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ABSTRACT

Leveraging multimodal information from biosignals is vital for building a com-
prehensive representation of people’s physical and mental states. However, multi-
modal biosignals often exhibit substantial distributional shifts between pretraining
and inference datasets, stemming from changes in task specification or variations
in modality compositions. To achieve effective pretraining in the presence of po-
tential distributional shifts, we propose a frequency-aware masked autoencoder
(bioFAME) that learns to parameterize the representation of biosignals in the
frequency space. bioFAME incorporates a frequency-aware transformer, which
leverages a fixed-size Fourier-based operator for global token mixing, independent
of the length and sampling rate of inputs. To maintain the frequency components
within each input channel, we further employ a frequency-maintain pretraining
strategy that performs masked autoencoding in the latent space. The resulting ar-
chitecture effectively utilizes multimodal information during pretraining, and can
be seamlessly adapted to diverse tasks and modalities at test time, regardless of
input size and order. We evaluated our approach on a diverse set of transfer ex-
periments on unimodal time series, achieving an average of ↑5.5% improvement
in classification accuracy over the previous state-of-the-art.

1 INTRODUCTION

Physical and mental states of an individual are manifested by a variety of physiological responses or
biosignals. For example, electroencephalography (EEG) can decode human emotions by monitoring
their brain activities (Liu et al., 2010), electromyography (EMG) can detect facial expressions such
as smiling by recording muscle contractions (Canento et al., 2011), and a combination of these
modalities can help decode a person’s affective states. The effective use of multimodal information
can not only build better and more resilient representations of the human body and mental states
(Bachmann et al., 2022; Smith & Gasser, 2005; De Sa & Ballard, 1998), but also help researchers
understand how each biosignal contributes to each physiological state and how their information
overlaps (Bird et al., 2020).

Recently, in language-vision domains, large-scale multimodal pretraining has demonstrated remark-
able generalization and zero-shot capabilities (Huang et al., 2021; Bachmann et al., 2022; Radford
et al., 2021), outperforming small-scale models that are trained on specific downstream tasks (Kirk-
patrick et al., 2017; Radford et al., 2019). In light of these advancements, we investigate whether
similar pretraining can be applied to the biosignal domain.

In this work, we propose to incorporate frequency information in time series to enable multimodal
pretraining on biosignals, where we use frequency domain information to help the encoder to address
the distributional shift issues. We propose a simple, yet effective, multi-head frequency filter layer
with fixed-size Fourier-based operator that directly parameterizes the representation of biosignals in
the frequency space. The proposed layer can be easily incorporated into the transformer, giving a
frequency-aware (FA) encoder that is both expressive and computationally efficient. Furthermore,
to extend the frequency awareness into a multimodal pretraining setting, we couple the FA encoder
with a frequency-maintain (FM) pretraining strategy. Combining the two techniques, our proposed
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Figure 1: Overview. (A) Previous approaches perform masking in the time domain, which causes shifts in
the frequency components. Also, the encoders are unaware of the frequency information in time series. (B) To
address the issues, we propose bioFAME, which (i) builds frequency awareness by directly learning frequency
filters in the representation space, and (ii) performs masked autoencoding in the latent space to maintain fre-
quency information during pretraining. (C) We implement bioFAME in the multimodal pretraining scheme,
where the frequency-aware encoder (FA-Enc(·)) processes signals in a channel-independent manner, and ex-
tracts representations with multi-head filter layer with fixed-size Fourier operators. The frequency-maintain
pretraining strategy further performs masked autoencoding in the latent space with separate reconstruction to
guide the effective mixing of multimodal information.

approach bioFAME is systematically evaluated on a publicly available one-to-many transfer learn-
ing benchmark (Zhang et al., 2022), giving an average of ↑5.5% improvements in classification
accuracy over the previous state-of-the-art, showing consistency across datasets of different input
lengths, sampling rates, and diverse sources of modalities.

2 METHOD

Preliminaries: Discrete Fourier Transform (DFT) for Token Mixing Consider a sequence
X = [x1, ...,xN ]T ∈ RN×D of N tokens of D-dimensions, transformers aim to learn the inter-
actions across tokens, typically through the self attention operation. Recently, mixing tokens with
frequency-based operations through DFT and IDFT is shown to be a computationally efficient alter-
native (Rao et al., 2021; Guibas et al., 2021), as it considers global-wise information mixing. The
token mixing process is theoretically grounded by the Fourier Neural Operators (Li et al., 2020),
which is often implemented in its discrete form (denote as K) as such:

(K(X))(xi) = F−1(R · F(X))(xi),∀i ∈ [1, N ] (1)
where F and F−1 represents the DFT and IDFT processes, respectively. Ideally, R should be the
Fourier transform of a periodic function which admits a Fourier series expansion. For the sake of
simplicity, it is often implemented as learnable weights of shape CN×D.

2.1 FREQUENCY-AWARE TRANSFORMER WITH MULTI-HEAD FREQUENCY FILTERS

Multi-head Frequency Filter Layer We propose to manipulate the frequency representation with
a multi-head frequency filters K ∈ CH×D, where H is the total number of heads. Given a sequence
of tokens X ∈ RN×D, we first perform DFT along the sequence dimension to obtain its represen-
tation in the frequency space as Z ∈ CN×D. To obtain the manipulated features in frequency space
Z̃ ∈ CN×D, we first compute queries Q = ZW , where W ∈ RD×H is a learnable matrix that
is used to combine processed information across different filters. The resulting queries are used to
re-weight the kernels to obtain Z̃ through the below operations:

Z̃ = Z ⊙ (QK) = Z ⊙ (ZWK) (2)
where ⊙ is the Hadamard product. We show in Appendix C that the operation is equivalent to a
weighted summation between each modulated frequency representation matrix, where the weights
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are self-generated through the queries. In Appendix, we also show an alternative maxpooling oper-
ator Z̃ = MaxPool(Z,K) with additional nonlinearity.

The resulting modulated frequency representation Z̃ is later recovered in time space through
X̃ = F−1(Z̃) with IDFT (see Figure 1(C)). We denote the whole process as Freq-L(·), which
is computationally efficient, transferrable across different input lengths and sampling rates, and can
be easily implemented in a few lines of code.

Add Freq-L(·) into the Transformer The transformer architecture has revolutionized many do-
mains. Following Nie et al. (2022), we first patchify the biosignals by dividing them into chunks,
compute representations for each patch, and then feed the resulting patches into a transformer.
Specifically, for a signal s ∈ RL where L is the total length of the sequence, we divide them into
sequences of S = [s1, ...sN ], where each patch si ∈ RP has a size of P . An initial MLP is used to
compute representation xi = MLP(si) ∈ RD, and the sequence is later stacked into X0 ∈ RN×D.

We replace the multi-head self-attention with our proposed multi-head frequency filter layer
Freq-L(·) to mix the information across the sequence of tokens, which gives the FA transformer
encoder layer as below:

Xℓ+1 = Xℓ + Freq-L (Xℓ) + FF (Xℓ + Freq-L (Xℓ)) , ℓ = {0, . . . , L− 1} (3)

where the representation is passed into the proposed Freq-L(·) layer and projection layers FF(·)
with residual connections, as shown in Figure 1(C).

2.2 FREQUENCY-MAINTAIN PRETRAINING WITH LATENT MASKING

Masked Autoencoding in the Latent Space Masked autoencoder (MAE) is a self-supervised
pretraining framework, which masks out input patches and predicts the missing patches using the
rest present patches. The architecture typically contains an transformer encoder that processes non-
masked patches, follows by a decoder, usually a lightweight transformer, that reconstructs the orig-
inal patches (He et al., 2022).

To preserve the frequency information while being able to perform pretraining based on the masked
autoencoding strategy, we perform masked autoencoding in the latent space. Specifically, denote our
frequency-aware transformer encoder as FA-Enc(·), full sequence of biosignals S is learnt through
FA-Enc(·) to obtain XL = [xL

1 ,x
L
2 , ...,x

L
N ]. We sample a random set of patches based on a fixed

masking ratio without replacement, and then process the resulting sequence with a lightweight trans-
former (second) encoder. We later pad the masked patches with mask tokens, and pass the resulting
sequence into a lightweight transformer decoder to reconstruct the original signal, where the i-th re-
constructed patch corresponds to si. Denote the masked autoencoder as MAE(·), bioFAME aims
to optimize the below objective:

L =
1

Ω

∑
i∈Ω

l(si,MAE(FA-Enc(S))[i]) (4)

where i is the token index, Ω is the set of masked tokens, and l is an error term which is set as mean
squared error (MSE) in this work. We show in Section 3 that the performance is robust if we remove
MAE(·) and only keep FA-Enc(·) at test time. We note that this is the first work that finds using the
masked autoencoding objective itselfis effective on biosignals (Zhang et al., 2022).

3 EXPERIMENTS

Datasets and Experimental Details We evaluate the model’s generalization ability by transfer-
ring it on a diverse set of unimodal time series downstream tasks, following Zhang et al. (2022).
The transfer experiments include a set of four downstream tasks: Epilepsy (Andrzejak et al., 2001);
SleepEOG (Kemp et al., 2000); ExpEMG (Goldberger et al., 2000); FD-B (Lessmeier et al., 2016).
For model pretraining, we used the SleepEDF dataset (Kemp et al., 2000) as in (Eldele et al., 2021;
Zhang et al., 2022), where the single-channel EEG (channel Fpz-Cz) is commonly used for uni-
modal pretraining. In this work, we also used an additional EEG channel (Pz-Oz) and an additional
modality (EOG) from SleepEDF to perform multimodal pretraining with the same train/test split.
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I. Generalization with modality or task association.
Epilepsy (EEG) SleepEOG

Models Accuracy Precision Recall F1 Accuracy Precision Recall F1
TS-TCC (Eldele et al., 2021) 92.53 94.51 81.81 86.33 69.65 61.56 61.49 61.16

TF-C (Zhang et al., 2022) 94.95 94.56 89.08 91.49 69.58 62.04 68.05 64.15
PatchTST (Nie et al., 2022) 95.01 91.66 92.96 92.27 68.00 61.20 68.28 63.26
bioFAME (scratch) 90.41 84.64 86.29 85.33 68.29 60.03 66.10 61.81
bioFAME (unimodal) 95.51 94.02 91.57 92.72 70.03 63.37 68.00 65.05
bioFAME (multimodal) 95.71 93.57 92.82 93.18 71.55 64.80 68.70 66.62

∆(uni, multi) ↑0.20 ↓0.45 ↑1.25 ↑0.46 ↑1.52 ↑1.43 ↑0.70 ↑1.57

II. Generalization without explicit association.
ExpEMG FD-B (Electromechanics)

Models Accuracy Precision Recall F1 Accuracy Precision Recall F1
TS-TCC (Eldele et al., 2021) 78.89 58.51 63.10 59.04 54.99 52.79 63.96 54.18

TF-C (Zhang et al., 2022) 81.71 72.65 81.59 76.83 69.38 75.59 72.02 74.87
PatchTST (Nie et al., 2022) 92.68 90.87 94.51 92.07 67.03 71.96 75.57 70.09
bioFAME (scratch) 93.17 88.58 94.10 89.97 67.92 76.45 76.51 76.20
bioFAME (unimodal) 98.05 97.07 96.63 96.40 76.58 83.28 82.85 82.63
bioFAME (multimodal) 98.54 96.67 98.95 97.64 78.18 84.99 84.01 83.75

∆(uni, multi) ↑0.49 ↓0.40 ↑2.32 ↑1.24 ↑1.60 ↑1.71 ↑1.16 ↑1.12

Table 1: Transfer experiments on unimodal time series. All benchmark models are pretrained on
the same single-lead EEG. All variants of our model is based on the same architecture, where
bioFAME (scratch) is trained from scratch, bioFAME (unimodal) follows the same pretraining as
baselines, and bioFAME (multimodal) is pretrained on the multimodal version of the data. Model
standard deviation are in Appendix A.5.

For bioFAME, we used a 4-layer encoder, 8-head filter with 64 dimensions. The model was trained
using an Adam optimizer with β1 = 0.9, β2 = 0.99, and a learning rate of 0.001. We repeated
experiments with five random seeds for major results, and three random seeds for ablations.

Unimodal Pretraining Achieves SOTA Following previous works Zhang et al. (2022), we first
performed pretraining on a single-channel EEG from the SleepEDF dataset, and then fine-tuning on
a small amount of data from the downstream tasks. The performance of our proposed architecture
is shown in Table 1. We show that with the same unimodal pretraining setup on single-channel
EEG, our model consistently outperforms state-of-the-art benchmarks in most experiments, giving
↑4.2% improvments in accuracy. These results demonstrate that bioFAME is effective in terms of
transfer on different tasks, with robustness to domain shifts across tasks, subjects, sampling rate,
and sensors. Surprisingly, our architecture, without any pretraining (scratch), also provides robust
performance on many datasets, different from previously reported results (Zhang et al., 2022).

Multimodal Pretraining Further Improve Performance While the Fpz-Cz EEG channel is
shown to be the most informative channel for the pretraining task and typically provides robust
prediction performance on its own (Supratak et al., 2017), in this work, we explore whether using
additional multimodal information from the same task can further boost the pretraining performance.
As shown in Table 1, for bioFAME, including multimodal information during pretraining provides
better results than unimodal pretraining in general, consistently outperforming unimodal pretrain-
ing. Training on multimodal data also improves the model’s stability by giving a lower standard
deviation, as shown in Appendix B.4. Note that in previous work (Zhang et al., 2022), including
multimodal information hurt performance rather than helped. This suggests that bioFAME can
effectively utilize and combine information across modalities, resulting in better performance on
downstream tasks. We hypothesize that pretraining on multiple modalities exposes the model to a
more diverse range of frequency components, improving the model’s few-shot generalization.

Robustness for Modality Mismatch Scenarios We consider two modality mismatch scenarios as
shown in Figure 2(A): (i) Modality substitution, where one modality is replaced by another modality;
and (ii) Modality dropout, where only a subset of modalities is present at test time. We show
the model’s performance with modality substitution in Figure 2(B), where the model is pretrained
with { EEG Fpz-Cz; EOG; EMG }. Each of the pretraining modality is replaced with another
channel to examine the performance degradation (more details in Appendix B.3). Our model gives
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Figure 2: Multimodal evaluation results. (A) Two modality mismatch scenarios are considered: Modality
substitution and modality dropout. (B) When a modality is swapped with another available one, or (C) when
modalities are dropped out at test time, our model gives lower performance degradation when comparing to a
robust baseline. (D) By visualizing the attention weights across modalities, we can understand how modalities
are associated with each other.

better performance than the robust baseline PatchTST (Nie et al., 2022), exhibiting less performance
degradation. In terms of modality dropout, we pretrained the model with { EEG Fpz-Cz; EEG
Pz-Oz; EOG; EMG }, and we dropped an increasing amount of modalities till there is only one
modality left (see Figure 2(C)). We see that bioFAME is more resistant to unexpected modalities
dropout in comparison to the baseline. Unlike many other baselines that contain spatial layers,
bioFAME can be applied at test time even when there are unexpected amount of channels while
exhibiting resilience towards modality mismatch scenarios. This study further demonstrated that
bioFAME presents a robust model when used in real-world scenarios.

Visualizing the Connections Across Modalities To understand how the information across dif-
ferent channels affects each other, we visualized the averaged attention matrix to examine the re-
lationship across modalities. As shown in Figure 2(D), for each channel (row), the intensity of its
attention or connection to the other channels can be visualized by the color (red means stronger
connections). Interestingly, we notice that while each channel would rely on its own information
the most, they tend to focus on the stronger modalities, which is the EEG Fpz-Cz channel in our
case. Moreover, interesting asymmetry is observed for EOG-EMG, as EOG correlates more to the
EMG while the opposite does not hold. We hypothesize that this is because facial movement would
produce moving artifacts for EOG on the temple, while the opposite connection does not hold. This
observation demonstrates that bioFAME can be used by researchers to further understand the in-
formation overlap across modalities (Bird et al., 2020).

4 CONCLUSION

In this work, we proposed a frequency-aware masked autoencoder that performs pretraining on
multimodal biosignals. Our proposed method leverages a frequency-aware encoder with fixed-size
Fourier-based operator to extract representation on biosignals, and uses a frequency-maintain pre-
training module to perform pretraining. Our empirical experiments show that our model achieves
state-of-the-art performance on a set of transfer experiments, where the models, both pretrained on
unimodality and multimodality, can be adapted to effectively classify time series with varying input
lengths, sensors, and sampling rates.
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APPENDIX

A ADDITIONAL RESULTS

A.1 MULTI-MODAL EVALUATIONS AND VISUALIZATIONS

Datasets and Experimental Details We investigated how well the model performs when applied
to real-world cases in which multimodal information is available at test time. To understand this,
we systematically studied different combinations of the EEG Fpz-Cz, EEG Pz-Oz, EOG, EMG,
and the respiration channels of the SleepEDF dataset (Kemp et al., 2000), which are simultane-
ously recorded. We followed the same train/val/test split as in Eldele et al. (2021) while attaching
the multimodal information instead of using only the unimodal information. We utilized the same
model setup, aside from that we follow Section 2.2 to expand the training and testing under multi-
modal designs with weight sharing and channel independence. We also implemented two variants
of multimodal latent expansion methods as in Appendix C.

A.2 ABLATIONS EXPERIMENTS ON TRANSFERABILITY

We performed a set of ablation experiments to understand what makes bioFAME robust under the
transfer experiments setting. In Table 2, we first studied the effect of the frequency-aware (FA)
and frequency-maintain (FM) modules by either replacing the FA module with a self-attention
transformer; or by replacing the FM module with a normal masking procedure. We found both
approaches, when applied independently, improve the performance of a baseline variant by a sig-
nificant margin (≈ 3%). Combining both modules gives the best performance, further boosting the
effect of each individual component (≈ 5%). We also tested whether it is possible to discard the
second encoder at test time, which would indicate whether or not the FA encoder plays a major
role in learning. Interestingly, we show that discarding the second encoder at test time gives almost
identical performance in the unimodal setting. However, when multimodal information is used for
pretraining, discarding the second encoder would give a performance that is lower than the unimodal
result, while keeping the second encoder increases the unimodal performance by ≈ 1% instead (see
Table 3). We hypothesize that it is beneficial to retain the second encoder at test time under the
multimodal setting because it is responsible for merging the information present across the multi-
modal data. Finally, in Table 4, we investigate how different patch sizes and masking ratios affect
the performance of our model. We show that bioFAME gives stable performance when the patch
size is relatively small, giving robust performance under a range of masking ratios.

FA FM Acc.
✗ ✗ 80.68
✓ ✗ 84.09
✗ ✓ 83.53
✓ ✓ 85.04

Table 2: Average accuracy
without FA/FM modules.

Enc-2 Modality Acc.

✗
Uni 85.04

Multi 83.92

✓ Uni 85.05
Multi 85.99

Table 3: The effect of keeping the 2nd
encoder for multimodal pretraining.

Masking ratio
0.3 0.5 0.7

Pa
tc

h 10 83.86 84.05 82.70
20 84.11 85.04 83.86
50 80.88 80.84 80.64

Table 4: The effect of different mask-
ing ratios and patch sizes.

A.3 PARAMETER EFFICIENCY AND ADDITIONAL ABLATIONS

Parameter efficiency To understand the parameter efficiency and the throughput of our approach,
we compute the parameters and FLOPs between baselines and our approach in Table 5.

TS2vec TFC TS-TCC PatchTST Ours
Params 632K 1.18M 140K 612K 243K
FLOPs 0.69B 1.38B 1.95B 35.0B 9.42B

Table 5: Comparison of parameters and FLOPs between baselines and our approach. The FLOPs
are computed over a batch of SleepEDF data with batch size 64.
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We can see that, bioFAME is very parameter-efficient due to its fix-size frequency filter design.
With the same depth (4), heads (8), and dimensionality (64), bioFAME contains only ≈40% param-
eters of the transformer baseline PatchTST. The parameter size of bioFAME also stands competitive
with many CNN-based architectures. The FLOPs of bioFAME are significantly lower than the trans-
former baseline PatchTST (<30%); yet greater than CNN-based architectures.

Additional ablations To understand the models’ sensitivity towards different hyperparameters
and understand if bioFAME can provide better performance with increased complexity, we con-
ducted additional ablation experiments in Table 6 and Table 7.

dim 32 64 128 256
ExpEMG 91.1 98.05 96.48 97.78

FD-B 76.74 76.58 78.14 80.87
Avg. 83.92 87.32 87.31 89.33

Table 6: Performance of our approach with different latent dimensionality.

depth 3 4 5 6
ExpEMG 77.54 76.58 76.79 78.99

FD-B 97.78 98.05 95.55 92.59
Avg. 87.66 87.32 86.17 85.79

Table 7: Performance of our approach with different encoder depth.

We observed that increasing the latent dimensionality could further improve the performance of our
approach; while increasing the network depth gives no performance gains.

A.4 DATA EFFICIENCY AND OPERATOR SELECTION

Data efficiency To understand the behavior of bioFAME within the context of limited data
availability, we conducted experiments aimed at gauging the architecture’s efficacy when ex-
posed to a reduced amount of labeled data during the finetuning phase. We show the perfor-
mance of bioFAME in Figure 3(A), both with and without pretraining, where the performance
of bioFAME is plotted when the amount of labeled data for downstream training varies from 5% to
100%. Notably, in contrast to previous work (Eldele et al., 2021), wherein architecture performance
substantially deteriorated with decreased labeled data, bioFAME achieves stable results with rel-
atively low decay of performance even without pretraining. Furthermore, the pretrained version of
bioFAME gives consistently robust performance across the spectrum of labeled data proportions.
We hypothesize that modeling biosignals using the Fourier function group with frequency operators
improves the data efficiency of models.

Ablations on the two operators To validate the effectiveness of the Maxpool operator and the
Query operator as described in Section 2.1, we examine the model’s performance by varying the
number of filters. We find that the Maxpool operator gives more stable results, while the Query
operator seems to scale better to larger amount of filters.

A.5 MODEL VARIATION

For the transfer experiments result as shown in Table 1, we provide the standard variation across
five different random seeds in Table 8. Note that the entire training process, both the pretraining and
the finetuning stages, is repeated to obtain the standard variation for fair evaluation. We notice that
multimodal pretraining typically gives a lower standard deviation than that of unimodal pretraining,
demonstrating that multimodal pretraining might help with the stability of the model, as it is exposed
to a variety of frequency components.

While we believe that our diverse experiments across many datasets demonstrate the robustness of
our approach under randomness, we believe that another important source of randomness comes
from the data split, which is fixed in this work.
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Figure 3: (A) We examine the performance of bioFAME under low-data regime with and without pretraining.
(B) We examine how the MaxPool operator and Query operator would perform with different amounts of filters.

Epilepsy (EEG) SleepEOG
Models Accuracy Precision Recall F1 Accuracy Precision Recall F1

bioFAME (scratch) 1.17 2.42 0.72 1.26 0.77 0.67 0.50 0.76
bioFAME (unimodal) 0.35 0.37 1.17 0.65 1.39 1.23 0.91 0.61
bioFAME (multimodal) 0.17 0.51 0.21 0.24 0.90 0.79 0.89 0.88

∆(uni, multi) ↓0.18 ↑0.14 ↓0.96 ↓0.41 ↓0.49 ↓0.44 ↓0.02 ↑0.27

ExpEMG FD-B (Electromechanics)
Models Accuracy Precision Recall F1 Accuracy Precision Recall F1

bioFAME (scratch) 2.67 3.13 2.25 3.15 1.63 1.33 1.20 1.09
bioFAME (unimodal) 2.04 2.80 5.64 4.15 2.74 1.75 2.01 2.14
bioFAME (multimodal) 1.34 3.04 0.96 2.15 1.94 1.53 1.44 1.66

∆(uni, multi) ↓0.70 ↑0.24 ↓4.68 ↓2.00 ↓0.80 ↓0.22 ↓0.57 ↓0.48

Table 8: The standard deviation of bioFAME for each transfer experiment.

A.6 ABLATION RESULTS BREAKDOWN

In Table 9, we report the breakdown details for the average accuracy presented in Table 2 and Table 3.
Our model provides robust performance across different downstream tasks consistently.

Ablations Epilepsy SleepEOG ExpEMG FD-B

Table 2

FA✗ FM✗ 95.01 68.00 92.68 67.03
FA✓ FM✗ 95.03 69.73 98.37 73.23
FA✗ FM✓ 94.81 68.41 95.94 74.97
FA✓ FM✓ 95.51 70.03 98.05 76.58

Table 3

Uni, Enc-2✗ 95.91 70.17 95.94 78.16
Multi, Enc-2✗ 95.26 71.04 96.10 73.28
Uni, Enc-2✓ 95.51 70.03 98.05 76.58

Multi, Enc-2✓ 95.71 71.55 98.54 78.18

Table 9: Breakdown of model performance on different downstream tasks.

B EXPERIMENTAL DETAILS

B.1 DATASETS DETAILS

We provide additional details about the datasets we used as follows.

SleepEDF The entire SleepEDF dataset contains 197 recordings of whole-night sleep, where the
dataset contains 2-lead EEG, EOG, chin EMG, respiration rates, body temperature, and event mark-
ers. We selected a subset of the dataset from the Cassette Study following Eldele et al. (2021), where
the dataset is used to study the age effects on sleep in healthy Caucasians. We further followed the
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same train/validate/test split, and removed data with incomplete modalities. The recordings are
segmented into 30 seconds of sleep for training, where each sample is associated with one of the
five sleeping patterns/stages: Wake (W), Non-rapid eye movement (N1, N2, N3), and Rapid Eye
Movement (REM).

Epilepsy The Epilepsy dataset contains single-lead EEG measurements from 500 subjects, where
the brain activities are recorded for subjects with seizure. The classification task is based on if the
subject is having a seizure episode during the recording session.

SleepEOG The SleepEOG dataset is a subset of the SleepEDF dataset under the Telemetry Study,
where subjects are reported to have mild difficulty falling asleep, and thus intake either temazepam
or placebo before sleep. The EOG channel is used for classification.

ExpEMG The ExpEMG dataset consists of single-channel EMG recordings from the tibialis an-
terior muscle of three healthy volunteers, where they (1) do not have history of neuromuscular
disease; (2) suffer from chronic low back pain and neuropathy; and (3) suffer from myopathy due
to longstanding history of polymyositis. The classification task aims to classify different conditions
(subjects).

FD-B The FD-B dataset is an electromechanical dataset, where the motor currents and vibration
signals of healthy or damaged motors are recorded. The classification task aims to detect different
faulty conditions of the motors based on their behavior. We found that the motor movement follows
a similar frequency assumption as biosignals (Hooge et al., 1981), and thus used this electromechan-
ical dataset to provide additional validation of the transfer performance of our model.

Datasets Train Validate Test Sampling rate Length
Epilepsy 60 20 11420 174 178

SleepEOG 1000 1000 37244 100 3000
ExpEMG 122 41 41 4000 1500

FD-B 60 21 13559 64000 5120

Table 10: Dataset split details for different downstream tasks.

We performed the transfer experiments based on the same settings as in Zhang et al. (2022), where
we used the train/validate/test spilt as shown in Table 10 for downstream fine-tuning to demonstrate
the few-shot generalization ability of the model across different signals.

B.2 MODEL TRAINING AND TRANSFER EXPERIMENTS DETAILS

For all experiments, we pretrain bioFAME for 200 epochs on the SleepEDF dataset using a batch
size of 128 to obtain the weights of the model. During fine-tuning, we remove the lightweight second
encoder that mixes information across modalities, and use the average token of the frequency-aware
transformer encoder to perform the prediction for downsteam tasks. We fine-tune bioFAME for 80
epochs with a batch size of 64, using an Adam optimizer with a learning rate of 0.001 on all datasets
to obtain the final results. We perform all transfer experiments under the same training setup for all
downstream tasks without additional adjustment for each dataset. Note that we perform full-scale
model finetuning instead of linear probing when performing the transfer experiments, because the
former approach is shown to be more effective for transformers in previous works (He et al., 2022).

B.3 MULTIMODAL SETUP DETAILS

The multimodal experiments are designed to tackle the challenge presented by modality mismatch
scenarios, where discrepancies in biosignal recording setups between training and testing phases
lead to distributional shifts. Due to the scarcity of comprehensive multimodal datasets encompass-
ing simultaneous recording of diverse modalities of biosignals, we exclusively used the SleepEDF
dataset due to its modality coverage.

We first empirically assessed the representation quality of each individual channel. Similar to the
findings in Supratak et al. (2017), we found that the representation capacity of different channels
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follows EEG Fpz-Cz > EEG Pz-Oz > EOG > EMG > resp. Building upon these insights, we per-
formed the modality substitution and modality dropout experiments following the below pretraining
and finetuning setup.

Training modalities Testing modalities

EEG Fpz-Cz;
EOG; EMG

EEG Fpz-Cz; EOG; resp
EEG Fpz-Cz; EEG Pz-Oz; EMG

EEG Pz-Oz; EOG; EMG

Table 11: Modality setup for modality substitution experiments.

Training modalities Testing modalities

EEG Fpz-Cz;
EEG Pz-Oz; EOG; EMG

EEG Fpz-Cz; EEG Pz-Oz; EOG
EEG Fpz-Cz; EEG Pz-Oz

EEG Fpz-Cz

Table 12: Modality setup for modality dropout experiments.

B.4 HYPERPARAMETER SEARCHING DETAILS

For transfer experiments, we performed hyperparameter searching based on results on the Epilepsy
dataset, and used the same parameter setting across all transfer experiments. Specifically, we per-
formed a grid search of learning rate of [0.0001, 0.001, 0.01], transformer depth of [2, 3, 4, 5, 6],
latent dimensionality of [16, 32, 64, 128], dropout rate of [0.2, 0.3, 0.4], operator type, and filter
amount correspondingly. We followed the convention for transformers and selected the MLP di-
mension of 128 and head dimension of 16 for bioFAME and the baseline transformer. We selected
the optimal patch size and masking ratio based on results in Table 4. We did not search for the
optimal batch size, or investigate the effect of using different activation functions or normalization
techniques. For multimodal experiments, we evaluate the model’s performance on the pretraining
dataset, and performed the evaluation on the finetuning modalities using the best model used in pre-
training. For the multimodal experiments, we performed a smaller scale grid search for the latent
dimensionality and transformer depth.

C METHODOLOGY DETAILS

C.1 ADDITIONAL EXPLANATION OF MOTIVATION

Biosignals are often analyzed in their frequency space, where they are either studied through prede-
fined frequency regions or through aperiodic components which typically form a 1/f-like distribution
(Donoghue et al., 2020). The significance of frequency information is well-documented due to its
intricate interrelation with various facets of learning, aging, as well as diseases such as ADHD or
seizures. Correspondingly, modeling approaches that rely on the manual extraction and preprocess-
ing of spectrogram features have demonstrated robust empirical performance (Supratak et al., 2017).
Building upon these insights, we hypothesize that modeling biosignals employing function groups
within the frequency domain could benefit the learning process by enhancing model adaptability and
data efficiency. We note that this hypothesis might be violated if the frequency components carry
limited information in other formats of time series datasets.

C.2 INTUITION FOR THE MULTI-HEAD FREQUENCY FILTER LAYER

We provide additional intuition for the design of our multi-head frequency filter layer by breaking
down the computation for each individual filter. For each k-th filter K[k] inside K ∈ CH×D,
given latent representation Z = [z1, z2, ...,zN ]T ∈ CN×D, we compute Z(k) = [z1 ⊙K[k], z2 ⊙
K[k], ...,zN ⊙K[k]]T , where ⊙ represents the Hadamard product between each representation and
the learnable filter weights. In order to learn the combination between different filters, we define
weights w that compute Z̃ =

∑H
k=1 wkZ

(k).

To increase the expressiveness of the filtering operation, instead of learning a linear combination of
different filters, we borrow intuition from the computation of self-attention to compute the queries
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for the kernel weights w through w = zW , where W ∈ CD×H . Thus, we have:

Z̃[i, j] =

H∑
k=1

(

D∑
j=1

Z[i, j]W [j, k])Z[i, j]K[k, j]

= Z[i, j]

H∑
k=1

(

D∑
j=1

Z[i, j]W [j, k])K[k, j]

(5)

which gives Z̃ = Z ⊙ (ZWK). In our implementation, we use the real values of latents to learn the
weights of the combiner though w = zrealW . Similarly, based on the same intuition of combining
filtered matrices, we have the max pooling operation.

C.3 MODEL VARIANTS FOR COMBINING MULTIMODAL REPRESENTATIONS

In transfer experiments, we use the average of tokens to extract the final representations for the down-
stream classification. However, when having multimodal information, fixing the dimensionality of
the latent representation when many modalities are present might narrow down the information from
each modality, which might cause information loss. Thus, in multimodal experiments, we first av-
erage the representations from each individual modality, and then concat the representations across
modalities before performing the downstream classification.
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