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Abstract

How can we trust the correctness of a learned
model on a particular input of interest? Model
accuracy is typically measured on average over a
distribution of inputs, giving no guarantee for any
fixed input. This paper proposes a theoretically-
founded solution to this problem: to train Self-
Proving models that prove the correctness of their
output to a verification algorithm V' via an In-
teractive Proof. We devise a generic method for
learning Self-Proving models, and we prove con-
vergence bounds under certain assumptions. As
an empirical exploration, our learning method
is used to train a Self-Proving transformer that
computes the Greatest Common Divisor (GCD)
and proves the correctness of its answer. Our
code is available here.

1. Introduction

Bob is studying for his algebra exam and stumbles upon a
question () that he cannot solve. He queries a Large Lan-
guage Model (LLM) for the answer, and it responds with a
number: 42. Bob is aware of recent research showing that
the LLM attains a 90% score on algebra benchmarks (cf.
Frieder et al. 2023), but should he trust that the answer to
his particular question () is indeed 42?

Bob could ask the LLM to explain its answer in natural lan-
guage. Though he must proceed with caution, as the LLM
might try to convince him of an incorrect answer (Turpin
et al., 2023). Moreover, even if 42 is the correct answer, the
LLM may fail to produce a convincing proof (Wang et al.,
2023). If only the LLM could formally prove its answer,
Bob would verify the proof and be convinced.

This paper initiates the study of Self-Proving models (Fig-
ure 1) that prove the correctness of their answers via an
Interactive Proof system (Goldwasser et al., 1985). Self-
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Proving models successfully convince a verification algo-
rithm V' with worst-case soundness guarantees: for any
question, V' rejects all incorrect answers with high prob-
ability over the interaction. This guarantee holds even
against provers that have access to V’s specification, and
unbounded computational power.
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Figure 1. Self-Proving models. For input x, Self-Proving model
Py generates an output y and sends it to a Verification Algorithm
V. Then, over i € [R] rounds, V' sends query g;, and receives an
answer a; from Py. Finally, V' decides (“accept/reject”) whether
it is convinced that y is a correct output for x.

Table 1. Self-Proving transformers computing the GCD. We
train a 6.7M parameter GPT to compute the GCD of two integers
sampled log-uniformly from [10*]. Vanilla GPT correctly gener-
ates the GCD for almost all inputs, but does not prove correctness
to a simple verification algorithm. GPT trained with Transcript
Learning (GPT+TL) proves its answer 60.3% of the time; training
with Annotated Transcript Learning (GPT+ATL) increases this to
96.7%. See Appendix G for more details.

LEARNING METHOD CORRECTNESS  VERIFIABILITY
GPT (BASELINE) 99.8% -
GPT+TL 98.8% 60.3%
GPT+ATL 98.6% 96.7%

2. Self-Proving models

We introduce and formally define our learning framework
in which models prove the correctness of their output. We
start with preliminaries from the learning theory and proof
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systems literatures in Section 2.1. We then introduce our
main definition in Section 2.2.

2.1. Preliminaries

Let X be a finite set of tokens and X* denote the set of
finite sequences of such tokens. We consider sequence-to-
sequence models Fy: ¥* — X*, which are total functions
that produce an output for each possible sequence. A model
is parameterized by a real-valued, finite dimensional vector
6. We consider models as randomized functions, meaning
that Fy () is a random variable over ¥*, of which samples
are denoted by y ~ Fy(x).

Before we can define models that prove their own correct-
ness, we must first define correctness. Correctness is de-
fined with respect to an input distribution x over ¥*, and
a ground-truth F'* that defines correct answers. For sim-
plicity of presentation, we focus on the case that each input
x € ¥* has exactly one correct output F™*(z) € ¥*, and
a zero-one loss function on outputs (the general case is left
for future work). The fundamental goal of machine learn-
ing can be thought of as learning a model of the ground-
truth F'*. Formally,

Definition 2.1 (Correctness). Let p be a distribution of in-
put sequences in X* and let F™*: ¥X* — ¥* be a fixed (de-
terministic) ground-truth function. For any o € [0, 1], we
say that model Fy is a-correct (with respect to p) if

Pr [y=F*"(2)] > a.

T
y~Fo(z)

An interactive proof system (Goldwasser et al., 1985) is
a protocol carried out between an efficient verifier and a
computationally unbounded prover. The prover attempts to
convince the verifier of the correctness of some assertion,
while the verifier accepts only correct claims. The prover
is powerful yet untrusted; in spite of this, the verifier must
reject false claims with high probability.

In the context of this work, it is important to note that the
verifier is manually-defined (as opposed to learned). For-
mally, the verifier is a probabilistic polynomial-time algo-
rithm tailored to a particular ground-truth capability F'*.
Informally, the verifier is the anchor of trust: think of the
verifier as an efficient and simple algorithm, hosted in a
trustworthy environment.

Given an input € X*, the model Fy “claims” that y ~
Fp(x) is correct. We now define what it means to prove
this claim. We will use Py to denote Self-Proving models,
noting that they are formally the same object! as non-Self-
Proving (“vanilla”) models Fy. This notational change is
to emphasize that Py first outputs y ~ Py(x) and is then

'Both are randomized mappings from ©* to ¥*.

prompted by the verifier, unlike Fy who only generates an
output y ~ Fy(x).

A Self-Proving model proves that y ~ Py(z) is correct
to a verifier V' over the course of R rounds of interaction
(Figure 1). In each round ¢ € [R], verifier V queries Py on
a sequence ¢; € X* to obtain an answer a; € %*; once the
interaction is over, V' accepts or rejects. For fixed z,y €
3%, the decision of V after interacting with Py is a random
variable over V’s decision (accept/reject), determined by
the randomness of V' and Py. The decision random variable
is denoted by (V, Pyp) (z,y).

We present a definition of Interactive Proofs restricted to
our setting.

Definition 2.2. Fix a soundness error s € (0,1), a finite
set of tokens X and a ground-truth F*: ¥* — ¥*. A
verifier V (in an Interactive Proof) for F'* is a probabilis-
tic polynomial-time algorithm that is given explicit inputs
x,y € ¥* and black-box (oracle) query access to a prover
P. Ttinteracts with P over R rounds (see Figure 1) and out-
puts a decision (V, P) (x,y) € {0,1}. Verifier V satisfies
the following two guarantees:

* Completeness: There exists an honest prover P* such
that, for all x € X*,

Pr[(V, P*)(x, F*(x)) accepts] = 1,
where the probability is over the randomness of V.

e Soundness: For all P and for all z,y € X*, if y #
F*(z) then

Pr[{V, P) (x,y) accepts] < s,

where the probability is over the randomness of V' and
P, and s is the soundness error.

The efficiency of an interactive proof is usually measured
with respect to four parameters: the round complexity R,
the communication complexity (the overall number of bits
transferred during the interaction), P’s efficiency and Vs
efficiency. These complexity measures scale with the com-
putational complexity of computing the ground-truth F'*,
e.g., an interactive proof for a complex F'* may require
multiple rounds of interaction.

Remark 2.3 (Verifier efficiency). Definition 2.2 requires
that V' is a polynomial-time algorithm whereas provers are
unbounded. This captures a requirement for efficient ver-
ification. We chose polynomial time as a measure of effi-
ciency because it is common Proof systems literature. That
said, one could adapt Definition 2.2 to fit alternative ef-
ficiency measures, such as space complexity (Condon &
Lipton, 1989) or circuit depth (Goldwasser et al., 2007).
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Regardless of which measure is taken, to avoid a trivial def-
inition it is crucial that V' should be more efficient than the
honest prover P*; else, V' can simply execute P* to per-
form the computation itself.

By definition, the soundness error s of a verifier V' bounds
the probability that it is mistakenly convinced of an incor-
rect output; in that sense, the smaller s, the “better” the
verifier V. In our setting, we think of a manually-defined
verifier V' who is formally proven (by a human) to have a
small soundness error by analysis of Vs specification.

As depicted in Figure 1, each of the model’s answers de-
pends on all previous queries and answers in the interac-
tion. This captures the setting of stateful models, e.g. a
session with a chatbot.

Towards defining Self-Proving models (Section 2.2), let us
observe the following. Completeness and soundness are
worst-case guarantees, meaning that they hold for all pos-
sible inputs * € X*. In particular, completeness implies
that for all x € X*, the honest prover P* convinces V' of
the correctness of F'*(x); in classical proof systems there is
no guarantee that an “almost honest” prover can convince
the verifier (cf. Paradise 2021). Yet, if we are to learn a
prover Py, we cannot expect it to agree with P* perfectly,
nor can we expect it to always output F*(z). Indeed, Self-
Proving models will have a distributional guarantee with
respect to inputs T ~ .

2.2. Self-Proving models

We define the Verifiability of a model Py with respect to an
input distribution x4 and a verifier V. Intuitively, Verifiabil-
ity captures the ability of the model to prove the correctness
of its answer y ~ Py(z), when the input  is sampled from
1. We call models capable of proving their own correctness
as Self-Proving models. Notice that, as in Definition 2.2,
the verifier is fixed and agnostic to the choice of the Self-
Proving model.

Definition 2.4 (Self-Proving model). Fix a verifier V' for
a ground-truth F*: ¥* — ¥* as in Definition 2.2, and a
distribution p over inputs 3*. The Verifiability of a model
Py: ¥* — X" is defined as

verv,(6) = Pr [(V.Fy) (a.y) accepts]. (1)
y~Po(x)

We say that model Pp is S-Self-Proving with respect to V/
and p if very,,(0) > 5.

Remark 2.5 (Verifiability = correctness). Notice that
the ground-truth F'* does not appear in Definition 2.4 ex-
cept for the first sentence. Indeed, once it is established
that V' is a verifier for F'* (as per Definition 2.2), then Veri-
fiability w.r.t V implies correctness w.r.t F'*: Consider any
input distribution p, ground-truth F'*, and a verifier V' for

F* with soundness error s. By a union bound, if model P
is 8- Verifiable, then it is (3 — s)-correct. That is to say, Ver-
ifiability is formally a stronger guarantee than correctness
when V' has small soundness error s.

As depicted in Figure 1, a Self-Proving model Py plays a
dual role: first, it generates an output y ~ Py(x), and then
it proves the correctness of this output to V. Note also that
Self-Provability is a feature of a model, unlike complete-
ness and soundness which are features of a verifier.

The benefit of Verifiability over correctness is captured by
the following scenario. Alice wishes to use a model Py to
compute some functionality F'* on an input z in a high
risk setting. Alice generates yo ~ FPy(xg). Should Alice
trust that v is correct? If Alice has a held-out set of labeled
samples, she can estimate Pp’s average correctness on L.
Unfortunately, (average) correctness provides no guarantee
regarding the correctness of the particular (zo, yo) that Al-
ice has in hand. If, however, Alice has access to a verifier V'
for which Py is Self-Proving, then she can trust the model
on an input-by-input (rather than average-case) basis: Al-
ice can execute V on (z9, yp) and black-box access to Py.
Soundness of V' guarantees that if yq is incorrect, then V'
rejects with high probability, in which case Alice should
either generate Py(xz() again—or find a better model.

3. Learning Self-Proving Autoregressive
Models

With a sound verifier V' at hand, obtaining Self-Proving
models with respect to V' holds great promise: a user that
prompts the model with input = does not need to take it
on good faith that Py(x) is correct; she may simply verify
this herself by executing the verification protocol. How,
then, can we learn models that are not just approximately-
correct, but Self-Proving as well?

The challenge is to align the model with a verifier. We as-
sume that the learner has access to input samples  ~ p and
correct outputs F*(z), as well as the verifier specification
(code). Additionally, the learner can emulate the verifier,
as the latter is computationally efficient (Remark 2.3).

Our focus is on autoregressive sequence-to-sequence (Self-
Proving) models Py. Such models generate their output by
recursively prompting a randomized sampling from a base
distribution py over tokens Y. For an input z € X*, the
output w ~ Py(z) is generated as follows:

* Sample wy ~ py(2).

* Let j = 1. While wy is not the end-of-sequence token
EOS € ¥*:
— Sample wj 1 ~ pg(zws - - - wy).
— Update j =75 + 1.
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* Output w = wyws - - - w;j.

For any z € ¥*, it is useful to consider the vector of log-
proabilities over ¥, denoted by log py(z) € RI*I. We as-
sume that each coordinate in this vector is differentiable
with respect to 6.

Our general approach is inspired by Reinforcement Learn-
ing from Human Feedback (Christiano et al., 2017), a
method for aligning models with human preferences, which
has recently been used to align sequence-to-sequence mod-
els (Ouyang et al., 2022). However, there are two important
differences between humans and algorithmic verifiers: (1)
Verifiers are efficient algorithms which may be emulated
by the learner. This is unlike humans, whose preferences
are costly to obtain. On the other hand, (2) verifiers make
a single-bit decision at the end of an interaction, but can-
not guide the prover (model) in intermediate rounds. In RL
terms, this is known as the exploration problem for sparse
reward signals (e.g. Ladosz et al. 2022).

Section 3.1 introduces Transcript Learning (TL), a learn-
ing algorithm that overcomes the exploration problem men-
tioned in the second point under the assumption that the
learner has access to transcripts of interactions in which the
verifier accepts. We prove convergence bounds for TL (Ap-
pendix B.1) and analyze it experimentally (Appendix G).

Access to accepting transcripts is a reasonable assumption,
for example, when there is an efficient honest prover that
can generate such transcripts (Goldwasser et al., 2015).
When there is no access to accepting transcripts, we pro-
pose Reinforcement Learning from Verifier Feedback (Sec-
tion 3.2).

3.1. Transcript Learning

We present an algorithm for learning Self-Proving models
which uses access to a distribution of accepting transcripts.
This is a reasonable assumption to make when the honest
prover P* (see Definition 2.2) is efficient, as in the case of
Doubly-Efficient Interactive Proof systems as defined by
Goldwasser et al. (2015) and developed in other theoreti-
cal (e.g. Goldreich & Rothblum 2018) and applied (e.g.
Zhang et al. 2021) works. In this case, an honest prover P*
can be run by the learner during training to collect accept-
ing transcripts without incurring heavy computational cost.
Alternatively, the learner may collect a dataset of accepting
transcripts prior to learning.

The intuition behind Transcript Learning is that the interac-
tion of the verifier and prover can be viewed as a sequence
itself, which is called the transcript m € ¥*. The idea is to
learn a model not just of  — y* for a correct output y*,
but of x — y*7*, where 7* is a transcript of an interaction
in which the verifier accepted.

In more detail, Transcript Learning requires access to an
(honest) transcript generator T*. Given an input x, the
generator 7 *(x) samples a sequence P*(z)m* € ¥* such
that 7* is an accepted transcript. The generator is autore-
gressive, meaning that for any prefix of an accepted tran-
script 7%, € Y, the learner has access to the distribution
over next tokens 7*(m<;) € £.2

Transcript Learning (TL) trains a Self-Provable model by
autoregressively optimizing towards generating accepting
transcripts. It is described in Algorithm 1. At a very high
level, it works by repeatedly sampling x ~ p and transcript
y*r* ~ T*(x), and updating the logits logpy towards
agreeing with y*7* via Gradient Ascent. We prove that,
under certain conditions, it is expected to output a Self-
Provable model.

Theorem 3.1 (Theorem B.5, informal). Fix an input dis-
tribution p, a verifier V, a transcript generator T *, an au-
toregressive model family { Py}g parameterized by 6 € R?
for some d € N, and a norm || - || on R%. Assume that the
agreement function A: R? — [0, 1] defined by

A(0) = T,PVI}.L [Transcript((V, Py) (x)) = 7]

T ()

is concave and differentiable in 6. For any € > 0, let
Byorm,» Buip and C be upper-bounds such that the follow-
ing conditions hold.

o There exists 0* € R with ||0*|| < BNorm such that
AB*)>1—¢/2

e For all 8, the logits of Py are By ,-Lipschitz in 6.

* The total number of tokens sent by the prover to the
verifier V in any interaction is at most C.

Denote by 0 the output of TL running for number of itera-
tions N where
B2 - B2,
2 Norm Lip
N>4-C°- — a2 2)

and learning rate A = BNorm/ CBLip\/]v . Then the ex-
pected Verifiability of 0 is at least 1 — .

The proof (Appendix B) goes by reduction to Stochastic
Gradient Descent (SGD). We show that the learner can use
only its available tools—sampling honest transcripts, em-
ulating the verifier, and differentiating the logits—to esti-
mate the agreement gradient V A(6). Since the agreement
A(0) lower bounds the Verifiability of Py, the former can
be used as a surrogate objective for the latter.

*Formally, if the generator is prompted with any string that
cannot be completed to an accepted transcript, it outputs a dummy
symbol L € X.
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The conditions for Theorem 3.1 can be split into two. First,
the standard conditions used to prove SGD convergence:
convexity,3 Bnorm-boundedness, and Br,;,-Lipschitzness.
Second, there is a bound C' on the communication com-
plexity of the prover in the Interactive Proof system.

Quantitatively, the efficiency of TL is captured by the num-
ber of iterations N. It is desirable to minimize N, which
is also the number of samples needed from the distribu-
tion p and the transcript generator 7 *. Like the condi-
tions on the theorem, the bound on N can too be decom-
posed into two factors: The right factor is the complex-
ity of SGD (BR o Bt /€%), and the left factor O(C?) is
the communication complexity of the proof system. Min-
imizing communication complexity has been an overarch-
ing goal in the study of proof systems (e.g. Goldreich &
Hastad 1998; Goldreich et al. 2002; Reingold et al. 2021).
Theorem 3.1 formally shows the benefit of communication-
efficient proof systems in the context of Self-Proving mod-
els.

3.2. Reinforcement Learning from Verifier Feedback
(RLVF)

As mentioned in Section 3.1, Transcript Learning uses ac-
cess to an honest transcript generator to estimate gradients
of (a lower bound on) the Verifiability of a model Py.

Reinforcement Learning from Verifier Feedback (RLVE, Al-
gorithm 2) estimates this gradient without access to a tran-
script generator. RLVF can be viewed as a modification of
TL in which the learner emulates the interaction of the ver-
ifier with its own model P,. Rather than directly sampling
from the generator as in TL, it collects accepting transcripts
by rejection sampling on emulated transcripts.

This rejection sampling means that RLVF requires its initial
model Py, to have Verifiability bounded away from 0, so
that accepting transcripts are sampled with sufficient prob-
ability. Fortunately, such a Self-Proving base model can be
learned using TL. This gives a learning paradigm in which
a somewhat-Self-Proving base model is first learned with
TL (with Verifiability 6 > 0), and then “amplified” to a
fully Self-Proving model using RLVF (cf. Nair et al. 2018).

We prove that RLVF learner can estimate the Verifiability
gradient of Py using emulation alone in Lemma B.6. From
a broader perspective, RLVF can be derived by viewing
Self-Proving as a reinforcement learning problem in which
the agent (prover) is rewarded when the verifier accepts.
Indeed, RLVF is the Policy Gradient method (Sutton et al.,
1999) for a verifier-induced reward. Convergence bounds
for Policy Gradient methods are a challenging and active

3Theorem 3.1 requires concavity because it guarantees maxi-
mization, rather than minimization. We leave it for future work to
relax the differentiability assumption.

area of research (e.g. Agarwal et al. 2021), and so we leave
the full analysis to future work.

3.3. Learning from annotated transcripts

To minimize the length of messages exchanged in an In-
teractive Proof system, the honest prover is designed to
send the shortest possible message to the verifier, contain-
ing only essential information.

However, when training Self-Proving model, it may be use-
ful for it to first generate an “annotated” answer a which
is then trimmed down to the actual answer a to be sent
to the verifier. We adapt Sections 2 and 3 to this setting
in Appendix D, where we present Annotated Transcripts.
This can be viewed as adding Chain-of-Thought (Wei et al.,
2022) to the model. The Transcript Learning algorithm nat-
urally extends to annotated transcripts as well.

4. Conclusions

Trust between a learned model and its user is fundamen-
tal. In recent decades, Interactive Proofs (Goldwasser et al.,
1985) have emerged as a general theory of trust established
via verification algorithms. This work demonstrates that
models can learn to formally prove their answers in an In-
teractive Proof system. We call models that possess this
capability Self-Proving.

Self-Proving models form a bridge between the rich the-
ory of Interactive Proofs and the contemporary topic of
Trustworthy ML. Interactive Proofs offer formal worst-
case guarantees; thus, users of Self-Proving models can
be confident when their models generate correct answers—
and detect incorrect answers with high probability.

We demonstrate the theoretical viability of our definition
with two generic learning algorithms: Transcript Learning
(TL) and Reinforcement Learning from Verifier Feedback
(RLVF). The analyses of these algorithms is informed by
techniques from theories of learning, RL, and computa-
tional complexity. This work can be extended in several
directions: finding conditions for the convergence of RLVF,
improving sample complexity bounds for TL, or designing
altogether different learning algorithms (for example, by
taking advantage of properties of the verifier).

To better understand the training dynamics of (Annotated)
TL, we train Self-Proving transformers for the Greatest
Common Divisor (GCD) problem. We train a small (6.3M
parameter) transformer that learns to generate correct an-
swers and proofs with high accuracy. Facing forward, we
note that Interactive Proofs exist for capabilities far more
complex than the GCD (Shamir, 1992); scaling up our ex-
periments is the next step towards bringing Self-Proving
models from theory to practice.
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Scope, Limitations, and Social Impact

Scope. This paper contains a theory of learned models that prove their own correctness via an Interactive Proof system.
The fascinating and well-studied question of which settings are verifiable in an Interactive Proof system is beyond our
scope. Our theory is general in that it pertains to any such setting, e.g., any decision problem solvable in polynomial space
(Shamir, 1992). See Goldreich (2008) for a primer on Proof systems more broadly.

Limitations. Our experiments are focused on a single ground-truth capability, namely, computing the GCD. Yet, the
theoretical portion of our work holds for any ground-truth F* that admits an Interactive Proof system. Training large
Self-Proving models for more complex ground-truths will likely pose additional practical learning challenges. With that
said, we stress that generating accepting transcripts for use in Transcript Learning is distinct from these learning challenges.
Collecting accepting transcripts is a purely computational task, and can even be done “offline” prior to the model’s training.

Additionally, in our current learning methods, each individual ground-truth capability requires training a separate Self-
Proving model. It would be interesting to adapt our definition and methods to deal with a single generalist Self-Proving
model that proves its correctness to multiple verifiers of different ground-truths.

Social Impacts. This work proposes a theoretically-grounded approach to enhancing trust in learned models. By ensuring
that models not only generate outputs but also prove their correctness to a verification algorithm, we tackle fundamental
issues of trust and accountability in machine learning.

Self-Proving models build trust between models and users by offering formal worst-case soundness guarantees. This is
particularly beneficial in high-stakes applications, such as healthcare and finance, where incorrect outputs can have severe
consequences. The ability to verify correctness on a per-instance basis helps prevent potentially harmful decisions. It
allows any user to decide for herself whether she trusts a particular output generated by the model, rather than relying on
average-case guarantees (e.g., high scores on benchmarks as reported by the model’s developer).

Furthermore, Self-Proving models promote accountability by allowing stakeholders to independently verify the correctness
of a model’s outputs. In particular, lawmakers and regulators could require models used in sensitive settings to be Self-
Proving.

With that said, Self-Proving models also introduce challenges which must be addressed. First, we expect Self-Proving
models to be harder to learn (in practice), which may limit their applicability in more complex tasks. Second, as with any
learned model, Self-Proving models could be used in harmful ways; developers of a model (and verification algorithm)
must consider the impact of their systems in the specific context in which they are deployed (Suresh et al., 2023). In other
words, the fact that a Self-Proving model’s outputs are provably correct does not mean that these outputs were ought to be
generated in the first place.

A. Related Work

This paper is situated at the intersection of machine learning (ML) theory and Interactive Proof systems (IPs). We briefly
discuss recent relevant work from these literatures.

ML and IPs. IPs have found numerous applications in ML towards a diverse set of goals. Anil et al. (2021) introduce
Prover—Verifier Games, a game-theoretic framework for learned provers and verifiers. Wildchen et al. (2024) cast the
problem of model interpretability as a Prover—Verifier interaction between a learned feature selector and a learned feature
classifier. Debate systems (Condon et al., 1995), a multiprover variant of IPs, were considered for aligning models with
human values (Irving et al., 2018; Brown-Cohen et al., 2023). In such Debate systems, two competing models are each
given an alleged answer y # 1/, and attempt to prove the correctness of their answer to a (human or learned) judge. Lastly,
Murty et al. (2023) define Pseudointelligence: a model learner L, and an evaluator learner L are each given samples
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from a ground-truth; L) learns a model of the ground-truth, while Ly learns an evaluator of such models; the learned
evaluator then attempts to distinguish between the learned model and the ground-truth in a Turing Test-like interaction.

All of these works consider learned verifiers, whereas our work focuses on training models that interact with a manually-
defined verifier. More related in this regard is IP-PAC (Goldwasser et al., 2021), in which a learner proves that she learned
a model that is Probably Approximately Correct (Valiant, 1984). We, however, consider models that prove their own
correctness on a per-input basis, rather than learners that prove average-case correctness of a model.

Models that generate formal proofs. Self-Proving models are verified by an algorithm with formal completeness and
soundness guarantees (see Definition 2.2). In this sense, Self-Proving models generate a formal proof of the correctness of
their output. Several works propose specialized models that generate formal proofs.

AlphaGeometry (Trinh et al., 2024) is capable of formally proving olympiad-level geometry problems; Gransden et al.
(2015); Polu & Sutskever (2020); Yang et al. (2023) and others train models to produce proofs in Coq, Metamath and Lean
(de Moura et al., 2015); FunSearch (Romera-Paredes et al., 2024) evolves LLM-generated programs by systematically
evaluating their correctness. Indeed, all of these can be cast as Self-Proving models developed for specific proof systems.
Meanwhile, this work defines and studies the class of such models in general. Several works (e.g. Welleck et al. 2022)
consider models that generate natural language proofs or explanations, which are fundamentally different from formal
proofs (or provers) verified by an algorithm.

Training on intermediate steps. Chain-of-Though (CoT, Wei et al. 2022) refers to additional supervision on a model
in the form of intermediate reasoning steps. CoT is known to improve model performance whether included in-context
(Wei et al., 2022) or in the training phase itself (Yang et al., 2022). Transcript Learning (TL, Section 3.1) can be viewed as
training the model on a Chain-of-Thought induced by the interaction of a verifier and an honest prover (Definition 2.2).

To complete the analogy, let us adopt the terminology of Uesato et al. (2022), who consider outcome supervision and
process supervision. In our case, the outcome is the decision of the verifier, and the process is the interaction between the
verifier and the model. Thus, Reinforcement Learning from Verifier Feedback (RLVF, Section 3.2) is outcome-supervised
while TL is process-supervised. In a recent work, Lightman et al. (2024) find that process-supervised transformers outper-
form outcome-supervised ones on the MATH dataset (Hendrycks et al., 2021).

Transformers for arithmetic. In Appendix G we train and evaluate Self-Proving transformers to generate the Greatest
Common Divisor (GCD) of two integers and prove its correctness to a verifier. These experiments leverage a long line
of work on neural models of arithmetic tasks originating with Siu & Roychowdhury (1992). Number theoretic operations
such factorization (Saxton et al., 2019), modular arithmetic (Palamas, 2017), and the GCD (Charton, 2024) are known to
be challenging for transformers. Of particular relevance is a recent extensive study on the difficulty of learning the GCD
in various settings (Charton, 2024). We benefit from conclusions suggested in their work and start from a setting in which
learning the GCD is possible. Our main challenge is obtaining a Self-Proving model that outputs a proof of correctness
alongside the GCD. It is overcome by introducing Annotated Transcript Learning (ATL).

We conduct ablation experiments to find two deciding factors in ATL. First, we study the effect of the amount of annotation
given in the form of intermediate steps (Lee et al., 2024), which is related to autoregressive length complexity (Malach,
2023). Second, we characterize ATL efficacy in terms of an algebraic property of the tokenization scheme (cf. Nogueira
et al. 2021; Charton 2022; 2024).

B. Theoretical analyses for Section 3

In this section we provide a formal description and analysis of Transcript Learning (TL, Section 3.1) and Reinforcement
Learning from Verifier Feedback (RLVF, Section 3.2). In Appendix B.1 we prove a convergence theorem for TL under
convexity and Lipschitzness assumptions. Obtaining an analogous result for RLVF is more challenging; in lieu of a full
analysis, we provide a lemma showing that the gradients estimated in the algorithm approximate the Verifiability of the
model in Appendix B.2.

We must first fully specify the theoretical framework in which our results reside. Continuing from Section 2, we define a
learner as an algorithm A with access to a family of autoregressive models { Py }¢ and samples from the input distribution
x ~ . In our setting of Self-Proving models (and in consistence with the Interactive Proofs literature), we give the learner
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the full specification of the verifier V. More formally,

Definition B.1 (Self-Proving model learner). A (Self-Proving model) learner is a probabilistic oracle Turing Machine A
with the following access:

* A family of autoregressive models {Py}gcra Where d € N is the number of parameters in the family. Recall (Sec-
tion 3) that for each # and z € ¥*, the random variable Py(z) is determined by the logits log ps(2) € RI*|. For any
z € X* and o € 3, the learner A can compute the gradient of the ot logit, that is, Vg log Pra/Npg(Z) [ =d'].

» Sample access to a the input distribution p. That is, A can sample x ~ .

* The full specification of the verifier V, i.e., the ability to emulate the verification algorithm V. In particular, A is able
to compute V’s decision after any given interaction; that is, given input x, output y, and a sequence of queries and
answers (g;, a;),, the learner A can compute the decision of V" after this interaction.

We remark that analysis of Transcript Learning will require a slight strengthening of the final item above. This is discussed
in Appendix B.1.

Throughout this section, we will refer to the transcript of an interaction between a verifier and a prover (see Figure 1).
We will this transcript by 7 = (v, q1,4a1,...,qr,ar), and for any index s € |7| we will write 7, € ¥*~! to denote the
s-long prefix of 7.

B.1. Transcript Learning

Recall that Transcript Learning requires access to an honest transcript generator. Before we can formally define this object,
it will be useful to define a query generator for a verifier V.

Definition B.2 (Query generator). Fix a verifier V' in a proof system with R € N rounds, where the verifier issues queries

of length L, = |¢;| and the prover (model) responses with answers of length L, = |a;|.* The query generator V,
corresponding to V' takes as input a partial interaction and samples from the distribution over next queries by V. Formally,
for any » < R, given input z, output y, and partial interaction (g;, a;);_;, V4(2, 9,491, 01, ..., ¢, ar) is a random variable
over ¥la 3

We assume that access to the verifier specification (Definition B.1) includes access to the query generator. After all, the
verifier—who is assumed to be efficient—samples from V;, during the interaction. Moreover, we will assume that for any
partial interaction and any sequence ¢’, the learner is able to compute the probability that ¢’ was the next query. In other
words, we assume the learner can compute the probability density function of V.

A transcript generator is a random variable over transcripts that faithfully represents the interaction of the verifier with
some prover for a given input. An honest transcript generator is one who is fully supported on transcripts accepted by the
verifier.

Definition B.3 (Honest transcript generator). Fix a verifier V in a proof system of R € N rounds. A transcript generator
Ty for V is a randomized mapping from inputs x € ¥* to transcripts # = (y, ¢1,a1,-..,qr,ar) € X*. For any input z,
Ty (x) satisfies that for each » < R, the marginal of 7y-(x) on the 7™ query ¢, agrees with the corresponding marginal of
the query generator (V7),..

A transcript generator T+f := Ty is honest if it is fully supported on transcripts 7* for which the verifier accepts.

Notice that for any verifier V, there is a one-to-one correspondence between transcript generators and (possibly random-
ized) provers. We intentionally chose not to specify a prover in Definition B.3 to emphasize that transcripts can be “col-
lected” independently of the honest prover (see completeness in Definition 2.2). As long as the generator is fully supported
on honest transcripts, it can be used for Transcript Learning (Algorithm 1 described below).

*We can assume that queries (resp. answers) all have the same length by padding shorter ones.
>For completeness’ sake, we can say that when prompted with any sequence z that does not encode an interaction, V,(z) is fully
supported on a dummy sequence | --- L € Xa,
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Algorithm 1 Transcript Learning (TL)

1: Hyperparameters: Learning rate A € (0, 1) and number of samples N € N.
2: Input: An autoregressive model family {Py}ycga, verifier specification (code) V, and sample access to an input
distribution £ and an accepting transcript generator 7y (-).

3: Output: A vector of parameters f € R,
4: Initialize 0y := 0.
5: fori=0,...,N—1do
6: Sample x ~ pand 7 = (y,¢1,a1,...,q9r,ar) ~ Ty (z). Denote ag == y.
7:  for each round of interaction r = 0, ..., R do
8: Let S(r) denote the indices of the 7" answer a,. in 7*.
9: for s € S(r) do
10: Compute # Forwards and backwards pass
as(b;) = Pr  [o=m]
a~pe, (zT<s)
(is(gz) = veas(ai) = Vylog Pr [0 = WS}'
a~pe; (zmes)
11: end for
12: if » > 1 then
13: Let g, denote the 7" query ¢, in 7*, and let ¢ denote its first index. That is, 7%, = (Y, q1, a1, .., G—1,t—1)-
Compute # Emulate the verifier
Br(6;) = Pr q =q|.
6=, Pt ld=d
14: end if
15:  end for
16:  Update
Oipr = 0i+ X-ao(0:) - | [[ Br(0)as(0:) |- D dal8)).
re[R] re[RJU{0}
seS(r) seS(r)
17: end for

18: Output § := % Zie[N] 0;.

Convergence of TL is proven by a reduction to Stochastic Gradient Descent (SGD). Essentially, we are tasked with proving
that TL estimates a surrogate of the Verifiability-gradient of its model Py. More precisely, TL estimates the gradient of a
function that bounds the Verifiability from below. Maximizing this function therefore maximizes the Verifiability.

The lower-bounding function is the agreement of the transcript generator induced by P, with the provided honest transcript
generator 7;7. More formally, we let T‘f denote the transcript generator induced by the model Py: for each z, T‘f(x) is
simply the distribution over transcripts of interactions between V' and Py on input z. We first prove TL correctly estimates
the gradient of A(6) in its update step.

Lemma B.4 (TL gradient estimation). Fix an input distribution | over ¥* and a verifier V with round complexity R and
answer length L. Fix an honest transcript generator Ti;. Let 0 be the parameters of a model Py such that

A(9) = Ilil; [r = 7%]
7w ~Ty ()
‘n'NT‘f (z)

is differentiable in 0. Then

VAO)= E |ao®)- | [ 8:0)-as0) |- > du(0)
!

T
T Ty re€[R re[R]U{0}

seS(r) seS(r)

13



Models That Prove Their Own Correctness

where S(r), B,(8), as(0) and dy() are as defined in Algorithm 1.

Note that Lemma B.4 is true for any model Py. Moreover, the random vector over which the expectation is taken (in the
right hand side) is precisely the direction of the update performed in Algorithm 1. We now prove Lemma B.4, from which
we derive Theorem 3.1.

Proof. Throughout this proof, expectations and probabilities will be over the same distributions as in the lemma statement.
First, by the law of total probability, and linearity of the gradient,

VA(®O) = Vg ( Pr [r= w*]) =V ( E_[Pr[r= w*]D = E_[Vy (Prir=77)].

x, T T x, T x,m*

Next, we use the law of total probability together with the autoregressive property of Py (Section 3) to switch from
probabilities on transcripts, to products of next-token probabilities. Formally, consider any fixed input x, honest transcript
™ = (y*,q},al,...,qk, a%), and denote a random transcript sampled from T.%(x) by 7 = (y,q1,0a1,...,qr,ar). For
any 7 € [R] denote the random variables V" = V,(y,q1,a1,...,¢-—1,a,1) and 7’§’<T = T¢(yqia1 - ar_1qr).
Then,

]Z_r [7T = 77*] = ljrr[(y*7 qika GT, R 7q737 a‘}{%) = (ya q1,0a1,- .- aqRaa/R)] (3)
= Pr =y Pr [gq=¢]- Pr [a=a)
o (x)[y Yy’ o qNV;T[q qr] a~75’<r[ ]
= Pr =y - Pr =qr]- Pr o=" 4
yNPQ(””)[y 4 rg%] q~vq<r[q @) o~pe(w*<s>[ ]
seS(r)
=ao(0) - H Br(0) - as(0) | (%)
re[R]
s€S(r)

where Equation (3) uses independence of the verifier and model’s randomness, Equation (4) uses the autoregressive prop-
erty of Py (Definition B.1), and Equation (5) is by definition of «; and 3,

Next, a basic calculus identity gives
Vo (Pr [ = W*]) =Pr{r=7"]-Vylog (Pr [ = ﬂ'*]) . (6)

Let us focus on the rightmost factor. By Equation (5),

Volog (Prir=7]) = Vologao(®) - | T] 5:(6) - au(6)

re(R]

seS(r)

= Vlog, ao(6) + Z Vo log f,(0) + Vg logy as(0)
re[R)
seS(r)

=Vloggap(0) + > Vglogyas(0) )
r€[R]
seS(r)

= Z Vo logy as(0) = Z d_;(H) (8)

re[R]U{0} re[R]U{0}
s€S(r) seS(r)

where Equation (7) is because log 3,-(0) := log Prq/NVq(mzt) [¢ = q] is a constant and therefore has a gradient of zeros,

and Equation (8) is by definition of d_;(ﬁ) Combining Equations (5), (6) and (8) concludes the proof. O]
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We are now ready to prove Theorem 3.1. We restate it below in full formality.

Theorem B.5 (Theorem 3.1, formal). Fix a verifier V, an input distribution pn, and an autoregressive model family

{Py}oera, and a norm || - || on R%. Fix an honest transcript generator Ty, and assume that the agreement function
agree(f) = zPrM [T =m"]
™ ~Ty ()
T~ Ty (@)

is concave and differentiable in 0. For any € > 0, let Bnorm, Brip and C be upper-bounds such that the following
conditions hold.

o There exists * € R% with ||0*|| < Bxorm Such that A(6*) > 1 —¢/2.

* For all 9, the logits of Py are By,-Lipschitz in 0. That is,

sup ||Vglogpe(z)|| < BLip.
feR?
zex*

e In the proof system defined by V', the total number of tokens (over all rounds) is at most C.

Denote by 0 the output of TL running for number of iterations N where

B2 - B2,
2 Norm Lip
N 4.7 R e

and learning rate A = BNorm /C Burip V'N. Then the expected Verifiability (over the randomness of the samples collected
by TL) of 0 is at least 1 — €. That is,

Elvery,,(0)] > 1 —e.
0

Proof. Our strategy is to cast TL as Stochastic Gradient Ascent and apply Fact C.2. Let €, BNorm, Brip and C' as in the
theorem statement be given. Let 8* be such that A(6*) > 1 — /2 and ||6*|| < BNorm-

First, notice that - -

E [very.,,(0)] = E[AQ)],
This is because, for any = and model Py, whenever the transcript generated by 77(x) agrees with 7*, then the verifier
accepts (because 7* is honest). Therefore, to prove the theorem it suffices to show that

E[A(B)] > 1.

0

Following the notation in Algorithm 1, in every iteration ¢ € [N] the norm of the update step is

ao(0:) - | T Br0)as(0) |- > du(6s)
re[R] re[R]U{0}
seS(r) s€S(r)

= lao(8:) - [[ Br-0as0)|-| > da(6:)
re[R) re[R]U{0}
seS(r) seS(r)

<1 Z HCZ;(@)

re[R]U{0}
seS(r)

3
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where the inequality is because o (6;) and $3,-(6;) are probabilities, so < 1. Continuing, we have

Z Hd:(az) < Z Brip < C - Brp.
re[R]U{0} re[R]U{0}
seS(r) seS(r)

The first inequality is by definition of Br,;, as an upper-bound on the gradient of Py’s logits. The second is because, by
definition, C is an upper bound on the number of tokens sent by the prover in the proof system, which is exactly the number
of terms in the sum: r indexes rounds, and s indexes tokens sent in each round.

To conclude, Lemma B.4 shows that TL samples from a gradient estimator for A(#), while the above equation shows that
the gradient is upper-bounded by C' - By,;,. We can therefore apply Fact C.2 to obtain

I{[;] [agree (0)] > agree(8*) —/2> (1 —¢/2) —¢/2=1—¢,

where the inequality is by definition of 6*.

B.2. Reinforcement Learning from Verifier Feedback

Our second learning method, Reinforcement Learning from Verifier Feedback (RLVF, Algorithm 2), does not require access
to an honest transcript generator. Instead, the learner learns Py generates transcripts herself by emulating the interaction
of the verifier with the current Self-Proving model Py. When an accepting transcript is generated, the learner updates the
parameters 6 towards generating such transcript.

Before we continue with formal analysis of Algorithm 2, let us make a few observations.

Firstly, the parameters are updated (line 11) only when an accepting transcript was generated. This means that the learner
can first fully generate the transcript (lines 6-7), and then take backwards passes (line 9) only if the transcript was accepted
by V. This is useful in practice (e.g. when using neural models) as backwards passes are more computationally expensive
than forwards passes.

On the other hand, this means that RLVF requires the parameter initialization 6y to have Verifiability bounded away from
0, so that accepting transcripts are sampled with sufficient probability. Fortunately, such a Self-Proving base model can be
learned using TL. This gives a learning paradigm in which a somewhat-Self-Proving base model is learned with TL (with
Verifiability § > 0), and then “amplified” to a fully Self-Proving model using RLVF. This can be seen as an adaptation of
the method of Nair et al. (2018) to the setting of Self-Proving models.

Secondly, in comparing Algorithms 1 and 2, we see that the latter (RLVF) does not keep track of the probabilities oy and
B,. This is because, in RL terms, RLVF is an on-policy algorithm; it generates transcripts using the current learned model,
unlike TL which samples them from a distribution whose parameterization is unknown to the learner. Hence, the update
step in RLVF is simpler than TL. Furthermore, the RLVF learner does not require access to the density function of the
query generator V; (Definition B.2) unlike its TL counterpart.

We now prove that the update step in RLVF maximizes the Verifiability of Pp; this is analogous to Lemma B.4 for TL.
We leave it for future work to use Lemma B.6 to obtain convergence bounds on RLVF (analogous to Theorem B.5). As
mentioned in Section 3.2, the gap between the lemma and a full convergence theorem (informally) reduces to the problem
of obtaining convergence bounds for Policy Gradient methods, a challenging and active research direction (e.g. Agarwal
et al. 2021).

Lemma B.6 (RLVF gradient estimation). Fix an input distribution |1 over X% and a verifier V with round complexity R
and answer length L. For any transcript (x,y,q1,...,agr) we let Accy (x,y,q1, - .., ar) denote the indicator random
variable which equals 1 if and only if V accepts the transcript. For any model Py, denote by ver(0) the verifiability of Py
with respect to V and v (Definition 2.4). For any 0, if ver(9) is differentiable in 0, then

Vver(6) = zINEM Accy (x,y,q1,-.-,aR) - Z d_;(9)
y~Po(z) re[RJu{0}
(arar) iy s€[Lal
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Algorithm 2 Reinforcement Learning from Verifier Feedback (RLVF)
1: Hyperparameters: Learning rate A € (0, 1) and number of samples N € N.
2: Input: An autoregressive model family {Py}gcpa, initial parameters 6y € RY, verifier specification (code) V, and
sample access to an input distribution .

3: Output: A vector of parameters § € R,

4: fori=0,...,N —1do

5:  Sample z ~ p.

6:  Initialize ag =y ~ Py(x).

7:  for each round of interactionr = 1,... R do

8: Sample the r query # Emulate the verifier

qr ~ Vq(xa ap,q1,a1,--.,qr, ar)'
9: Sample the r™ answer # Forwards pass
Ay ~ P@(.’E, ap,q1,0a1, ... 7q7’7a7‘7Qa,.+1)'

10: Let 7 == (ag, q1,- -+, Qr—1,Gr)-
11: for s € [L,] do

12: Let a, ; denote the s token in a,.. Compute # Backwards pass

ds(0;) =Vglog Pr [o=a.]
a~pe, (z7r)

13: end for

14:  end for

15: ifV(x,y,q1,a1,...,qr, ar) accepts then

16: Update

Oiv1:=0; + - Z ds(0;).
re[R]U{0}
S€[Lq]
17:  endif
18: end for

19: Output 0 := < ZfV;Ol 0;.

where (g, a)E_| are as sampled in lines 8-9 of Algorithm 2, and d,(0) is as defined in line 12 therein.

Proof. Recall the transcript generator of PY, denoted by T‘G/ (see Lemma B.4). By the definitions of Verifiability in
Definition 2.4 and V (z,y, q1, - . ., ar) in the lemma statement,

ver(0) == Pr [(V, Py) (z,y) accepts]

T
y~Po(x)

= E [Accy (z,y,q1,---,aR)]

T
y~Po(z)
(flr 7(17")5:1

= E lPr [Accy (z, ) ]] 9

Tvp | e T
Now, for every input z, let IT*(z) C X* denote the set of accepting transcripts:
IT*(z) = {r" € " : Aceyax, 7" accepts}.
Noting that IT*(z) has finite or countably infinite cardinality, for any fixed input  we can write
Pr [Accy(z,m)]= Y Pr [r=nx7]. (10)

T~T w*EH*(m)ﬂ- TI(x)
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We will use Equations (3) through (8) in the proof of Lemma B.4. Up to a change in index notation, these show that, for
any 7,
Vo Pr [r=x"]= Pr [r=n"] Vods(6).
GWNTQ(I)[TF m ] ‘n'N'Te(z)[Tr T } Z o ( )
re RU{0}
s€[Lg)

Combining Equations (9) and (10), by linearity of expectation we have that

Vover(f) = Z Vo 5’5 [m = 7]
7 €IT* () ™

= wIEM Z ﬁws_g(m)[ﬂ = ’]T*} . Z Vod, (9)

m* ell*(z) reR[Lz{(]J}
s€|Lq

=FE E Accy (z,m) Vods(
zop | T (2) V TGRZU{O}

S€[Lg)

E Accy (z, ) Z V.gd

ﬂj;#(g;) re RU{0}
s€[Lq]

E  |Accv(@,y,q1,-..,ar) - > Vads(0)]

T~
y~Poy(z) re RU{0}
(QT‘vaw‘)f‘;l SG[LG]

where in the last equality, the probability is over (g, a,.) sampled as in Algorithm 2, and it follows from the definition of
the transcript generator 7 (). O

C. Preliminaries on Stochastic Gradient Ascent

For convenience of the reader, we provide a description of Stochastic Gradient Ascent and quote a theorem on its conver-
gence. We adapt the presentation in (Shalev-Shwartz & Ben-David, 2014), noting that they present Stochastic Gradient
Descent in its more general form for non-differentiable unbounded functions.

Stochastic Gradient Ascent (SGA) is a fundamental technique in concave optimization. Given a concave function f: R? —
[0, 1], SGA starts at wg = 0 € R? and tries to maximize f(w) by taking a series of “steps.” Than directly differentiating
f, SGA instead relies on an estimation V f(w): in each iteration, SGA takes a step in a direction that estimates V f(w).

Definition C.1 (Gradient estimator). Fix a differentiable function f: R? — R for some d. A gradient estimator for f is a
randomized mapping Dy : R — R whose expectation is the gradient of f. That is, for all w € R,

[v] = Vf(w).

v~D g (w)
Note that this is an equality between d-dimensional vectors.

Theorem 14.8 in (Shalev-Shwartz & Ben-David, 2014) implies the following fact.
Fact C.2. Fix aconcave f: R? — [0,1],anorm || - || on R%, and upper-bounds Byorm, Brip > 0. Let

w* € argmax f(w),
w:||w|| < BNorm

and let w denote the output of Algorithm 3 run for N iterations with learning rate
BNorm

a BripV'N'
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Algorithm 3 Stochastic Gradient Ascent

1: Hyperparameters: Learning rate A > 0 and number of iterations N € N.
Input: A function f: R — R to maximize and a gradient estimator D for f.
Output: A vector w € R?.
Initialize wo = 0 € RY.

for:=0,...,N —1do
Sample v; ~ D(w;—1).
Update w; == w;—1 + A - v;.

end for

Output @ = + D ie(N] Wi

Rl e AN S

_.
=4

If at every iteration it holds that ||v;|| < Brp, then

B (/)] > fuw) - 2P,

D. Annotations

We formally capture the modification described in Section 3.3 by introducing a transcript annotator and an answer extrac-
tor incorporated into the training and inference stages, respectively.

Fix a verifier V' in an R-round proof system with question length L, and answer length L,. An annotation system with
annotation length L, consists of a transcript annotator A, and an answer extractor FE.

In terms of efficiency, think of the annotator as an algorithm of the same computational resources as an honest prover in the

system (see Definition 2.2, and the answer extractor as an extremely simple algorithm (e.g., trim a fixed amount of tokens
from the annotation).

To use an annotation system the following changes need to be made:

* At training time, an input « and transcript 7 is annotated to obtain 7 := A(x, 7), e.g. before the forwards backwards
pass in TL (line 3 in Algorithm 1).

* At inference time (i.e., during interaction between V and Fy), the prover keeps track of the annotated transcript, but
in each round passes the model-generated (annotated) answer through the extractor E before it is sent to the verifier.
That is, in each round r € [R], the prover samples

d;” ~ Pa(xavaMdVla"'va/;\jlﬂq?”)'

The prover then extracts an answer a,. := F(a,.) which is sent to the verifier.

E. A simple proof system for the GCD

The Euclidean algorithm for computing the Greatest Common Divisor (GCD) of two integers is possibly the oldest algo-
rithm still in use today (Knuth, 1969). Its extended variant gives a simple proof system.

Before we dive in, let us clarify what we mean by a proof system for the GCD. Paul has two integers 212 and 159; he
claims that GC'D(212,159) = 53. An inefficient way for Veronica to check Paul’s answer is by executing the Euclidean
algorithm on (212, 159) and confirm that the output is 53. In an efficient proof system, Veronica asks Paul for a short string
7* (describing two integers) with which she can easily compute the answer—without having to repeat Paul’s work all over.
On the other hand, if Paul were to claim that “GCD(212,159) = 51” (it does not), then for any alleged proof 7, Veronica
would detect an error and reject Paul’s claim.

The verifier in the proof system relies on the following fact.

Claim E.1 (Bézout’s identity (Bezout, 1779)). Let xg,x1 € Nand zy,z1 € Z. If zo - ©9 + 21 - 1 divides both x( and x;,
then zg - kg + z1 - ©1 = GCD(xg, 21).
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Any coefficients zg, z1 satisfying the assumption of Claim E.1 are known as Bézout coefficients for (zg,x1). Claim E.1
immediately gives our simple proof system: For input 2 = (xq, 1) and alleged GCD y, the honest prover sends (alleged)
Bézout coefficients (2o, z1). The Verifier accepts if and only if y = zo - o + 21 - 1 and y divides both z and ;.

In this proof system the Verifier does not need to make any query; to fit within Definition 2.2, we can have the verifier
issue a dummy query. Furthermore, by Claim E.1 it is complete and has soundness error s = 0. Lastly, we note that the
Verifier only needs to perform two multiplications, an addition, and two modulus operations; in that sense, verification is
more efficient than computing the GCD in the Euclidean algorithm as required by Remark 2.3.

Annotations. To describe how a proof z = (zg, z1) is annotated, let us first note how it can be computed. The Bézout
coefficients can be found by an extension of the Euclidean algorithm. It is described in Algorithm 4.

Algorithm 4 Extended Euclidean algorithm

1: Input: Nonzero integers xp,x; € N.
: Output: Integers (y, 2o, 21), such that y = GC'D(xg, z1) and (2, 1) are Bézout coefficients for (o, x1).
. Initialize ro = 29, 71 = x1, S0 = 1, s1 = 0,and ¢ = 0.

2

3

4:

5: while r; # 0 do

6:  Update g :== |ro/71].
7. Update (ro,71) == (r1,70 — q X 11).

8:  Update (sg,s1) = (81,80 — ¢ X 51).

9: end while

10: Output GCD y = r( and Bézout coefficients zp := sg and z; = (rg — So - g)/x1.

Referring to Algorithm 4, the annotation of a proof z = (zg, 21) will consist of intermediate steps in its computation.
Suppose that in each iteration of the While-loop, the algorithm stores each of rg, sg and ¢ in an arrays 79, Sy and ¢. The
annotation Z of z is obtained by concatenating each of these arrays. In practice, to avoid the transformer block (context)
size from growing too large, we fix a cutoff 7" and first trim each array to its first T' elements.

We formalize this in the terminology of Appendix D by defining a Transcript Annotator and Answer Extractor. Note that,
since our proof system consists only of one “answer” z send from the prover to the verifier, the entire transcript 7 is simply
z = (2o, 21). Since the verification is deterministic, this means that the proof system is of an NP type (however, note that
the search problem of finding the “NP-witness” z = (2, 21) is in fact in P).

* Transcript Annotator A: For a fixed cutoff T and given input = (o, 1) and transcript z = (2o, 21), A executes
Algorithm 4 on input x = (xg,x1). During the execution, A stores the first T" intermediate values of 7¢, sp and ¢ in
arrays r, So and ¢. It outputs A(x, 2) = (9, 80, q, 2).

» Answer Extractor E: Given an annotated transcript Z = (79, $9, ¢, 2), outputs E(Z2) = z.
We note that the computational complexity of A is roughly that of the honest prover, i.e., Algorithm 4 (up to additional

space due to storing intermediate values). As for E, it can be implemented in logarithmic space and linear running time in
|Z], i.e., the length of the description.7

F. Experiment details

We provide details of how we implemented the experiments in Appendix G and additional figures for each experiment.
Code, data and models are available at https://github.com/orrp/self-proving-models.

Model architecture. We use Karpathy’s nanoGPT® implementation of GPT. Note that we train the model “from scratch”
only on sequences related to the GCD problem, rather than starting from a pretrained checkpoint. We use a 6.3M parameter

®Qur description is the same as https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm.
"That is, if integers are represented by n-bits, then E has space complexity O(log n + log T) and running time O(n - T').
$https://github.com/karpathy/nanoGPT.
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architecture of 8 layers, 8 attention heads, and 256 embedding dimensions. We optimized hyperparameters via a random
hyperparameter search, arriving at learning rate 0.0007, AdamW (; = 0.733 and 52 = 0.95, 10% learning rate decay
factor, no dropout, gradient clipping at 2.0, no warmup iterations, and 10% weight decay.

Data. We sample integers from the log;,-uniform distribution over {1,...,10%}. Models in Table 1 and Figure 2 are
trained for 100K iterations on a dataset of ~10M samples. For Figure 3 (base ablation) we train for 20K iterations on a
dataset of ~1M samples; this is because this setting required 68 many runs in total, whereas the annotation-cutoff ablation
required 18 longer runs.

Compute. All experiments were run on a machine with an NVIDIA A10G GPU, 64GB of RAM, and 32 CPU cores.
Longer runs (annotation-cutoff ablation) took about 75 minutes each. Shorter runs (base ablation) took about 15 minutes.
The total running time of our experiments was approximately 40 hours, excluding time dedicated to a random hyperparam-
eter search. The overall disk space needed for our models and data is 4GB.

Representing integers. We fully describe how integer sequences are encoded. As a running example, we will use base
210. To encode a sequence of integers, each integer is encoded in base 210, a sign is prepended and a delimiter is appended,
with a unique delimiter identifying each component of the sequence. For example, consider the input integers o = 212
(which is 12 in base 210) and x1 = 159. Their GCD is y = 53, with Bézout coefficients zo = 1 and z; = —1. Therefore,
the sequence (212,159, 53,1, —1) is encoded as

+,1,2,x0,+,159,%x1,+,53,y,+,1,20,-,1,z1

where commas are added to distinguish between different tokens. Null tokens are appended to pad all sequences in a
dataset to the same length. Both the input and the padding components are ignored when computing the loss and updating
parameters.

Annotations Annotations are encoded as above, with each component in an intermediate step 7; delimited by a unique
token. Since different integer pairs may require a different number of intermediate steps to compute the Bézout coefficients,
we chose to pad all annotations to the same length 7" by the last step 77 in the sequence (which consists of the final Bézout
coefficients). This ensures that the final component output by the model in each sequence should be the Bézout coefficient,
and allows us to batch model testing (generation and evaluation) resulting in a 1000x speed-up over sequential testing.

As an example, consider the inputs x¢o = 46 and ;1 = 39. Tracing through the execution of Algorithm 4, we have

—

To |x1 |y | S0 | 70| d] 20 21
46 | 39 1 1461
0 [39]5
1 711
5141
6 313

1 —11 | 13

To encode this as an annotated transcript for the transformer, we must specify a base of representation and an annotation
cutoff. Suppose that we wish to encode this instance in base B = 10 and cutoff 7" = 3. Then the input with the annotated
transcript is encoded as

+,4,6,x0,+,3,9,x1,+,1,vy,
+,1,z0",+,4,6,2z1",+,1,9’,
+,0,z0"",+,3,9,z1"",+,5,9""
+,1,20""" ,+,7,2z1""" ,+,1,9""",
-,1,1,20,+,1,3,z1

where commas are used to separate between tokens, and linebreaks are added only for clarity. Notice the three types
of tokens: signs, digits, and delimiters. Notice also that the output y is added immediately after the input, followed by
the annotated transcript (whose six tokens comprise the proof itself). Since the Self-Proving model we train has causal
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attention masking, placing the output y before the proof means that the model “commits” to an output and only then proves
it.

G. Experimental Results

Setup. Charton (2024) empirically studies the power and limitations of learning GCDs with transformers. We follow
their setup and two conclusions on settings that make for faster learning: Training from the log-uniform distribution, and
choosing a base of representation with many prime factors. We fix a base of representation B = 210 and use x to denote
an integer = encoded as a B-ary string.” For sequences of integers, we write (x1X2) to denote the concatenation of x;
with x2, delimited by a special token. The vocabulary size needed for this representation is |X| ~ 210.

We choose the input distribution j to be the log-uniform distribution on [10*], and train the transformer on sequences of
the form (x1x2y), where 1,2 ~ pand y = GCD(x1,x2). This is a scaling-down of Charton (2024), to allow single
GPU training of Self-Proving transformers. In all of our experiments, we use a GPT model (Vaswani et al., 2017) with
6.3M parameters trained on a dataset of 1024K samples in batches of 1024. Full details are deferred to Appendix F.

Proving correctness of GCD. Following Charton (2024) as a baseline, we find that transformers can correctly compute
the GCD with over 99% probability over (x1,z2) ~ p. To what extent can they prove their answer? To answer this ques-
tion, we first devise a natural proof system based on Bézout’s theorem. Its specification and formal guarantees are deferred
to Appendix E. We denote its verification algorithm by V', and highlight some important features of the experimental setup:

* The proof system consists of one round (R = 1). The verifier makes no query, and simply receives a proof 7 from the
prover.

* Completeness: For any 1,22,y € [10%] such that y = GCD(z1, z2), there exists a proof 7 such that V (x1X2y)
accepts. As detailed in Appendix E, the proof 7 consists of a pair of integers who are Bézout coefficients for x1, x5.

* Soundness: If y # GCD(x1,2), then V (x1x2y) rejects'” for any alleged proof m € X*.

To measure Verifiability, we train a Self-Proving transformer using Transcript Learning on sequences (x1Xoy) and es-
timate for how many inputs x1,zs ~ u does the model generate both the correct GCD y and a valid proof m. We test
on 1000 pairs of integers x}, x5 ~ p held-out of the training set, prompting the model with (x]x5) to obtain (y’'zn’), and
testing whether V' (x| x5y’7’) accepts.

Table 1 on the second page of this paper shows that Transcript Learning for 100K iterations (=100M samples) results in
a Self-Proving transformer that correctly proves 60.3% of its answers; there is an additional 38.5% answers which are
correct, but the transformer fails to generate an accepted proof. Annotated Transcript Learning all but closes this gap,
proving 96.7% of its answers. We further investigate the effect of annotations and base of representation next.

G.1. Models generalize beyond annotations

The proof 7 is annotated by including intermediate steps in its computation. Details are deferred to Appendix E; roughly
speaking, we observe that the proof 7 for input (a,b) is obtained as the last element in a sequence a, b, 71,72, ...
computed by the Euclidean algorithm. We annotate the proof 7w by prepending to it the sequence of Euclidean steps
(m1,...,7r) up to some fixed cutoff 7T'.

Figure 2 shows how T affects the Verifiability of the learned model. As suggested by Lee et al. (2024), training the model
on more intermediate steps results in better performance; in our case, increasing the number of intermediate steps 7" yields
better Self-Proving models. One might suspect that models only learn to execute the Euclidean algorithm in-context. To
rule out this hypothesis, we derive an upper bound on the possible efficacy of such limited models. This bound is based on
the Euclidean depth of integers (1, x2), which we define as the number of intermediate steps that the Euclidean algorithm
makes before terminating on input (z1, z2). Indeed, a model that only learns to compute (in-context) the simple arithmetic
of the Euclidean algorithm would only be able to prove the correctness of inputs (z1, z2) whose depth does not exceed the
annotation cutoff 7.

B = 210 is chosen following Charton (2024) to be an integer with many prime factors.
OWith probability 1, i.e., s = 0 in Definition 2.2.
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Figure 2 tells a different story: For each cutoff T', we estimate the probability that integers z1, x5 ~ p have Euclidean
depth at most 7" on 10° sampled pairs. Larger annotation cutoff 7" increases Verifiability, but all models exceed their
corresponding Euclidean depth bound.

G.2. Base of representation

As mentioned previously, Charton (2024) concludes that, for a given base of representation B, transformers correctly
compute the GCD of integers =1, z2 that are products of primes dividing B. Simply put, choosing a base B with many
different prime factors yields models with better correctness (accuracy), which suggests why base B =210 =2-3-5-7
yielded the best results.

To test whether the factorization of B has a similar effect on Verifiability as well, we train transformers on 68 bases
varying the number of prime divisors w(B) from w(B) = 1 (i.e., B is a prime power) to w(B) = 4. Figure 3 shows that
w(DB) correlates not just with correctness (Charton, 2024), but also with Verifiability. Although the finding is statistically
significant (no overlapping error margins), the overall difference is by a few percentage points; we attribute this to the
smaller (10%) number of samples on which models were trained, relative to our other experiments.
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Figure 2. Verifiability with increasing amounts of annotation. 7 is the number of steps added in Annotated Transcript Learning.
Dashed lines indicate Euclidean depth, that bound the Verifiability of models that prove only for integers up to a certain number of steps.
Each T" was run with three seeds, with mean =+ standard error depicted. The upper graph provides a zoomed-in view of the 82% to 98%
range from the lower graph, which spans a broader scale from 20% to 100%.
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w(B) =2 w(B)=3 w(B) =4
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Verifiability

Figure 3. The number of prime divisors of a base w(B) determines Verifiability. For each o € [4], we sampled 17 bases B €
{2,...,1386} such that w(B) = o. A Self-Proving transformer was trained via Transcript Learning for twenty epochs on an identical
dataset of 1024K samples encoded in base B. For each w(B) we depict the mean =+ standard error.
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Figure 4. Verifiability as a function of the number of samples N. Each iteration (X axis) is a batch of 1024 samples from a dataset of
~10M sequences. Every 10k iterations, Verifiability was evaluated on a held-out dataset of 1k inputs (as described in Appendix G). T’
is the number of steps in Annotated Transcript Learning (Figure 2), and 1" = 0 is non-annotated Transcript Learning. Each T" was run
with three seeds, with mean depicted by the curve and standard error by the shaded area.
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