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Abstract

Generative Large Language Models (LLMs)
and the associated pre-training & fine-tuning
paradigms have achieved significant advance-
ments in various NLP tasks. However, Multilin-
gual Neural Machine Translation (MNMT) sys-
tems encounter capacity constraints when scal-
ing to numerous languages with fixed model
size, resulting in degraded translation quality,
particularly for supervised tasks. Furthermore,
the scarcity of parallel corpora for non-English
language pairs limits expansion to new trans-
lation directions. This paper presents Cross-
LoRA, a novel MNMT framework that com-
bines Low-Rank Adaptation (LoRA) with a
Mixture-of-Experts (MoE) architecture featur-
ing cross-connected language-specific experts.
Our approach establishes dedicated experts for
individual languages while enabling strategic
interaction between source and target language
experts during the translation process. To
achieve any-to-any translation capability, we
tailor a two-staged fine-tuning paradigm for
CrossLoRA framework with a self-contrastive
semantic enhancement, fine-tuning using En-
glish as the pivot language, followed by pseudo-
corpus generation and subsequent fine-tuning
with the generated data. Experimental results
on multilingual translation datasets confirm the
quality improvement and parameter efficiency
of CrossLoRA framework. Our findings pro-
vide an effective recipe for fine-tuning LLMs
to achieve any-to-any translation capability.
Our code is available at: https://anonymous.
4open.science/r/CrossL-3FBF/.

1 Introduction

Recently the emergence of various generative
Large Language Models (LLMs) (OpenAl et al.,
2024; Grattafiori et al., 2024; Qwen et al., 2025)
has significantly advanced numerous NLP tasks,
including Multilingual Neural Machine Transla-
tion (MNMT) (Bahdanau et al., 2015). By in-
tegrating prompt engineering methods with pre-

training and fine-tuning paradigms (Zhang et al.,
2023a), as illustrated in Figure 1(a), conventional
LLMs can fully leverage their translation capabili-
ties. The superior performance of LLMs in trans-
lation is primarily attributed to their billions of
trainable parameters (Xu et al., 2024b), while fully
fine-tuning these models demands substantial com-
puting resources, limiting practical applications
(Zhang et al., 2024). To address this challenge,
Parameter-Efficient Fine-Tuning (PEFT) methods
(Han et al., 2024), such as Low-Rank Adaptation
(LoRA) (Hu et al., 2022) shown in Figure 1(b), en-
able smaller models (e.g., 7B parameters) to gain
significant improvements on MNMT tasks in com-
putationally efficient settings (Zhang et al., 2023b;
Chen et al., 2024a).

Despite these methods facilitating a balance
between high-quality translation and manageable
computational costs, challenges persist in fine-
tuning MNMT tasks. The limited availability
of parallel corpora for non-English-centric pairs
constrains model capabilities, impeding expan-
sion to additional directions through supervised
fine-tuning approaches (Guzman et al., 2019;
Ranathunga et al., 2023). Additionally, in mul-
tilingual scenarios, the generalization capability of
simple LoRA adapters is limited. While introduc-
ing Mixture-of-Experts (MoE) framework is an ef-
fective solution for enhancing model generalization
(Shazeer et al., 2017; Lepikhin et al., 2021), this
approach suffers from routing fluctuations when
the number of experts is limited (Dai et al., 2022).
Even with Mixture-of-LoRAs (MoLoRA) frame-
work (Zadouri et al., 2024; Zhu et al., 2023), which
combines MoE and LoRA as illustrated in Fig-
ure 1(c), scaling the number of experts or assigning
specific experts to different translation directions
becomes computationally prohibitive in scenarios
with numerous translation directions.

To address the above-mentioned issues, we
propose a novel framework for MNMT which
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Figure 1: [lustrations of (a) prompt engineering method for NMT, compared with LLM fine-tuning process with (b)
LoRA, (c) MoLoRA framework, and (d) our proposed CrossLoRA framework.

cross-connects experts within the MoE structure,
named CrossLoRA. Specifically, instead of train-
ing experts specialized in particular translation
directions, each LoRA expert is designated as a
language-specific expert. The LoRA A and LoRA B
modules correspond to the source and target sides
of the translation process, respectively. Dedicated
cross-connected activations between experts facili-
tate translation between two distinct languages, as
shown in Figure 1(d). Combined with the static
language router, the number of experts required to
support diverse translation directions can be signifi-
cantly reduced. Additionally, we tailor a two-stage
fine-tuning process to enable efficient translation
in multilingual language directions, as seen in Fig-
ure 2. In the first fine-tuning stage, a pivot language
(e.g., English) serves as the “hub” language to es-
tablish translations from and to all target languages.
Following this initial fine-tuning, pseudo-corpora
for any-to-any translation directions are generated
using the first-stage fine-tuned LoRA modules. By
consolidating these corpora, we facilitate a second
fine-tuning stage to achieve comprehensive any-
to-any translation capability. We further employ
the self-contrastive learning method to enhance the
robustness and semantic representation capability
in translations. Consequently, the required data
for non-English language pairs are significantly re-
duced, allowing the fine-tuned LLMs to achieve
promising outcomes in terms of both language cov-
erage and translation quality. The main contribu-
tions of this paper can be summarized as follows:

* We introduce the CrossLoRA framework for
fine-tuning LLMs on multilingual transla-
tion tasks. By incorporating cross-connected
language-specific experts alongside the static

language routers, the proposed framework en-
ables the fine-tuned model to achieve broad
language coverage and precise translation,
even with a limited number of experts.

Based on the CrossLoRA framework, we de-
sign a two-stage fine-tuning process with se-
quential cross-connected activations, allowing
LLMs to perform any-to-any language trans-
lation without being constrained by the limita-
tions of multilingual corpora.

Extensive evaluations across LLMs demon-
strate that our approach achieves superior
quality improvements with computational ef-
ficiency, enabling fine-tuned general-purpose
LLM:s to outperform specialized NMT models
in multilingual translation tasks.

2 Related Works

2.1 Sparse Mixture-of-Experts

Sparse expert models have gained prominence
for enhancing model capacity while maintaining
computational efficiency (Fedus et al., 2022a).
The MoE framework, initially designed to over-
come scalability limitations of monolithic mod-
els (Shazeer et al., 2017), has become a cornerstone
in deep learning for tasks requiring task-specific
specialization (Chen et al., 2022). In the Trans-
former architecture (Shazeer et al., 2018), MoE is
widely adopted in Multi-Task Learning (MTL) and
has been integrated into LLMs to address diverse
NLP tasks (Wang et al., 2023; Fedus et al., 2022b).

The combination of MoE and LoRA has
further advanced parameter-efficient fine-tuning.
MoLoRA (Zadouri et al., 2024), a pioneering
approach for resource-constrained environments,



combines MoE with LoRA to improve task adapt-
ability. Subsequent studies have extended this
framework by introducing task-adaptive gating
mechanisms (Liu et al., 2024), addressing data con-
flicts in instruction datasets (Chen et al., 2024b),
and mitigating knowledge forgetting through local-
ized balancing constraints (Dou et al., 2024).

In multilingual translation, MoE-based meth-
ods such as MoE-LGR (Li et al., 2023) lever-
age linguistic typology to group languages, while
smoothed gating networks with token-level fea-
ture mixing (Liu et al., 2022) enhance language-
specific feature extraction. However, challenges
persist in balancing computational overhead and
performance, particularly when scaling to diverse
language pairs with limited experts (Tourni and
Naskar, 2024).

2.2 LLM-Based Multilingual Translation

Generative LLMs are widely used in multilin-
gual translation due to their broad language cov-
erage and robust performance (Yang et al., 2023;
Zeng et al., 2024). However, their deployment is
constrained by high computational costs and re-
liance on large-scale parallel corpora (Zhang et al.,
2023a). To address these challenges, researchers
employ two strategies: Parameter-efficient fine-
tuning methods like LoRA (Xu et al., 2024a,b)
and adapters (Stickland et al., 2021) reduce the
number of trainable parameters while maintaining
performance, and data synthesis techniques such
as pseudo-corpus generation (Pan et al., 2024) and
data augmentation (Liu et al., 2023; Lu et al., 2024)
alleviate data scarcity in low-resource settings. De-
spite these advancements, existing approaches still
struggle with arbitrary language pair translation
and computational efficiency. In this paper, the
proposed CrossLoRA framework aimed at simulta-
neously addressing both computational efficiency
and data scarcity issues in multilingual translation.

3 Methodology

3.1 Preliminaries

In this subsection, we briefly introduce the Low-
Rank Adaptation (LoRA) method, as depicted in
Figure 1(b), followed by the Mixture-of-LoRAs
(MoLoRA) framework based on LoRA method.
When employing the LoRA adapter, the pre-
trained model’s weight matrix Wy is kept frozen,
while a trainable low-rank decomposition matrix
AW, which can be further decomposed into the

paired LoRA A and LoRA B modules, is incorpo-
rated into the selected linear layer of the model
framework. The update can be formulated as fol-
lows:

y= (AW + Wo)z = (BA+ W)z (1)

Here, A € R"*% and B € R%*" represent the
coordinated low-rank matrices corresponding to
LoRA A and LoRA B modules respectively, with
r < min(d;, d,) refers to the selected LoRA rank.
x denotes the input sequence, and y is the cor-
responding output. Given that only the low-rank
matrices A and B get updated, the LoRA method
significantly reduces the number of parameters re-
quired for downstream fine-tuning.

Building upon the LoRA framework, the
MoLoRA method further integrates the MoE frame-
work. As illustrated in Figure 1(c), the structure
of a MoLoRA component comprises a set of n
LoRA experts, denoted as F1, Fo, ..., E,, which
are tasked with adapting the pre-trained layer dur-
ing the fine-tuning stage. Each expert E; can be fur-
ther comprised into two trainable low-rank weight
matrices, F; 4 and E;p, which relate to the previ-
ous LoRA A and LoRA B modules respectively. In
addition, the MoLoRA module includes a token-
level expert router denoted as #°% for computing
routing weight. The routing weight sf\/[ oL related

to expert F; is computed by the equation below:

SMOL — GMOL(x)Z' — softm(ll‘(WMOLx)w ()

7

where WML represents the weight matrix of the
router. The final output y for integrating n experts
in the module is calculated as follows:

n
y = Wox + Z sf‘/IOLEiBEiAx 3)
i=1

3.2 Cross-Connected Language Experts

We modify MoLoRA and introduce the CrossLoRA
framework in Figure 1(d), which crossly connects
the experts in the MoE structure. Each expert in the
MoE structure is regarded as an expert of one spe-
cific language, and the cross-connected experts act
as the translation between two distinct languages.
For the languages involved in the translation task, a
specific LoRA expert is assigned for each language.
To enhance clarity, we can consider a simplified sce-
nario involving a restricted set of three languages:
German, English, and Chinese, as is shown in Fig-
ure 2, where the language experts are labeled as
De, En, and Zh.
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Figure 2: Our CrossLoRA fine-tuning process. The figure depicts an example involving a limited set of three
languages (De, En, and Zh) for MNMT task. Within the CrossLoRA module, a red pathway represents a route
initially activated in Stage 1 or Stage 2 respectively, while the gray dashed line denotes a blocked route.

Each expert, such as De, is further decomposed
into two low-rank weight matrices, denoted as De 4
and Dep modules. These modules correspond to
scenarios where German is designated as either the
source or the target language, respectively, which is
activated only when involved in the specific transla-
tion process. More specifically, considering a spe-
cific translation direction De=-En, when German is
set as the source language and English is set as the
target language for translating a sequence pair, only
De 4 as well as Enp can be activated while the re-
maining experts stay frozen. To ensure the accurate
activation of the corresponding source and target
language low-rank weight matrices when translat-
ing a sequence pair, we deployed a static language
router that outputs the corresponding routes based
on pre-set language labels.

For a specific case of translating a sequence x
from source language x g, into the target language
Tt4t, the target output y can be calculated by the
following formula:

y=Wor+> > f(x;i,4)E;pEiaz, (4
i=1 j=1

where n is the number of language experts, and
f(z;1,7) is the gating function of the static router:

f(x;i,j):{

In this way, only the corresponding low-rank
weight matrices in each expert module are properly
activated.

1 ifi=xgcand j =x4g 5)

0 otherwise

3.3 Staged Fine-Tuning on CrossLoRA

To achieve any-to-any translation on the Cross-
LoRA framework with limited parallel training
data, we further tailor a staged fine-tuning process,
as illustrated in Figure 2, which can be outlined as
follows:

Stage 1. Firstly, CrossLoRA module is trained
on English-centric corpora. For the case illustrated
in the figure, assume only three language experts
are involved: German (De), English (En) and
Chinese (Zh). With the increasing diversity of
languages, non-English language pairs often ex-
hibit limited or non-existent parallel text resources.
To address this issue, English is designated as the
pivot language. The primary objective of Stage 1
fine-tuning is to enhance the model’s translation
capabilities in both En=-Any and Any=-En direc-
tions, thereby augmenting the model to generate
high-quality pseudo-corpora. Thus, the training
data used for training in this stage includes trans-
lation corpora with English as the source language
(En=-De, En=-Zh) and translation corpora with
English as the target language (De=En, Zh=-En),
as shown by the red solid arrows in Figure 2 (Stage
1). For translation directions not involving English
(De=Z7h and Zh=-De), the corresponding routes
among matrices remain inactive, as shown by the
gray dashed lines. On the other hand, the weight
matrices of all experts in the CrossLoRA module
are updated, thereby enhancing the model’s abil-
ity to understand all English-involved translation
directions.



Pseudo-corpus Generation. English is re-
garded as the pivot language for creating the pseudo
corpus required for the subsequent training stage.
For instance, to obtain parallel pseudo corpora for
the De=-Zh translation, we employ CrossLoRA
fine-tuned after Stage 1 to translate the German
sequence into English, followed by translating the
English sequence into Chinese. Parallel corpora
for the Zh=-De translation are obtained in a sim-
ilar manner. All generated corpora undergo lan-
guage identification to ensure accuracy and avoid
off-target translations. Theoretically, we can obtain
parallel pseudo corpora in any translation direction
among the languages involved in the translation
model.

Stage 2. In the final stage, the reinitialized
CrossLoRA model is fine-tuned using both the
training data from Stage 1 and all the previously
generated parallel pseudo-corpora. All routes are
now activated, which enables each language expert
to be applicable across all source and target lan-
guages. This comprehensive approach enhances
the model’s translation efficacy in all directions,
ensuring optimized performance regardless of the
specific language pair.

3.4 Self-Contrastive Semantic Enhancement

In the translation task, given a labeled sequence
pair (x;j,y;) in the parallel training corpora
D {(xj,yj)}j]‘il, where z; and y; represent the
source and target sequence, respectively. The train-
ing objective for the translation model is to mini-
mize the following Negative Log-Likelihood (NLL)
loss function:

1 «— w
£=—M210g7’ (yj [ z:60)  (6)

Jj=1

where 0 is the set of trainable parameters. To fur-
ther improve regularization capability, we take R-
Drop (Liang et al., 2021) to reduce the inconsis-
tency existing in training and inference. Due to
the dropout mechanism of randomly deactivating
units within a model, each forward pass effectively
utilizes distinct sub-models. Consequently, we in-
put x; through two separate forward passes of the
network to obtain two distributions of model pre-
dictions, denoted as P}’ (y; | z;) and P3’ (y; | x;).
In each training step, the R-Drop method seeks to
regularize the model’s predictions by minimizing
the bidirectional Kullback-Leibler (KL) divergence
between the two output distributions for the same

sample, and the corresponding KL-divergence loss
is formulated as:

1 & w w
Ly = mZ(Dkl (P (y5 | ) P2’ (yj | 5))
j=1

+Dw (P’ (yj | 25) 1P (s | 25)))
(N
With these two forward passes, the original learn-
ing objective is reformulated as a bidirectional NLL
loss:

n

1
Loy =—5-7 > (ogPy (y; | z;)
QM; 1 J J (8)

+log P35 (y; | ;)

Finally, the CrossLoRA model can be optimized
by minimizing a composite loss function that in-
corporates both the modified NLL loss and the
contrastive loss:

LReg = Ly + - Lig )

where « is the coefficient weight to control the
proportion of KL-divergence loss.

4 Experiments

4.1 Dataset and Metrics

For our parallel training data, we utilize the training
set of the OPUS-100 dataset (Tiedemann, 2012),
an English-centric multilingual corpus, along with
the development set of Flores-200 dataset (NLLB
Team et al., 2022). Following the ALMA model’s
configuration (Xu et al., 2024a), we select six lan-
guages—English (En), German (De), Chinese (Zh),
Russian (Ru), Czech (Cs) and Icelandic (Is)—with
English serving as the pivot language. To compre-
hensively evaluate the model’s translation perfor-
mance, we test all 30 directions. Given the lack of
non-English-centric test data in OPUS-100, our ex-
periment’s test data comprises test sets from OPUS-
100 that involve English and Flores-200 for other
translation directions. For Stage 1 training data,
we randomly sample 20k parallel sentence pairs
for each of the 10 language pairs. For Stage 2 fine-
tuning pseudo data, using the fine-tuned model, we
generate 20k parallel sentence pairs for each non-
English-centric directions. See Appendix A.2 for
detailed data settings.

We employ a commonly adopted sentence-level
translation prompt template (Hendy et al., 2023),
which can be formulated as “Translate the follow-
ing {src} sentences into {tgt}: 7, where {src}



Models English-centric non-English-centric Average
BLEU COMET | BLEU COMET | BLEU COMET
ALMA-7B (English-pivot) | 24.45 78.12 | 17.66 80.79 | 19.92 79.90
M2M100-12B 24.06 74.59 | 18.98 82.52 | 20.68 79.88
BigTranslate-13B 22.02 72.95 18.94 81.88 | 19.98 78.90
NLLB-3.3B 27.85 77.01 20.53 82.88 | 22.97 80.92
LLaMA-3-8B-Instruct English-centric non-English-centric Average
BLEU COMET | BLEU COMET | BLEU COMET
Base 18.41 68.61 13.94 77.41 15.43 74.48
“+LoRA | 2611 7643 | 1620 79.80 | 1950  78.68
+MoLoRA (Top-k) 27.08 77.02 17.45 80.29 | 20.66 79.20
+MoLoRA (Static) 28.38 77.30 | 19.14 81.39 | 2222 80.03
“4CrossLoRA |
— Stage 1 29.50 78.26 | 13.95 77.35 19.13 77.65
— Stage 2 29.69 78.74 | 20.60 81.94 | 23.63 80.88
Qwen2.5-7B-Instruct English-centric non-English-centric Average
BLEU COMET | BLEU COMET | BLEU COMET
Base 19.09 70.37 | 12.85 76.55 14.93 74.49
" +LoRA | 2584 7592 | 1644 7976 | 1957 7848
+MoLoRA (Top-k) 26.79 76.88 | 17.67 80.20 | 20.71 79.09
+MoLoRA (Static) 28.28 77.60 | 20.31 81.35 | 2297 80.10
C4CrossLoRA | [
— Stage 1 29.14 78.29 12.93 76.58 | 18.33 77.15
— Stage 2 29.52 78.37 | 21.04 81.83 | 23.87 80.68

Table 1: The overall results in all directions. Except for CrossLoRA, which is evaluated across both Stage 1
and Stage 2, all other LoRA-based methods report only Stage 2 outcomes. Bold results highlight the highest
scores among fine-tuning approaches for the same backbone model, demonstrating that CrossLoRA outperforms all
competitors and achieves competitive performance with state-of-the-art multilingual translation systems.

and {tgt} denote the respective source and target
languages of the specific translation direction. For
evaluation metrics, we utilize the SacreBLEU (Post,
2018) and COMET-22 (Rei et al., 2022) to evaluate
translation quality.

4.2 Implementation Details

The CrossLoRA framework is applied to state-
of-the-art base LLMs, including Qwen2.5-7B-
Instruct (Qwen et al., 2025) and LLaMA-3-8B-
Instruct (Grattafiori et al., 2024).

During the fine-tuning phase, our setup features
a batch size of 32, training for 3 epochs, and a
learning rate of 5e-4. The coefficient weight of
KL-divergence loss o = 0.1. Given the number
of languages in translation, the defined number of
experts is fixed at 6. For the LoRA configurations,
we set the lora rank r = 16, lora alpha o) = 64,
lora dropout p = 0.1.

4.3 Baselines

To ensure a fair evaluation, we compare Cross-
LoRA with the following LoRA-based methods

using identical staged fine-tuning configurations:

* LoRA. Scales the lora rank and lora alpha pa-
rameters within a single LoRA adapter, yield-
ing comparable parameter counts.

* MoLoRA (Top-k): We employ MoLoRA
adapter with the same number of experts as
CrossLoRA alongwith a top-1 router, activat-
ing one expert per translation process.

* MoLoRA. Staticc A MoLoRA adapter
equipped with a static router, designating spe-
cific experts for each language pair, thereby
expanding the total number of experts to 30.
This configuration ensures consistent expert
activation, eliminates routing fluctuations but
also substantially increases training costs.

In addition to the aforementioned LoRA-based
methods, we compare our model with prior stud-
ies that exhibit robust multilingual translation ca-
pabilities, specifically M2M100-12B (Fan et al.,
2021), BigTranslate (Yang et al., 2023) and
NLLB-3.3B (NLLB Team et al., 2022) from the
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Figure 3: Detailed results of CrossLoRA after Stage 1 & Stage 2 fine-tuning in all translation directions involving
English, based on LLaMA-3-8B-Instruct. A comparison is made between MoLoRA (with top-k routing) and
CrossLoRA, highlighting that CrossLoRA benefits from multilingual collaborative training in Stage 2, while
MoLoRA experiences expert fluctuations when the number of experts is insufficient.

NLLB model family. We also include ALMA-7B
(Xu et al., 2024a), an English-centric model that
employs a staged fine-tuning strategy. Notably,
ALMA-7B’s performance in non-English-centric
directions is evaluated via an English pivot transla-
tion pipeline.

4.4 Main Results

We report the overall results across all translation
directions in Table 1. In summary, after Stage 2
fine-tuning, the proposed CrossLoRA method out-
performs other LoRA-based fine-tuning methods,
and the optimal model surpasses previous state-of-
the-art translation models.

Compared with backbone LLMs. After Stage
1 fine-tuning, CrossLoRA achieves significant im-
provements in all directions involving English,
while maintaining the translation performance of
the backbone model in other directions. Following
Stage 2 fine-tuning, CrossLoRA exhibits substan-
tial performance gains across all translation direc-
tions relative to the backbone models, particularly
for non-English-centric directions.

Compared with LoRA-based fine-tuning
methods. CrossLoRA demonstrates a more sub-
stantial enhancement compared to all other LoRA-
based methods on average, showing marginal im-
provements in both evaluation metrics. Specifi-
cally, MoLoRA with top-k routing exhibits better
average performance than pure LoRA fine-tuning,
while MoLoRA with static routing achieves compa-
rable performance but at the cost of significantly in-
creased computational overhead. CrossLoRA out-
performs both MoLoRA configurations. Addition-
ally, detailed results for English-involved directions
during the staged fine-tuning process are shown in

Figure 3. After Stage 2 fine-tuning, MoLoRA with
top-k routing experiences expert fluctuations when
the number of experts is insufficient, leading to a
general performance decline in English-involved
translation directions. In contrast, CrossLoRA ben-
efits from stronger generalization ability under the
same parameters, leveraging multilingual collab-
orative training to achieve performance improve-
ments in most directions.

Compared with prior studies. Both backbone
models fine-tuned with CrossLoRA outperforms
previous professional multilingual translation mod-
els. Notably, while the ALMA model exhibits
strong performance in English-centric translation
directions compared to other baselines, its efficacy
in non-English-centric directions is markedly con-
strained by reliance on an English-pivot pipeline-
based approach for any-to-any translation. Cross-
LoRA’s distinct advantage lies in its ability to min-
imize dependency on large-scale non-English par-
allel corpora, which were traditionally deemed es-
sential for robust multilingual translation. This
highlights its parameter-efficient design without
compromising translation quality.

5 Ablation Studies

Beyond the main results, we further explore the
CrossLoRA framework with diverse configurations
to deepen our understanding. All experiments are
conducted on LLaMA-3-8B-Instruct.

5.1 Fine-tuning Data Configuration

To evaluate the fine-tuning data configuration, we
conduct ablation experiments with two additional
fine-tuning configurations. As shown in Table 2,
Pseudo-corpora + Stagel involves fine-tuning the



Methods English-centric non-English-centric Average
BLEU COMET | BLEU COMET | BLEU COMET
Pseudo-corpora + Stage 1 28.99 78.50 | 20.37 81.51 23.24 80.51
All + Stage 1 27.78 77.57 | 20.44 81.43 | 22.89 80.14
All + Reinitialized 29.69 78.74 | 20.60 81.94 | 23.63 80.88

Table 2: The ablation study on the fine-tuning data configurations for Stage 2, based on LLaMA-3-8B-Instruct. The
best scores are marked in bold. The newly fine-tuned CrossLoRA model achieves the best overall performance.

Methods English-centric non-English-centric Average Trainable
BLEU COMET | BLEU COMET | BLEU COMET | Parameters
1 Shared Source Expert | 28.78 77.57 19.56 81.11 22.63 79.93 1.24%
1 Shared Target Expert 28.61 77.60 | 19.41 80.97 | 2248 79.85
3Experts | 2032 7866 | 2022 8189 | 2325 80.81 | 1.06%
C6Experts | 2069 7874 | 2060 8194 | 23.63  80.88 | 208%

Table 3: The ablation study on the merged language experts, based on LLaMA-3-8B-Instruct model. The best

scores are marked in bold.

Stage 1 checkpoint using only generated pseudo-
corpora. All + Stagel uses the same checkpoint
but includes both pseudo-corpora and English-pivot
corpora from Stage 1. The main experiment adopts
the All + Reinitialized setup, which fine-tunes a
reinitialized CrossLoRA model using both pseudo-
corpora and English-pivot corpora from Stage 1.

The results indicate that the reinitialized Cross-
LoRA network, when trained with combined cor-
pora, achieves the overall best performance. In
contrast, Stage 1 checkpoint-based models exhibit
knowledge forgetting, improving new directions
while degrading English-centric translations. The
reinitialized model avoids this issue by synergis-
tically learning language features across all data,
achieving consistent gains across translation direc-
tions as the optimal configuration.

5.2 Merged Language Experts

Exploring the application of expert compression
techniques within the CrossLoRA framework is
crucial for further improving parameter efficiency.
Thus, we conduct experiments using two distinct
expert compression strategies:

Shared Source & Target Side Language Ex-
pert. Building on Hydral.oRA’s asymmetric MoE
design (Tian et al., 2024), we test configurations
where a single merged expert handles all source
inputs or target outputs. This approach enables
shared parameterization between source and target
sides to minimize redundancy.

Language Group Experts. Drawing from the
integration of language typology in MoE-based
translation systems (Li et al., 2023), we merge

languages into typologically grouped experts (see
Table 4). For example, English, German, and Ice-
landic share one expert. This reduces the total ex-
pert count and trainable parameters by half (from
2.08% to 1.06%), while preserving CrossLoRA’s
architecture.

The results, presented in Table 3, indicate that
despite a significant reduction in the number of
trainable parameters required for fine-tuning, the
merged language group expert configuration only
experiences a slight decrease in overall perfor-
mance. This suggests that CrossLoRA can be ef-
ficiently scaled to support more languages while
preserving translation quality, offering promising
potential for future multilingual extensions.

6 Conclusion

In this paper, we propose a novel CrossLoRA
framework designed for fine-tuning LLMs on
downstream multilingual translation tasks. The
proposed approach integrates the LoRA technique
with the MoE framework, deploying transactional
language experts. Building upon this foundation,
we tailor a staged training approach that enables
the model to acquire the capability for any-to-any
translation with a limited training corpus. Experi-
ments conducted across various translation direc-
tions have proven the effectiveness and parameter
efficiency of CrossLoRA.

For future work, we plan to conduct more in-
depth research on the CrossLoRA architecture,
which includes expanding the range of supported
languages and investigating the impact of pseudo-
corpus size & quality on model performance.



Limitations

While this article presents an efficient framework
for fine-tuning LLMs on multilingual translation
task, several limitations warrant further investiga-
tion:

Language Coverage Constraints. Although
CrossLoRA mitigates dependence on non-English
parallel data, our experiments are constrained to 6
languages (including one low-resource language:
Icelandic). While Section 5.2 demonstrates its the-
oretical scalability via linguistic expert ablations,
systematic evaluation is required to validate its ca-
pability under expanded conditions. Key questions
remain: (1) Can translation quality be balanced
across a significantly larger set of languages? (2)
How does the framework perform when integrating
additional low-resource languages?

Diversified Training Process. This work fo-
cuses on supervised fine-tuning of LLMs utilizing
parallel corpora. However, recent advances in trans-
lation enhancement include continual pre-training
with monolingual data (Xu et al., 2024a) and pref-
erence learning approaches (Xu et al., 2024b). Fur-
ther exploration of integrating more methods with
CrossLoRA is essential for enhancing its adaptabil-
ity to diverse training paradigms.

Model Diversity Constraints. The proposed
CrossLoRA framework is evaluated on LLaMA-
3-8B-Instruct and Qwen2.5-7B-Instruct, which
demonstrate strong performance but restrict gener-
alization insights across diverse architectures and
scales. Future research should investigate its ef-
fectiveness on models with varying capabilities to
validate robustness and adaptability beyond current
baselines.

Pseudo-Corpus Generation Optimization.
While we employs synthetic pseudo-corpora for
training, current rule-based filtering strategies
struggle to guarantee high-quality data generation.
Additionally, integrating quality assessment mod-
els introduces computational overhead, limiting
scalability. Given that high-quality training corpora
directly impact model performance, it is worth-
while to explore efficient pseudo-corpus generation
paradigms that balance data quality and resource
efficiency.
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A Appendix

A.1 Training Details

We hereby supplement the model training config-
uration not mentioned in the main text. For both
backbone LLMs, we fine-tune the models using a
warm-up ratio of Se-4, a maximum sequence length
of 512 tokens, and a weight decay of 0.02. LoRA
adapters are applied to the gate_proj, up_proj, and
down_proj modules of the backbone LLMs. Stage
1 fine-tuning requires 3 epochs, while Stage 2 re-
quires 2 epochs. Model training process is con-
ducted on 2 NVIDIA A800 GPUs, with each GPU
handling 4 batches and employing a gradient accu-
mulation step of 4, resulting in an effective batch
size of 32.

A.2 Data Settings

For the fine-tuning data details:

Stage 1 Fine-Tuning: The pre-divided develop-
ment subset from OPUS-100 serves as our develop-
ment set. The training data consists of the randomly
sampled OPUS-100 train subset combined with the
full Flores-200 development subset.

Pseudo-Corpora Generation: To generate
pseudo-corpora after Stage 1 fine-tuning, the mono-
lingual backbone sequences required for generation
are randomly sourced from the non-overlapping
portions of the OPUS-100 training set and the
Stage 1 training set. This ensures that the gen-
erated pseudo-corpora introduce new data not seen
during the initial training phase.

To enhance the quality of the pseudo-corpus,
inspired by Junczys-Dowmunt (2018), we imple-
ment rule-based filtering strategies, specifically:
(1) Target language detection to exclude sequences
misaligned with the intended target language; (2)
Sequence-length filtering to remove pseudo-pairs
with significant disparities in source and target
lengths, which often indicate low-quality transla-
tions. These filters systematically exclude noisy or

Language Language Family

(En) English

(De) German | Germanic, Indo-European
(Is) Icelandic

(Cs) CZCC}.I Balto-Slavic, Indo-European
(Ru) Russian

(Zh) Chinese | Sino-Tibetan

Table 4: The languages selected in the main experiment
and their corresponding language families.
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unreliable pseudo-corpus entries, ensuring higher
fidelity in downstream training tasks.

Stage 2 Fine-Tuning: The training set in this
stage comprises the generated pseudo-corpora,
supplemented by the Flores-200 development set.
About 10% of the combined data is allocated as the
evaluation set, with the remaining 90% used for
model training. Detailed data statistics are summa-
rized in Table 5.

A.3 The Effect of R-Drop

To scrutinize the impact of employing R-Drop reg-
ularization, we compare the CrossLoRA model
based on LLaMA-3-8B-Instruct, fine-tuned with
and without R-Drop. Corresponding results are
presented in Table 6. The ablation reveals that self-
contrastive semantic enhancement improves the
generalization capability of the CrossLoRA model,
achieving substantial performance gains across all
translation directions relative to the baseline, with-
out additional inference costs.

A.4 Necessity of Stage 1 Fine-Tuning

The primary objective of Stage 1 fine-tuning is
to enhance the model’s performance in English-
centric translation directions, thereby generating
high-quality parallel pseudo-corpora from avail-
able English-centric data for subsequent training.
To validate the necessity, we conduct an ablation
study: Fine-tuning the model using pseudo-corpora
generated by the backbone model and the NLLB-
3.3B model. The results are summarized in Table 7.

Experimental findings demonstrate that despite
the additional computational overhead introduced
by Stage 1, the higher-quality pseudo-corpora it
generates significantly improve translation perfor-
mance after Stage 2 fine-tuning. This improvement
is particularly pronounced in non-English-centric
translation directions.

A.5 Full Results of Main Experiment

In Table 8 and Table 9, We present the specific
performance of the CrossLoRA model based on the

Training Stage | Directions - Parallel Data
train dev test
Stage 1 En&sAny | 20997 2000 2000
EnsAny | 20997 2000 2000
Stage 2
others 18997 2000 1012

Table 5: The statistics for the data we utilize for main
experiments.



. English-centric non-English-centric Average
Configurations
BLEU COMET | BLEU COMET | BLEU COMET
w/o R-Drop 29.13 78.41 | 20.09 81.38 | 23.10 80.39
w/ R-Drop 29.69 78.74 | 20.60 81.94 | 23.63 80.88

Table 6: Results of the ablation study on the effect of R-Drop regularization, based on the LLaMA-3-8B-Instruct
backbone model. Higher scores are marked in bold. Employing the R-Drop method results in a comprehensive
performance improvement.

English-centric non-English-centric Average
Pseudo-corpora Source
BLEU COMET | BLEU COMET | BLEU COMET
LLaMA-3-8B-Instruct 28.68 77.70 18.93 80.02 | 22.18 79.25
NLLB-3.3B 29.72 78.67 | 20.29 81.55 | 23.43 80.59
CrossLoRA Stage 1 29.69 78.74 | 20.60 81.94 | 23.63 80.88

Table 7: Results of the ablation study on the effect of Stage 1 training, based on the LLaMA-3-8B-Instruct backbone
model. Higher scores are marked in bold.

Models Zh=-En En=-Zh De=-En
BLEU ROUGE COMET | BLEU ROUGE COMET | BLEU ROUGE COMET
NLLB-3.3B 29.75 50.11 79.51 28.07 44.35 80.58 28.08 45.06 75.24
M2M100-12B 27.66 51.72 78.97 27.76 45.06 79.81 30.90 50.48 78.27
" LLaMA-3-8B-Instruct | 20.84  39.64 7493 | 1876 3386 7347 | 2307 3775 7110
CrossLoRA Stage 1 33.37 55.59 81.17 34.45 51.15 82.26 | 33.00 53.12 79.58
CrossLoRA Stage 2 34.95 58.13 82.19 | 36.21 53.93 83.36 | 33.99 52.28 80.16
Models En=-De Ru=En En=-Ru
BLEU ROUGE COMET | BLEU ROUGE COMET | BLEU ROUGE COMET
NLLB-3.3B 27.54 4322 78.24 | 29.03 47.86 76.80 | 28.41 4321 82.51
M2M100-12B 27.29 45.93 76.48 26.65 46.34 76.97 23.39 36.81 79.54
" LLaMA-3-8B-Instruct | 2126 3414 7036 | 2254 3850 7110 | 1874 30.84  73.84
CrossLoRA Stage 1 28.47 48.15 78.31 32.01 54.26 79.06 | 2647 45.59 81.28
CrossLoRA Stage 2 28.16 45.80 78.33 32.17 52.33 7894 | 26.34 45.21 81.95
Models Cs=En En=-Cs Is=En
BLEU ROUGE COMET | BLEU ROUGE COMET | BLEU ROUGE COMET
NLLB-3.3B 31.10 47.71 76.15 28.11 41.25 81.39 | 2547 43.63 72.63
M2M100-12B 26.12 41.56 76.31 21.19 32.69 77.70 16.41 38.40 64.67
" LLaMA-3-8B-Instruct | 2258 3845 70.06 | 1538 2564 71.02 | 1189 2146 5551
CrossLoRA Stage 1 32.82 54.07 79.88 26.14 45.55 81.11 25.65 48.69 71.62
CrossLoRA Stage 2 34.02 55.64 80.37 24.95 44.71 81.61 26.06 49.42 72.18
Models En=-Is De=7h Zh=-De
BLEU ROUGE COMET | BLEU ROUGE COMET | BLEU ROUGE COMET
NLLB-3.3B 22.98 38.37 67.03 25.11 43.38 79.31 18.17 41.43 80.52
M2M100-12B 13.21 32.84 57.15 27.24 48.11 84.06 16.47 39.34 80.09
" LLaMA-3-8B-Instruct | 9.05 1729 5471 | 1681 3270 76.69 | 1326 3307 7725
CrossLoRA Stage 1 22.63 44.89 68.32 16.56 32.00 76.45 13.34 34.01 77.80
CrossLoRA Stage 2 21.05 43.02 68.35 37.96 56.18 86.21 22.54 48.29 81.58
Models De=Ru Ru=-De De=-Cs
BLEU ROUGE COMET | BLEU ROUGE COMET | BLEU ROUGE COMET
NLLB-3.3B 25.29 46.45 87.12 | 24.17 49.12 81.89 | 24.13 47.40 89.48
M2M100-12B 22.07 43.26 86.55 21.30 45.92 80.52 | 23.35 46.50 89.61
" LLaMA-3-8B-Instruct | 17.79 3624 8252 | 17.84 3978 7734 [ 1711 3773 8510
CrossLoRA Stage 1 17.85 36.19 82.40 17.78 39.93 77.23 17.00 37.62 84.79
CrossLoRA Stage 2 27.23 50.17 87.57 28.44 54.32 82.03 16.69 41.55 86.49

Table 8: Part 1 of the full results for all translation directions of the main experiment.
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LLaMA-3-8B-Instruction backbone LLM across
all translation directions in the main experiment.
The performance metrics include BLEU scores,
ROUGE-L, and COMET scores. For comparison,
the table also includes the performance of prior
studies and the backbone LLM baseline.

From the table, it is evident that after fine-tuning
in CrossLoRA Stage 1, the model’s scores have
significantly improved in translation directions
involving English, while maintaining the back-
bone model’s performance in other non-English-
involved directions. After further fine-tuning in
Stage 2, with the addition of pseudo-corpus to the
training data, the model achieves substantial im-
provements in translation directions not involving
English, reaching or even exceeding the perfor-
mance of specialized translation models.

Models Cs=De De=Is Is=De
BLEU ROUGE COMET | BLEU ROUGE COMET | BLEU ROUGE COMET
NLLB-3.3B 26.02 51.21 84.59 18.19 43.15 82.37 20.63 44.89 78.80
M2M100-12B 24.00 49.15 83.55 13.72 37.02 79.35 18.99 4291 78.30
" LLaMA-3-8B-Instruct | 2026 4271 8047 | 806 2690 7205 | 992 2422 66.90
CrossLoRA Stage 1 20.34 42.90 80.80 8.23 27.17 72.31 10.05 24.10 67.12
CrossLoRA Stage 2 30.69 56.65 84.77 13.11 38.37 7249 | 21.62 48.72 79.26
Models Zh=Ru Ru=Zh Zh=Cs
BLEU ROUGE COMET | BLEU ROUGE COMET | BLEU ROUGE COMET
NLLB-3.3B 17.50 36.90 85.57 24.96 42.84 80.22 15.64 36.42 86.20
M2M100-12B 15.76 34.68 85.39 | 26.10 46.57 83.60 14.87 35.39 86.59
' LLaMA-3-8B-Instruct | 1225  27.87 8179 | 23.02 7113 7993 [ 1129 2805  82.84
CrossLoRA Stage 1 12.11 27.40 81.51 22.87 41.15 79.43 11.35 28.40 83.16
CrossLoRA Stage 2 21.68 44.27 86.76 | 38.32 57.87 85.92 18.74 4291 87.43
Models Cs=Zh Zh=1Is Is=Z7h
BLEU ROUGE COMET | BLEU ROUGE COMET | BLEU ROUGE COMET
NLLB-3.3B 24.38 42.81 79.50 12.81 34.72 79.63 20.83 38.99 77.27
M2M100-12B 26.96 47.80 84.38 9.89 30.84 7744 | 21.14 42.30 80.73
" LLaMA-3-8B-Instruct | 1849 3499 7771 | 634 2153 7112 [ 1620 3311 7370
CrossLoRA Stage 1 18.55 35.30 78.21 6.54 21.85 71.71 16.11 32.90 73.09
CrossLoRA Stage 2 40.89 59.69 86.87 10.69 31.98 66.31 31.61 53.75 83.64
Models Cs=Ru Ru=-Cs Cs=1Is
BLEU ROUGE COMET | BLEU ROUGE COMET | BLEU ROUGE COMET
NLLB-3.3B 24.26 45.55 87.82 | 21.10 43.93 88.36 16.43 40.52 81.39
M2M100-12B 21.65 43.34 87.76 | 20.18 42.64 88.99 12.49 35.55 76.42
" LLaMA-3-8B-Instruct | 17.69 3625 83.09 | 15.04 3502 83.93 | 797 2607 7136
CrossLoRA Stage 1 17.72 35.96 82.90 15.16 35.20 83.87 7.76 25.87 70.62
CrossLoRA Stage 2 20.42 41.40 87.55 16.50 37.62 86.87 12.48 36.70 76.54
Models Is=Cs Ru=Is Is=Ru
BLEU ROUGE COMET | BLEU ROUGE COMET | BLEU ROUGE COMET
NLLB-3.3B 17.32 38.99 84.35 15.23 39.21 80.58 18.43 38.32 82.64
M2M100-12B 16.05 36.89 82.39 11.49 33.54 74.37 15.96 35.35 80.20
" LLaMA-3-8B-Instruct | 10.77  27.58 7763 | 731 2506 7051 | 1160 2748 7628
CrossLoRA Stage 1 10.85 26.98 77.46 7.02 25.30 70.29 11.74 26.59 75.80
CrossLoRA Stage 2 12.15 31.51 77.95 12.59 36.07 75.18 14.76 33.32 81.20

Table 9: Part 2 of the full results for all translation directions of the main experiment.
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