
Sample Efficiency Matters: A Benchmark for Practical
Molecular Optimization

Wenhao Gao1⇤, Tianfan Fu2⇤, Jimeng Sun3,4, Connor W. Coley1,5
1Department of Chemical Engineering, Massachusetts Institute of Technology,

2Department of Computational Science and Engineering, Georgia Institute of Technology,
3 Department of Computer Science, University of Illinois at Urbana-Champaign,
4 Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign,

5Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
⇤Equal Contributions

{whgao,ccoley}@mit.edu, tfu42@gatech.edu, jimeng@illinois.edu

Abstract

Molecular optimization is a fundamental goal in the chemical sciences and is of
central interest to drug and material design. In recent years, significant progress has
been made in solving challenging problems across various aspects of computational
molecular optimizations, emphasizing high validity, diversity, and, most recently,
synthesizability. Despite this progress, many papers report results on trivial or self-
designed tasks, bringing additional challenges to directly assessing the performance
of new methods. Moreover, the sample efficiency of the optimization—the number
of molecules evaluated by the oracle—is rarely discussed, despite being an essential
consideration for realistic discovery applications.
To fill this gap, we have created an open-source benchmark for practical molecular
optimization, PMO, to facilitate the transparent and reproducible evaluation of
algorithmic advances in molecular optimization. This paper thoroughly investigates
the performance of 25 molecular design algorithms on 23 single-objective (scalar)
optimization tasks with a particular focus on sample efficiency. Our results show
that most “state-of-the-art” methods fail to outperform their predecessors under
a limited oracle budget allowing 10K queries and that no existing algorithm can
efficiently solve certain molecular optimization problems in this setting. We analyze
the influence of the optimization algorithm choices, molecular assembly strategies,
and oracle landscapes on the optimization performance to inform future algorithm
development and benchmarking. PMO provides a standardized experimental setup to
comprehensively evaluate and compare new molecule optimization methods with
existing ones. All code can be found at https://github.com/wenhao-gao/
mol_opt.

1 Introduction

Designing new functional molecules is a constrained multi-objective optimization problem that aims
to find molecules with desired properties such as selective inhibition against a disease target, with
additional desiderata and constraints to ensure the structures are stable and synthesizable. The impor-
tance of molecular design problems has attracted significant efforts to develop systematical molecular
design methodologies instead of exhaustive searches, leveraging combinatorial optimization algo-
rithms [1, 2], predictive machine learning models [3, 4], and generative models [5, 6]. Especially
in recent years, we have witnessed significant progress in solving challenging problems across

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.



various aspects of computational molecular optimizations, such as achieving high validity [7, 8, 9],
diversity [10], and, most recently, synthesizability [11, 12].

Despite the exciting progress in the field and the abundance of new methods proposed, how these
algorithms compare against each other remains unclear. Most method development papers and
existing benchmarks such as Guacamol [13], Therapeutics Data Commons (TDC) [14] and Tripp
et al.’s [15] suffer from at least one of three problems: (1) Lack of consideration of the oracle
budget: Many papers [16, 17, 18] do not report how many times the oracle function is called to
achieve the reported results (i.e., how many candidate molecules were evaluated), except in rare
cases [19, 20, 21, 22, 23], despite this range spanning orders of magnitude. As most valuable oracles—
experiments or high-accuracy simulations—require substantial costs, it is vital to identify the desired
compound with as few oracle calls as possible. (2) Trivial oracles: Some papers only report results
on trivial oracles [17] like quantitative estimate of drug-likeness (QED) [24]1 or penalized octanol-
water partition coefficient (LogP)2; other papers even introduce new self-designed tasks [18, 21],
which obfuscates a comparison to prior work. (3) Randomness: Another complication is that many
algorithms are not deterministic and exhibit significant run-to-run variation, so reporting results from
several independent trials is essential. All of the existing benchmarks examined no more than five
methods due to the significant variation between molecular optimization algorithms. Thus we still
lack a unified benchmark to assess which methods are beneficial in a realistic discovery scenario.

This paper presents a new reproducible large-scale experimental study with a sound experimental
protocol for molecular design, PMO. We have benchmarked 25 methods across 23 various widely-used
oracle functions, with each of them tuned and run for multiple independent trials. To consider a
combination of optimization ability and sample efficiency, we limit the number of maximum oracle
calls up to 10,000 queries and measure model performance with the area under the curve (AUC) of the
top-10 average performance versus oracle calls. Our results show that none of the existing molecular
optimization algorithms are efficient enough to solve a de novo molecular optimization problem
within a realistic oracle budget of hundreds of experiments, and “state-of-the-art” methods often fail
to outperform their predecessors. We analyze the algorithmic contribution and the influence of oracle
landscapes on optimization performance to inform future algorithm development and benchmarking.
Our results highlight the necessity of standardized experimental reporting, including independent
replicates and extensive hyperparameter tuning. We envision that the PMO benchmark will make
molecular optimizations more accessible and reproducible, thereby facilitating algorithmic advances
and, ultimately, the broader adoption of molecular optimization techniques in experimental drug and
materials discovery workflows.

2 Algorithms

A molecular optimization method has two major components: (1) a molecular assembly strategy
that defines the chemical space by assembling a digital representation of compounds, and (2) an
optimization algorithm that navigates this chemical space. This section will first introduce common
strategies to assemble molecules, then introduce the benchmarked molecular optimization methods
based on the core optimization algorithms. Table 1 summarizes current molecular design methods
categorized based on assembly strategy and optimization method, including but not limited to the
methods included in our baseline. We emphasize that our goal is not to make an exhaustive list but to
include a group of methods that are representative enough to obtain meaningful conclusions.

2.1 Preliminaries

In this paper, we limit our scope to general-purpose single-objective molecular optimization methods
focusing on small organic molecules with scalar properties with some relevance to therapeutic design.

1As demonstrated in this benchmark later, QED is likely to have a global maximum of 0.948 and even
random sampling could reach that value. It is disabled to meaningfully distinguish different algorithms.

2LogP is unbounded and the relationship between LogP values and molecular structures is fairly simple:
adding carbons monotonically increases the estimated LogP value [25, 20]. This simple strategy makes the
performance in LogP highly depend on the chemical space definition and the number of steps allowed, and
provides no insights for distinguish algorithms’ optimization ability. Besides, simply maximizing LogP is not a
meaningful goal in drug design. Therefore, we exclude LogP in this benchmark.

2



Table 1: Representative molecule generation methods, categorised based on the molecular assembly
strategies and the optimization algorithms. Columns are various molecular assembly strategies while
rows are different optimization algorithms.

SMILES SELFIES Graph (atom) Graph (fragment) Synthesis

GA SMILES-GA [13] GA+D [17]
STONED [29] - Graph-GA [1] SynNet [12]

MCTS - - Graph-MCTS [1] - -

BO BOSS [30] - - GPBO [15] ChemBO [19]

VAE SMILES-VAE [6] SELFIES-VAE [22] - JTVAE [8] DoG-AE [11]

GAN ORGAN [31] - MolGAN [32] - -

SBM - - - GFlowNet[10]
MARS[2] -

HC SMILES LSTM [13] SELFIES LSTM - MIMOSA [33] DoG-Gen [11]

RL REINVENT [5] SELFIES-
REINVENT

MolDQN [16]
GCPN [25]

RationaleRL[34]
FREED [35]

PGFS [18]
REACTOR [36]

GRAD - Pasithea [37] - DST [20] -

Formally, we can formulate such a molecular design problem as an optimization problem:

m⇤ = arg max
m2M

O(m), (1)

where m is a molecular structure, M denotes the design space called chemical space that comprises
all possible candidate molecules. The size of M is impractically large, e.g., 1060 [26]. We assume we
have access to the ground truth value of a property of interest denoted by O(m) : M ! R, where an
oracle, O, is a black-box function that evaluates certain chemical or biological properties of a molecule
m and returns the ground truth property O(m) as a scalar. Note that neither the analytic form of
oracles nor the derivatives of the properties are accessible. The most practical oracles—experiments
or high-accuracy simulations— typically require substantial costs. An algorithm able to optimize the
oracle within a reasonable budget is thus necessary for automating the design of molecules to achieve
high-level automated chemical design (ACD) [27] or function-oriented autonomous synthesis [28].

2.2 Molecular assembly strategies

String-based. String-based assembly strategies represent molecules as strings and explore chemical
space by modifying strings directly: character-by-character, token-by-token, or through more complex
transformations based on a specific grammar. We include two types of string representations: (1)
Simplified Molecular-Input Line-Entry System (SMILES) [38], a linear notation describing the
molecular structure using short ASCII strings based on a graph traversal algorithm; (2) SELF-
referencIng Embedded Strings (SELFIES) [9], which avoids syntactical invalidity by enforcing the
chemical validity rules in a formal grammar table.

Graph-based. Two-dimensional (2D) graphs can intuitively define molecular identities to a first
approximation (ignoring stereochemistry3): the nodes and edges represent the atoms and bonds. There
are two main assembling strategies for molecular graphs: (1) an atom-based assembly strategy [16]
that adds or modifies atoms and bonds one at a time, which covers all valid chemical space; (2) a
fragment-based assembling strategy [8] that summarizes common molecular fragments and operates
one fragment at a time. Note that fragment-based strategy could also include atom-level operation.

Synthesis-based. Most of the above assembly strategies can cover a large chemical space, but
an eventual goal of molecular design is to physically test the candidate; thus, a desideratum is to
explore synthesizable candidates only. Designing molecules by assembling synthetic pathways from
commercially-available starting materials and reliable chemical transformation adds a constraint of
synthesizability to the search space. This class can be divided into template-free [11] and template-
based [12] based on how to define reliable chemical transformations, but we will not distinguish
between them in this paper as synthesis-based strategy is relatively less explored in general.

3Incorporating certain stereochemical information in 2D molecular graphs is possible through various
approaches [39, 40, 41].

3



2.3 Optimization algorithms

Screening (a.k.a. virtual screening) involves searching over a pre-enumerated library of molecules.
We include Screening as a baseline, which randomly samples ZINC 250k [42]. Model-based
screening [43, 44, 45, 46, 3, 47] instead trains a surrogate model and prioritizes molecules that are
scored highly by the surrogate to accelerate screening. We adopt the implementation from the original
paperof MolPAL [3] and treat it as a model-based version of screening.

Genetic Algorithm (GA) is a popular heuristic algorithm inspired by natural evolutionary processes.
It combines mutation and/or crossover perturbing a mating pool to enable exploration in the design
space. We include SMILES GA [48] that defines actions based on SMILES context-free grammar
and a modified version of STONED [29] that directly manipulates tokens in SELFIES strings.
Unlike the string-based GAs that only have mutation steps, Graph GA [1] derives crossover rules
from graph matching and includes both atom- and fragment-level mutations. Finally, we include
SynNet [12] as a synthesis-based example that applies a genetic algorithm on binary fingerprints
and decodes to synthetic pathways. We adopt the implementation of SMILES GA and Graph GA
from Guacamol [13], STONED, and SynNet from the original paper. We also include the original
implementation of a deep learning enhanced version of SELFIES-based GA from [17] and label it as
GA+D.

Monte-Carlo Tree Search (MCTS) locally and randomly searches each branch of the current state
(e.g., a molecule or partial molecule) and selects the most promising ones (those with highest property
scores) for the next iteration. Graph MCTS [1] is an MCTS algorithm based on atom-level searching
over molecular graphs. We adopt the implementation from Guacamol [13].

Bayesian optimization (BO) [49] is a large class of method that builds a surrogate for the objective
function using a Bayesian machine learning technique, such as Gaussian process (GP) regression,
then uses an acquisition function combining the surrogate and uncertainty to decide where to sample,
which is naturally model-based. However, as BO usually leverages a non-parametric model, it scales
poorly with sample size and feature dimension [50]. We included a string-based model, BO over
String Space (BOSS) [30], and a synthesis-based model, ChemBO [19], but do not obtain meaningful
results even with early stopping potentially due to the poor scaling of the string subsequence kernel
(SSK) (see Section B.3 for early stopping setting, and Section B.33 for more analysis). Finally,
we adopt Gaussian process Bayesian optimization (GP BO) [15] that optimizes the GP acquisition
function with Graph GA methods in an inner loop. The implementation is from the original paper,
and we treat it as a model-based version of Graph GA. Note that we categorize methods that apply
BO to optimize molecules in latent space as a separate class below.

Variational autoencoders (VAEs) [51] are a class of generative method that maximize a lower bound
of the likelihood (evidence lower bound (ELBO)) instead of estimating the likelihood directly. A
VAE typically learns to map molecules to and from real space to enable the indirect optimization of
molecules by numerically optimizing latent vectors, most commonly with BO [52]. SMILES-VAE [6]
uses a VAE to model molecules represented as SMILES strings, and is implemented in MOSES [53].
We adopt the identical architecture to model SELFIES strings and denote it as SELFIES-VAE.
JT-VAE [8] abstracts a molecular graph into a junction tree (i.e., a cycle-free structure), and design
message passing network as the encoder and tree-RNN as the decoder. DoG-AE [11] uses Wasserstein
autoencoder (WAE) to learn the distribution of synthetic pathways. Note that we include a set of
vanilla methods for each kind while many variants have emerged, such as [23] and [22]. We leave the
validation of variants for the future development of this benchmark.

Score-based modeling (SBM) formulates the problem of molecule design as a sampling problem
where the target distribution is a function of the target property, featured by Markov-chain Monte Carlo
(MCMC) methods that construct Markov chains with the desired distribution as their equilibrium
distribution. MARkov molecular Sampling (MARS) [2] is such an example that leverages a graph
neural network to propose action steps adaptively in an MCMC with an annealing scheme. Generative
Flow Network (GFlowNet) [10] views the generative process as a flow network and trains it with a
temporal difference-like loss function based on the conservation of flow. By matching the property of
interest with the volume of the flow, generation can sample a distribution proportional to the target
distribution.

Hill climbing (HC) is an iterative learning method that incorporates the generated high-scored
molecules into the training data and fine-tunes the generative model for each iteration. It is a variant

4



of the cross-entropy method [54], and can also be seen as a variant of REINFORCE [55] with a
particular reward shaping. We adopt SMILES-LSTM-HC from Guacamol [13] that leverages a LSTM
to learn the molecular distribution represented in SMILES strings, and modifies it to a SELFIES
version denoted as SELFIES-LSTM-HC. MultI-constraint MOlecule SAmpling (MIMOSA) [33]
leverages a graph neural network to predict the identity of a masked fragment node and trains it
with a HC algorithm. DoG-Gen [11] instead learn the distribution of synthetic pathways as Directed
Acyclic Graph (DAGs) with an RNN generator.

Reinforcement Learning (RL) learns how intelligent agents take actions in an environment to
maximize the cumulative reward by transitioning through different states. In molecular design, a state
is usually a partially generated molecule; actions are manipulations at the level of graphs or strings;
rewards are defined as the generated molecules’ property of interest. REINVENT [5] adopts a policy-
based RL approach to tune RNNs to generate SMILES strings. We adopt the implementation from the
original paper, and modify it to generate SELFIES strings, SELFIES-REINVENT. MolDQN [16]
uses a deep Q-network to generate molecular graph in an atom-wise manner.

Gradient ascent (GRAD) methods learn to estimate the gradient direction based on the landscape
of the molecular property over the chemical space, and back-propagate to optimize the molecules.
Pasithea [37] exploits an MLP to predict properties from SELFIES strings, and back-propagate to
modify tokens. Differentiable scaffolding tree (DST) [20] abstracts molecular graphs to scaffolding
trees and leverages a graph neural network to estimate the gradient. We adopted the implementation
from the original papers and modify them to update the surrogates online as data are acquired.

3 Experiments

3.1 Benchmark setup

This section introduces the setup of PMO benchmark. The main idea behind PMO is the pursuit of
an ideal de novo molecular optimization algorithm that exhibits strong optimization ability, sample
efficiency, generalizability to various optimization objectives, and robustness to hyperparameter
selection and random seeds.

Oracle: To examine the generalizability of methods, we aim to include a broad range of
pharmaceutically-relevant oracle functions. Systematic categorization of oracles based on their
landscape is still challenging due to the complicated relationship between molecular structure and
function. We have included the most commonly used oracles (see a recent discussion of commonly-
used oracles in [56]). Several have been described as “trivial”, but we assert this is only true when
the number of oracle queries is not controlled. In total, PMO includes 23 oracle functions: QED [24],
DRD2 [5], GSK3�, JNK3 [57], and 19 oracles from Guacamol [13]. QED is a relatively simple
heuristic function that estimates if a molecule is likely to be a drug based on if it contains some “red
flags”. DRD2, GSK3�, and JNK3 are machine learning models (support vector machine (SVM),
random forest (RF)) fit to experimental data to predict the bioactivities against their corresponding
disease targets. Guacamol oracles are designed to mimic the drug discovery objectives based on mul-
tiple considerations, called multi-property objective (MPO), including similarity to target molecules,
molecular weights, CLogP, etc. All oracle scores are normalized from 0 to 1, where 1 is optimal.
Recently, docking scores that estimate the binding affinity between ligands and proteins have been
adopted as oracles [58, 14, 59]. However, as the simulations are more costly than above ones but are
still coarse estimates that do not reflect true bioactivity, we leave it to future work.

Metrics: To consider the optimization ability and sample efficiency simultaneously, we report the
area under the curve (AUC) of top-K average property value versus the number of oracle calls (AUC
top-K) as the primary metric to measure the performance. Unlike using top-K average property,
AUC rewards methods that reach high values with fewer oracle calls. We use K = 10 in this paper as
it is useful to identify a small number of distinct molecular candidates to progress to later stages of
development. We limit the number of oracle calls to 10000, though we expect methods to optimize
well within hundreds of calls when using experimental evaluations. The reported values of AUCs are
min-max scaled to [0, 1].

Data: We restrict all our methods to using the ZINC 250K dataset only whenever a database is
required, which contains around 250K molecules sampled from the ZINC database [42] for its
pharmaceutical relevance, moderate size, and popularity. Screening and MolPAL search over this

5



Table 2: Performance of ten best performing molecular optimization methods based on mean AUC
Top-10. We report the mean and standard deviation of AUC Top-10 from 5 independent runs. The
best model in each task is labeled bold. Full results are in the Appendix A.

Method REINVENT Graph GA REINVENT GP BO STONED
Assembly SMILES Fragments SELFIES Fragments SELFIES

albuterol_similarity 0.882± 0.006 0.838± 0.016 0.826± 0.030 0.898± 0.014 0.745± 0.076
amlodipine_mpo 0.635± 0.035 0.661± 0.020 0.607± 0.014 0.583± 0.044 0.608± 0.046

celecoxib_rediscovery 0.713± 0.067 0.630± 0.097 0.573± 0.043 0.723± 0.053 0.382± 0.041
deco_hop 0.666± 0.044 0.619± 0.004 0.631± 0.012 0.629± 0.018 0.611± 0.008

drd2 0.945± 0.007 0.964± 0.012 0.943± 0.005 0.923± 0.017 0.913± 0.020
fexofenadine_mpo 0.784± 0.006 0.760± 0.011 0.741± 0.002 0.722± 0.005 0.797± 0.016

gsk3b 0.865± 0.043 0.788± 0.070 0.780± 0.037 0.851± 0.041 0.668± 0.049
isomers_c7h8n2o2 0.852± 0.036 0.862± 0.065 0.849± 0.034 0.680± 0.117 0.899± 0.011

isomers_c9h10n2o2pf2cl 0.642± 0.054 0.719± 0.047 0.733± 0.029 0.469± 0.180 0.805± 0.031
jnk3 0.783± 0.023 0.553± 0.136 0.631± 0.064 0.564± 0.155 0.523± 0.092

median1 0.356± 0.009 0.294± 0.021 0.355± 0.011 0.301± 0.014 0.266± 0.016
median2 0.276± 0.008 0.273± 0.009 0.255± 0.005 0.297± 0.009 0.245± 0.032

mestranol_similarity 0.618± 0.048 0.579± 0.022 0.620± 0.029 0.627± 0.089 0.609± 0.101
osimertinib_mpo 0.837± 0.009 0.831± 0.005 0.820± 0.003 0.787± 0.006 0.822± 0.012
perindopril_mpo 0.537± 0.016 0.538± 0.009 0.517± 0.021 0.493± 0.011 0.488± 0.011

qed 0.941± 0.000 0.940± 0.000 0.940± 0.000 0.937± 0.000 0.941± 0.000
ranolazine_mpo 0.760± 0.009 0.728± 0.012 0.748± 0.018 0.735± 0.013 0.765± 0.029

scaffold_hop 0.560± 0.019 0.517± 0.007 0.525± 0.013 0.548± 0.019 0.521± 0.034
sitagliptin_mpo 0.021± 0.003 0.433± 0.075 0.194± 0.121 0.186± 0.055 0.393± 0.083

thiothixene_rediscovery 0.534± 0.013 0.479± 0.025 0.495± 0.040 0.559± 0.027 0.367± 0.027
troglitazone_rediscovery 0.441± 0.032 0.390± 0.016 0.348± 0.012 0.410± 0.015 0.320± 0.018

valsartan_smarts 0.178± 0.358 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000
zaleplon_mpo 0.358± 0.062 0.346± 0.032 0.333± 0.026 0.221± 0.072 0.325± 0.027

Sum 14.196 13.751 13.471 13.156 13.024
Rank 1 2 3 4 5

Method LSTM HC SMILES GA SynNet DoG-Gen DST
Assembly SMILES SMILES Synthesis Synthesis Fragments

albuterol_similarity 0.719± 0.018 0.661± 0.066 0.584± 0.039 0.676± 0.013 0.619± 0.020
amlodipine_mpo 0.593± 0.016 0.549± 0.009 0.565± 0.007 0.536± 0.003 0.516± 0.007

celecoxib_rediscovery 0.539± 0.018 0.344± 0.027 0.441± 0.027 0.464± 0.009 0.380± 0.006
deco_hop 0.826± 0.017 0.611± 0.006 0.613± 0.009 0.800± 0.007 0.608± 0.008

drd2 0.919± 0.015 0.908± 0.019 0.969± 0.004 0.948± 0.001 0.820± 0.014
fexofenadine_mpo 0.725± 0.003 0.721± 0.015 0.761± 0.015 0.695± 0.003 0.725± 0.005

gsk3b 0.839± 0.015 0.629± 0.044 0.789± 0.032 0.831± 0.021 0.671± 0.032
isomers_c7h8n2o2 0.485± 0.045 0.913± 0.021 0.455± 0.031 0.465± 0.018 0.548± 0.069

isomers_c9h10n2o2pf2cl 0.342± 0.027 0.860± 0.065 0.241± 0.064 0.199± 0.016 0.458± 0.063
jnk3 0.661± 0.039 0.316± 0.022 0.630± 0.034 0.595± 0.023 0.556± 0.057

median1 0.255± 0.010 0.192± 0.012 0.218± 0.008 0.217± 0.001 0.232± 0.009
median2 0.248± 0.008 0.198± 0.005 0.235± 0.006 0.212± 0.000 0.185± 0.020

mestranol_similarity 0.526± 0.032 0.469± 0.029 0.399± 0.021 0.437± 0.007 0.450± 0.027
osimertinib_mpo 0.796± 0.002 0.817± 0.011 0.796± 0.003 0.774± 0.002 0.785± 0.004
perindopril_mpo 0.489± 0.007 0.447± 0.013 0.557± 0.011 0.474± 0.002 0.462± 0.008

qed 0.939± 0.000 0.940± 0.000 0.941± 0.000 0.934± 0.000 0.938± 0.000
ranolazine_mpo 0.714± 0.008 0.699± 0.026 0.741± 0.010 0.711± 0.006 0.632± 0.054

scaffold_hop 0.533± 0.012 0.494± 0.011 0.502± 0.012 0.515± 0.005 0.497± 0.004
sitagliptin_mpo 0.066± 0.019 0.363± 0.057 0.025± 0.014 0.048± 0.008 0.075± 0.032

thiothixene_rediscovery 0.438± 0.008 0.315± 0.017 0.401± 0.019 0.375± 0.004 0.366± 0.006
troglitazone_rediscovery 0.354± 0.016 0.263± 0.024 0.283± 0.008 0.416± 0.019 0.279± 0.019

valsartan_smarts 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000
zaleplon_mpo 0.206± 0.006 0.334± 0.041 0.341± 0.011 0.123± 0.016 0.176± 0.045

Sum 12.223 12.054 11.498 11.456 10.989
Rank 6 7 8 9 10

database; generative models such as VAEs, LSTMs are pretrained on this database; fragments required
for JT-VAE, MIMOSA, DST are extracted from this database.

Other details: We tuned hyperparameters for most methods on the average AUC Top-10 from 3
independent runs of two Guacamol tasks: zaleplon_mpo and perindopril_mpo. Reported results are
from 5 independent runs with various random seeds. All data, oracle functions, and metric evaluations
are taken from the Therapeutic Data Commons (TDC) [14] (https://tdcommons.ai) and more
details are described in Appendix. Note that the implementation of sitagliptin_mpo and zaleplon_mpo
are different from the ones in Guacamol [13].

6



Table 3: The ranking of each methods based on different metrics.

Method AUC Top-1 AUC
Top-10

AUC
Top-100 Top-1 Top-10 Top-100 Mean

REINVENT 1 1 1 1 1 1 1
Graph GA 2 2 2 3 2 3 2.33

SELFIES-REINVENT 3 3 4 4 3 2 3.16
SMILES-LSTM-HC 5 6 7 2 4 4 4.66

GP BO 4 4 5 6 5 5 4.83
STONED 6 5 3 7 7 6 5.66
DoG-GEN 7 9 11 5 6 7 7.5

SMILES GA 9 7 6 10 8 8 8
DST 11 10 9 9 10 9 9.66

SynNet 8 8 8 11 11 14 10
SELFIES-LSTM-HC 13 14 13 8 9 11 11.33

MIMOSA 14 12 10 14 12 10 12
MARS 12 11 12 12 13 13 12.16

MolPAL 10 13 15 13 15 16 13.66
GA+D 23 17 14 15 14 12 15.83

DoG-AE 15 15 17 17 17 17 16.33
GFlowNet 20 16 16 19 16 15 17

SELFIES-VAE 16 18 21 16 18 21 18.33
Screening 17 19 19 18 19 19 18.5

SMILES-VAE 18 20 20 20 20 20 19.66
GFlowNet-AL 22 22 18 23 21 18 20.66

Pasithea 19 21 23 21 22 22 21.33
JT-VAE 21 23 22 22 23 23 22.33

Graph MCTS 24 24 24 24 24 24 24
MolDQN 25 25 25 25 25 25 25

Figure 1: The optimization curves of top-10 average on optimizing isomer_c9h10n2o2pf2cl and
celecoxib_rediscovery, as the representation of isomer-type and similarity-type oracles. Only 8
methods are displayed for clarity and full results are in the Appendix A.

3.2 Results & Analysis

The primary results are summarized in Table 2 and 3. For clarity, we only show the ten best-
performing models in the table. We show a selective set of optimization curves in Figure 1. The
remaining results are in the Appendix A and D.

Sample efficiency matters. A first observation from the results is that none of the methods we
implemented can optimize the simple toy objectives within hundreds of oracle calls under our experi-
mental settings, except some trivial ones like QED, DRD2, and osimertinib_mpo, which emphasize
the need for more efficient molecular optimization algorithms. By comparing the ranking of AUC
Top-10 and Top-10, we notice some methods have significantly different relative performances. For
example, SMILES LSTM HC, which used to be seen as comparable to Graph GA, actually requires
more oracle queries to achieve the same level of performance, while a related algorithm, REINVENT,
requires far fewer (see Figure 1). These differences indicate the training algorithm of REINVENT
is more efficient than HC, emphasizing the importance of AUC Top-10 as an evaluation metric. In
addition, methods that assemble molecules either token-by-token or atom-by-atom from a single
start point, such as GA+D, MolDQN, and Graph MCTS, are most data-inefficient. Those methods
potentially cover broader chemical space and include many undesired candidates, such as unstable
or unsynthesizable ones, which wastes a significant portion of the oracle budget and also imposes a
strong requirement on the oracles’ quality.

7



(a) Comparison between SMILES- and SELFIES-based
methods. Note GA is not a head-to-head comparison.

(b) Comparison between model-free and corresponding
model-based methods.

Figure 2: Each point represents the AUC Top-10 of one task, with x-axis the SMILES variant and
y-axis the SELFIES variant of the same method. Colors are labeled by the optimization algorithms.
The fractions of the tasks above the parity line are in parentheses.

Older algorithms are still powerful. As shown in Table 2 and 3, the best-performing algorithms are
REINVENT and Graph GA among all the compared methods, despite both of them being released
several years ago. However, we rarely see model development papers list these two methods as
baselines. The absence of a thorough benchmark has obfuscated the fact that newer models published
in top AI conferences do not seem to offer an improvement in performance by our metrics. Of course,
we should acknowledge that some of the methods are developed to solve other problems in molecular
optimization, such as strings’ validity or synthesizability, and some might have opened new avenues
to tackle the problem that could potentially be more efficient when mature. Still, some of the field’s
efforts and resources might be wasted due to a lack of a thorough and standardized benchmark.

There are no obvious shortcomings of SMILES. SELFIES was designed as a substitute of SMILES
to solve the syntactical invalidity problem met in SMILES representation and has been adopted by a
number of recent studies. However, our head-to-head comparison of string-based methods, especially
the ones leveraging language models, shows that most SELFIES variants cannot outperform their
corresponding SMILES-based methods in terms of optimization ability and sample efficiency (Figure
2a). We do observe some early methods like the initial version of SMILES VAE [6] (2016) and
ORGAN [31] (2017) struggle to propose valid SMILES strings, but this is not an issue for more
recent methods. We believe this is partially because current language models are better able to learn
the grammar of SMILES strings, which has flattened the advantage of SELFIES. Further, as shown
in Appendix D.1, more combinations of SELFIES tokens don’t necessarily explore larger chemical
space but might map to a small number of valid molecules that can be represented by truncated
SELFIES strings, which implies that there are still syntax requirements in generating SELFIES
strings to achieve effective exploration.

On the other hand, we observe a clear advantage of SELFIES-based GA compared to SMILES-based
one, which indicates that SELFIES has an advantage over SMILES when we need to design the
rules to manipulate the sequence. However, we should note that the comparison is not head-to-
head, as GAs’ performances highly depend on the mutation and crossover rule design, but not the
representation. Graph GA’s mutation rules are also encoded in SMARTS strings and operate on
SMILES strings, which can also be seen as SMILES modification steps. Overall, when we need to
design the generative action manually, the assembly strategy that could derive desired transformation
more intuitively should be preferred.

Model-based methods are potentially more efficient but need careful design. It is widely
recognized in the RL community that model-based optimization methods that explicitly leverage
a predictive model (“world model”) are more sample efficient than the model-free ones [60]. Our
results on MolPAL and screening verify the principle that training a predictive model is beneficial
compared to random sampling (see Figure 2b). However, the results of Graph GA (model-based
variant: GP BO) and GFlowNet (model-based variant: GFlowNet-AL) indicate that simply adding a
predictive model might not necessarily be helpful. GP BO outperformed Graph GA in 12 tasks among
23, but Graph GA outperformed GP BO in the summation. GFlowNet outperformed GFlowNet-AL
in almost every task. From the step-wise increment behavior (see Figure 1) and hyper-parameter

8



Figure 3: The heatmap and the
clustering of oracles based on rel-
ative AUC Top-10. Relative AUC
Top-10 is computed by normaliz-
ing AUC Top-10 values to a range
from the lowest and the highest
value within the task. The za-
leplon_mpo and sitagliptin_mpo
are multi-objective versions of iso-
mer functions [13], while all other
MPOs are based on similarity.
Clear patterns emerge between a
large cluster of similarity-based ora-
cles, four isomer-based oracles, and
other non-clustered ones. Different
types of landscape are more suit-
able for different kinds of methods
to explore. The cluster tree was cal-
culated with unweighted pair group
method with arithmetic mean (UP-
GMA) using Euclidean distance.

tuning of GP BO (Appendix D.2), we conclude that the performance bottleneck is mainly the quality
of the predictive model. Further, GFlowNet-AL adopts a relatively naive model-based strategy that
may suppress exploitation, especially when the model is not well-trained. Overall, we observe that
model-based optimization algorithms have the potential to be more sample efficient but require
careful design of the inner- and outer-loop optimization algorithms so the model does not lead the
search astray.

Different types of methods are more suitable for different kinds of landscapes. As shown
from Figure 3 and Table 2, we find that there are some clear clusters of oracles based on the
relative performance of methods. One clear pattern is that string-based GAs, such as SMILES GA
and STONED, reach superior relative performance in tasks involving isomer functions, including
isomer_c7h8n2o2, isomer_c9h10n2o2pf2cl, sitagliptin_mpo, and zaleplon_mpo. Isomer-type oracles
are summations of atomic contribution, while all other MPOs are mainly based on similarity measured
by fingerprints, and they generally have closer relative performance. Among similarity-based oracles,
the ones including logP and TPSA, such as fexofenadine_mpo and osimertinib_mpo, are clustered
together against more naive similarities such as the rediscovery and median ones. The machine
learning oracles predicting bioactivities belong to the same cluster of similarity-based oracles. While
QED is too trivial that almost all methods reach very close values, deco_hop, valsartan_smarts,
scaffold_hop that are designed based on whether a molecule contains a substructure have varied
performance. The results suggest that different types of landscape are better explored by different
kinds of methods, such as string-based GA on isomer-type oracles. It is not evident which type
of oracle is closest to a “true” pharmaceutical design objective, which is likely more complex and
challenging to optimize; we leave further investigation on oracle landscapes and their influence on
optimization to future work.

Hyperparameter reoptimization and multiple runs are required when reporting results. We
also observed that the optimal set of hyper-parameters is always not the default ones suggested by
a method’s original paper (see Appendix D.2). For example, REINVENT’s performance is highly
dependent on �; we found the best-performing value to be much larger than the values suggested
in the original paper (see Figure 15 and 14) [5]. We conclude that this is due to unique demands of
our setting of limited oracle budget, which was not a goal of the original study, and thus suggest
reoptimizing the hyper-parameters whenever the testing environment is changed. Another challenge
is the non-determinism of most algorithms. For example, Graph GA suffers from a relatively

9



large variance due to its random-walk-like exploration, as does GP BO. If the oracle were a costly
experimental evaluation, we might consider the worst-case performance as an endpoint to reduce the
risk rather than the average performance, highlighting the importance of running multiple independent
runs and reporting the distribution of outcomes.

4 Conclusions

This paper proposes PMO: a standardized molecular design benchmark focusing on sample efficiency as
a key impediment to experimental adoption. We conduct a thorough investigation across 25 methods
and 23 objectives to determine the current state-of-the-art, investigate problems, and draw insights
for future studies. Our primary observations are that (1) methods considered to be strong baselines,
like LSTM HC, may be inefficient in data usage; (2) several older methods, like REINVENT and
Graph GA, outperform more recent ones; (3) SELFIES does not seem to offer an immediate benefit
in optimization performance compared to SMILES except in GA; (4) model-based methods have the
potential to be more sample efficient but require careful design of the inner-loop, outer-loop, and the
predictive model; and (5) different optimization algorithms may excel at different tasks, determined
by the landscapes of oracle functions; which algorithm to select is still dependent on the use case and
the type of tasks.

We acknowledge several limitations of the current study: we cannot exhaustively explore every method
and thoroughly tune every hyperparameter, the representative methods we implement might not be the
best-in-class among all possible variants, our conclusion might be biased toward similarity-based ora-
cles, and we are not thoroughly investigating other important quantities such as synthesizability [61]
and diversity [14]. We also emphasize that our experiments consider the number of oracle calls
from scratch, i.e., the data used to train the surrogate models in model-based methods are counted
in the total budget. If a dataset has been collected previously, it may be prudent to train a surrogate
model on this information and use a model-based method as illustrated by Tripp et al. [15]. We
will support the continued development of this benchmark to minimize the wasted effort caused by
non-reproducibility and poor baselines to boost the field’s growth toward solving practical molecular
design problems.

We would like to conclude with recommendations for subsequent studies: (1) When comparing
baselines, it is important to run algorithms under the same oracle budgets; (2) For general-purpose
molecular design algorithms, one should test on multiple types of oracles; (3) Conducting multiple
independent runs and reporting the distribution of outcomes is critical for non-deterministic methods;
(4) Whenever the tasks and testing environment are changed, hyperparameter tuning is necessary.

Acknowledgments and Disclosure of Funding

This research was supported by the Office of Naval Research under grant number N00014-21-1-2195
and the Machine Learning for Pharmaceutical Discovery and Synthesis consortium. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the Office of Naval Research. W.G. received additional
funding from MIT-Takeda fellowship. T.F. and J.S. were supported by NSF award SCH-2205289,
SCH-2014438, IIS-1838042, NIH award R01 1R01NS107291-01. We thank Samuel Goldman and
John Bradshaw for commenting on the manuscript.

Reproducibility Statement

All code, parameters, and releasable data can be found at https://github.com/wenhao-gao/
mol_opt, including instructions in a README file. All results generated in this experi-
ment can be found at https://figshare.com/articles/dataset/Results_for_practival_
molecular_optimization_PMO_benchmark/20123453. Appendix B describe the experimental
setup, implementation details, datasets used, and hardware configuration.

10



References
[1] Jan H Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search

for the exploration of chemical space. Chemical science, 10(12):3567–3572, 2019.

[2] Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li. MARS:
Markov molecular sampling for multi-objective drug discovery. In ICLR, 2021.

[3] David E Graff, Eugene I Shakhnovich, and Connor W Coley. Accelerating high-throughput
virtual screening through molecular pool-based active learning. Chemical science, 12(22):7866–
7881, 2021.

[4] Francesco Gentile, Jean Charle Yaacoub, James Gleave, Michael Fernandez, Anh-Tien Ton,
Fuqiang Ban, Abraham Stern, and Artem Cherkasov. Artificial intelligence–enabled virtual
screening of ultra-large chemical libraries with deep docking. Nature Protocols, pages 1–26,
2022.

[5] Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
design through deep reinforcement learning. Journal of cheminformatics, 9(1):1–14, 2017.

[6] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS central science, 2018.

[7] Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational
autoencoder. In International Conference on Machine Learning, pages 1945–1954. PMLR,
2017.

[8] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. ICML, 2018.

[9] Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik.
Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation.
Machine Learning: Science and Technology, 1(4):045024, 2020.

[10] Yoshua Bengio, Tristan Deleu, Edward J. Hu, Salem Lahlou, Mo Tiwari, and Emmanuel Bengio.
GFlowNet foundations. CoRR, abs/2111.09266, 2021.

[11] John Bradshaw, Brooks Paige, Matt J Kusner, Marwin Segler, and José Miguel Hernández-
Lobato. Barking up the right tree: an approach to search over molecule synthesis dags. Advances
in Neural Information Processing Systems, 33:6852–6866, 2020.

[12] Wenhao Gao, Rocío Mercado, and Connor W Coley. Amortized tree generation for bottom-up
synthesis planning and synthesizable molecular design. International Conference on Learning
Representations, 2022.

[13] Nathan Brown, Marco Fiscato, Marwin HS Segler, and Alain C Vaucher. GuacaMol: bench-
marking models for de novo molecular design. Journal of chemical information and modeling,
59(3):1096–1108, 2019.

[14] Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W
Coley, Cao Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics data commons: Machine
learning datasets and tasks for therapeutics. NeurIPS Track Datasets and Benchmarks, 2021.

[15] Austin Tripp, Gregor NC Simm, and José Miguel Hernández-Lobato. A fresh look at de novo
molecular design benchmarks. In NeurIPS 2021 AI for Science Workshop, 2021.

[16] Zhenpeng Zhou, Steven Kearnes, Li Li, Richard N Zare, and Patrick Riley. Optimization of
molecules via deep reinforcement learning. Scientific reports, 9(1):1–10, 2019.

[17] AkshatKumar Nigam, Pascal Friederich, Mario Krenn, and Alán Aspuru-Guzik. Augmenting
genetic algorithms with deep neural networks for exploring the chemical space. In ICLR, 2020.

11



[18] Sai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao
Liu, Simon Blackburn, Karam Thomas, Connor Coley, Jian Tang, et al. Learning to navigate
the synthetically accessible chemical space using reinforcement learning. In International
Conference on Machine Learning, pages 3668–3679. PMLR, 2020.

[19] Ksenia Korovina, Sailun Xu, Kirthevasan Kandasamy, Willie Neiswanger, Barnabas Poczos,
Jeff Schneider, and Eric Xing. ChemBO: Bayesian optimization of small organic molecules
with synthesizable recommendations. In International Conference on Artificial Intelligence and
Statistics, pages 3393–3403. PMLR, 2020.

[20] Tianfan Fu, Wenhao Gao, Cao Xiao, Jacob Yasonik, Connor W Coley, and Jimeng Sun.
Differentiable scaffolding tree for molecular optimization. International Conference on Learning
Representations, 2022.

[21] Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34, 2021.

[22] Natalie Maus, Haydn T Jones, Juston S Moore, Matt J Kusner, John Bradshaw, and Jacob R
Gardner. Local latent space bayesian optimization over structured inputs. arXiv preprint
arXiv:2201.11872, 2022.

[23] Antoine Grosnit, Rasul Tutunov, Alexandre Max Maraval, Ryan-Rhys Griffiths, Alexander I
Cowen-Rivers, Lin Yang, Lin Zhu, Wenlong Lyu, Zhitang Chen, Jun Wang, et al. High-
dimensional Bayesian optimisation with variational autoencoders and deep metric learning.
arXiv preprint arXiv:2106.03609, 2021.

[24] G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90, 2012.

[25] Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay Pande, and Jure Leskovec. Graph convolutional
policy network for goal-directed molecular graph generation. Advances in neural information
processing systems, 31, 2018.

[26] Regine S Bohacek, Colin McMartin, and Wayne C Guida. The art and practice of structure-
based drug design: a molecular modeling perspective. Medicinal research reviews, 16(1):3–50,
1996.

[27] Brian Goldman, Steven Kearnes, Trevor Kramer, Patrick Riley, and W Patrick Walters. Defining
levels of automated chemical design. Journal of Medicinal Chemistry, 2022.

[28] Wenhao Gao, Priyanka Raghavan, and Connor W Coley. Autonomous platforms for data-driven
organic synthesis. Nature Communications, 13(1):1–4, 2022.

[29] AkshatKumar Nigam, Robert Pollice, Mario Krenn, Gabriel dos Passos Gomes, and Alan
Aspuru-Guzik. Beyond generative models: superfast traversal, optimization, novelty, explo-
ration and discovery (STONED) algorithm for molecules using SELFIES. Chemical science,
12(20):7079–7090, 2021.

[30] Henry Moss, David Leslie, Daniel Beck, Javier Gonzalez, and Paul Rayson. BOSS: Bayesian
optimization over string spaces. Advances in neural information processing systems, 33:15476–
15486, 2020.

[31] Benjamin Sanchez-Lengeling, Carlos Outeiral, Gabriel L Guimaraes, and Alan Aspuru-Guzik.
Optimizing distributions over molecular space. an objective-reinforced generative adversarial
network for inverse-design chemistry (ORGANIC). 2017.

[32] Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model for small molecular
graphs. arXiv preprint arXiv:1805.11973, 2018.

[33] Tianfan Fu, Cao Xiao, Xinhao Li, Lucas M Glass, and Jimeng Sun. MIMOSA: Multi-constraint
molecule sampling for molecule optimization. AAAI, 2021.

12



[34] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Multi-objective molecule generation
using interpretable substructures. In International Conference on Machine Learning, pages
4849–4859. PMLR, 2020.

[35] Soojung Yang, Doyeong Hwang, Seul Lee, Seongok Ryu, and Sung Ju Hwang. Hit and lead
discovery with explorative RL and fragment-based molecule generation. Advances in Neural
Information Processing Systems, 34, 2021.

[36] Julien Horwood and Emmanuel Noutahi. Molecular design in synthetically accessible chemical
space via deep reinforcement learning. ACS omega, 5(51):32984–32994, 2020.

[37] Cynthia Shen, Mario Krenn, Sagi Eppel, and Alan Aspuru-Guzik. Deep molecular dreaming:
Inverse machine learning for de-novo molecular design and interpretability with surjective
representations. Machine Learning: Science and Technology, 2021.

[38] David Weininger. SMILES, a chemical language and information system. 1. Introduction to
methodology and encoding rules. Journal of chemical information and computer sciences,
28(1):31–36, 1988.

[39] Jakob Lykke Andersen, Christoph Flamm, Daniel Merkle, and Peter F Stadler. Chemical graph
transformation with stereo-information. In International Conference on Graph Transformation,
pages 54–69. Springer, 2017.

[40] Lagnajit Pattanaik, Octavian-Eugen Ganea, Ian Coley, Klavs F Jensen, William H Green, and
Connor W Coley. Message passing networks for molecules with tetrahedral chirality. arXiv
preprint arXiv:2012.00094, 2020.

[41] Keir Adams, Lagnajit Pattanaik, and Connor W Coley. Learning 3D representations of molecular
chirality with invariance to bond rotations. International Conference on Learning Representa-
tions, 2022.

[42] Teague Sterling and John J Irwin. ZINC 15–ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324–2337, 2015.

[43] Fredrik Svensson, Ulf Norinder, and Andreas Bender. Improving screening efficiency through
iterative screening using docking and conformal prediction. Journal of chemical information
and modeling, 57(3):439–444, 2017.

[44] José Miguel Hernández-Lobato, James Requeima, Edward O Pyzer-Knapp, and Alán Aspuru-
Guzik. Parallel and distributed Thompson sampling for large-scale accelerated exploration of
chemical space. In International conference on machine learning, pages 1470–1479. PMLR,
2017.

[45] Laeeq Ahmed, Valentin Georgiev, Marco Capuccini, Salman Toor, Wesley Schaal, Erwin Laure,
and Ola Spjuth. Efficient iterative virtual screening with Apache Spark and conformal prediction.
Journal of cheminformatics, 10(1):1–8, 2018.

[46] Francesco Gentile, Vibudh Agrawal, Michael Hsing, Anh-Tien Ton, Fuqiang Ban, Ulf Norinder,
Martin E Gleave, and Artem Cherkasov. Deep docking: A deep learning platform for augmenta-
tion of structure based drug discovery. ACS central science, 6(6):939–949, 2020.

[47] David E Graff, Matteo Aldeghi, Joseph A Morrone, Kirk E Jordan, Edward O Pyzer-Knapp,
and Connor W Coley. Self-focusing virtual screening with active design space pruning. arXiv
preprint arXiv:2205.01753, 2022.

[48] Naruki Yoshikawa, Kei Terayama, Masato Sumita, Teruki Homma, Kenta Oono, and Koji Tsuda.
Population-based de novo molecule generation, using grammatical evolution. Chemistry Letters,
47(11):1431–1434, 2018.

[49] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking
the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE,
104(1):148–175, 2015.

13



[50] Marc Deisenroth and Jun Wei Ng. Distributed Gaussian processes. In International Conference
on Machine Learning, pages 1481–1490. PMLR, 2015.

[51] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. International Confer-
ence on Learning Representations (ICLR), 2014.

[52] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham,
Andrew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo
Bayesian Optimization. Advances in neural information processing systems, 33, 2020.

[53] Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov,
Oktai Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy,
Mark Veselov, et al. Molecular sets (MOSES): A benchmarking platform for molecular
generation models. Frontiers in pharmacology, 2020.

[54] Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134(1):19–67, 2005.

[55] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3):229–256, 1992.

[56] Austin Tripp, Wenlin Chen, and José Miguel Hernández-Lobato. An evaluation framework for
the objective functions of de novo drug design benchmarks. In ICLR2022 Machine Learning
for Drug Discovery, 2022.

[57] Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design with
conditional graph generative model. Journal of cheminformatics, 10(1):1–24, 2018.

[58] Tobiasz Cieplinski, Tomasz Danel, Sabina Podlewska, and Stanislaw Jastrzebski. We should at
least be able to design molecules that dock well. arXiv preprint arXiv:2006.16955, 2020.

[59] Miguel García-Ortegón, Gregor NC Simm, Austin J Tripp, José Miguel Hernández-Lobato,
Andreas Bender, and Sergio Bacallado. DOCKSTRING: Easy molecular docking yields better
benchmarks for ligand design. Journal of Chemical Information and Modeling, 2021.

[60] Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois,
Shunshi Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based
reinforcement learning. arXiv preprint arXiv:1907.02057, 2019.

[61] Wenhao Gao and Connor W Coley. The synthesizability of molecules proposed by generative
models. Journal of chemical information and modeling, 60(12):5714–5723, 2020.

[62] Michalis Titsias. Variational learning of inducing variables in sparse Gaussian processes. In
Artificial intelligence and statistics, pages 567–574. PMLR, 2009.

[63] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[64] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2014.

[65] Aditya R Thawani, Ryan-Rhys Griffiths, Arian Jamasb, Anthony Bourached, Penelope Jones,
William McCorkindale, Alexander A Aldrick, and Alpha A Lee. The photoswitch dataset: a
molecular machine learning benchmark for the advancement of synthetic chemistry. arXiv
preprint arXiv:2008.03226, 2020.

[66] Alice Capecchi, Daniel Probst, and Jean-Louis Reymond. One molecular fingerprint to rule
them all: drugs, biomolecules, and the metabolome. Journal of cheminformatics, 12(1):1–15,
2020.

[67] Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A Hunter,
Costas Bekas, and Alpha A Lee. Molecular transformer: A model for uncertainty-calibrated
chemical reaction prediction. ACS central science, 5(9):1572–1583, 2019.

14



[68] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

[69] Gabriel Lima Guimaraes, Benjamin Sanchez-Lengeling, Carlos Outeiral, Pedro Luis Cunha
Farias, and Alán Aspuru-Guzik. Objective-reinforced generative adversarial networks (ORGAN)
for sequence generation models. arXiv preprint arXiv:1705.10843, 2017.

[70] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

[71] Choon Hui Teo and S.V.N. Vishwanathan. Fast and space efficient string kernels using suffix
arrays. In Proceedings of the 23rd international conference on Machine learning, pages
929–936, 2006.

[72] Lukas Biewald. Experiment tracking with weights and biases, 2020. Software available from
wandb.com.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 4.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] All code,
parameters, and releasable data can be found at https://github.com/wenhao-gao/
mol_opt, including instructions in a README file. Appendix B describe the experi-
mental setup, implementation details, datasets used, and hardware configuration.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Please see Section B.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Please see Table 2.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Please see Section C.2.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes] Please see Section C.3 for details.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We release the code repository at https://github.com/wenhao-gao/mol_opt,
including instructions in a README file. Appendix B and C describe the experimental
setup, implementation details, datasets used, and hardware configuration.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] All the data/codes we use are publicly available. Please see
Section B for details.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Our paper does not involve human subjects
research. It also does not contain any personally identifiable information or offensive
content.

15



5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

16


