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ABSTRACT

Exemplar-Free Class-Incremental Learning (EFCIL) tackles the challenge of
learning to discriminate between new and old classes without retaining any past
exemplars. Contrastive learning offers a promising direction to mitigate feature-
space congestion in EFCIL, yet applying it directly in the classification feature
space interferes with the objective of learning class-discriminative features, harm-
ing performance. We thus propose a novel EFCIL framework decoupling the con-
trastive learning and classification via a projection head in order to take advantage
of the contrastive learning and preserve rich class-discriminative features in the
pre-projection space. To further reduce congestion between old and new classes,
we propose an old-class repulsion strategy directly on the pre-projection space.
Additionally, we propose to eliminate the computation overhead incurred by cur-
rent prototype calibration methods through a closed-form similarity-weighted lin-
ear regression update, enabling efficient yet effective adaptation of full prototype
distributions. By integrating these three strategies, our proposed method outper-
forms existing state-of-the-art methods across several benchmarks. Code available
at https://anonymous.4open.science/r/iclr2026-D134.

1 INTRODUCTION

Deep neural networks have achieved remarkable success across diverse domains, but their results
typically rely on stationary data distributions and access to all training data at once. In real-world
scenarios, data often arrive incrementally over time, and simply fine-tuning on new data leads to
catastrophic forgetting (McCloskey & Cohen, 1989; French, 1999). To address this issue, continual
learning methods have emerged (Parisi et al., 2019; De Lange et al., 2022; Zhou et al., 2024), among
which exemplar replay, retaining a small buffer of past data, remains dominant, especially in class-
incremental learning (CIL) (Rebuffi et al., 2017; Chaudhry et al., 2019; Zhou et al., 2024). Despite its
effectiveness, in privacy-sensitive domains such as healthcare, storing data of past tasks is prohibited.
This restriction has motivated EFCIL methods (Shi & Ye, 2024; Rypeść et al., 2024b).

By performing classification using Mahalanobis distance, recent methods (Goswami et al., 2023;
Rypeść et al., 2024b) achieve superior EFCIL performances. However, a critical challenge hindering
their capability is feature space congestion. Namely, when new tasks are introduced, the features of
new classes can overlap with one another as well as with old class features, degrading classification
performance for both new and old tasks. Prototype augmentation approaches (Zhu et al., 2021b;a;
2022; Shi & Ye, 2023; Malepathirana et al., 2023) show promise to mitigate the issue, among which
FCS takes a further step by proposing a prototype-guided contrastive loss (Li et al., 2024). Yet,
due to the augmentation-invariant constraint of the contrastive loss, applying it in the same space as
the classification loss tends to overly squeeze the feature space and lead to the loss of informative
features for classification. This is particularly harmful for cold-start EFCIL tasks.

Another challenge is to prevent stored old-task prototypes from being outdated as the feature extrac-
tor evolves to adapt to new tasks. Prototype calibration methods (Gomez-Villa et al., 2024; Li et al.,
2024; Magistri et al., 2024; Rypeść et al., 2024b) use new-task samples as a proxy for old classes and
estimate prototype drifts by measuring the difference between the features of the new-task samples
extracted by the old and the evolving feature extractors. One line of prototype calibration methods
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Figure 1: Overview of our EFCIL method. (left) Projection head Pϕt
decouples the contrastive

loss LCon and the classification loss LCls. The projection-enhanced contrastive learning yields
richer features by pulling features from the same class features closer and pushing away new class
features from different new and old classes in the post-projection space. The old-class repulsion
loss LOldRep further pushes the new-class samples away from the stored prototype distributions
in the pre-projection space without compressing the class features. (right) For every old class c,
we compute the proximity-based similarities between the stored prototype and new-task samples in
the old feature space. Then, using these similarities, we formulate a closed-form linear regression
solution to map the old features to the new, allowing for efficient Gaussian calibration.

(Yu et al., 2020; Wang et al., 2023; Magistri et al., 2024) estimates the prototype drift by averaging
the drift of new task samples, weighted by the proximity of the prototypes to the new task samples in
the old feature space. Although they perform well when only the class means are calibrated, updat-
ing full prototype distributions becomes time-consuming, as it requires calibrating a large number
of samples from the high-dimensional prototype distributions (Rypeść et al., 2024b). Alternatively,
(Gomez-Villa et al., 2024; Rypeść et al., 2024b) propose to learn a direct mapping from old to new
task feature spaces via a multi-layer perceptron (MLP). Although these approaches speed up the
distribution-level updates, they incur significant computational overhead due to the MLP training.

To jointly tackle both feature-space congestion and prototype calibration efficiency, we propose a
unified framework. First, to prevent contrastive loss from suppressing classification features as a
result of augmentation invariance, we introduce a nonlinear projection head (Xue et al., 2024) that
decouples contrastive learning from the classification objective. Specifically, it allows us to apply
the classification loss to the pre-projection feature space while performing contrastive learning in
the post-projection space simultaneously, as illustrated in Figure 1. By leveraging the projection
head filtering out the information irrelevant to the contrastive objective (Ouyang et al., 2025), our
proposed method learns richer class-discriminative features in the pre-projection space. Second, we
introduce an old-class repulsion loss that repels new-task features away from old-class prototypes
in the pre-projection space, thus further reducing congestion between old and new task features to
improve classification results. Third, we propose replacing the MLP-based calibration with a closed-
form linear-regression-based prototype update without any iterative gradient updates. Furthermore,
integrating the similarity between old prototypes and new task features in the least-squares solution
allows us to efficiently calibrate each old class prototype distribution.

In summary, our contributions include:

• A projection-enhanced contrastive learning approach along with old-class repulsion strat-
egy to reduce feature space congestion while learning rich class-discriminative features.

• A closed-form similarity-weighted linear-regression-based prototype calibration that al-
lows swift and effective full Gaussian calibration.

• A unified framework that combines these components to achieve superior performance over
state-of-the-art (SOTA) methods across multiple EFCIL benchmarks.

• An extensive ablation study validating the benefits of projection-enhanced contrastive
learning, old-class repulsion, and our calibration method.
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2 RELATED WORKS

2.1 CLASS-INCREMENTAL LEARNING

CIL does not allow task identity during prediction, and exemplar-replay is the most common ap-
proach in CIL, which stores part of past task data to be replayed later (Rebuffi et al., 2017; Chaudhry
et al., 2019; Hou et al., 2019; Douillard et al., 2020; Ahn et al., 2021; Caccia et al., 2021; Kang et al.,
2022). Other strategies include dynamically expanding the network across tasks (Yan et al., 2021;
Zhou et al., 2023), using replay samples to rebalance batch-normalization statistics (Cha et al., 2023;
Lyu et al., 2023), and optimizing exemplar selection strategy (Zhou et al., 2022; Hao et al., 2023).
Regularization-based methods—originally designed for task-incremental learning, like (Zenke et al.,
2017; Kirkpatrick et al., 2016; Nguyen et al., 2018)—can be adapted to CIL by adding task iden-
tifiers (Kim et al., 2022). Despite their success, replay-based methods are unsuitable for privacy-
sensitive domains that forbid storing past data, motivating exemplar-free alternatives.

2.2 EXEMPLAR-FREE CLASS INCREMENTAL LEARNING

There are two broad EFCIL families: frozen-feature-extractor (classifier-incremental learning)
methods and evolving-feature-extractor methods. Frozen-feature-extractor methods (Goswami
et al., 2023; Petit et al., 2023; Ma et al., 2023; Zhuang et al., 2024) train the feature extractor on
the first task and keep it frozen during the subsequent tasks. Despite their limited plasticity, they
perform well in warm-start scenarios, where the first task includes nearly 50% of the classes and
later tasks are relatively small. However, they underperform in challenging cold-start scenarios due
to the limited feature representation learned from a small first task. To address this limitation, sev-
eral evolving-feature-extractor methods have been proposed (Rypeść et al., 2024b; Magistri et al.,
2024; Gomez-Villa et al., 2024). Our work follows this second, evolving extractor line of research.

Evolving feature extractor and prototype calibration LwF-MC, introduced in (Rebuffi et al.,
2017) as a variant of (Li & Hoiem, 2017), is an exemplar-free method that evolves the feature extrac-
tor using logit distillation. Subsequent works (Zhu et al., 2021a;b; 2022; Shi & Ye, 2023; Malepathi-
rana et al., 2023) improve EFCIL performance by combining feature distillation with prototypical
network and different prototype augmentation strategies for robust representation of past-task fea-
tures. However, these methods face a common limitation: the stored prototypes become outdated as
the feature extractor adapts to new tasks, degrading accuracy. To address this limitation, prototype
calibration methods map the saved old class prototypes to the updated feature space. Some estimate
prototype drift with a weighted average of new task samples’ drift, weighted by the proximity of
the prototypes to the new-task samples in the old feature space (Yu et al., 2020; Wang et al., 2023;
Magistri et al., 2024). Others learn a direct mapping from the old to the new feature space using
an MLP via stochastic gradient updates (Gomez-Villa et al., 2024; Li et al., 2024; Rypeść et al.,
2024b). Instead, we propose a similarity-weighted least-squares solution as a simpler and more
efficient alternative to these stochastic gradient updates.

Reducing feature congestion between old and new classes PRL (Shi & Ye, 2024) encourages
new class features to be orthogonal to the old prototypes. FCS (Li et al., 2024) then applies
prototype-guided contrastive learning to further separate old and new class features. However, the
augmentation-invariant constraint inherent to contrastive learning can lead to the loss of features
important for classification, resulting in sub-optimal performance. We, thus, propose to decouple
the classification objective from contrastive learning through a projection head and also encourage
knowledge distillation by using the old feature extractor as the encoder model for the augmented
input views. Likewise, AdaGauss (Rypeść et al., 2024b) and related methods (Goswami et al.,
2023; Rypeść et al., 2024a) store the Gaussian distribution for each class as prototypes and use Ma-
halanobis distance, achieving SOTA results. Although AdaGauss evolves these saved prototypes, it
does not explicitly mitigate the interference between old and new classes. In contrast, our projection-
head-aided contrastive learning, combined with old class repulsion loss, alleviates this congestion
and yields superior performance.
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2.3 SELF-SUPERVISED LEARNING

Several self-supervised learning (SSL) methods (Chen et al., 2020; Zbontar et al., 2021) attach a
projection head during representation learning to improve downstream-task performance; the head
is then discarded during finetuning. Recent theoretical analyses (Xue et al., 2024; Ma et al., 2024;
Ouyang et al., 2025) suggest that enforcing invariance to data transformations via contrastive learn-
ing can discard critical features for classification when the contrastive learning is applied on the
same feature space as the classification loss. In contrast, with the projection head, the pre-projection
space retains richer information. Unlike the standard two-phase “pretrain-then-classify” pipeline,
our approach integrates projection-head-aided contrastive learning and the classification objective
concurrently in the EFCIL setting.

3 METHODOLOGY

3.1 PROBLEM STATEMENT

CIL addresses the learning on incremental sequence of T tasks with datasets D = {D1, . . . ,DT }.
Each dataset Dt consists of data points {(xi, yi)|yi ∈ Ct}, where Ct represents the label set for
task t. In CIL, there is no overlap in labels between the tasks, i.e., Ci ∩ Cj = ∅,∀i ̸= j. During
prediction, the task identity is unknown, requiring prediction over all seen classes C1:t =

⋃t
k=1 Ck.

The EFCIL variant prohibits storing past exemplars, making the problem more challenging as the
past data cannot be revisited. We consider the offline setting - allowing multiple iterative updates
over Dt and we initialize the feature extractor for the first task from scratch without relying on a
pre-trained model.

3.2 BASELINE

We adopt AdaGauss (Rypeść et al., 2024b) as our baseline. For each task t, the model consists of
feature extractor f(·; θt) : x 7→ RM , a softmax classifier gφt and a knowledge distillation projector
Tψt . The classifier predicts only over classes Ct, and the training minimizes the loss

Lt = LCE(θt, φt;Dt) + LAC(θt;Dt) + 1t>1γ LKD(θt, ψt;Dt, θt−1) (1)

where,
LCE = − E

(xi,yi)∼Dt

[yi log (gφt
◦ fθt(xi))]

is the standard cross-entropy loss and

LKD = E
(xi,yi)∼Dt

∥Tψt
◦ fθt(x)− fθt−1

(x)∥2 (2)

denotes the feature-distillation loss, which is applied on tasks t > 1 to maintain stability. For
methods such as PASS (Zhu et al., 2021b) that omit the KD projector, Tψt

can be defined as an
identity mapping function. LAC represents the anti-collapse loss in AdaGauss, which prevents each
class’s feature distribution from collapsing, leading to improved classification performance. For
convenience, we jointly represent the classification loss as LCls = LCE +LAC.

After training on task t, new class prototype mean µc and covariance Σc are estimated using the
trained feature extractor fθt . To calibrate the old prototypes {(µk,Σk)

∣∣k ∈ C1:t−1} with the new
feature space, a learnable calibrator Tζ is trained as:

ζt = argmin
T

E
(xi,yi)∼Dt

∥fθt(x)− Tζ ◦ fθt−1
(x)∥2 + LAC(ζ;Dt, θt) (3)

Then, for each stored class c, multiple samples are drawn from the Gaussian distributions and passed
through Tζt , and (µc,Σc) are re-computed using the transformed samples. The original multi-layer
calibrator Tζt , and incorporation of LAC requires iterative stochastic-gradient updates to learn the
calibrator, which incurs significant overhead. To reduce complexity, we later propose a closed-form
linear-regression calibrator, which yields more accurate calibration at a fraction of the cost.
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3.3 PROPOSED METHOD

Training solely on new task data Dt, as in AdaGauss (Rypeść et al., 2024b), can suffer from feature
congestion between new and old classes, degrading the representation quality and overall perfor-
mance. To address this limitation, we propose to apply projector-enhanced prototype-guided con-
trastive learning that applies contrastive learning on post-projection space, and an old-class repulsion
loss that acts directly on the pre-projection space. Furthermore, we introduce a principled and ef-
ficient prototype calibration strategy, that incorporates similarity between prototypes and new task
features to replace existing SGD-based calibration.

3.3.1 PROJECTOR-ENHANCED CONTRASTIVE LEARNING

After training on task t−1, we obtain the feature extractor fθt−1
and Gaussian prototypes (µc,Σc)

for each old class c. Prototype-guided contrastive learning, as in FCS (Li et al., 2024), enforces
separation using new samples and old prototypes. However, applying both contrastive loss and the
classification loss on the same feature space can suppress features important for classification (Xue
et al., 2024; Ouyang et al., 2025), thereby hindering classification performance (see Section 4.3).
This issue is also reflected in sub-optimal results of FCS (Li et al., 2024) as observed in Table 1.
To overcome this, we decouple the two objectives through a projection head Pϕt

; classification is
performed on the pre-projection space while contrastive loss operates on the post-projection space
zt,i = Pϕt

(fθt(xi)) simultaneously.

This decoupling channels the strong augmentation-invariant pressure of the contrastive loss into a
separate post-projection space, while benefiting model adaptation from rich, class-discriminative
features in the pre-projection space. To further promote stability across tasks, we encode the aug-
mented views through the old feature extractor fθt−1

rather than the evolving fθt , encouraging the
evolving features to remain closer to earlier features.

Given a mini-batch B = {(xi,x(q)
i , yi)

B
i=1}, where x

(q)
i is an augmented view of input xi, we

formulate the supervised contrastive loss LCon as:

LCon = − 1

B

B∑
i=1

1

|Pi|
∑
p∈Pi

log

 exp
(
ẑ⊤t,iẑ

(q)
t−1,p/τ

)
exp

(
ẑ⊤t,iẑ

(q)
t−1,p/τ

)
+

∑
v∈Vi

exp
(
ẑ⊤t,iv/τ

)
 (4)

where, ẑt,i =
zt,i
∥zt,i∥2

represents normalized projected features and τ represents temperature. Pi =

{j : yj = yi} represents the set of same class indices for input index i and Vi = {z(q)t−1,p : yj ̸=
yi}∪{p̂c : c ∈ C1:t−1} represents the negative samples for index i, including different class features
and old class prototype samples. For each old class c, we sample sc ∼ N (µc,Σc), and pass through
the projector pc = Pϕt(sc) and normalize to get p̂c. Including the prototype samples as negatives,
the model benefits from richer inter-task discriminative features.

3.3.2 PRE-PROJECTION OLD CLASS REPULSION

While the projection-based contrastive learning enhances class separation, it may not sufficiently
reduce inter-task overlap in the pre-projection space. We therefore add a direct inter-task repulsion
term on the pre-projection space. This strategy repels new-task features from old-class distributions,
but does not enforce attraction within the same class, thereby avoiding over-compression.

LOldRep =
1

B

B∑
i=1

log

 ∑
c∈C1:t−1

exp(−dc(xi))

 (5)

where, dc(x) =
(
f̂θt(x)− µ̂c

)⊤
Σ̂−1
c

(
f̂θt(x)− µ̂c

)
is the Mahalanobis distance between nor-

malized new class feature and normalized old class mean µ̂c. Here, Σ̂c represents class c’s
normalized covariance as defined in (Goswami et al., 2023). This loss yields a soft, distance-
weighted repulsion, adaptively emphasizing nearby old classes. The final loss gradient is the
weighted average of gradients from each class ∇LOldRep(x) = −

∑|C1:t−1|
c=1 πc∇dc(x) with weight

5
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Algorithm 1 Proposed Method

Require: Data stream D = {D1, . . . ,DT }, Model {fθ, gφ}, Hyper-parameters α, β, γ, τ
1: for each minibatch B ⊂ D1 do
2: Train with loss L1 = LCls +αLCon

3: end for
4: Create new prototypes

{
(µc,Σc)

∣∣c ∈ C1}.
5: for t = 2, . . . , T do
6: for each minibatch B ⊂ Dt do
7: Train with loss Lt = LCls +αLCon +β LOldRep +γ LKD.
8: end for
9: Create new prototypes

{
(µc,Σc)

∣∣c ∈ Ct}.
10: for c ∈ C1:t−1 do
11: Get least-squares prototype calibrator Ŵc from Equation (8).
12: Update µc ← Ŵ⊤

c µc,Σc ← Ŵ⊤
c ΣcŴc.

13: end for
14: end for

πc =
exp(−dc(x))∑|C1:t−1|

k=1 exp(−dk(x))
. The old classes close to the features exert larger gradient weight, while

old classes away from the features have relatively less influence.

3.3.3 SIMILARITY-WEIGHTED LINEAR REGRESSION-BASED PROTOTYPE CALIBRATION

To efficiently align outdated class prototypes with evolving feature extractor, we introduce a
similarity-weighted linear-regression-based prototype calibrator (SLrPC). Unlike prior methods, our
method provides a closed-form solution, while weighting each new sample by its proximity to the
old class distribution. For each class c, we adopt a linear prototype calibrator T ′ with parameters
W ∈ RM×M to project old prototypes to the new feature space. The weight ω(c)

i assigned to a
sample xi reflects its likelihood under the old prototype distribution N (µc,Σc):

ω
(c)
i =

N (fθt−1
(xi);µc,Σc)∑Nt

j=1N (fθt−1
(xj);µc,Σc)

(6)

Stacking these weights together yields Ωc = diag
(
ω
(c)
i , . . . , ω

(c)
Nt

)
∈ RNt×Nt . Let Ft−1 ∈

RNt×M and Ft ∈ RNt×M represent the feature matrices from old and new feature extractors,
respectively. We define the similarity-weighted prototype calibration loss as:

LSLrPC =

Nt∑
i=1

ω
(c)
i ∥fθt(xi)−W

⊤fθt−1
(xi)∥2 = tr

[
(Ft −Ft−1W)

⊤
Ωc (Ft −Ft−1W)

]
. (7)

We use closed-form least-squares solution to get the prototype calibrator weight for each class c as:

Ŵc = argmin
W

LSLrPC =
(
F⊤
t−1ΩcFt−1

)−1 F⊤
t−1ΩcFt (8)

Then, the class prototypes are updated as µ′
c = Ŵ⊤

c µc,Σ
′
c = Ŵ⊤

c ΣcŴc, ∀c ∈ C1:t−1. A simple
class-agnostic solution is obtained using an unweighted linear-regression solution with Ω = INt

,
where INt

is an identity matrix. Coupled with projector-aided contrastive learning and old class
repulsion, our similarity-weighted prototype calibrator results in superior performance, rendering
existing calibrators time-consuming. Algorithm 1 details the training procedure for our method.

4 EXPERIMENT

We conduct comprehensive experiments of our proposed method on three benchmark datasets: CI-
FAR100 (Krizhevsky, 2009), TinyImageNet (Le & Yang, 2015), and ImageNet100 (Deng et al.,
2009). Our evaluation follows T = 10 and T = 20 task settings using offline cold-start EFCIL pro-
tocol. Next, we carry out an ablation study to analyze the effect of projector-enhanced contrastive
learning, old-class repulsion, and similarity-weighted linear regression-based prototype calibration.

6
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4.1 EXPERIMENTAL SETTING

Implementation details We use ResNet-18 (He et al., 2016) as the feature extractor and set the
feature dimension M = 128 via a single linear layer. The projection head for contrastive learning
comprises a linear expansion layer (factor of ρ = 32), a GeLU activation (Hendrycks & Gimpel,
2016), and a final layer that reduces the output back toM . We set the contrastive-training loss weight
α = 1 and temperature τ = 0.1. We use old class repulsion loss weight β = 1 for CIFAR100 and
TinyImageNet and β = 0.5 for ImageNet100 dataset. We set knowledge distillation weight γ = 10
for CIFAR100 variants and γ = 15 for larger datasets TinyImageNet and ImageNet100. We train for
200 epochs using SGD with a weight decay of 5e− 4 and batch size of 256. The learning rate starts
at 0.1 and decays by a factor of 10 after 60, 120, and 180 epochs. We provide additional details in
Appendix A. For evaluation, we use two standard metrics: final accuracy AccT is calculated on the
union of all classes C1:T after training on the final task T and, average incremental accuracy Acc1:T
is the average of the accuracies after training on each task.

Table 1: Comparison of final accuracy (AccT ) and average incremental accuracy
(
Acc1:T

)
on CI-

FAR100, TinyImageNet, and ImageNet100 (means over 5 class orders; standard deviations in Ap-
pendix B). Best in bold, second-best underlined.

CIFAR100 TinyImageNet ImageNet100

Methods AccT Acc1:T AccT Acc1:T AccT Acc1:T
T=10 T=20 T=10 T=20 T=10 T=20 T=10 T=20 T=10 T=20 T=10 T=20

Methods evolving feature extractor w/o prototype calibration
EWC (Kirkpatrick et al., 2016) 31.17 17.37 49.14 31.02 17.60 11.30 32.60 26.80 24.59 12.78 39.40 26.95
LwF (Li & Hoiem, 2017) 32.80 17.44 53.91 38.39 26.09 15.02 45.14 32.94 37.71 18.64 56.41 40.23
PASS (Zhu et al., 2021b) 30.45 17.44 47.86 32.86 24.11 18.73 39.25 32.01 26.40 14.38 45.74 31.65
IL2A (Zhu et al., 2021a) 31.70 23.00 48.40 40.20 25.30 19.80 42.00 35.50 27.70 17.50 48.40 34.90
SSRE (Zhu et al., 2022) 30.40 17.52 47.26 32.45 22.93 17.34 38.82 30.62 25.42 16.25 43.76 31.15
NAPA (Malepathirana et al., 2023) 37.09 22.25 51.69 39.53 25.39 18.11 36.77 30.36 27.30 19.96 43.30 34.23
PRAKA (Shi & Ye, 2023) 41.58 32.37 54.22 45.38 30.85 24.69 43.76 36.44 38.90 30.72 53.46 45.99
PRL (Shi & Ye, 2024) 43.43 32.58 55.85 44.58 36.12 29.79 47.29 41.72 48.21 38.16 60.91 51.76

Methods with fixed feature extractor
FeTrIL (Petit et al., 2023) 34.94 23.28 51.20 38.48 30.97 25.70 45.60 39.54 36.17 26.63 52.63 42.43
FeCAM (Goswami et al., 2023) 32.40 20.60 48.30 34.10 30.80 25.20 44.50 38.30 38.70 29.00 54.80 44.60
DS-AL (Zhuang et al., 2024) 40.80 31.70 54.90 43.20 33.60 26.50 47.20 41.60 46.80 36.70 58.60 48.50

Methods evolving feature extractor with prototype calibration
SDC (Yu et al., 2020) 42.36 33.88 57.53 48.47 29.85 15.36 44.28 26.95 43.50 19.90 61.37 39.48
FCS (Li et al., 2024) 36.15 20.22 51.22 33.47 26.54 15.41 38.02 26.57 35.74 22.77 52.00 40.07
EFC (Magistri et al., 2024) 44.07 33.93 59.25 49.93 33.33 28.88 46.87 41.72 50.16 39.14 63.64 52.68
AdaGauss (Rypeść et al., 2024b) 51.50 42.40 63.40 55.08 39.84 31.72 52.25 45.51 50.78 41.53 65.21 57.15
Ours 56.58 46.87 67.54 59.39 41.46 34.64 53.71 47.72 53.30 44.13 67.86 60.09

4.2 COMPARISON WITH SOTA

We compare against three groups of baselines: (i) methods that evolve feature extractor without
prototype calibration (e.g. EWC (Kirkpatrick et al., 2016), PASS (Zhu et al., 2021b), PRAKA (Shi
& Ye, 2023), PRL (Shi & Ye, 2024) etc.), (ii) methods that freeze the feature extractor after training
on the first task (FeTrIL (Petit et al., 2023), FeCAM (Goswami et al., 2023), DS-AL (Zhuang et al.,
2024)) and (iii) methods that evolve feature extractor along with prototype calibration: (SDC (Yu
et al., 2020), EFC (Magistri et al., 2024), FCS (Li et al., 2024), AdaGauss (Rypeść et al., 2024b)).

Table 1 shows that our method outperforms all existing approaches in both average incremental ac-
curacy and final accuracy. In particular, we significantly surpass methods that lack prototype calibra-
tion (e.g., PASS, PRAKA, PRL) and those that freeze the feature extractor after the first task (e.g.,
FeTrIL, FeCAM, DS-AL), which results in insufficiently generalizable features. Against recent
prototype-calibration techniques such as EFC, FCS, and AdaGauss, our method still achieves better
performance. Specifically, on the 10-task splits of CIFAR100, TinyImageNet, and ImageNet100
datasets, we record improvements in average incremental accuracy of 4.14 %, 1.46 %, and 2.65
%, respectively, over the previous SOTA. These gains stem from enhanced class feature represen-
tations from our projector-aided contrastive-learning and old-class repulsion loss, as well as more
effective prototype calibration via our similarity-weighted, linear regression-based calibrator (see
Section 4.3). Figure 2 further illustrates that our proposed method consistently outperforms compet-
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Figure 2: Detailed comparison of average test accuracies (Acct) with representative methods that
update the feature-extractor across tasks on CIFAR100, TinyImageNet, and ImageNet100 datasets.

ing approaches across the EFCIL tasks, achieving higher test accuracies than representative methods
that evolve the feature extractor, both with and without prototype calibration.

4.3 ABLATION STUDY

To further analyze each component’s impact, we investigate the performance on CIFAR100 and
TinyImageNet datasets under different settings. Table 4.3 shows that using our similarity-weighted
linear regression-based calibrator improves performance compared to AdaGauss’s iterative calibra-
tor and also compared to simple unweighted linear regression-based calibration. Furthermore, apply-
ing contrastive learning and classification losses on the same feature space degrades the performance
compared to the case without contrastive learning. In contrast, pairing contrastive learning through a
projection head with our similarity-weighted linear regression-based prototype calibrator improves
the performance further. Finally, our old-class repulsion loss combined with projection-head en-
hanced contrastive training and our calibration method achieves the best overall performance.

Table 2: Ablation Study: Comparison of EFCIL performances on CIFAR100 and TinyImageNet
using AdaGauss calibrator, and variants of our linear regression-based calibrators, and with and
without contrastive learning, projection head, and old-class repulsion.

Settings CIFAR100 (T = 20) TinyImageNet (T = 20)
Prototype
Calibrator

Contrast.
Learning

Project.
Head

old-class
Repulsion AccT Acc1:T AccT Acc1:T

AdaGauss (baseline) 42.40 ± 0.84 55.08 ± 2.54 31.72 ± 0.57 45.51 ± 0.37
✗ ✗ ✗ 43.81 ± 0.77 56.17 ± 1.78 33.90 ± 0.74 45.69 ± 0.37

Sim-weighted ✓ ✗ ✗ 43.44 ± 1.06 55.78 ± 2.19 33.23 ± 0.63 44.29 ± 0.64
Linear Reg. ✓ ✓ ✗ 44.65 ± 0.87 57.89 ± 2.03 34.35 ± 0.66 47.16 ± 0.69

✓ ✓ ✓ 46.87 ± 1.37 59.39 ± 1.99 34.64 ± 0.71 47.72 ± 0.85
Linear Reg. ✓ ✓ ✓ 45.10 ± 1.10 57.87 ± 2.03 33.60 ± 1.03 47.07 ± 0.92

Effectiveness of linear regression-based calibration Figure 3 compares the prototype calibra-
tion quality between AdaGauss, our unweighted, and similarity-weighted linear regression-based
calibrators. Although the similarity-weighted and unweighted linear regression variants perform
similarly, the similarity-weighted version further narrows the gap between the calibrated and true
Gaussian distributions of the old-classes—far more than the original AdaGauss calibrator. The ef-
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Figure 3: Calibration quality on TinyImageNet (T=10). We compare L2 distance for class means
(left) and covariances (middle), and KL-divergence DKL (right) between true class distribution and
calibration results of different methods, trained using similarity-weighted linear regression-based
calibration. Lower is better.

fect of prototype calibration is reflected in Table 2, which shows consistent gains in both final accu-
racy and average incremental accuracy using our linear regression-based calibrator. This concludes
that our linear regression calibrator is not only sufficient but superior for prototype calibration. We
further report 57× faster efficiency than AdaGauss on TinyImageNet (T = 10) and provide a time
complexity comparison of our prototype calibrator in Appendix D.

Impact of projection-enhanced contrastive training Decoupling contrastive learning from clas-
sification via a projection head improves accuracy (Table 2). This aligns with the intuition that the
projection head allows the benefits of contrastive learning by preserving a richer class-discriminative
structure in the pre-projection space (Ouyang et al., 2025). Appendix F analyzes the impact of archi-
tecture for the projection head, and Appendix E shows further gains from the asymmetric embedding
strategy in contrastive learning, encoding augmented views with fθt−1

instead of fθt in Equation 4.
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Figure 4: Impact of old-class repulsion
loss on inter-class cosine distance on
CIFAR100 (T = 10) dataset.

Impact of old-class Repulsion Loss Adding old-class
repulsion shows improvement in accuracy. To evaluate
its effect on class geometry, we further evaluate the sep-
aration of class features. Specifically, we calculate the
cosine distance between true class means after final train-
ing. Figure 4 illustrates that the inter-class-mean dis-
tance increases significantly across the classes after in-
cluding old-class repulsion loss. This increase in inter-
class means’ angular distance illustrates that the old-class
repulsion loss increases the inter-class separation across
old and new classes in the feature space.

5 CONCLUSION AND LIMITATIONS

We integrate three strategies to improve adaptation and tackle feature-space congestion and proto-
type drift. First, we introduce projector-enhanced contrastive learning: we jointly train contrastive
learning and classification losses on two distinct feature spaces, separated by a projection head. This
allows learning richer class-discriminative embeddings in the pre-projection space. Second, we in-
troduce the old class repulsion loss that explicitly mitigates congestion between new and old class
features. Third, we replace the iterative stochastic calibration with similarity-weighted closed-form
regression calibrator, which calibrates old-class prototypes more accurately and over an order of
magnitude faster. Together, these components form a coherent EFCIL approach that outperforms
existing SOTA methods across several standard benchmarks.

Limitations Our work is primarily empirical and does not provide a formal theoretical analysis,
which we leave for future investigation. In addition, incorporating the contrastive learning objective
introduces extra computational overhead compared to purely classification-based approaches.
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7 REPRODUCIBILITY STATEMENT

We provide the details of the hyperparameters in Section 4.1. Additional implementation details are
included in Appendix A, along with a link to the codebase to support reproducibility in the abstract.
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A ADDITIONAL DETAILS

Datasets We evaluate our proposed method on three benchmark datasets: CIFAR100 (Krizhevsky,
2009), TinyImageNet (Le & Yang, 2015) and ImageNet100 (Deng et al., 2009). CIFAR100 consists
of 32× 32-pixel images divided into 100 classes, each containing 500 training images and 100 test
images. TinyImageNet comprises 64 × 64-pixel images divided into 200 classes, each containing
500 training images and 50 test images. ImageNet100 contains 100 classes randomly sampled from
ImageNet (seed=1993) with 1300 training images and 50 test images per class. All ImageNet100
images are cropped to 224× 224 pixels.

Protocol We follow the offline cold-start EFCIL protocol used in (Magistri et al., 2024; Rypeść
et al., 2024b) to evaluate our method against the existing baseline methods; we split the full set
of classes equally across the tasks, which offers a more realistic evaluation for evolving feature-
extractor methods, since they no longer rely on seeing half the classes in the first task to learn
generalizable features. We experiment with 10 tasks (T = 10) and 20 tasks (T = 20). For CI-
FAR100 and ImageNet100, each task contains 20 classes when T = 10 and and 10 classes when
T = 20. For TinyImageNet, each task contains 20 in T = 10 split and 10 classes in T = 20 setting.

Evaluation Metrics We evaluate the performances of our method against the other methods using
two standard metrics: final accuracy AccT and average incremental accuracy Acc1:T . The final
accuracy AccT is calculated on the union of all classes C1:T after training on the final task T . And,
average incremental accuracy Acc1:T summarizes the course of incremental training by averaging
the accuracies after training on each task.

Acc1:T =
1

T

T∑
t=1

Acct, (9)

where, Acct is the accuracy over all observed classes up to task t i.e., C1:t.

Remaining Implementation Details To mitigate the bias arising from the choice of class order,
we ran all experiments with five different class orderings, obtained by random permutations with
seeds 1993, 42, 7, 8, and 10. We consistently use these seeds across all datasets and task splits
for the methods we trained and evaluated on. Furthermore, we apply self-supervised rotations (Lee
et al., 2020) only during the first task (Magistri et al., 2024; Rypeść et al., 2024b). For contrastive
learning, we use stronger augmentations like random resized crop, random grayscale, and color
jitter.

B DETAILED RESULTS

The results for CIFAR100 are provided in Table 3, TinyImageNet in Table 4, and ImageNet100 in
5. For some results other than DS-AL (Zhuang et al., 2024), where we report a single number, the
result was calculated using a single run, as the methods took a long time to run. We report both final
accuracy and average incremental accuracy as evaluation metrics.

For the older baselines—EWC, LwF, PASS, IL2A, SSRE, FeTrIL, FeCAM, and DS-AL—we quote
the results in the EFC and AdaGauss papers. However, we reran EFC and AdaGauss (with feature
dimension M = 128) and all remaining methods with the same class ordering using their available
code-bases, as EFC and AdaGauss are the most recent methods. For FCS, we found that it performs
better without self-supervised label augmentation in the incremental tasks, so we report the stronger
variant. Finally, consistent with the authors’ observations, our own experiments showed that PRL
performs better without the prototype calibration step, so we categorize it accordingly.
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Table 3: Comparison of final accuracy (AccT ) and average incremental accuracy
(
Acc1:T

)
on CI-

FAR100 (means and standard deviations over 5 class orders). Best results are highlighted in bold.

Methods Final Accuracy (AccT ) Avg Inc Accuracy
(
Acc1:T

)
T = 10 T = 20 T = 10 T = 20

Methods evolving feature extractor w/o prototype calibration
EWC (Kirkpatrick et al., 2016) 31.17 ± 2.94 17.37 ± 2.43 49.14 ± 1.28 31.02 ± 1.15
LwF (Li & Hoiem, 2017) 32.80 ± 3.08 17.44 ± 0.73 53.91 ± 1.67 38.39 ± 1.05
PASS (Zhu et al., 2021b) 30.45 ± 1.01 17.44 ± 0.69 47.86 ± 1.93 32.86 ± 1.03
IL2A (Zhu et al., 2021a) 31.70 ± 1.30 23.00 ± 0.90 48.40 ± 2.00 40.20 ± 1.10
SSRE (Zhu et al., 2022) 30.40 ± 0.74 17.52 ± 0.80 47.26 ± 1.91 32.45 ± 1.07
NAPA (Malepathirana et al., 2023) 37.09 22.25 51.69 39.53
PRAKA (Shi & Ye, 2023) 41.58 ± 1.80 32.37±1.83 54.22 ± 2.46 45.38 ± 2.74
PRL (Shi & Ye, 2024) 43.43 ± 2.70 32.58 ± 3.61 55.85 ± 2.39 44.58 ± 4.20

Methods with fixed feature extractor
FeTrIL (Petit et al., 2023) 34.94 ± 0.46 23.28 ± 1.24 51.20 ± 1.13 38.48 ± 1.07
FeCAM (Goswami et al., 2023) 32.40 ± 0.40 20.60 ± 0.70 48.30 ± 0.90 34.10 ± 1.10
DS-AL (Zhuang et al., 2024) 40.80 31.70 54.90 43.20

Methods evolving feature extractor with prototype calibration
SDC (Yu et al., 2020) 42.36 ± 0.85 33.88 ± 1.04 57.53 ± 1.02 48.47 ± 1.23
FCS (Li et al., 2024) 36.15 ± 2.88 20.22 ± 4.94 51.22 ± 2.24 33.47 ± 7.04
EFC (Magistri et al., 2024) 44.07 ± 1.30 33.93 ± 1.42 59.25 ± 1.59 49.93 ± 1.93
AdaGauss (Rypeść et al., 2024b) 51.50 ± 1.00 42.40 ± 0.84 63.50 ± 1.04 55.08 ± 2.54
Ours 56.58 ± 0.66 46.87 ± 1.37 67.54 ± 0.93 59.39 ± 1.99

Table 4: Comparison of final accuracy (AccT ) and average incremental accuracy
(
Acc1:T

)
on Tiny-

ImageNet (means and standard deviations over 5 class orders). Best results are highlighted in bold.

Methods Final Accuracy (AccT ) Avg Inc Accuracy
(
Acc1:T

)
T = 10 T = 20 T = 10 T = 20

Methods evolving feature extractor w/o prototype calibration
EWC (Kirkpatrick et al., 2016) 17.60 ± 1.50 11.30 ± 1.20 32.60 ± 1.20 26.80 ± 1.10
LwF (Li & Hoiem, 2017) 26.09 ± 1.29 15.02 ± 0.67 45.14 ± 0.88 32.94 ± 0.54
PASS (Zhu et al., 2021b) 24.11 ± 0.48 18.73 ± 1.43 39.25 ± 0.90 32.01 ± 1.68
IL2A (Zhu et al., 2021a) 25.30 ± 0.90 19.80 ± 1.80 42.00 ± 1.70 35.50 ± 2.30
SSRE (Zhu et al., 2022) 22.93 ± 0.95 17.34 ± 1.06 38.82 ± 1.99 30.62 ± 1.96
NAPA (Malepathirana et al., 2023) 25.39 18.11 36.77 30.36
PRAKA (Shi & Ye, 2023) 30.85 ± 0.95 24.69 ± 0.86 43.76 ± 1.11 36.44 ± 1.18
PRL (Shi & Ye, 2024) 36.12 ± 0.62 29.79 ± 1.74 47.29 ± 0.57 41.72 ± 1.28

Methods with fixed feature extraction
FeTrIL (Petit et al., 2023) 30.97 ± 0.90 25.70 ± 0.61 45.60 ± 1.67 39.54 ± 1.19
FeCAM (Goswami et al., 2023) 30.80 ± 0.80 25.20 ± 0.60 44.50 ±1.50 38.30 ±1.10
DS-AL (Zhuang et al., 2024) 33.60 26.50 47.20 41.60

Methods evolving feature extractor with prototype calibration
SDC (Yu et al., 2020) 29.85 ± 0.35 15.36 ± 0.97 44.28 ± 1.50 26.95 ± 1.30
FCS (Li et al., 2024) 26.54 ± 0.82 15.41 ± 1.75 38.02 ± 0.99 26.57 ± 1.67
EFC (Magistri et al., 2024) 33.33 ± 1.08 28.88 ± 0.83 46.87 ± 0.30 41.72 ± 0.92
AdaGauss (Rypeść et al., 2024b) 39.84 ± 0.47 31.72 ± 0.57 52.25 ± 0.55 45.51 ± 0.37
Ours 41.46 ± 0.46 34.64 ± 0.71 53.71 ± 0.64 47.72 ± 0.85
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Table 5: Comparison of final accuracy (AccT ) and average incremental accuracy
(
Acc1:T

)
on Ima-

geNet100 (means and standard deviations over 5 class orders). Best results are highlighted in bold.

Methods Final Accuracy (AccT ) Avg Inc Accuracy
(
Acc1:T

)
T = 10 T = 20 T = 10 T = 20

Methods evolving feature extractor w/o prototype calibration
EWC (Kirkpatrick et al., 2016) 24.59 ± 4.13 12.78 ± 1.95 39.40 ± 3.05 26.95 ± 1.02
LwF (Li & Hoiem, 2017) 37.71 ± 2.53 18.64 ± 1.67 56.41 ± 1.03 40.23 ± 0.43
PASS (Zhu et al., 2021b) 26.40 ± 1.33 14.38 ± 1.22 45.74 ± 0.18 31.65 ± 0.42
IL2A (Zhu et al., 2021a) 27.70 ± 1.80 17.50 ± 1.60 48.40 ±1.50 34.90 ± 0.70
SSRE (Zhu et al., 2022) 25.42 ± 1.17 16.25 ± 1.05 43.76 ± 1.07 31.15 ± 1.53
NAPA (Malepathirana et al., 2023) 27.30 19.96 43.30 34.23
PRAKA (Shi & Ye, 2023) 38.90 30.72 53.46 45.99
PRL (Shi & Ye, 2024) 48.21 ± 0.59 38.16 ± 2.57 60.91 ± 0.60 51.76 ± 2.30

Methods with fixed feature extraction
FeTrIL (Petit et al., 2023) 36.17 ± 1.18 26.63 ± 1.45 52.63 ± 0.56 42.43 ± 2.05
FeCAM (Goswami et al., 2023) 38.70 ± 1.00 29.00 ± 1.30 54.80 ± 0.50 44.60 ± 2.00
DS-AL (Zhuang et al., 2024) 46.80 36.70 58.60 48.50

Methods evolving feature extractor with prototype calibration
SDC (Yu et al., 2020) 43.50 ± 0.96 19.90 ± 1.42 61.37 ± 1.36 39.48 ± 2.17
FCS (Li et al., 2024) 35.74 ± 3.58 22.77 ± 1.92 52.00 ± 3.45 40.07 ± 2.51
EFC (Magistri et al., 2024) 50.16 ± 0.75 39.14 ± 0.71 63.64 ± 0.75 52.68 ± 1.78
AdaGauss (Rypeść et al., 2024b) 50.78 ± 0.84 41.53 ± 1.01 65.21 ± 0.42 57.15 ± 0.61
Ours 53.30 ± 1.02 44.13 ± 0.81 67.86 ± 0.72 60.09 ± 0.87

C GENERALIZED VIEWPOINTS FOR PROTOTYPE CALIBRATION

C.1 GENERALIZED SIMILARITY-WEIGHTED DRIFT ESTIMATION

Assuming that the feature vector, for each past task class c, is normally distributedN (·;µc,Σc), we
provide the general framework for similarity-weighted prototype update.

µ
′

c = µc + ν

Nt∑
i=1

ω
(c)
i δt−1→t

i , δt−1→t
i = fθt(xi)− fθt−1(xi)

where ν is a hyper-parameter to scale the estimated drift. We then define the normalized weight ω(c)
i

for each sample xi, based on the similarity between the feature embedding from the old-task feature
extractor ft−1 and the saved prototype for class c as:

ω
(c)
i =

N (fθt−1
(xi);µc,Σc)∑Nt

j=1N (fθt−1
(xj);µc,Σc)

=
exp

(
− 1

2

(
fθt−1

(xi)− µc
)⊤

Σ−1
c

(
fθt−1

(xi)− µc
))

∑Nt

j=1 exp
(
− 1

2

(
fθt−1

(xj)− µc
)⊤

Σ−1
c

(
fθt−1

(xj)− µc
))

(10)

Note that the determinant terms out of the exponential cancel out. Using ∆i,c = fθt−1
(xi)− µc to

indicate the gap between current task sample and stored prototype in the old feature space, we can
reformulate ω(c)

i as:

ω
(c)
i =

exp
(
− 1

2∆
⊤
i,cΣ

−1
c ∆i,c

)
∑Nt

j=1 exp
(
− 1

2∆j,c
⊤Σ−1

c ∆j,c

) (11)

Adaptation to existing methods:

1. SDC Yu et al. (2020) assumes the feature space to have isotropic covariance Σc = σI.

2. EFC Magistri et al. (2024) is an instantiation of this general framework where Elastic Fea-
ture Matrix (FIM, an alternative for features) is used in place of the inverse-covariance
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matrix. Additionally, it does not apply class-specific covariance matrices Σc but rather a
shared cumulative EFM Et−1, i.e.

Σ−1
c = Et−1

And, it sets ν = 1 and introduces a new hyper-parameter σ to mitigate the change in
class-covariance because of using a shared EFM.

3. TEEN Wang et al. (2023) redefines ∆i,c =
fθt−1

(xi)

∥fθt−1
(xi)∥ −

µc

∥µc∥ and assumes the features

to have isotropic covariance such that Σc = 1√
τ
I. Additionally, it calculates the drift in

feature from task t− 1 to t δt−1→t
i using the class mean µc as δt−1→t

i = fθt(xi)− µc.

C.2 GENERALIZED SIMILARITY-WEIGHTED LEARNABLE PROTOTYPE CALIBRATION

Current learnable calibration methods (Gomez-Villa et al., 2024; Li et al., 2024; Shi & Ye, 2024;
Rypeść et al., 2024b) train a sub-network T to map old-class prototypes to new-task feature space
by minimizing the calibration loss.

LLPC = E(xi,y)∼Dt
∥fθt(xi)− T ◦ fθt−1

(xi)∥2 (12)

After the calibrator training is complete, the old class feature samples s are updated as s′ = T (s).
Here, s = µc if only class means are stored and s ∼ N (µc,Σc) if full Gaussian distributions are
stored as class prototypes.

We define a more general similarity-weighted learnable prototype calibrator with the loss function
for each class c as:

L(c)
SLPC = E(xi,y)∼Dt

∥∥∥ω(c)
i

(
fθt(xi)− T ◦ fθt−1(xi)

)∥∥∥2 (13)

where, ω(c)
i is the similarity weight defined in Equation 10. Following this, we obtain the closed-

formed similarity-weighted linear regression-based calibrator in Section 3.3.3.

D SPACE AND TIME COMPLEXITY

Memory requirements Our approach just adds a single down-sampling layer to reduce the feature
dimensionality to M in the feature extractor. After training, we discard the prototype calibrator and
the projectors for contrastive learning and knowledge distillation. Consequently, once EFCIL train-
ing is completed, inference requires storing the feature extractor, and |C1:T |M parameters for class
means and |C1:T |M×(M+1)

2 parameters for inverse of class covariances like in FeCAM(Goswami
et al., 2023) and AdaGauss (Rypeść et al., 2024b).

Overall training time Table 6 shows that the overall training time for our method is longer com-
pared to AdaGauss and EFC, but much shorter compared to PRAKA. On average, our method takes
11% more time to train compared to AdaGauss. We use an A100 GPU with 12 workers to train the
models. Though the contrastive learning loss increases the training time, we mitigate it with faster
similarity-weighted linear regression-based prototype calibration, which removes the computational
overhead due to SGD updates for calibration.

Table 6: Comparison of total training times for different methods on a 10-split of TinyImageNet.

Methods PRAKA PRL EFC AdaGauss Ours
Training time (hours) 9.68 ± 0.36 5.00 ± 0.07 3.52 ± 0.15 4.70 ± 0.14 5.25 ± 0.24

Prototype calibration time complexity For similarity-weighted prototype calibration, the time
complexity for calibrating stored Gaussians isO(|C1:t−1|), which compared to AdaGauss calibrator
is O(E + |C1:t−1|R), where E is the number of epochs required to train the calibrator and R is the
number of samples required for Gaussian calibration which works by sampling and mapping and
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re-estimating Gaussian. We compare the average wall clock times required for prototype calibration
in Table 7, which demonstrates our proposed similarity-weighted linear regression-based calibrator
is approximately 57× faster than the AdaGauss calibrator while taking a marginally longer time
compared to the unweighted linear-regression version.

Table 7: Comparison of times required by different methods for full Gaussian calibration across
tasks on the 10-task split of TinyImageNet dataset.

Strategies Linear Reg Sim-weighted Linear Reg AdaGauss Calib.
Calibration Time (seconds) 4.90 ± 0.06 5.52 ± 0.78 316.55 ± 1.14

E CHOICE OF FEATURE EXTRACTOR FOR AUGMENTED INPUTS

We compare two choices for the feature extractor used to compute the augmented-image features: (i)
current, evolving feature extractor fθt and (ii) old feature extractor fθt−1

. Figure 5 shows that using
the old feature extractor fθt−1

yields higher final accuracy than using the evolving feature extractor
fθt . We hypothesize that encouraging fθt ’s outputs to match that of fθt−1

implicitly reinforces the
knowledge distillation signal and thus helps in knowledge retention.
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Figure 5: Evaluation of feature extractor for augmented inputs. We evaluate the two variants of
the feature extractor for encoding the augmented images in contrastive learning on 10-task splits of
CIFAR100 and TinyImageNet datasets.

F EFFECT OF PROJECTION HEAD ARCHITECTURE

We analyze how the projection head architecture influences the performance of EFCIL while keep-
ing the similarity-weighted linear-regression-based prototype calibration fixed. Table 8 shows that
introducing even a single linear-layer projection head improves performance compared to the case
without a projection head. However, adding batch normalization (Ioffe & Szegedy, 2015) slightly
reduces accuracy. Increasing the hidden layer dimensionality generally leads to better results, with
the best performance observed for hidden layer scaling ρ ≥ 8. All reported results are obtained
without applying the old class repulsion loss to isolate the effect of the projection head architecture.

Table 8: Effect of projection head architecture on model performance. We evaluate the model
performance when using a projection head with a different number of layers, hidden layer width
scaler (ρ), and batch normalization layer on 10-task splits of CIFAR100 and TinyImageNet datasets.

Projection head architecture CIFAR100 (T = 10) TinyImageNet (T = 10)

#Layers ρ Batch Norm AccT Acc1:T AccT Acc1:T
0 – – 51.00 ± 0.57 63.46 ± 1.67 39.01 ± 0.49 50.15 ± 0.66
1 – ✗ 54.62 ± 0.47 66.18 ± 0.93 40.31 ± 0.51 52.73 ± 0.51
2 1 ✗ 55.05 ± 0.47 66.53 ± 1.22 40.84 ± 0.45 52.88 ± 0.71
2 2 ✗ 55.26 ± 0.41 66.61 ± 1.06 40.96 ± 0.14 53.23 ± 0.75
2 8 ✗ 55.63 ± 0.54 66.98 ± 1.05 41.10 ± 0.44 53.28 ± 0.60
2 32 ✗ 55.75 ± 0.47 66.74 ± 0.89 41.09 ± 0.44 53.58 ± 0.37
2 32 ✓ 55.16 ± 0.49 66.32 ± 0.49 40.68 ± 0.50 53.19 ± 0.71
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G EFFECT OF CONTRASTIVE LOSS ON OLD AND NEW TASK ACCURACY

An incremental learner should acquire new knowledge of the current task for the sake of plasticity
and also preserve knowledge from previous tasks for the sake of stability. We further compare
the stability-plasticity results with and without contrastive loss training in Figure 6. The results
show using contrastive loss achieves better performance on older tasks compared to the case without
contrastive loss and our method also achieves increased plasticity. These gains in performance are
due to richer class-discriminative features learned from contrastive loss.

0 1 2 3 4 5 6 7 8 9
Task (t)

0

20

40

60

80

Ol
d 

Ta
sk

 A
cc

 (%
)

Old Task Accuracy
w/o contrastive loss
w/ contrastive loss

0 1 2 3 4 5 6 7 8 9
Task (t)

0

20

40

60

80

Ne
w 

Ta
sk

 A
cc

 (%
)

Current Task Accuracy
w/o contrastive loss
w/ contrastive loss

Figure 6: Comparison of old tasks’ average accuracy and new task accuracy across training tasks
for T = 10 on CIFAR100 with and without projector-enhanced contrastive loss.

H HYPERPARAMETER EFFECT

The hyper-parameter study in Figure 7 highlights the effect of contrastive loss weight (α), con-
trastive loss temperature (τ ), and old class repulsion weight (β) on the performance of the proposed
method for CIFAR100 with T = 10 and T = 20 tasks. The results indicate that α exhibits a clear
trend: performance consistently improves up to α = 1, beyond which both final and average incre-
mental accuracies drop sharply, suggesting that overly strong contrastive regularization interferes
with class discrimination across new and old tasks in EFCIL. Similarly, τ demonstrates notable
sensitivity, where small values (0.02–0.1) maintain stable accuracy, but larger values (τ ≥ 0.5)
significantly degrade performance, reflecting the detrimental effect of excessive softening in the
contrastive similarity distribution. In contrast, β shows a narrow region of stability, with β = 1
providing performance gains, while higher values cause numerical instability in training due to the
covariance matrix becoming singular when new classes are excessively repelled into a constrained
subspace. Overall, these results show the performance is obtained around α = 1, τ = 0.02–0.1, and
β = 1.

I LLM USAGE

We made limited use of LLMs in this research. Specifically, we applied them for grammar checking
and correction. In coding, we used them only to obtain code snippets to support visualization.
However, we did not use them for problem framing, idea generation, or broader aspects of coding
beyond visualization support. .
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Figure 7: Performances at different settings of hyper-parameters on CIFAR100 datasets.
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