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Abstract001

Generative Large Language Models (LLMs)002
and the associated pre-training & fine-tuning003
paradigms have achieved significant advance-004
ments in various NLP tasks. However, Multilin-005
gual Neural Machine Translation (MNMT) sys-006
tems encounter capacity constraints when scal-007
ing to numerous languages with fixed model008
size, resulting in degraded translation quality,009
particularly for supervised tasks. Furthermore,010
the scarcity of parallel corpora for non-English011
language pairs limits expansion to new trans-012
lation directions. This paper presents Cross-013
LoRA, a novel MNMT framework that com-014
bines Low-Rank Adaptation (LoRA) with a015
Mixture-of-Experts (MoE) architecture featur-016
ing cross-connected language-specific experts.017
Our approach establishes dedicated experts for018
individual languages while enabling strategic019
interaction between source and target language020
experts during the translation process. To021
achieve any-to-any translation capability, we022
tailor a two-staged fine-tuning paradigm for023
CrossLoRA framework with a self-contrastive024
semantic enhancement, fine-tuning using En-025
glish as the pivot language, followed by pseudo-026
corpus generation and subsequent fine-tuning027
with the generated data. Experimental results028
on multilingual translation datasets confirm the029
quality improvement and parameter efficiency030
of CrossLoRA framework. Our findings pro-031
vide an effective recipe for fine-tuning LLMs032
to achieve any-to-any translation capability.033
Our code is available at: https://anonymous.034
4open.science/r/CrossL-3FBF/.035

1 Introduction036

Recently the emergence of various generative037

Large Language Models (LLMs) (OpenAI et al.,038

2024; Grattafiori et al., 2024; Qwen et al., 2025)039

has significantly advanced numerous NLP tasks,040

including Multilingual Neural Machine Transla-041

tion (MNMT) (Bahdanau et al., 2015). By in-042

tegrating prompt engineering methods with pre-043

training and fine-tuning paradigms (Zhang et al., 044

2023a), as illustrated in Figure 1(a), conventional 045

LLMs can fully leverage their translation capabili- 046

ties. The superior performance of LLMs in trans- 047

lation is primarily attributed to their billions of 048

trainable parameters (Xu et al., 2024b), while fully 049

fine-tuning these models demands substantial com- 050

puting resources, limiting practical applications 051

(Zhang et al., 2024). To address this challenge, 052

Parameter-Efficient Fine-Tuning (PEFT) methods 053

(Han et al., 2024), such as Low-Rank Adaptation 054

(LoRA) (Hu et al., 2022) shown in Figure 1(b), en- 055

able smaller models (e.g., 7B parameters) to gain 056

significant improvements on MNMT tasks in com- 057

putationally efficient settings (Zhang et al., 2023b; 058

Chen et al., 2024a). 059

Despite these methods facilitating a balance 060

between high-quality translation and manageable 061

computational costs, challenges persist in fine- 062

tuning MNMT tasks. The limited availability 063

of parallel corpora for non-English-centric pairs 064

constrains model capabilities, impeding expan- 065

sion to additional directions through supervised 066

fine-tuning approaches (Guzmán et al., 2019; 067

Ranathunga et al., 2023). Additionally, in mul- 068

tilingual scenarios, the generalization capability of 069

simple LoRA adapters is limited. While introduc- 070

ing Mixture-of-Experts (MoE) framework is an ef- 071

fective solution for enhancing model generalization 072

(Shazeer et al., 2017; Lepikhin et al., 2021), this 073

approach suffers from routing fluctuations when 074

the number of experts is limited (Dai et al., 2022). 075

Even with Mixture-of-LoRAs (MoLoRA) frame- 076

work (Zadouri et al., 2024; Zhu et al., 2023), which 077

combines MoE and LoRA as illustrated in Fig- 078

ure 1(c), scaling the number of experts or assigning 079

specific experts to different translation directions 080

becomes computationally prohibitive in scenarios 081

with numerous translation directions. 082

To address the above-mentioned issues, we 083

propose a novel framework for MNMT which 084
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Figure 1: Illustrations of (a) prompt engineering method for NMT, compared with LLM fine-tuning process with (b)
LoRA, (c) MoLoRA framework, and (d) our proposed CrossLoRA framework.

cross-connects experts within the MoE structure,085

named CrossLoRA. Specifically, instead of train-086

ing experts specialized in particular translation087

directions, each LoRA expert is designated as a088

language-specific expert. The LoRA A and LoRA B089

modules correspond to the source and target sides090

of the translation process, respectively. Dedicated091

cross-connected activations between experts facili-092

tate translation between two distinct languages, as093

shown in Figure 1(d). Combined with the static094

language router, the number of experts required to095

support diverse translation directions can be signifi-096

cantly reduced. Additionally, we tailor a two-stage097

fine-tuning process to enable efficient translation098

in multilingual language directions, as seen in Fig-099

ure 2. In the first fine-tuning stage, a pivot language100

(e.g., English) serves as the “hub” language to es-101

tablish translations from and to all target languages.102

Following this initial fine-tuning, pseudo-corpora103

for any-to-any translation directions are generated104

using the first-stage fine-tuned LoRA modules. By105

consolidating these corpora, we facilitate a second106

fine-tuning stage to achieve comprehensive any-107

to-any translation capability. We further employ108

the self-contrastive learning method to enhance the109

robustness and semantic representation capability110

in translations. Consequently, the required data111

for non-English language pairs are significantly re-112

duced, allowing the fine-tuned LLMs to achieve113

promising outcomes in terms of both language cov-114

erage and translation quality. The main contribu-115

tions of this paper can be summarized as follows:116

• We introduce the CrossLoRA framework for117

fine-tuning LLMs on multilingual transla-118

tion tasks. By incorporating cross-connected119

language-specific experts alongside the static120

language routers, the proposed framework en- 121

ables the fine-tuned model to achieve broad 122

language coverage and precise translation, 123

even with a limited number of experts. 124

• Based on the CrossLoRA framework, we de- 125

sign a two-stage fine-tuning process with se- 126

quential cross-connected activations, allowing 127

LLMs to perform any-to-any language trans- 128

lation without being constrained by the limita- 129

tions of multilingual corpora. 130

• Extensive evaluations across LLMs demon- 131

strate that our approach achieves superior 132

quality improvements with computational ef- 133

ficiency, enabling fine-tuned general-purpose 134

LLMs to outperform specialized NMT models 135

in multilingual translation tasks. 136

2 Related Works 137

2.1 Sparse Mixture-of-Experts 138

Sparse expert models have gained prominence 139

for enhancing model capacity while maintaining 140

computational efficiency (Fedus et al., 2022a). 141

The MoE framework, initially designed to over- 142

come scalability limitations of monolithic mod- 143

els (Shazeer et al., 2017), has become a cornerstone 144

in deep learning for tasks requiring task-specific 145

specialization (Chen et al., 2022). In the Trans- 146

former architecture (Shazeer et al., 2018), MoE is 147

widely adopted in Multi-Task Learning (MTL) and 148

has been integrated into LLMs to address diverse 149

NLP tasks (Wang et al., 2023; Fedus et al., 2022b). 150

The combination of MoE and LoRA has 151

further advanced parameter-efficient fine-tuning. 152

MoLoRA (Zadouri et al., 2024), a pioneering 153

approach for resource-constrained environments, 154
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combines MoE with LoRA to improve task adapt-155

ability. Subsequent studies have extended this156

framework by introducing task-adaptive gating157

mechanisms (Liu et al., 2024), addressing data con-158

flicts in instruction datasets (Chen et al., 2024b),159

and mitigating knowledge forgetting through local-160

ized balancing constraints (Dou et al., 2024).161

In multilingual translation, MoE-based meth-162

ods such as MoE-LGR (Li et al., 2023) lever-163

age linguistic typology to group languages, while164

smoothed gating networks with token-level fea-165

ture mixing (Liu et al., 2022) enhance language-166

specific feature extraction. However, challenges167

persist in balancing computational overhead and168

performance, particularly when scaling to diverse169

language pairs with limited experts (Tourni and170

Naskar, 2024).171

2.2 LLM-Based Multilingual Translation172

Generative LLMs are widely used in multilin-173

gual translation due to their broad language cov-174

erage and robust performance (Yang et al., 2023;175

Zeng et al., 2024). However, their deployment is176

constrained by high computational costs and re-177

liance on large-scale parallel corpora (Zhang et al.,178

2023a). To address these challenges, researchers179

employ two strategies: Parameter-efficient fine-180

tuning methods like LoRA (Xu et al., 2024a,b)181

and adapters (Stickland et al., 2021) reduce the182

number of trainable parameters while maintaining183

performance, and data synthesis techniques such184

as pseudo-corpus generation (Pan et al., 2024) and185

data augmentation (Liu et al., 2023; Lu et al., 2024)186

alleviate data scarcity in low-resource settings. De-187

spite these advancements, existing approaches still188

struggle with arbitrary language pair translation189

and computational efficiency. In this paper, the190

proposed CrossLoRA framework aimed at simulta-191

neously addressing both computational efficiency192

and data scarcity issues in multilingual translation.193

3 Methodology194

3.1 Preliminaries195

In this subsection, we briefly introduce the Low-196

Rank Adaptation (LoRA) method, as depicted in197

Figure 1(b), followed by the Mixture-of-LoRAs198

(MoLoRA) framework based on LoRA method.199

When employing the LoRA adapter, the pre-200

trained model’s weight matrix W0 is kept frozen,201

while a trainable low-rank decomposition matrix202

∆W , which can be further decomposed into the203

paired LoRA A and LoRA B modules, is incorpo- 204

rated into the selected linear layer of the model 205

framework. The update can be formulated as fol- 206

lows: 207

y = (∆W +W0)x = (BA+W0)x (1) 208

Here, A ∈ Rr×di and B ∈ Rdo×r represent the 209

coordinated low-rank matrices corresponding to 210

LoRA A and LoRA B modules respectively, with 211

r ≪ min(di, do) refers to the selected LoRA rank. 212

x denotes the input sequence, and y is the cor- 213

responding output. Given that only the low-rank 214

matrices A and B get updated, the LoRA method 215

significantly reduces the number of parameters re- 216

quired for downstream fine-tuning. 217

Building upon the LoRA framework, the 218

MoLoRA method further integrates the MoE frame- 219

work. As illustrated in Figure 1(c), the structure 220

of a MoLoRA component comprises a set of n 221

LoRA experts, denoted as E1, E2, . . . , En, which 222

are tasked with adapting the pre-trained layer dur- 223

ing the fine-tuning stage. Each expert Ei can be fur- 224

ther comprised into two trainable low-rank weight 225

matrices, EiA and EiB , which relate to the previ- 226

ous LoRA A and LoRA B modules respectively. In 227

addition, the MoLoRA module includes a token- 228

level expert router denoted as θMoL for computing 229

routing weight. The routing weight sMoL
i related 230

to expert Ei is computed by the equation below: 231

sMoL
i = θMoL(x)i = softmax(WMoLx)i, (2) 232

where WMoL represents the weight matrix of the 233

router. The final output y for integrating n experts 234

in the module is calculated as follows: 235

y = W0x+
n∑

i=1

sMoL
i EiBEiAx (3) 236

3.2 Cross-Connected Language Experts 237

We modify MoLoRA and introduce the CrossLoRA 238

framework in Figure 1(d), which crossly connects 239

the experts in the MoE structure. Each expert in the 240

MoE structure is regarded as an expert of one spe- 241

cific language, and the cross-connected experts act 242

as the translation between two distinct languages. 243

For the languages involved in the translation task, a 244

specific LoRA expert is assigned for each language. 245

To enhance clarity, we can consider a simplified sce- 246

nario involving a restricted set of three languages: 247

German, English, and Chinese, as is shown in Fig- 248

ure 2, where the language experts are labeled as 249

De, En, and Zh. 250
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Figure 2: Our CrossLoRA fine-tuning process. The figure depicts an example involving a limited set of three
languages (De, En, and Zh) for MNMT task. Within the CrossLoRA module, a red pathway represents a route
initially activated in Stage 1 or Stage 2 respectively, while the gray dashed line denotes a blocked route.

Each expert, such as De, is further decomposed251

into two low-rank weight matrices, denoted as DeA252

and DeB modules. These modules correspond to253

scenarios where German is designated as either the254

source or the target language, respectively, which is255

activated only when involved in the specific transla-256

tion process. More specifically, considering a spe-257

cific translation direction De⇒En, when German is258

set as the source language and English is set as the259

target language for translating a sequence pair, only260

DeA as well as EnB can be activated while the re-261

maining experts stay frozen. To ensure the accurate262

activation of the corresponding source and target263

language low-rank weight matrices when translat-264

ing a sequence pair, we deployed a static language265

router that outputs the corresponding routes based266

on pre-set language labels.267

For a specific case of translating a sequence x268

from source language xsrc into the target language269

xtgt, the target output y can be calculated by the270

following formula:271

y = W0x+

n∑
i=1

n∑
j=1

f(x; i, j)EjBEiAx, (4)272

where n is the number of language experts, and273

f(x; i, j) is the gating function of the static router:274

f(x; i, j) =

{
1 if i = xsrc and j = xtgt

0 otherwise
(5)275

In this way, only the corresponding low-rank276

weight matrices in each expert module are properly277

activated.278

3.3 Staged Fine-Tuning on CrossLoRA 279

To achieve any-to-any translation on the Cross- 280

LoRA framework with limited parallel training 281

data, we further tailor a staged fine-tuning process, 282

as illustrated in Figure 2, which can be outlined as 283

follows: 284

Stage 1. Firstly, CrossLoRA module is trained 285

on English-centric corpora. For the case illustrated 286

in the figure, assume only three language experts 287

are involved: German (De), English (En) and 288

Chinese (Zh). With the increasing diversity of 289

languages, non-English language pairs often ex- 290

hibit limited or non-existent parallel text resources. 291

To address this issue, English is designated as the 292

pivot language. The primary objective of Stage 1 293

fine-tuning is to enhance the model’s translation 294

capabilities in both En⇒Any and Any⇒En direc- 295

tions, thereby augmenting the model to generate 296

high-quality pseudo-corpora. Thus, the training 297

data used for training in this stage includes trans- 298

lation corpora with English as the source language 299

(En⇒De, En⇒Zh) and translation corpora with 300

English as the target language (De⇒En, Zh⇒En), 301

as shown by the red solid arrows in Figure 2 (Stage 302

1). For translation directions not involving English 303

(De⇒Zh and Zh⇒De), the corresponding routes 304

among matrices remain inactive, as shown by the 305

gray dashed lines. On the other hand, the weight 306

matrices of all experts in the CrossLoRA module 307

are updated, thereby enhancing the model’s abil- 308

ity to understand all English-involved translation 309

directions. 310
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Pseudo-corpus Generation. English is re-311

garded as the pivot language for creating the pseudo312

corpus required for the subsequent training stage.313

For instance, to obtain parallel pseudo corpora for314

the De⇒Zh translation, we employ CrossLoRA315

fine-tuned after Stage 1 to translate the German316

sequence into English, followed by translating the317

English sequence into Chinese. Parallel corpora318

for the Zh⇒De translation are obtained in a sim-319

ilar manner. All generated corpora undergo lan-320

guage identification to ensure accuracy and avoid321

off-target translations. Theoretically, we can obtain322

parallel pseudo corpora in any translation direction323

among the languages involved in the translation324

model.325

Stage 2. In the final stage, the reinitialized326

CrossLoRA model is fine-tuned using both the327

training data from Stage 1 and all the previously328

generated parallel pseudo-corpora. All routes are329

now activated, which enables each language expert330

to be applicable across all source and target lan-331

guages. This comprehensive approach enhances332

the model’s translation efficacy in all directions,333

ensuring optimized performance regardless of the334

specific language pair.335

3.4 Self-Contrastive Semantic Enhancement336

In the translation task, given a labeled sequence337

pair (xj , yj) in the parallel training corpora338

D {(xj , yj)}Mj=1, where xj and yj represent the339

source and target sequence, respectively. The train-340

ing objective for the translation model is to mini-341

mize the following Negative Log-Likelihood (NLL)342

loss function:343

L = − 1

M

m∑
j=1

logPw (yj | xj ; θ) (6)344

where θ is the set of trainable parameters. To fur-345

ther improve regularization capability, we take R-346

Drop (Liang et al., 2021) to reduce the inconsis-347

tency existing in training and inference. Due to348

the dropout mechanism of randomly deactivating349

units within a model, each forward pass effectively350

utilizes distinct sub-models. Consequently, we in-351

put xj through two separate forward passes of the352

network to obtain two distributions of model pre-353

dictions, denoted as Pw
1 (yj | xj) and Pw

2 (yj | xj).354

In each training step, the R-Drop method seeks to355

regularize the model’s predictions by minimizing356

the bidirectional Kullback-Leibler (KL) divergence357

between the two output distributions for the same358

sample, and the corresponding KL-divergence loss 359

is formulated as: 360

Lkl =
1

2M

m∑
j=1

(Dkl (Pw
1 (yj | xj) ∥Pw

2 (yj | xj))

+Dkl (Pw
2 (yj | xj) ∥Pw

1 (yj | xj)))
(7) 361

With these two forward passes, the original learn- 362

ing objective is reformulated as a bidirectional NLL 363

loss: 364

Lnll = − 1

2M

n∑
j=1

(logPω
1 (yj | xj)

+ logPω
2 (yj | xj))

(8) 365

Finally, the CrossLoRA model can be optimized 366

by minimizing a composite loss function that in- 367

corporates both the modified NLL loss and the 368

contrastive loss: 369

LReg = Lnll + α · Lkl (9) 370

where α is the coefficient weight to control the 371

proportion of KL-divergence loss. 372

4 Experiments 373

4.1 Dataset and Metrics 374

For our parallel training data, we utilize the training 375

set of the OPUS-100 dataset (Tiedemann, 2012), 376

an English-centric multilingual corpus, along with 377

the development set of Flores-200 dataset (NLLB 378

Team et al., 2022). Following the ALMA model’s 379

configuration (Xu et al., 2024a), we select six lan- 380

guages—English (En), German (De), Chinese (Zh), 381

Russian (Ru), Czech (Cs) and Icelandic (Is)—with 382

English serving as the pivot language. To compre- 383

hensively evaluate the model’s translation perfor- 384

mance, we test all 30 directions. Given the lack of 385

non-English-centric test data in OPUS-100, our ex- 386

periment’s test data comprises test sets from OPUS- 387

100 that involve English and Flores-200 for other 388

translation directions. For Stage 1 training data, 389

we randomly sample 20k parallel sentence pairs 390

for each of the 10 language pairs. For Stage 2 fine- 391

tuning pseudo data, using the fine-tuned model, we 392

generate 20k parallel sentence pairs for each non- 393

English-centric directions. See Appendix A.2 for 394

detailed data settings. 395

We employ a commonly adopted sentence-level 396

translation prompt template (Hendy et al., 2023), 397

which can be formulated as “Translate the follow- 398

ing {src} sentences into {tgt}: ”, where {src} 399
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Models
English-centric non-English-centric Average

BLEU COMET BLEU COMET BLEU COMET
ALMA-7B (English-pivot) 24.45 78.12 17.66 80.79 19.92 79.90
M2M100-12B 24.06 74.59 18.98 82.52 20.68 79.88
BigTranslate-13B 22.02 72.95 18.94 81.88 19.98 78.90
NLLB-3.3B 27.85 77.01 20.53 82.88 22.97 80.92

LLaMA-3-8B-Instruct
English-centric non-English-centric Average

BLEU COMET BLEU COMET BLEU COMET
Base 18.41 68.61 13.94 77.41 15.43 74.48
+LoRA 26.11 76.43 16.20 79.80 19.50 78.68
+MoLoRA (Top-k) 27.08 77.02 17.45 80.29 20.66 79.20
+MoLoRA (Static) 28.38 77.30 19.14 81.39 22.22 80.03
+CrossLoRA

— Stage 1 29.50 78.26 13.95 77.35 19.13 77.65
— Stage 2 29.69 78.74 20.60 81.94 23.63 80.88

Qwen2.5-7B-Instruct
English-centric non-English-centric Average

BLEU COMET BLEU COMET BLEU COMET
Base 19.09 70.37 12.85 76.55 14.93 74.49
+LoRA 25.84 75.92 16.44 79.76 19.57 78.48
+MoLoRA (Top-k) 26.79 76.88 17.67 80.20 20.71 79.09
+MoLoRA (Static) 28.28 77.60 20.31 81.35 22.97 80.10
+CrossLoRA

— Stage 1 29.14 78.29 12.93 76.58 18.33 77.15
— Stage 2 29.52 78.37 21.04 81.83 23.87 80.68

Table 1: The overall results in all directions. Except for CrossLoRA, which is evaluated across both Stage 1
and Stage 2, all other LoRA-based methods report only Stage 2 outcomes. Bold results highlight the highest
scores among fine-tuning approaches for the same backbone model, demonstrating that CrossLoRA outperforms all
competitors and achieves competitive performance with state-of-the-art multilingual translation systems.

and {tgt} denote the respective source and target400

languages of the specific translation direction. For401

evaluation metrics, we utilize the SacreBLEU (Post,402

2018) and COMET-22 (Rei et al., 2022) to evaluate403

translation quality.404

4.2 Implementation Details405

The CrossLoRA framework is applied to state-406

of-the-art base LLMs, including Qwen2.5-7B-407

Instruct (Qwen et al., 2025) and LLaMA-3-8B-408

Instruct (Grattafiori et al., 2024).409

During the fine-tuning phase, our setup features410

a batch size of 32, training for 3 epochs, and a411

learning rate of 5e-4. The coefficient weight of412

KL-divergence loss α = 0.1. Given the number413

of languages in translation, the defined number of414

experts is fixed at 6. For the LoRA configurations,415

we set the lora rank r = 16, lora alpha αl = 64,416

lora dropout p = 0.1.417

4.3 Baselines418

To ensure a fair evaluation, we compare Cross-419

LoRA with the following LoRA-based methods420

using identical staged fine-tuning configurations: 421

• LoRA. Scales the lora rank and lora alpha pa- 422

rameters within a single LoRA adapter, yield- 423

ing comparable parameter counts. 424

• MoLoRA (Top-k): We employ MoLoRA 425

adapter with the same number of experts as 426

CrossLoRA alongwith a top-1 router, activat- 427

ing one expert per translation process. 428

• MoLoRA. Static: A MoLoRA adapter 429

equipped with a static router, designating spe- 430

cific experts for each language pair, thereby 431

expanding the total number of experts to 30. 432

This configuration ensures consistent expert 433

activation, eliminates routing fluctuations but 434

also substantially increases training costs. 435

In addition to the aforementioned LoRA-based 436

methods, we compare our model with prior stud- 437

ies that exhibit robust multilingual translation ca- 438

pabilities, specifically M2M100-12B (Fan et al., 439

2021), BigTranslate (Yang et al., 2023) and 440

NLLB-3.3B (NLLB Team et al., 2022) from the 441
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Figure 3: Detailed results of CrossLoRA after Stage 1 & Stage 2 fine-tuning in all translation directions involving
English, based on LLaMA-3-8B-Instruct. A comparison is made between MoLoRA (with top-k routing) and
CrossLoRA, highlighting that CrossLoRA benefits from multilingual collaborative training in Stage 2, while
MoLoRA experiences expert fluctuations when the number of experts is insufficient.

NLLB model family. We also include ALMA-7B442

(Xu et al., 2024a), an English-centric model that443

employs a staged fine-tuning strategy. Notably,444

ALMA-7B’s performance in non-English-centric445

directions is evaluated via an English pivot transla-446

tion pipeline.447

4.4 Main Results448

We report the overall results across all translation449

directions in Table 1. In summary, after Stage 2450

fine-tuning, the proposed CrossLoRA method out-451

performs other LoRA-based fine-tuning methods,452

and the optimal model surpasses previous state-of-453

the-art translation models.454

Compared with backbone LLMs. After Stage455

1 fine-tuning, CrossLoRA achieves significant im-456

provements in all directions involving English,457

while maintaining the translation performance of458

the backbone model in other directions. Following459

Stage 2 fine-tuning, CrossLoRA exhibits substan-460

tial performance gains across all translation direc-461

tions relative to the backbone models, particularly462

for non-English-centric directions.463

Compared with LoRA-based fine-tuning464

methods. CrossLoRA demonstrates a more sub-465

stantial enhancement compared to all other LoRA-466

based methods on average, showing marginal im-467

provements in both evaluation metrics. Specifi-468

cally, MoLoRA with top-k routing exhibits better469

average performance than pure LoRA fine-tuning,470

while MoLoRA with static routing achieves compa-471

rable performance but at the cost of significantly in-472

creased computational overhead. CrossLoRA out-473

performs both MoLoRA configurations. Addition-474

ally, detailed results for English-involved directions475

during the staged fine-tuning process are shown in476

Figure 3. After Stage 2 fine-tuning, MoLoRA with 477

top-k routing experiences expert fluctuations when 478

the number of experts is insufficient, leading to a 479

general performance decline in English-involved 480

translation directions. In contrast, CrossLoRA ben- 481

efits from stronger generalization ability under the 482

same parameters, leveraging multilingual collab- 483

orative training to achieve performance improve- 484

ments in most directions. 485

Compared with prior studies. Both backbone 486

models fine-tuned with CrossLoRA outperforms 487

previous professional multilingual translation mod- 488

els. Notably, while the ALMA model exhibits 489

strong performance in English-centric translation 490

directions compared to other baselines, its efficacy 491

in non-English-centric directions is markedly con- 492

strained by reliance on an English-pivot pipeline- 493

based approach for any-to-any translation. Cross- 494

LoRA’s distinct advantage lies in its ability to min- 495

imize dependency on large-scale non-English par- 496

allel corpora, which were traditionally deemed es- 497

sential for robust multilingual translation. This 498

highlights its parameter-efficient design without 499

compromising translation quality. 500

5 Ablation Studies 501

Beyond the main results, we further explore the 502

CrossLoRA framework with diverse configurations 503

to deepen our understanding. All experiments are 504

conducted on LLaMA-3-8B-Instruct. 505

5.1 Fine-tuning Data Configuration 506

To evaluate the fine-tuning data configuration, we 507

conduct ablation experiments with two additional 508

fine-tuning configurations. As shown in Table 2, 509

Pseudo-corpora + Stage1 involves fine-tuning the 510
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Methods
English-centric non-English-centric Average

BLEU COMET BLEU COMET BLEU COMET
Pseudo-corpora + Stage 1 28.99 78.50 20.37 81.51 23.24 80.51
All + Stage 1 27.78 77.57 20.44 81.43 22.89 80.14
All + Reinitialized 29.69 78.74 20.60 81.94 23.63 80.88

Table 2: The ablation study on the fine-tuning data configurations for Stage 2, based on LLaMA-3-8B-Instruct. The
best scores are marked in bold. The newly fine-tuned CrossLoRA model achieves the best overall performance.

Methods
English-centric non-English-centric Average Trainable

ParametersBLEU COMET BLEU COMET BLEU COMET
1 Shared Source Expert 28.78 77.57 19.56 81.11 22.63 79.93

1.24%
1 Shared Target Expert 28.61 77.60 19.41 80.97 22.48 79.85
3 Experts 29.32 78.66 20.22 81.89 23.25 80.81 1.06%
6 Experts 29.69 78.74 20.60 81.94 23.63 80.88 2.08%

Table 3: The ablation study on the merged language experts, based on LLaMA-3-8B-Instruct model. The best
scores are marked in bold.

Stage 1 checkpoint using only generated pseudo-511

corpora. All + Stage1 uses the same checkpoint512

but includes both pseudo-corpora and English-pivot513

corpora from Stage 1. The main experiment adopts514

the All + Reinitialized setup, which fine-tunes a515

reinitialized CrossLoRA model using both pseudo-516

corpora and English-pivot corpora from Stage 1.517

The results indicate that the reinitialized Cross-518

LoRA network, when trained with combined cor-519

pora, achieves the overall best performance. In520

contrast, Stage 1 checkpoint-based models exhibit521

knowledge forgetting, improving new directions522

while degrading English-centric translations. The523

reinitialized model avoids this issue by synergis-524

tically learning language features across all data,525

achieving consistent gains across translation direc-526

tions as the optimal configuration.527

5.2 Merged Language Experts528

Exploring the application of expert compression529

techniques within the CrossLoRA framework is530

crucial for further improving parameter efficiency.531

Thus, we conduct experiments using two distinct532

expert compression strategies:533

Shared Source & Target Side Language Ex-534

pert. Building on HydraLoRA’s asymmetric MoE535

design (Tian et al., 2024), we test configurations536

where a single merged expert handles all source537

inputs or target outputs. This approach enables538

shared parameterization between source and target539

sides to minimize redundancy.540

Language Group Experts. Drawing from the541

integration of language typology in MoE-based542

translation systems (Li et al., 2023), we merge543

languages into typologically grouped experts (see 544

Table 4). For example, English, German, and Ice- 545

landic share one expert. This reduces the total ex- 546

pert count and trainable parameters by half (from 547

2.08% to 1.06%), while preserving CrossLoRA’s 548

architecture. 549

The results, presented in Table 3, indicate that 550

despite a significant reduction in the number of 551

trainable parameters required for fine-tuning, the 552

merged language group expert configuration only 553

experiences a slight decrease in overall perfor- 554

mance. This suggests that CrossLoRA can be ef- 555

ficiently scaled to support more languages while 556

preserving translation quality, offering promising 557

potential for future multilingual extensions. 558

6 Conclusion 559

In this paper, we propose a novel CrossLoRA 560

framework designed for fine-tuning LLMs on 561

downstream multilingual translation tasks. The 562

proposed approach integrates the LoRA technique 563

with the MoE framework, deploying transactional 564

language experts. Building upon this foundation, 565

we tailor a staged training approach that enables 566

the model to acquire the capability for any-to-any 567

translation with a limited training corpus. Experi- 568

ments conducted across various translation direc- 569

tions have proven the effectiveness and parameter 570

efficiency of CrossLoRA. 571

For future work, we plan to conduct more in- 572

depth research on the CrossLoRA architecture, 573

which includes expanding the range of supported 574

languages and investigating the impact of pseudo- 575

corpus size & quality on model performance. 576
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Limitations577

While this article presents an efficient framework578

for fine-tuning LLMs on multilingual translation579

task, several limitations warrant further investiga-580

tion:581

Language Coverage Constraints. Although582

CrossLoRA mitigates dependence on non-English583

parallel data, our experiments are constrained to 6584

languages (including one low-resource language:585

Icelandic). While Section 5.2 demonstrates its the-586

oretical scalability via linguistic expert ablations,587

systematic evaluation is required to validate its ca-588

pability under expanded conditions. Key questions589

remain: (1) Can translation quality be balanced590

across a significantly larger set of languages? (2)591

How does the framework perform when integrating592

additional low-resource languages?593

Diversified Training Process. This work fo-594

cuses on supervised fine-tuning of LLMs utilizing595

parallel corpora. However, recent advances in trans-596

lation enhancement include continual pre-training597

with monolingual data (Xu et al., 2024a) and pref-598

erence learning approaches (Xu et al., 2024b). Fur-599

ther exploration of integrating more methods with600

CrossLoRA is essential for enhancing its adaptabil-601

ity to diverse training paradigms.602

Model Diversity Constraints. The proposed603

CrossLoRA framework is evaluated on LLaMA-604

3-8B-Instruct and Qwen2.5-7B-Instruct, which605

demonstrate strong performance but restrict gener-606

alization insights across diverse architectures and607

scales. Future research should investigate its ef-608

fectiveness on models with varying capabilities to609

validate robustness and adaptability beyond current610

baselines.611

Pseudo-Corpus Generation Optimization.612

While we employs synthetic pseudo-corpora for613

training, current rule-based filtering strategies614

struggle to guarantee high-quality data generation.615

Additionally, integrating quality assessment mod-616

els introduces computational overhead, limiting617

scalability. Given that high-quality training corpora618

directly impact model performance, it is worth-619

while to explore efficient pseudo-corpus generation620

paradigms that balance data quality and resource621

efficiency.622
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A Appendix877

A.1 Training Details878

We hereby supplement the model training config-879

uration not mentioned in the main text. For both880

backbone LLMs, we fine-tune the models using a881

warm-up ratio of 5e-4, a maximum sequence length882

of 512 tokens, and a weight decay of 0.02. LoRA883

adapters are applied to the gate_proj, up_proj, and884

down_proj modules of the backbone LLMs. Stage885

1 fine-tuning requires 3 epochs, while Stage 2 re-886

quires 2 epochs. Model training process is con-887

ducted on 2 NVIDIA A800 GPUs, with each GPU888

handling 4 batches and employing a gradient accu-889

mulation step of 4, resulting in an effective batch890

size of 32.891

A.2 Data Settings892

For the fine-tuning data details:893

Stage 1 Fine-Tuning: The pre-divided develop-894

ment subset from OPUS-100 serves as our develop-895

ment set. The training data consists of the randomly896

sampled OPUS-100 train subset combined with the897

full Flores-200 development subset.898

Pseudo-Corpora Generation: To generate899

pseudo-corpora after Stage 1 fine-tuning, the mono-900

lingual backbone sequences required for generation901

are randomly sourced from the non-overlapping902

portions of the OPUS-100 training set and the903

Stage 1 training set. This ensures that the gen-904

erated pseudo-corpora introduce new data not seen905

during the initial training phase.906

To enhance the quality of the pseudo-corpus,907

inspired by Junczys-Dowmunt (2018), we imple-908

ment rule-based filtering strategies, specifically:909

(1) Target language detection to exclude sequences910

misaligned with the intended target language; (2)911

Sequence-length filtering to remove pseudo-pairs912

with significant disparities in source and target913

lengths, which often indicate low-quality transla-914

tions. These filters systematically exclude noisy or915

Language Language Family
(En) English

Germanic, Indo-European(De) German
(Is) Icelandic
(Cs) Czech

Balto-Slavic, Indo-European
(Ru) Russian
(Zh) Chinese Sino-Tibetan

Table 4: The languages selected in the main experiment
and their corresponding language families.

unreliable pseudo-corpus entries, ensuring higher 916

fidelity in downstream training tasks. 917

Stage 2 Fine-Tuning: The training set in this 918

stage comprises the generated pseudo-corpora, 919

supplemented by the Flores-200 development set. 920

About 10% of the combined data is allocated as the 921

evaluation set, with the remaining 90% used for 922

model training. Detailed data statistics are summa- 923

rized in Table 5. 924

A.3 The Effect of R-Drop 925

To scrutinize the impact of employing R-Drop reg- 926

ularization, we compare the CrossLoRA model 927

based on LLaMA-3-8B-Instruct, fine-tuned with 928

and without R-Drop. Corresponding results are 929

presented in Table 6. The ablation reveals that self- 930

contrastive semantic enhancement improves the 931

generalization capability of the CrossLoRA model, 932

achieving substantial performance gains across all 933

translation directions relative to the baseline, with- 934

out additional inference costs. 935

A.4 Necessity of Stage 1 Fine-Tuning 936

The primary objective of Stage 1 fine-tuning is 937

to enhance the model’s performance in English- 938

centric translation directions, thereby generating 939

high-quality parallel pseudo-corpora from avail- 940

able English-centric data for subsequent training. 941

To validate the necessity, we conduct an ablation 942

study: Fine-tuning the model using pseudo-corpora 943

generated by the backbone model and the NLLB- 944

3.3B model. The results are summarized in Table 7. 945

Experimental findings demonstrate that despite 946

the additional computational overhead introduced 947

by Stage 1, the higher-quality pseudo-corpora it 948

generates significantly improve translation perfor- 949

mance after Stage 2 fine-tuning. This improvement 950

is particularly pronounced in non-English-centric 951

translation directions. 952

A.5 Full Results of Main Experiment 953

In Table 8 and Table 9, We present the specific 954

performance of the CrossLoRA model based on the 955

Training Stage Directions
Parallel Data

train dev test
Stage 1 En⇔Any 20997 2000 2000

Stage 2
En⇔Any 20997 2000 2000
others 18997 2000 1012

Table 5: The statistics for the data we utilize for main
experiments.
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Configurations
English-centric non-English-centric Average

BLEU COMET BLEU COMET BLEU COMET
w/o R-Drop 29.13 78.41 20.09 81.38 23.10 80.39
w/ R-Drop 29.69 78.74 20.60 81.94 23.63 80.88

Table 6: Results of the ablation study on the effect of R-Drop regularization, based on the LLaMA-3-8B-Instruct
backbone model. Higher scores are marked in bold. Employing the R-Drop method results in a comprehensive
performance improvement.

Pseudo-corpora Source
English-centric non-English-centric Average

BLEU COMET BLEU COMET BLEU COMET
LLaMA-3-8B-Instruct 28.68 77.70 18.93 80.02 22.18 79.25
NLLB-3.3B 29.72 78.67 20.29 81.55 23.43 80.59
CrossLoRA Stage 1 29.69 78.74 20.60 81.94 23.63 80.88

Table 7: Results of the ablation study on the effect of Stage 1 training, based on the LLaMA-3-8B-Instruct backbone
model. Higher scores are marked in bold.

Models
Zh⇒En En⇒Zh De⇒En

BLEU ROUGE COMET BLEU ROUGE COMET BLEU ROUGE COMET
NLLB-3.3B 29.75 50.11 79.51 28.07 44.35 80.58 28.08 45.06 75.24
M2M100-12B 27.66 51.72 78.97 27.76 45.06 79.81 30.90 50.48 78.27
LLaMA-3-8B-Instruct 20.84 39.64 74.93 18.76 33.86 73.47 23.07 37.75 71.10
CrossLoRA Stage 1 33.37 55.59 81.17 34.45 51.15 82.26 33.00 53.12 79.58
CrossLoRA Stage 2 34.95 58.13 82.19 36.21 53.93 83.36 33.99 52.28 80.16

Models
En⇒De Ru⇒En En⇒Ru

BLEU ROUGE COMET BLEU ROUGE COMET BLEU ROUGE COMET
NLLB-3.3B 27.54 43.22 78.24 29.03 47.86 76.80 28.41 43.21 82.51
M2M100-12B 27.29 45.93 76.48 26.65 46.34 76.97 23.39 36.81 79.54
LLaMA-3-8B-Instruct 21.26 34.14 70.36 22.54 38.50 71.10 18.74 30.84 73.84
CrossLoRA Stage 1 28.47 48.15 78.31 32.01 54.26 79.06 26.47 45.59 81.28
CrossLoRA Stage 2 28.16 45.80 78.33 32.17 52.33 78.94 26.34 45.21 81.95

Models
Cs⇒En En⇒Cs Is⇒En

BLEU ROUGE COMET BLEU ROUGE COMET BLEU ROUGE COMET
NLLB-3.3B 31.10 47.71 76.15 28.11 41.25 81.39 25.47 43.63 72.63
M2M100-12B 26.12 41.56 76.31 21.19 32.69 77.70 16.41 38.40 64.67
LLaMA-3-8B-Instruct 22.58 38.45 70.06 15.38 25.64 71.02 11.89 21.46 55.51
CrossLoRA Stage 1 32.82 54.07 79.88 26.14 45.55 81.11 25.65 48.69 71.62
CrossLoRA Stage 2 34.02 55.64 80.37 24.95 44.71 81.61 26.06 49.42 72.18

Models
En⇒Is De⇒Zh Zh⇒De

BLEU ROUGE COMET BLEU ROUGE COMET BLEU ROUGE COMET
NLLB-3.3B 22.98 38.37 67.03 25.11 43.38 79.31 18.17 41.43 80.52
M2M100-12B 13.21 32.84 57.15 27.24 48.11 84.06 16.47 39.34 80.09
LLaMA-3-8B-Instruct 9.05 17.29 54.71 16.81 32.70 76.69 13.26 33.07 77.25
CrossLoRA Stage 1 22.63 44.89 68.32 16.56 32.00 76.45 13.34 34.01 77.80
CrossLoRA Stage 2 21.05 43.02 68.35 37.96 56.18 86.21 22.54 48.29 81.58

Models
De⇒Ru Ru⇒De De⇒Cs

BLEU ROUGE COMET BLEU ROUGE COMET BLEU ROUGE COMET
NLLB-3.3B 25.29 46.45 87.12 24.17 49.12 81.89 24.13 47.40 89.48
M2M100-12B 22.07 43.26 86.55 21.30 45.92 80.52 23.35 46.50 89.61
LLaMA-3-8B-Instruct 17.79 36.24 82.52 17.84 39.78 77.34 17.11 37.73 85.10
CrossLoRA Stage 1 17.85 36.19 82.40 17.78 39.93 77.23 17.00 37.62 84.79
CrossLoRA Stage 2 27.23 50.17 87.57 28.44 54.32 82.03 16.69 41.55 86.49

Table 8: Part 1 of the full results for all translation directions of the main experiment.
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LLaMA-3-8B-Instruction backbone LLM across956

all translation directions in the main experiment.957

The performance metrics include BLEU scores,958

ROUGE-L, and COMET scores. For comparison,959

the table also includes the performance of prior960

studies and the backbone LLM baseline.961

From the table, it is evident that after fine-tuning962

in CrossLoRA Stage 1, the model’s scores have963

significantly improved in translation directions964

involving English, while maintaining the back-965

bone model’s performance in other non-English-966

involved directions. After further fine-tuning in967

Stage 2, with the addition of pseudo-corpus to the968

training data, the model achieves substantial im-969

provements in translation directions not involving970

English, reaching or even exceeding the perfor-971

mance of specialized translation models.972

Models
Cs⇒De De⇒Is Is⇒De

BLEU ROUGE COMET BLEU ROUGE COMET BLEU ROUGE COMET
NLLB-3.3B 26.02 51.21 84.59 18.19 43.15 82.37 20.63 44.89 78.80
M2M100-12B 24.00 49.15 83.55 13.72 37.02 79.35 18.99 42.91 78.30
LLaMA-3-8B-Instruct 20.26 42.71 80.47 8.06 26.90 72.05 9.92 24.22 66.90
CrossLoRA Stage 1 20.34 42.90 80.80 8.23 27.17 72.31 10.05 24.10 67.12
CrossLoRA Stage 2 30.69 56.65 84.77 13.11 38.37 72.49 21.62 48.72 79.26

Models
Zh⇒Ru Ru⇒Zh Zh⇒Cs

BLEU ROUGE COMET BLEU ROUGE COMET BLEU ROUGE COMET
NLLB-3.3B 17.50 36.90 85.57 24.96 42.84 80.22 15.64 36.42 86.20
M2M100-12B 15.76 34.68 85.39 26.10 46.57 83.60 14.87 35.39 86.59
LLaMA-3-8B-Instruct 12.25 27.87 81.79 23.02 71.13 79.93 11.29 28.05 82.84
CrossLoRA Stage 1 12.11 27.40 81.51 22.87 41.15 79.43 11.35 28.40 83.16
CrossLoRA Stage 2 21.68 44.27 86.76 38.32 57.87 85.92 18.74 42.91 87.43

Models
Cs⇒Zh Zh⇒Is Is⇒Zh

BLEU ROUGE COMET BLEU ROUGE COMET BLEU ROUGE COMET
NLLB-3.3B 24.38 42.81 79.50 12.81 34.72 79.63 20.83 38.99 77.27
M2M100-12B 26.96 47.80 84.38 9.89 30.84 77.44 21.14 42.30 80.73
LLaMA-3-8B-Instruct 18.49 34.99 77.71 6.34 21.53 71.12 16.20 33.11 73.70
CrossLoRA Stage 1 18.55 35.30 78.21 6.54 21.85 71.71 16.11 32.90 73.09
CrossLoRA Stage 2 40.89 59.69 86.87 10.69 31.98 66.31 31.61 53.75 83.64

Models
Cs⇒Ru Ru⇒Cs Cs⇒Is

BLEU ROUGE COMET BLEU ROUGE COMET BLEU ROUGE COMET
NLLB-3.3B 24.26 45.55 87.82 21.10 43.93 88.36 16.43 40.52 81.39
M2M100-12B 21.65 43.34 87.76 20.18 42.64 88.99 12.49 35.55 76.42
LLaMA-3-8B-Instruct 17.69 36.25 83.09 15.04 35.02 83.93 7.97 26.07 71.36
CrossLoRA Stage 1 17.72 35.96 82.90 15.16 35.20 83.87 7.76 25.87 70.62
CrossLoRA Stage 2 20.42 41.40 87.55 16.50 37.62 86.87 12.48 36.70 76.54

Models
Is⇒Cs Ru⇒Is Is⇒Ru

BLEU ROUGE COMET BLEU ROUGE COMET BLEU ROUGE COMET
NLLB-3.3B 17.32 38.99 84.35 15.23 39.21 80.58 18.43 38.32 82.64
M2M100-12B 16.05 36.89 82.39 11.49 33.54 74.37 15.96 35.35 80.20
LLaMA-3-8B-Instruct 10.77 27.58 77.63 7.31 25.06 70.51 11.60 27.48 76.28
CrossLoRA Stage 1 10.85 26.98 77.46 7.02 25.30 70.29 11.74 26.59 75.80
CrossLoRA Stage 2 12.15 31.51 77.95 12.59 36.07 75.18 14.76 33.32 81.20

Table 9: Part 2 of the full results for all translation directions of the main experiment.
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