55 43.84 45.47
Base 12.5 32.99 67.06 74.92 39.61 36.53 1.92 57.41 69.36 47.15 31.61 39.11 38.65 17.59 44.60 42.75
Base 25 32.98 63.80 69.21 35.37 36.54 0.00 50.78 64.74 40.80 30.31 35.19 35.62 16.11 43.51 39.64
Base 37.5 32.58 45.04 61.53 20.68 36.54 2.88 42.18 64.43 39.87 29.42 31.90 29.74 2.77 41.37 34.35
Base 50 34.51 34.89 55.33 17.08 36.54 11.54 19.82 62.29 28.72 25.10 23.41 26.04 1.21 35.07 29.40
Base 62.5 35.14 29.71 52.83 14.94 39.42 1.92 21.46 50.06 24.55 25.16 26.76 25.42 0.09 27.62 26.80
Base 75 34.94 26.71 51.03 13.59 36.54 8.65 20.56 52.60 24.23 24.47 23.18 22.63 0.08 27.29 26.17

LM 0 31.30 71.28 75.95 36.11 63.46 59.62 64.29 74.77 48.30 33.93 52.52 55.22 22.45 47.56 52.63
LM 12.5 32.42 67.58 72.72 28.91 50.92 60.50 60.92 72.88 46.69 32.02 51.34 54.45 18.26 45.94 49.68
LM 25 30.10 60.63 66.82 20.53 48.96 42.31 65.88 70.82 42.09 32.40 48.23 50.43 15.75 43.62 45.11
LM 37.5 33.29 45.13 60.66 20.03 36.54 11.73 59.38 68.07 39.18 29.64 39.71 42.20 6.36 41.04 39.40
LM 50 34.93 34.67 56.20 16.18 36.54 8.65 22.28 62.14 32.01 26.44 25.39 25.49 2.34 35.01 29.88
LM 62.5 34.11 30.50 53.21 14.34 51.92 2.88 20.56 57.95 24.58 25.21 23.13 23.75 0.18 27.12 27.82
LM 75 34.87 27.03 52.19 14.54 39.42 0.00 20.23 53.87 24.45 24.83 21.41 22.14 0.02 26.69 25.82

Math 0 32.99 68.60 75.79 39.71 39.42 36.54 50.78 69.36 43.04 32.16 30.36 36.42 20.88 43.45 44.25
Math 12.5 32.97 64.72 73.06 37.50 23.08 23.07 51.43 71.16 42.91 31.90 32.99 36.07 19.30 43.83 41.71
Math 25 34.92 46.24 61.92 19.38 36.54 56.73 45.45 72.81 35.07 29.78 31.45 34.33 6.24 39.89 39.34
Math 37.5 32.99 55.42 62.81 23.82 38.38 4.81 37.87 68.68 36.46 27.19 28.02 33.79 13.88 39.37 36.04
Math 50 32.73 35.93 55.06 16.73 39.42 39.42 20.15 64.34 29.94 25.52 26.82 26.60 2.31 35.56 32.15
Math 62.5 34.93 31.06 54.08 13.79 58.65 4.81 20.56 46.24 26.70 25.05 26.56 26.53 0.57 28.33 28.42
Math 75 34.94 27.35 52.07 14.39 43.27 2.88 20.88 56.51 24.25 23.14 24.76 24.79 0.15 27.45 27.20

Code 0 32.99 70.27 78.62 41.61 36.54 41.35 57.41 71.04 46.22 32.20 41.25 39.69 18.79 46.25 46.73
Code 12.5 32.97 65.79 75.78 39.06 36.54 0.96 56.67 71.13 47.09 32.00 44.73 44.84 19.21 47.29 43.86
Code 25 32.99 63.06 72.02 35.67 36.54 0.00 50.59 68.87 40.50 28.87 36.64 38.59 17.59 45.64 40.51
Code 37.5 33.21 44.12 62.13 20.78 36.54 2.88 48.81 63.91 40.29 29.56 36.25 35.52 5.35 42.14 35.82
Code 50 34.93 34.15 54.95 16.73 36.54 17.31 22.03 62.54 28.46 25.16 24.13 24.44 2.03 36.62 30.00
Code 62.5 34.72 29.67 52.99 14.39 40.38 8.65 22.52 50.70 24.78 25.15 27.16 28.04 0.12 27.78 27.50
Code 75 34.94 26.79 50.82 13.99 38.46 5.77 24.08 48.38 24.08 24.52 22.73 22.49 0.13 27.29 26.03

Ours 0 36.88 73.16 78.67 39.46 64.46 45.19 65.37 78.43 49.75 35.08 58.78 61.65 24.50 49.33 54.34
Ours 12.5 33.00 66.78 75.19 34.92 64.42 63.46 63.98 75.87 48.79 34.13 53.89 56.20 20.21 45.37 52.59
Ours 25 32.99 57.31 68.34 22.38 63.46 63.46 57.58 62.17 45.92 30.96 52.20 56.06 7.12 39.67 47.11
Ours 37.5 35.67 51.02 63.44 20.68 62.50 22.00 57.99 67.52 47.09 34.11 44.00 46.38 2.96 39.34 42.00
Ours 50 33.97 41.99 58.16 21.08 38.54 24.12 26.52 46.03 32.32 28.30 28.99 28.88 6.30 36.11 32.23
Ours 62.5 33.30 28.34 51.96 18.09 46.15 6.88 23.88 45.81 26.41 26.95 28.73 28.72 5.09 28.47 28.48
Ours 75 34.93 30.45 49.18 20.48 39.54 10.81 21.98 45.29 25.28 24.68 26.30 26.93 0.46 28.38 27.47

computing a new candidate point to evaluate later with the search procedure. For standard merging
algorithms, such as task arithmetic (which we use in the submission), the cost of the merge is
negligible, coming down to approximately 3 operations per model parameter. The operation can
run on the accelerator (e.g., GPU) when memory permits, or be executed with minimal CPU RAM
by streaming parameter blocks from disk. Although it can be overlapped with the next step, it was
sufficiently fast in practice (e.g., merging two 7B models on GPU takes only 11.2 seconds), we did
not implement this overlap, and there remains room for further optimization. 2) Evaluation of the
merge: Next, the merged point is evaluated, i.e., we measure the accuracy of this checkpoint on our
training task. The cost of this operation is a function of (a) the size of the evaluation set and (b) the
type of evaluation, both of which influence the speed. However, as this step is not specific to our
approach, any inference framework for fast evaluation, such as vLLM, can be used (as we do). For
example, evaluating PIQA requires only prefilling. With vLLM on our GPU V100 (batch size = 16),
it takes us 21.23 seconds to evaluate on 1000 samples. We also note that, due to our multi-fidelity
search approach, we can often end the evaluation early and do not need to check the full dataset
(see Table 15). 3) Updating the coefficients of Bayesian hyperparameter estimation: We use
SMAC, a well-established and optimized package for Bayesian hyperparameter optimization. As the
estimation is based on random forests, it is very cheap to update. For us, one step of the update takes
2.6 seconds.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 11: The main results of the Llama3-8B model across multiple natural language benchmarks
using candidate models: Meta-Llama-3-8B-Instruct (LM), MathCoder2-Llama-3-8B (Math), Code-
Llama-3-8B (Code), and Meta-Llama-3-8B (Base). "PTM" (Pruning-then-Merging) refers to first
pruning each candidate model using the current pruner and then merging them. "MTP" (Merging-
then-Pruning) refers to first merging the candidate models and then applying pruning.

LLM Pruner Type Reasoning Language Knowledge Understanding
Avg

ratio/layer CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Llama3
-8B

Dense

Base 32.98 74.67 80.96 73.78 56.73 36.54 73.79 69.97 64.74 50.79 63.21 70.54 3.28 55.18 57.65
LM 33.00 71.08 80.69 65.53 55.77 69.23 76.66 78.87 65.97 53.64 76.44 81.75 17.97 63.95 63.61

Math 32.99 71.66 77.97 57.09 37.50 58.65 68.22 69.08 62.08 45.85 64.75 69.08 8.68 53.86 55.53
Code 32.98 65.56 74.70 78.42 61.54 61.54 63.47 78.35 48.03 34.55 52.40 58.43 19.36 46.41 55.41

ShortGPT
(24.6%)

Base 36.00 31.36 62.84 25.77 36.54 63.46 53.97 50.61 36.05 33.83 30.73 32.38 1.17 38.96 38.12
LM 32.83 45.06 65.78 23.38 41.35 53.85 39.56 63.73 32.37 28.69 40.14 45.19 3.68 43.51 39.94

Math 32.98 42.89 63.00 17.18 36.54 36.54 45.37 46.30 33.95 29.71 28.87 30.22 1.45 40.49 34.68
Code 32.26 45.99 64.96 17.03 36.54 36.54 36.20 63.98 28.78 26.25 27.27 29.46 3.57 39.01 34.85
MTP 32.98 48.51 64.85 18.33 36.54 35.58 42.83 67.06 33.05 28.73 30.07 32.66 3.64 44.33 37.08
PTM 32.95 48.58 64.96 18.43 36.54 35.58 42.83 67.22 33.05 28.71 30.16 32.45 3.66 44.27 37.10

Table 12: Architecture Parameters of pruned 13B models

Layer Model-1 Model-2 Model-3

Type Merge
Factor

Output
Scale Type Merge

Factor
Output
Scale Type Merge

Factor
Output
Scale

0 Base - 1.00 LM - 1.00 LM - 1.00
1 LM - 1.00 LM+Math 0.64 1.00 Base - 1.00
2 LM - 1.00 LM+Code 0.60 1.05 LM+Code 0.60 1.05
3 LM - 1.00 LM - 1.00 LM+Code 0.60 1.00
4 LM - 1.00 LM - 1.00 LM - 1.00
5 Code - 1.00 LM+Math 0.59 1.00 LM+Math 0.58 1.00
6 Base - 1.00 LM - 1.00 LM - 1.00
7 LM - 1.00 LM+Math 0.60 1.00 LM+Math 0.60 1.00
8 LM - 1.00 LM - 1.00 LM+Code 0.59 1.00
9 LM - 1.00 LM - 0.84 LM - 0.93
10 LM - 1.00 LM - 1.02 LM - 1.22
11 LM - 1.00 LM+Code 0.66 0.77 LM+Math 0.66 1.00
12 LM - 0.91 LM+Code 0.60 1.00 LM+Code 0.60 1.13

13 LM+Code 0.70 1.00 LM+Math 0.60 1.00 LM+Math
+Code 0.60 1.11

14 LM+Math 0.70 1.00 LM+Math 0.60 1.00 LM - 1.00
15 LM - 1.00 LM+Math 0.70 1.00 LM+Math 0.66 1.00
16 Base - 1.00 LM+Math 0.60 1.00 LM+Math 0.60 1.00
17 LM - 1.00 LM - 1.00 LM - 1.00
18 LM - 1.00 REMOVED REMOVED
19 LM+Code 0.70 1.00 LM+Code 0.60 1.00 LM+Code 0.60 1.01
20 LM+Code 0.70 1.00 LM - 1.00 REMOVED
21 LM - 1.00 Base - 1.07 Base - 1.07
22 LM - 1.00 Math - 1.00 LM+Math 0.60 1.09
23 LM - 1.00 REMOVED REMOVED
24 LM - 1.00 Base - 1.01 Base - 1.01
25 REMOVED REMOVED REMOVED
26 REMOVED LM - 1.04 LM - 1.04
27 REMOVED REMOVED REMOVED
28 REMOVED REMOVED REMOVED
29 REMOVED REMOVED REMOVED
30 REMOVED Base - 1.00 Base - 1.00
31 REMOVED REMOVED REMOVED
32 REMOVED REMOVED LM - 1.00
33 REMOVED REMOVED REMOVED
34 LM - 1.00 Base - 1.00 Code - 1.00
35 Base - 1.00 LM - 1.13 LM - 1.28
36 LM - 1.00 REMOVED REMOVED
37 LM - 1.00 LM - 1.00 LM - 1.00
38 LM - 0.75 LM - 1.00 Math - 1.00
39 REMOVED Math - 1.00 Math - 1.00

With our parallel acceleration strategies (e.g., simultaneous merging and evaluation), the evaluation
phase becomes the dominant factor in end-to-end runtime. To provide a clearer picture, we report the
evaluation wall-clock time for different datasets under various computational budgets on Llama2-7B
as shown in Table 16. Model initialization using vLLM takes 19.52 seconds. Overall, our approach
takes 30/35.36/60.36 seconds per round across different fidelity levels, and we run 500 rounds in
total, with 41% of trials requiring only the smallest budget. When evaluation parallelism is disabled
(parallelism = 1), the total wall-time is simply the sum of the individual evaluation times.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 13: Architecture Parameters of pruned 7B models

Layer Model-1 Model-2 Model-3

Type Merge
Factor

Output
Scale Type Merge

Factor
Output
Scale Type Merge

Factor
Output
Scale

0 LM - 1.00 Math+Code 0.48 1.00 LM+Math 0.48 0.92
1 LM+Math+Code 0.50 1.00 LM - 1.00 LM - 1.00
2 LM - 1.03 LM+Code 0.52 1.06 LM - 1.03
3 LM - 1.00 Base - 0.98 Math - 1.05
4 LM - 1.04 LM - 1.11 LM - 1.11
5 LM+Code 0.59 1.08 LM+Math 0.38 1.12 LM - 1.13
6 Code - 1.19 Math - 1.25 Code - 1.11
7 Code - 0.88 LM+Code 0.50 0.77 LM+Code 0.50 0.77
8 LM - 1.28 LM - 1.34 LM - 1.19
9 LM - 0.86 LM - 0.93 LM+Code 0.51 0.56

10 Base - 1.00 LM - 1.00 LM - 1.00
11 LM+Math 0.50 1.00 Math - 1.02 LM - 1.05
12 LM - 1.00 LM+Math 0.41 0.99 LM+Math 0.41 1.00
13 Math - 1.00 LM+Math 0.50 1.20 LM+Math 0.58 1.20
14 LM+Math 0.60 1.00 LM - 1.00 LM+Math 0.54 1.00
15 LM - 1.18 Code - 0.97 Code - 1.05
16 LM+Math 0.50 1.00 LM+Math 0.50 1.00 LM+Math 0.45 1.00
17 LM+Math+Code 0.50 1.00 Code - 1.00 Math+Code 0.50 1.00
18 Math+Code 0.50 1.00 Base - 1.00 Base - 1.01
19 REMOVED REMOVED REMOVED
20 REMOVED REMOVED REMOVED
21 LM - 1.00 REMOVED LM - 1.00
22 REMOVED REMOVED REMOVED
23 REMOVED REMOVED REMOVED
24 REMOVED LM - 1.00 REMOVED
25 REMOVED REMOVED REMOVED
26 REMOVED REMOVED REMOVED
27 LM - 1.00 Base - 0.99 LM - 0.99
28 REMOVED LM - 1.00 REMOVED
29 LM+Code 0.50 1.00 LM - 1.00 LM+Code 0.50 1.00
30 REMOVED REMOVED REMOVED
31 LM+Math 0.50 1.00 REMOVED LM+Math 0.50 1.00

Table 14: Comparison of different searching settings across various benchmarks. Settings: LR-only:
Layer-remove only, LS+LR: Layer-selection + layer-remove, FL-merge: Folding Layers Merging.

Setting Reasoning Language Knowledge Understanding Avg

CNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Ours 35.46 54.43 67.74 23.63 63.46 43.27 62.90 75.08 48.75 33.86 55.35 58.64 12.99 44.16 48.55
LR-only 34.96 53.80 66.70 18.58 49.04 58.65 60.61 68.87 47.85 33.54 42.51 43.04 8.05 41.42 44.83
LS+LR 32.92 55.84 65.07 17.98 63.46 26.92 58.97 51.22 48.97 34.61 48.68 49.44 8.33 42.41 43.20
FL-merge 32.99 52.90 63.66 19.28 46.15 62.50 60.52 75.20 48.30 34.33 50.77 55.29 6.39 39.40 46.26

Post-training Setup. We selected two competitive baseline methods (ShortGPT, LACO) and followed
the recovery-phase setting from LLM-Pruner. We used the cleaned Alpaca dataset (50k samples) and
fine-tuned with the LoRA configuration: rank (d=8), learning rate = 1e-4, 100 warm-up steps, batch
size = 64, AdamW optimizer, and 2 training epochs.

Computational cost scaling with candidate number. The computational cost increases with the
number of candidate models, primarily due to the need for longer search trails to ensure we find
optimal performance points. As shown in the table Table 17.

Table 15: Budget allocation to search trials for pruning. 41% of trials require only the smallest budget
size, significantly increasing efficiency.

Dataset Low Budget Medium Budget High Budget
(41.4%, 207 trials) (36.6%, 183 trials) (22.0%, 110 trials)

PIQA 100 300 1000
WSC 100 200 500

CSQA 100 300 1000
MMLU 100 300 1000

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 16: Evaluation runtime for different datasets and sample sizes

Dataset Size Runtime (Seconds)

CSQA
100 2.76
300 6.97

1000 16.51

WSC
100 2.41
200 2.50
500 2.67

PIQA
100 2.75
300 7.00

1000 21.23

MMLU
100 2.56
300 6.49

1000 21.66

Table 17: Scaling of Computational Cost with Number of Models

Number of Models Search Trials FLOPs

1 200 9.85× 1015

2 300 2.26× 1016

3 500 9.35× 1016

H.4 SCALING TO STRONGER THINKING MODEL

We further extend our method to recent thinking models. Specifically, we evaluate our approach using
Qwen3-4B-Instruct (LM) and Qwen3-4B-Thinking (Thinking) models (Team, 2025). The results
are presented in Table 19, demonstrating the effectiveness of our method on this emerging model
architecture.

Table 18: Comparison of efficiency of pruning methods

Metric LACO ShortGPT Ours (Multi-models) Ours (Layer Folding)

Pruning Stage

FLOPS 1.29e+14 4.91e+19 9.35e+16 1.75e+16
Performance (avg) 37.14 42.40 48.55 46.26

Post-training Stage

FLOPS 1.06e+18 1.06e+18 0 0
Performance (avg) 40.03 42.76 48.55 46.26

Overall Summary

Total FLOPS 1.06e+18 4.91e+19 9.35e+16 1.75e+16
Final Accuracy 40.03 42.76 48.55 46.26

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 19: Comparison of pruning methods on multiple natural language benchmarks. "Single" refers
to the best performance achieved when pruning a single model directly, while "Merge" refers to the
best performance achieved through either "pruning-then-merging" or "merging-then-pruning". 4B
models: Qwen3-4B-Instruct (LM), Qwen3-4B-Thinking (Thinking).

LLM Pruner Type Reasoning Language Knowledge Understanding
Avg

ratio/layer CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMLU RaceH RaceM XSum C3

Qwen3
-4B

Dense
Base 38.83 64.20 75.68 79.67 48.08 55.77 80.34 80.37 72.43 73.52 65.95 73.33 14.73 67.62 63.61

Thinking 45.22 60.60 75.52 79.02 62.50 65.38 77.81 82.45 70.57 71.85 69.73 78.13 1.78 67.73 64.88

ShortGPT
Single 35.45 44.78 67.03 53.55 63.46 30.77 49.63 63.39 44.40 46.09 35.96 39.21 12.56 51.95 45.59
Merge 33.09 43.18 67.36 52.65 60.58 20.60 32.76 63.33 32.30 32.16 30.93 28.34 11.34 49.81 39.89

Ours 36.07 45.94 68.39 56.29 64.42 35.60 62.00 67.71 48.56 47.04 37.85 40.81 10.20 52.55 48.10

H.5 SCALING TO MATH AND CODE TASKS

We conducted additional experiments on mathematical and coding tasks using LLaMA-7B, comparing
our approach with the two strongest baseline methods (ShortGPT and LACO) under varying numbers
of pruned layers. As shown in the Table 20, tasks that require structured output formats, such as
mathematical reasoning and code generation, are particularly sensitive to layer removal. The baseline
methods exhibit catastrophic drops in performance, with the removal of just 2-4 layers leading to
near-zero performance. In contrast, our method consistently maintains superior performance
across all pruning ratios.

Table 20: Performance comparison on mathematical and coding tasks across different pruning ratios
using LLaMA-7B.

Method Layers Pruned GSM8K HumanEval

Candidate Models (No Pruning)
base 0 11.30 3.05
lm 0 21.23 3.05
math 0 11.99 0.00
code 0 3.11 14.02

LACO

2 3.80 6.71
4 0.76 1.22
6 0.00 0.00
8 0.00 0.00

ShortGPT

2 1.50 2.44
4 0.00 0.61
6 0.00 0.00
8 0.00 0.00

Ours

2 22.22 12.81
4 15.24 6.10
6 5.31 1.22
8 0.00 0.00

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 21: Robustness analysis of candidate model combinations across multiple natural language
benchmarks. Blue-highlighted cells show optimal performance using three specialized models:
Llama-2-7B-Chat (LM), MAmmoTH-7B (Math), and Llama-2-Coder-7B (Code), with Llama-2-7B
serving as the base model.

Model Pool Reasoning Language Knowledge Understanding Avg

CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMMLU RaceH RaceM XSum C3

3-candidate models
Math+LM+Code 35.46 54.43 67.74 23.63 63.46 43.27 62.90 75.08 48.75 33.86 55.35 58.64 12.99 44.16 48.55

2-candidate models
Math+LM 32.93 55.93 67.90 20.93 57.69 57.69 62.24 76.54 45.31 33.25 49.06 53.27 14.42 42.30 47.82
Code+LM 33.00 58.09 67.52 21.08 56.73 50.96 62.65 70.09 46.96 33.85 50.31 55.36 12.38 43.40 47.31
Code+Math 32.93 53.67 69.53 27.27 38.46 34.60 56.35 65.99 41.40 30.97 45.14 44.43 8.11 44.60 43.12

1-candidate model
LM 33.27 51.34 64.20 19.33 62.50 53.85 62.82 64.86 46.47 31.59 47.80 51.39 6.97 39.51 45.42
Math 32.95 60.65 66.49 22.43 36.54 32.50 58.07 71.01 44.13 32.07 40.28 41.57 13.76 41.10 42.40
Code 30.10 54.72 69.75 26.17 63.46 62.50 50.94 65.00 36.42 26.69 31.02 30.99 2.47 38.14 42.03

base only
Base 32.22 56.48 67.46 26.32 61.54 50.00 41.44 66.91 40.54 28.01 37.94 39.35 0.96 41.92 42.20

H.6 SCALING TO OTHER CANDIDATE MODELS

To clarify the role of domain diversity in candidate model selection, we note that strict domain
diversity is not always necessary. The optimal combination depends on the optimization objective: if
the goal is improving performance on language tasks, including more high-quality language models
in the candidate pool is naturally beneficial. However, when access to same-domain models is limited,
a diverse candidate pool can still provide comparable results through complementary capabilities. To
validate this, we conducted an additional experiment using a candidate pool with only two models:
a Llama-7b instruct model(LM) and a Chinese fine-tuned Llama-7b model(CN_LM). As shown in
Table 22, This focused selection of high-quality language models achieved even better performance
than our main results, confirming that strategic model selection can be more effective than broad
diversity when models are well-aligned with the target task.

Table 22: Comparison with other candidate models using high-quality language models. The
experiment shows that using two specialized language models (LM and CN_LM) can achieve
superior performance.

Method Reasoning Language Knowledge Understanding Avg

CMNLI HeSw PIQA CHID WSCP WSCG CSQA BoolQ MMLU CMMLU RaceH RaceM XSum C3

Base 32.98 71.34 78.18 41.56 37.50 38.46 55.04 70.70 46.67 31.88 35.53 33.36 19.55 43.84 45.47
CN_LM 34.02 70.03 76.71 38.31 63.46 59.62 61.51 56.09 46.47 32.64 41.48 45.47 17.64 46.58 49.29
LM 31.30 71.28 75.95 36.11 63.46 59.62 64.29 74.77 48.30 33.93 52.52 55.22 22.45 47.56 52.63
ShortGPT 34.14 33.74 59.85 15.23 61.54 33.46 44.81 55.20 30.70 27.06 40.73 42.78 13.20 34.58 37.64
Ours 33.00 63.24 68.00 22.43 60.69 57.69 63.64 76.02 45.31 33.25 50.08 53.30 14.42 42.26 48.80

29

	Introduction
	Related Work
	Methods
	Problem Setup
	Search Space Design
	Target Objective Function
	Search Optimizer

	Experimental Settings
	Results and Analysis
	Main Results
	Which Parts of the Search Space are Critical ?
	Robustness and Generalization Analysis
	Enhancing Layer-Folding Pruning Potential
	Computational Efficiency Analysis

	Conclusion
	The Use of Large Language Models
	Baseline
	Evaluation Benchmarks
	Task Arithmetic Merging
	kaistblueDescriptions of SMAC-based Multi-Fidelity Optimization
	kaistblueUnderstanding Strategy Selection via Layer-Level Analysis
	kaistblueTheoretical Foundation: Why Model Merging Works
	kaistblueEmpirical Observations: Layer-wise Patterns
	kaistblueWhy do these patterns emerge?

	Full Baseline results
	ADDITIONAL ANALYSIS
	Different Calibration Datasets and Metrics
	Enhancing Layer-Folding Pruning Potential
	Efficiency Analysis
	Scaling to Stronger Thinking model
	Scaling to Math and Code Tasks
	Scaling to other candidate models

