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ABSTRACT

Graph Neural Networks (GNNs) are prominent in graph machine learning and have
shown state-of-the-art performance in Link Prediction (LP) tasks. Nonetheless,
recent studies show that GNNs struggle to produce good results on low-degree
nodes despite their overall strong performance. In practical applications of LP, like
recommendation systems, improving performance on low-degree nodes is critical,
as it amounts to tackling the cold-start problem of improving the experiences of
users with few observed interactions. In this paper, we investigate improving
GNNs’ LP performance on low-degree nodes while preserving their performance
on high-degree nodes and propose a simple yet surprisingly effective augmentation
technique called NODEDUP. Specifically, NODEDUP duplicates low-degree nodes
and creates links between nodes and their own duplicates before following the
standard supervised LP training scheme. By leveraging a “multi-view” perspective
for low-degree nodes, NODEDUP shows significant LP performance improvements
on low-degree nodes without compromising any performance on high-degree
nodes. Additionally, as a plug-and-play augmentation module, NODEDUP can be
easily applied on existing GNNs with very light computational cost. Extensive
experiments show that NODEDUP achieves 38.49%, 13.34%, and 6.76% relative
improvements on isolated, low-degree, and warm nodes, respectively, on average
across all datasets compared to GNNs and state-of-the-art cold-start methods.

1 INTRODUCTION

Link prediction (LP) is a fundamental task of graph-structured data (Liben-Nowell & Kleinberg,
2007; Trouillon et al., 2016), which aims to predict the likelihood of the links existing between two
nodes in the network. It has wide-ranging real-world applications across different domains, such as
friend recommendations in social media (Sankar et al., 2021; Tang et al., 2022; Fan et al., 2022),
product recommendations in e-commerce platforms (Ying et al., 2018; He et al., 2020), knowledge
graph completion (Li et al., 2023; Vashishth et al., 2020; Zhang et al., 2020), and chemical interaction
prediction (Stanfield et al., 2017; Kovács et al., 2019; Yang et al., 2021).
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Figure 1: Node Degree Distribution and LP
Performance (GSage as an encoder and in-
ner product as a decoder) Distribution w.r.t
Nodes Degrees showing reverse trends on
Citeseer dataset.

In recent years, graph neural networks (GNNs) (Kipf
& Welling, 2016a; Veličković et al., 2017; Hamil-
ton et al., 2017) have been widely applied to LP,
and a series of cutting-edge models have been pro-
posed (Zhang & Chen, 2018; Zhang et al., 2021;
Zhu et al., 2021; Zhao et al., 2022b). Most GNNs
follow a message-passing scheme (Gilmer et al.,
2017) in which information is iteratively aggregated
from neighbors and used to update node represen-
tations accordingly. Consequently, the success of
GNNs usually heavily relies on having sufficient
high-quality neighbors for each node (Zheng et al.,
2021; Liu et al., 2021). However, real-world graphs
often exhibit long-tailed distribution in terms of node
degrees, where a significant fraction of nodes have
very few neighbors (Tang et al., 2020b; Ding et al., 2021; Hao et al., 2021). For example, Figure 1
shows the long-tailed degree distribution of the Citeseer dataset. Moreover, LP performances
w.r.t. node degrees on this dataset also clearly indicate that GNNs struggle to generate satisfactory
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results for nodes with low or zero degrees. For simplicity, in this paper, we refer to the nodes with
low or zero degrees as cold nodes and the nodes with higher degrees as warm nodes.

To boost GNNs’ performance on cold nodes, recent studies have proposed various training strate-
gies (Liu et al., 2020; 2021; Zheng et al., 2021; Hu et al., 2022) and augmentation strategies (Hu
et al., 2022; Rong et al., 2019; Zhao et al., 2022b) to improve representation learning quality. For
instance, ColdBrew (Zheng et al., 2021) posits that training a powerful MLP can rediscover missing
neighbor information for cold nodes; TailGNN (Liu et al., 2021) utilizes a cold-node-specific module
to accomplish the same objective. However, such advanced training strategies (e.g., ColdBrew and
TailGNN) share a notable drawback: they are trained with a bias towards cold nodes, which then
sacrifices performance on warm nodes (empirically validated in Table 1). However, in real-world
applications, both cold nodes and warm nodes are critical (Clauset et al., 2009). On the other hand,
while augmentation methods such as LAGNN (Liu et al., 2022b) do not have such bias, they primarily
focus on improving the overall performance of GNNs in LP tasks, which may be dominated by warm
nodes due to their higher connectivity. Additionally, the augmentation methods usually introduce
a significant amount of extra computational costs (empirically validated in Figure 5). In light of
the existing work discussed above on improving LP performance for cold nodes, we are naturally
motivated to explore the following crucial but rather unexplored research question:

Can we improve LP performance on cold nodes without compromising warm node performance?

We observe that cold node LP performance usually suffers because they are under-represented in stan-
dard supervised LP training due to their few (if any) connections. Given this observation, in this work,
we introduce a simple yet effective augmentation method, NODEDUP, for improving LP performance
on cold nodes. Specifically, NODEDUP duplicates cold nodes and establishes edges between each
original cold node and its corresponding duplicate. Subsequently, we conduct standard supervised
end-to-end training of GNNs on the augmented graph. To better understand why NODEDUP is able
to improve LP performance for cold nodes, we thoroughly analyze it from multiple perspectives,
during which we discover that this simple technique effectively offers a “multi-view” perspective
of cold nodes during training. This “multi-view” perspective of the cold nodes acts similarly to an
ensemble and drives performance improvements for these nodes. Additionally, our straightforward
augmentation method provides valuable supervised training signals for cold nodes and especially
isolated nodes. Furthermore, we also introduce NODEDUP(L), a lightweight variation of NODEDUP
that adds only self-loop edges into training edges for cold nodes. NODEDUP(L) empirically offers
up to a 1.3× speedup over NODEDUP for the training process and achieves significant speedup over
existing augmentation baselines. In our experiments, we comprehensively evaluate our method on
seven benchmark datasets. Compared to GNNs and state-of-the-art cold-start methods, NODEDUP
achieves 38.49%, 13.34%, and 6.76% relative improvements on isolated, low-degree, and warm
nodes, respectively, on average across all datasets. NODEDUP also greatly outperforms augmenta-
tion baselines on cold nodes, with comparable warm node performance. Finally, as plug-and-play
augmentation methods, our methods are versatile and effective with different LP encoders/decoders.
They also achieve significant performance in a more realistic inductive setting. Our code can be
found at https://anonymous.4open.science/r/NodeDup-0241/README.md.
2 PRELIMINARIES

Notation. Let an attributed graph be G = {V, E ,X}, where V is the set of N nodes and E ⊆ V × V
is the edges where each evu ∈ E indicates nodes v and u are linked. Let X ∈ RN×F be the node
attribute matrix, where F is the attribute dimension. Let Nv be the set of neighbors of node v, i.e.,
Nv = {u|evu ∈ E}, and the degree of node v is |Nv|. We separate the set of nodes V into three
disjoint sets Viso, Vlow, and Vwarm by their degrees based on the threshold hyperparameter δ1. For
each node v ∈ V , v ∈ Viso if |Nv| = 0; v ∈ Vlow if 0 < |Nv| ≤ δ; v ∈ Vwarm if |Nv| > δ. For ease
of notation, we also use Vcold = Viso ∪ Vlow to denote the cold nodes, which is the union of Isolated
and Low-degree nodes.

LP with GNNs. In this work, we follow the commonly-used encoder-decoder framework for GNN-
based LP (Kipf & Welling, 2016b; Berg et al., 2017; Schlichtkrull et al., 2018; Ying et al., 2018;
Davidson et al., 2018; Zhu et al., 2021; Yun et al., 2021; Zhao et al., 2022b), where a GNN encoder
learns the node representations and the decoder predicts the link existence probabilities given each

1This threshold δ is set as 2 in our experiments, based on observed performance gaps in LP on various
datasets, as shown in Figure 1 and Figure 6. Further reasons for this threshold are detailed in Appendix D.1.
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pair of node representations. Most GNNs follow the message passing design (Gilmer et al., 2017)
that iteratively aggregate each node’s neighbors’ information to update its embeddings. Without the
loss of generality, for each node v, the l-th layer of a GNN can be defined as

h(l)
v = UPDATE

(
h(l−1)
v ,m(l−1)

v

)
, s.t. m(l−1)

v = AGG
(
{h(l−1)

u } : ∀u ∈ Nv

)
, (1)

where h
(l)
v is the l-th layer’s output representation of node v, h(0)

v = xv, AGG(·) is the (typically
permutation-invariant) aggregation function, and UPDATE(·) is the update function that combines
node v’s neighbor embedding and its own embedding from the previous layer. For any node pair v
and u, the decoding process can be defined as ŷvu = σ

(
DECODER(hv,hu)

)
, where hv is the GNN’s

output representation for node v and σ is the Sigmoid function. Following existing literature, we use
inner product (Wang et al., 2021; Zheng et al., 2021) as the default DECODER.

The standard supervised LP training optimizes model parameters w.r.t. a training set, which is
usually the union of all observed M edges and KM no-edge node pairs (as training with all O(N2)
no-edges is infeasible in practice), where K is the negative sampling rate (K = 1 usually). We use
Y = {0, 1}M+KM to denote the training set labels, where yvu = 1 if evu ∈ E and 0 otherwise.

The Cold-Start Problem. The cold-start problem is prevalent in various domains and scenarios.
In recommendation systems (Chen et al., 2020; Lu et al., 2020; Hao et al., 2021; Zhu et al., 2019;
Volkovs et al., 2017; Liu & Zheng, 2020), cold-start refers to the lack of sufficient interaction history
for new users or items, which makes it challenging to provide accurate recommendations. Similarly,
in the context of GNNs, the cold-start problem refers to performance in tasks involving cold nodes,
which have few or no neighbors in the graph. As illustrated in Figure 1, GNNs usually struggle with
cold nodes in LP tasks due to unreliable or missing neighbors’ information. In this work, we focus on
enhancing LP performance for cold nodes, specifically predicting the presence of links between a
cold node v ∈ Vcold and target node u ∈ V (w.l.o.g.). Additionally, we aim to maintain satisfactory
LP performance for warm nodes. Prior studies on cold-start problems (Tang et al., 2020b; Liu et al.,
2021; Zheng et al., 2021) inspired this research direction.

3 NODE DUPLICATION TO IMPROVE COLD-START PERFORMANCE

We make a simple but powerful observation: cold nodes are strongly under-represented in the LP
training. Given that they have few or even no directly connected neighbors, they hardly participate in
the standard supervised LP training as described in Section 2. For example, a model will not see an
isolated node unless it is randomly sampled as a negative training edge for another node. In light of
such observations, our proposed augmentation technique is simple: we duplicate under-represented
cold nodes. By both training and aggregating with the edges connecting the cold nodes with their
duplications, cold nodes are able to gain better visibility in the training process, which allows the
GNN-based LP models to learn better representations. In this section, we introduce NODEDUP in
detail, followed by comprehensive analyses of why it works from different perspectives.

3.1 PROPOSED METHOD

The implementation of NODEDUP can be summarized into four simple steps: (1): duplicate all
cold nodes to generate the augmented node set V ′ = V ∪ Vcold, whose node feature matrix is then
X′ ∈ R(N+|Vcold|)×F . (2): for each cold node v ∈ Vcold and its duplication v′, add an edge between
them and get the augmented edge set E ′ = E ∪ {evv′ : ∀v ∈ Vcold}. (3): include the augmented
edges into the training set and get Y ′ = Y ∪ {yvv′ = 1 : ∀v ∈ Vcold}. (4): proceed with the standard
supervised LP training on the augmented graph G′ = {V ′, E ′,X′} with augmented training set Y ′.
We also summarize this whole process of NODEDUP in Algorithm 1 in Appendix C. The effects of
duplication nodes and frequency are discussed in Appendix D.3.

Time Complexity. We discuss complexity of our method in terms of the training process on the
augmented graph. We use GSage (Hamilton et al., 2017) and inner product decoder as the default
architecture when demonstrating the following complexity (w.l.o.g). With the augmented graph,
GSage has a complexity of O(RL(N + |Vcold|)D2), where R represents the number of sampled
neighbors for each node, L is the number of GSage layers (Wu et al., 2020), and D denotes the size
of node representations. In comparison to the non-augmented graph, NODEDUP introduces an extra
time complexity of O(RL|Vcold|D2). For the inner product decoder, we incorporate additionally
|Vcold| positive edges and also sample |Vcold| negative edges into the training process, resulting in
the extra time complexity of the decoder as O((M + |Vcold|)D). Given that all cold nodes have few
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𝐺𝑡: Graph Learned 
by Teacher GNN

𝐺𝑜: Original Graph
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KD 

Student GNN
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≈

GNN
SP

Self-distillation Whole graph duplication NodeDup

KD: knowledge distillation      SP: supervised training  

GNN
SP

Figure 3: Comparing NODEDUP to self-distillation. The self-distillation process can be approximated
by training the student GNN on an augmented graph, which combines Go, Gt, and edges connecting
corresponding nodes in the two graphs. This process can be further improved by replacing Gt with
Go to explore the whole graph duplication. NODEDUP is a lightweight variation of it.

(R ≤ 2 in our experiments) neighbors, and GSage is also always shallow (so L is small) (Zhao &
Akoglu, 2019), the overall extra complexity introduced by NODEDUP is O(|Vcold|D2 + |Vcold|D).

3.2 HOW DOES NODE DUPLICATION HELP COLD-START LP?
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Figure 2: Ablation study of NODEDUP on Physics.
Step (2) and Step (3) are the steps introduced in Sec-
tion 3.1. Both steps play an important role in perfor-
mance improvements of NODEDUP.

In this subsection, we analyze how such a
simple method can improve cold-start LP
from two perspectives: the neighborhood
aggregation in GNNs and the supervision
signal during training. In short, NODEDUP
leverages the extra information from an
additional “view”. The existing view is
when a node is regarded as the anchor node
during message passing, whereas the addi-
tional view is when that node is regarded
as one of its neighbors thanks to the dupli-
cated node from NODEDUP.

Aggregation. As described in Equation (1), when UPDATE(·) and AGG(·) do not share the transfor-
mation for node features, GNNs would have separate weights for self-representation and neighbor
representations. The separate weights enable the neighbors and the node itself to play distinct
roles in the UPDATE step. By leveraging this property, with NODEDUP, the model can leverage
the two “views” for each node: first, the existing view is when a node is regarded as the anchor
node during message passing, and the additional view is when that node is regarded as one of its
neighbors thanks to the duplicated node from NODEDUP. Taking the official PyG (Fey & Lenssen,
2019) implementation of GSage (Hamilton et al., 2017) as an example, it updates node representa-
tions using h

(l+1)
v = W1h

(l)
v + W2m

(l)
v . Here, W1 and W2 correspond to the self-representation

and neighbors’ representations, respectively. Without NODEDUP, isolated nodes Viso have no
neighbors, which results with m

(l)
v = 0. Thus, the representations of all v ∈ Viso are only up-

dated by h
(l+1)
v = W1h

(l)
v . With NODEDUP, the updating process for isolated node v becomes

h
(l+1)
v = W1h

(l)
v + W2h

(l)
v = (W1 + W2)h

(l)
v . It indicates that W2 is also incorporated into

the node updating process for isolated nodes, which offers an additional perspective for isolated
nodes’ representation learning. Similarly, GAT (Veličković et al., 2017) updates node representations
with h

(l+1)
v = αvvΘh

(l)
v +

∑
u∈Nv

αvuΘh
(l)
u , where αvu =

exp(LeakyReLU(a⊤[Θh(l)
v ||Θh(l)

u ]))∑
i∈Nv∪v exp(LeakyReLU(a⊤[Θh

(l)
v ||Θh

(l)
i ]))

.

Attention scores in a partially correspond to the self-representation hv and partially to neighbors’
representation hu. In this case, neighbor information offers a different perspective compared to
self-representation. Such “multi-view” enriches the representations learned for the isolated nodes in a
similar way to how ensemble methods work (Allen-Zhu & Li, 2020). Apart from addressing isolated
nodes, the same mechanism and multi-view perspective also apply to Low-degree nodes.

Supervision. For LP tasks, besides the aggregation, edges also serve as supervised training signals.
Cold nodes have few or no positive training edges connecting to them, potentially leading to out-of-
distribution (OOD) issues (Wu et al., 2022), especially for isolated nodes. The additional edges, added
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by NODEDUP to connect cold nodes with their duplicates, serve as additional positive supervision
signals for LP. More supervision signals for cold nodes usually lead to better-quality embeddings.

Ablation Study. Figure 2 shows an ablation study on these two designs where NODEDUP w/o Step (3)
indicates only using the augmented nodes and edges in aggregation but not supervision; NODEDUP
w/o Step (2) indicates only using the augmented edges in supervision but not aggregation. We can
observe that using augmented nodes/edges either in supervision or aggregation can significantly
improve the LP performance on Isolated nodes, and NODEDUP, by combining them, results in larger
improvements. Besides, NODEDUP also achieves improvements on Low-degree nodes while not
sacrificing Warm nodes’ performance.

LP on Warm Nodes. The superior performance on warm nodes is directly tied to our focus on
link prediction tasks. Given the substantial number of Warm-Cold node pairs under prediction,
these outcomes contribute to the overall performance metrics for both Warm node prediction. Better
learning of Cold nodes thus boosts Cold-Warm node pairs link prediction performance, which
subsequently elevates the prediction accuracy for warm nodes. A more detailed experimental analysis
is provided in Appendix D.2.

3.3 RELATION BETWEEN NODEDUP AND SELF-DISTILLATION

Recently, Allen-Zhu & Li (2020) showed that the success of self-distillation, similar to our method,
contributes to ensemble learning by providing models with different perspectives on the knowledge.
Building on this insight, we show an interesting interpretation of NODEDUP, as a simplified and
enhanced version of self-distillation for LP tasks for cold nodes, illustrated in Figure 3, in which we
draw a connection between self-distillation and NODEDUP.
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Self-distillation
Whole Graph Dup.
NodeDup

Figure 4: Performance with different training strate-
gies introduced in Figure 3 on Citeseer. NODEDUP
achieves better performance across all settings.

In self-distillation, a teacher GNN is first
trained to learn the node representations
Ht from original features X. We denote
the original graph as Go, and we denote the
graph, where we replace the node features
in Go with Ht, as Gt in Figure 3. The stu-
dent GNN is then initialized with random
parameters and trained with the sum of two
loss functions: LSD = LSP+LKD, where
LSP denotes the supervised training loss
with Go and LKD denotes the knowledge
distillation loss with Gt. Figure 4 shows
that self-distillation outperforms the teacher GNN across all settings.

The effect of LKD is similar to that of creating an additional link connecting nodes in Go to their
corresponding nodes in Gt when optimizing with LSP . This is illustrated by the red dashed line
in Figure 3. For better clarity, we show the similarities between these two when we use the inner
product as the decoder for LP with the following example. Given a node v with normalized teacher
embedding ht

v and normalized student embedding hv, the additional loss term that would be added
for distillation with cosine similarity is LKD = − 1

N

∑
v∈V hv · ht

v. On the other hand, for the
dashed line edges in Figure 3, we add an edge between the node v and its corresponding node v′

in Gt with embedding ht
v′ . When trained with an inner product decoder and binary cross-entropy

loss, it results in the following: LSP = − 1
N

∑
yvv′ log(hv · ht

v′) + (1 − yvv′) log(1 − hv · ht
v′).

Since we always add the edge (v, v′), we know yvv′ = 1, and can simplify the loss as follows:
LSP = − 1

N

∑
log(hv · ht

v′). Here, we can observe that LKD and LSP are positively correlated as
log(·) is a monotonically increasing function.

To further improve this step and mitigate potential noise in Gt, we explore a whole graph duplication
technique, where Gt is replaced with an exact duplicate of Go to train the student GNN. The results
in Figure 4 demonstrate significant performance enhancement achieved by whole graph duplication
compared to self-distillation. NODEDUP is a lightweight variation of the whole graph duplication
technique, which focuses on duplicating only the cold nodes and adding edges connecting them to
their duplicates. From the results, it is evident that NODEDUP consistently outperforms the teacher
GNN and self-distillation in all scenarios. Additionally, NODEDUP exhibits superior performance on
isolated nodes and is much more efficient compared to the whole graph duplication approach.
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3.4 NODEDUP(L): AN EFFICIENT VARIANT OF NODEDUP

Inspired by the above analysis, we further introduce a lightweight variant of NODEDUP for better
efficiency, NODEDUP(L). To provide above-described “multi-view” information as well as the
supervision signals for cold nodes, NODEDUP(L) simply add additional self-loop edges for the cold
nodes into the edge set E , that is, E ′ = E ∪ {evv : ∀v ∈ Vcold}. NODEDUP(L) preserves the two
essential designs of NODEDUP while avoiding the addition of extra nodes, which further saves time
and space complexity. Moreover, NODEDUP differs from NODEDUP(L) since each duplicated node
in NODEDUP will provide another view for itself because of dropout layers, which leads to different
performance as shown in Section 4.2.

NODEDUP(L) vs. Self-loop. We remark upon a resemblance between NODEDUP(L) and self-loops
in GNNs (e.g., the additional self-connection in the normalized adjacency matrix by GCN) as they
both add self-loop edges. However, they differ in two aspects. During aggregation: NODEDUP(L)
intentionally incorporates the self-representation h

(l)
v into the aggregated neighbors’ representation

m
(l)
v by adding additional edges. Taking GSage as an example, the weight matrix W2 would serve

an extra “view” of h(l)
v when updating h

(l+1)
v , whereas the default self-loops only use information

from W1. Additionally, in the supervision signal: unlike the normal self-loops and the self-loops
introduced in previous works (Cai et al., 2019; Wang et al., 2020), where self-loops are solely for
aggregation, the edges added by NODEDUP(L) also serve as positive training samples for cold nodes.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Evaluation Settings. We conduct experiments on 7 benchmark datasets: Cora,
Citeseer, CS, Physics, Computers, Photos and IGB-100K, with their details specified in
Appendix B. We randomly split edges into training, validation, and testing sets. We allocated 10%
for validation and 40% for testing in Computers and Photos, 5%/10% for testing in IGB-100K,
and 10%/20% in other datasets. We follow the standard evaluation metrics used in the Open Graph
Benchmark (Hu et al., 2020) for LP, in which we rank missing references higher than 500 negative
reference candidates for each node. The negative references are randomly sampled from nodes not
connected to the source node. We use Hits@10 as the main evaluation metric (Han et al., 2022) and
also report MRR performance in Appendix D. We follow Guo et al. (2022) and Shiao et al. (2022)
for the inductive settings, where new nodes appear after the training process. Additionally, results for
large-scale datasets and heterophilic graphs are presented in Appendix D.4 and Appendix D.5.

Baselines. Both NODEDUP and NODEDUP(L) are flexible to integrate with different GNN encoder
architectures and LP decoders. For our experiments, we use GSage (Hamilton et al., 2017) encoder
and the inner product decoder as the default base LP model. To comprehensively evaluate our work,
we compare NODEDUP against three categories of baselines. (1) Base LP models. (2) Cold-start
methods: TailGNN (Liu et al., 2021) and Cold-brew (Zheng et al., 2021) primarily aim to enhance
the performance on cold nodes. We also compared with Imbalance (Lin et al., 2017), viewing cold
nodes as an issue of the imbalance concerning node degrees. (3) Graph data augmentation methods:
Augmentation frameworks including DropEdge (Rong et al., 2019), TuneUP (Hu et al., 2022),
and LAGNN (Liu et al., 2022b) typically improve the performance while introducing additional
preprocessing or training time. Performance comparisons with heuristic methods are in Appendix D.6.

4.2 PERFORMANCE COMPARED TO BASE GNN LP MODELS

Isolated and Low-degree Nodes. We compare our methods with base GNN LP models that consist
of a GNN encoder in conjunction with an inner product decoder and are trained with a supervised
loss. From Table 1, we observe consistent improvements for both NODEDUP(L) and NODEDUP over
the base GSage model across all datasets, particularly in the Isolated and Low-degree node settings.
Notably, in the Isolated setting, NODEDUP achieves an impressive 29.6% improvement, on average,
across all datasets. These findings provide clear evidence that our methods effectively address the
issue of sub-optimal LP performance on cold nodes.

Warm Nodes and Overall. It is encouraging to see that NODEDUP(L) consistently outperforms
GSage across all the datasets in the Warm nodes and Overall settings. NODEDUP also outperforms
GSage in 13 out of 14 cases under both settings. These findings support the notion that our methods
can effectively maintain and enhance the performance of Warm nodes.
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Table 1: Performance compared with base GNN model and baselines for cold-start methods(evaluated
by Hits@10). The best result is bold, and the runner-up is underlined. NODEDUP and NODEDUP(L)
outperform GSage and cold-start baselines almost all the cases.

GSage Imbalance TailGNN Cold-brew NODEDUP(L) NODEDUP

Cora

Isolated 32.20±3.58 34.51±1.11 36.95±1.34 28.17±0.67 39.76±1.32 44.27±3.82

Low-degree 59.45±1.09 59.42±1.21 61.35±0.79 57.27±0.63 62.53±1.03 61.98±1.14

Warm 61.14±0.78 59.54±0.46 60.61±0.90 56.28±0.81 62.07±0.37 59.07±0.68

Overall 58.31±0.68 57.55±0.67 59.02±0.71 54.44±0.53 60.49±0.49 58.92±0.82

Citeseer

Isolated 47.13±2.43 46.26±0.86 37.84±3.36 37.78±4.23 52.46±1.16 57.54±1.04

Low-degree 61.88±0.79 61.90±0.60 62.06±1.73 59.12±9.97 73.71±1.22 75.50±0.39

Warm 71.45±0.52 71.54±0.86 71.32±1.83 65.12±7.82 74.99±0.37 74.68±0.67

Overall 63.77±0.83 63.66±0.43 62.02±1.89 58.03±7.72 70.34±0.35 71.73±0.47

CS

Isolated 56.41±1.61 46.60±1.66 55.70±1.38 57.70±0.81 65.18±1.25 65.87±1.70

Low-degree 75.95±0.25 75.53±0.21 73.60±0.70 73.99±0.34 81.46±0.57 81.12±0.36

Warm 84.37±0.46 83.70±0.46 79.86±0.35 78.23±0.28 85.48±0.26 84.76±0.41

Overall 83.33±0.42 82.56±0.40 79.05±0.36 77.63±0.23 84.90±0.29 84.23±0.39

Physics

Isolated 47.41±1.38 55.01±0.58 52.54±1.34 64.38±0.85 65.04±0.63 66.65±0.95

Low-degree 79.31±0.28 79.50±0.27 75.95±0.27 75.86±0.10 82.70±0.22 84.04±0.22

Warm 90.28±0.23 89.85±0.09 85.93±0.40 78.48±0.14 90.44±0.23 90.33±0.05

Overall 89.76±0.22 89.38±0.09 85.48±0.38 78.34±0.13 90.09±0.22 90.03±0.05

Computers

Isolated 9.32±1.44 10.14±0.59 10.63±1.59 9.75±1.24 17.11±1.62 19.62±2.63

Low-degree 57.91±0.97 56.19±0.82 51.21±1.58 49.03±0.94 62.14±1.06 61.16±0.92

Warm 66.87±0.47 65.62±0.21 62.77±0.44 57.52±0.28 68.02±0.41 68.10±0.25

Overall 66.67±0.47 65.42±0.20 62.55±0.45 57.35±0.28 67.86±0.41 67.94±0.25

Photos

Isolated 9.25±2.31 10.80±1.72 13.62±1.00 12.86±2.58 21.50±2.14 17.84±3.53

Low-degree 52.61±0.88 50.68±0.57 42.75±2.50 43.14±0.64 55.70±1.38 54.13±1.58

Warm 67.64±0.55 64.54±0.50 61.63±0.73 58.06±0.56 69.68±0.87 68.68±0.49

Overall 67.32±0.54 64.24±0.49 61.29±0.75 57.77±0.56 69.40±0.86 68.39±0.48

IGB-100K

Isolated 75.92±0.52 77.32±0.79 77.29±0.34 82.31±0.30 87.43±0.44 88.04±0.20

Low-degree 79.38±0.23 79.19±0.09 80.57±0.14 83.84±0.16 88.37±0.24 88.98±0.17

Warm 86.42±0.24 86.01±0.19 85.35±0.19 82.44±0.21 88.54±0.31 88.28±0.20

Overall 84.77±0.21 84.47±0.14 84.19±0.18 82.68±0.17 88.47±0.28 88.39±0.18
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Figure 5: Performance and runtime comparisons of different augmentation methods. The left his-
tograms show the performance results, and the right histograms show the preprocessing and training
time consumption of each method. Our methods consistently achieve significant improvements in
both performance for Isolated and Low-degree node settings and runtime efficiency over baselines.

NODEDUP vs. NODEDUP(L). Furthermore, we observe that NODEDUP achieves greater improve-
ments over NODEDUP(L) for Isolated nodes. However, NODEDUP(L) outperforms NODEDUP on 6
out of 7 datasets for Warm nodes. The additional improvements achieved by NODEDUP for Isolated
nodes can be attributed to the extra view provided to cold nodes through node duplication during
aggregation. On the other hand, the impact of node duplication on the original graph structure likely
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affects the performance of Warm nodes, which explains the superior performance of NODEDUP(L)
in this setting compared to NODEDUP.

4.3 PERFORMANCE COMPARE TO COLD-START METHODS

Table 1 presents the LP performance of various cold-start baselines. For both Isolated and Low-
degree nodes, we consistently observe substantial improvements of our NODEDUP and NODEDUP(L)
methods compared to other cold-start baselines. Specifically, NODEDUP and NODEDUP(L) achieve
38.49% and 34.74% improvement for Isolated nodes on average across all datasets, respectively.

In addition, our methods consistently outperform cold-start baselines for Warm nodes across all
the datasets, where NODEDUP(L) and NODEDUP achieve 6.76% and 7.95% improvements on
average, respectively. This shows that our methods can successfully overcome issues with degrading
performance on Warm nodes in cold-start baselines. Further analyses with other cold-start methods
and efficiency comparisons can be found in Appendix D.8 and Appendix D.9.

4.4 PERFORMANCE COMPARED TO AUGMENTATION METHODS

Effectiveness Comparison. Since NODEDUP and NODEDUP(L) use graph data augmentation tech-
niques, we compare them to other data augmentation baselines. The performance and time consump-
tion results are presented in Figure 5 for three datasets (Citeseer, Physics, and IGB-100K),
while the results for the remaining datasets are provided in Appendix D.10 due to the page limit. From
Figure 5, we consistently observe that NODEDUP outperforms all the graph augmentation baselines
for Isolated and Low-degree nodes across all three datasets. Similarly, NODEDUP(L) outperforms
graph data augmentation baselines on 17/18 cases for Isolated and Low-degree nodes. Not only did
our methods perform better for Isolated and Low-degree nodes, NODEDUP and NODEDUP(L) also
perform on par or above baselines for Warm nodes.

Efficiency Comparison. Augmentation methods often come with the trade-off of adding additional
run time before or during model training. For example, LAGNN (Liu et al., 2022b) requires extra
preprocessing time to train the generative model prior to GNN training. It also takes additional time
to generate extra features for each node during training. Although Dropedge (Rong et al., 2019) and
TuneUP (Hu et al., 2022) are free of preprocessing, they require additional time to drop edges in each
training epoch compared to base GNN training. Furthermore, the two-stage training employed by
TuneUP doubles the training time compared to one-stage training methods. For NODEDUP methods,
duplicating nodes and adding edges is remarkably swift and consumes significantly less preprocessing
time than other augmentation methods. As an example, NODEDUP(L) and NODEDUP are 977.0×
and 488.5× faster than LAGNN in preprocessing Citeseer, respectively. We also observe that
NODEDUP(L) has the least training time among all augmentation methods and datasets, while NOD-
EDUP also requires less training time in 8/9 cases. Additionally, NODEDUP(L) achieves significant
efficiency benefits compared to NODEDUP in Figure 5, especially when the number of nodes in the
graph increases substantially. Taking the IGB-100K dataset as an example, NODEDUP(L) is 1.3×
faster than NODEDUP for the entire training process.

4.5 PERFORMANCE UNDER THE INDUCTIVE SETTING

Table 2: Performance in inductive settings (evaluated by
Hits@10). The best result is bold, and the runner-up is
underlined. Our methods consistently outperform GSage.

GSage NODEDUP(L) NODEDUP

Citeseer

Isolated 58.42±0.49 62.42±1.88 62.94±1.91

Low-degree 67.75±1.06 69.93±1.18 72.05±1.23

Warm 72.98±1.15 75.04±1.03 74.40±2.43

Overall 66.98±0.61 69.65±0.83 70.26±1.16

Physics

Isolated 85.62±0.23 85.94±0.15 86.90±0.35

Low-degree 80.87±0.43 81.23±0.56 85.56±0.25

Warm 90.22±0.36 90.37±0.25 90.54±0.14

Overall 89.40±0.33 89.57±0.23 89.98±0.13

IGB-100K

Isolated 84.33±0.87 92.94±0.11 93.95±0.06

Low-degree 93.19±0.06 93.33±0.11 94.00±0.09

Warm 90.76±0.13 91.21±0.07 91.20±0.08

Overall 90.31±0.18 91.92±0.05 92.21±0.04

Under the inductive setting (Guo et al.,
2022; Shiao et al., 2022), which closely
resembles real-world LP scenarios, the
presence of new nodes after the training
stage adds an additional challenge com-
pared to the transductive setting. We
evaluate and present the effectiveness
of our methods under this setting in Ta-
ble 2 for Citeseer, Physics, and
IGB-100K datasets. Additional results
for other datasets can be found in Ap-
pendix D.11. In Table 2, we observe
that our methods consistently outperform
base GSage across all of the datasets. We
also observe significant performance im-
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Table 3: Performance with different encoders (inner product as the decoder). The best result for
each encoder is bold, and the runner-up is underlined. Our methods consistently outperform the base
models, particularly for Isolated and Low-degree nodes.

GAT NODEDUP(L) NODEDUP JKNet NODEDUP(L) NODEDUP

Citeseer

Isolated 37.78±2.36 38.95±2.75 44.04±1.03 37.78±0.63 49.06±0.60 55.15±0.87

Low-degree 58.04±2.40 61.93±1.66 66.73±0.96 60.74±1.18 71.78±0.64 75.26±1.16

Warm 56.37±2.15 64.55±1.74 66.61±1.67 71.61±0.76 74.66±0.47 75.81±0.89

Overall 53.42±1.59 58.89±0.89 62.41±0.78 61.73±0.57 68.91±0.38 71.75±0.82

Physics

Isolated 38.19±1.23 39.95±1.48 45.89±2.82 42.57±1.93 55.47±2.25 61.11±2.27

Low-degree 74.19±0.31 74.77±0.46 76.36±0.25 75.36±0.23 79.55±0.21 81.14±0.28

Warm 85.84±0.32 86.02±0.45 85.84±0.15 88.24±0.32 89.42±0.16 89.24±0.16

Overall 85.27±0.30 85.47±0.45 85.37±0.14 87.64±0.31 88.96±0.15 88.87±0.15

IGB-100K

Isolated 75.87±0.48 78.17±0.58 80.18±0.31 69.29±0.73 86.60±0.46 86.85±0.41

Low-degree 77.05±0.15 78.50±0.31 81.00±0.12 76.90±0.27 86.94±0.15 87.65±0.20

Warm 81.40±0.07 81.95±0.25 81.19±0.20 84.93±0.30 87.41±0.13 86.19±0.12

Overall 80.42±0.07 81.19±0.25 81.11±0.19 82.91±0.28 87.29±0.13 86.47±0.13

provements of our methods on Isolated nodes, where NODEDUP and NODEDUP(L) achieve 5.50%
and 3.57% improvements averaged across the three datasets, respectively. Additionally, NODEDUP
achieves 5.09% improvements on Low-degree nodes. NODEDUP leads to more pronounced improve-
ments on Low-degree/Isolated nodes, making it particularly beneficial for the inductive setting.

4.6 PERFORMANCE WITH DIFFERENT ENCODERS/DECODERS

As a simple plug-and-play augmentation method, NODEDUP can work with different GNN encoders
and LP decoders. In Tables 3 and 4, we present results with GAT (Veličković et al., 2017) and
JKNet (Xu et al., 2018) as encoders, along with a MLP decoder. Due to the space limit, we only
report the results of three datasets here and leave the remaining in Appendix D.12. When applying
NODEDUP to base LP training, with GAT or JKNet as the encoder and inner product as the decoder,
we observe significant performance improvements across the board. Regardless of the encoder choice,
NODEDUP consistently outperforms the base models, particularly for Isolated and Low-degree nodes.
From Appendix D.12, we also observe the performance improvements of NODEDUP with GCN (Kipf
& Welling, 2016a), GraphTransformer (Dwivedi & Bresson, 2020) as encoders.

Table 4: LP performance with MLP decoder (GSage as
the encoder). Our methods outperform the base model.

MLP-Dec. NODEDUP(L) NODEDUP

Citeseer

Isolated 17.16±1.14 37.84±3.06 51.17±2.19

Low-degree 63.82±1.58 68.49±1.19 71.98±1.29

Warm 72.93±1.25 75.33±0.54 75.72±0.55

Overall 59.49±1.21 66.07±0.74 69.89±0.65

Physics

Isolated 11.59±1.88 60.25±2.54 59.50±1.87

Low-degree 76.37±0.64 81.74±0.77 82.58±0.79

Warm 91.54±0.33 91.96±0.36 91.59±0.22

Overall 90.78±0.33 91.51±0.38 91.13±0.23

IGB-100K

Isolated 3.51±0.32 82.71±1.05 82.02±0.73

Low-degree 75.25±0.49 85.96±0.42 86.04±0.26

Warm 85.06±0.08 87.89±0.13 86.87±0.48

Overall 80.16±0.16 87.35±0.21 86.54±0.40

In Table 4, we present the results of our
methods applied to the base LP training,
where GSage serves as the encoder and
MLP as the decoder. Regardless of the
decoder, we observe better performance
with our methods. These improvements
are significantly higher compared to the
improvements observed with the inner
product decoder. The primary reason for
this discrepancy is the inclusion of addi-
tional supervised training signals for iso-
lated nodes in our methods, as discussed
in Section 3.2. These signals play a cru-
cial role in training the MLP decoder,
making it more responsive to the specific challenges presented by isolated nodes. Our methods
also improve performance with SEAL (Zhang & Chen, 2018), as shown in Appendix D.12.

5 CONCLUSION

GNNs in LP encounter difficulties when dealing with cold nodes that lack sufficient or absent
neighbors. To address this challenge, we presented a simple yet effective augmentation method
(NODEDUP) specifically tailored for the cold-start LP problem, which can effectively enhance the
prediction capabilities of GNNs for cold nodes while maintaining overall performance. Extensive
evaluations demonstrated that both NODEDUP and its lightweight variant, NODEDUP(L), consistently
outperformed baselines on both cold node and warm node settings across 7 benchmark datasets.
NODEDUP also achieved better runtime efficiency compared to the augmentation baselines.
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Ethics Statement. In this work, our simple but effective method enhances the link prediction
performance on cold-start nodes, which mitigates the degree bias and advances the fairness of graph
machine learning. It can be widely used and beneficial for various real-world applications, such as
recommendation systems, social network analysis, and bioinformatics. We do not foresee any negative
societal impact or ethical concerns posed by our method. Nonetheless, we note that both positive and
negative societal impacts can be made by applications of graph machine learning techniques, which
may benefit from the improvements induced by our work. Care must be taken, in general, to ensure
positive societal and ethical consequences of machine learning.
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A RELATED WORK

LP with GNNs. Over the past few years, GNN architectures (Kipf & Welling, 2016a; Gilmer
et al., 2017; Hamilton et al., 2017; Veličković et al., 2017; Xu et al., 2018) have gained significant
attention and demonstrated promising outcomes in LP tasks. There are two primary approaches to
applying GNNs in LP. The first approach involves a node-wise encoder-decoder framework, which
we discussed in Section 2. The second approach reformulates LP tasks as enclosing subgraph
classification tasks (Zhang & Chen, 2018; Cai & Ji, 2020; Cai et al., 2021; Dong et al., 2022).
Instead of directly predicting links, these methods perform graph classification tasks on the enclosing
subgraphs sampled around the target link. These methods can achieve even better results compared to
node-wise encoder-decoder frameworks by assigning node labels to indicate different roles within the
subgraphs. However, constructing subgraphs poses challenges in terms of efficiency and scalability,
requiring substantial computational resources. Our work focuses on the encoder-decoder framework
for LP, circumventing the issues associated with subgraph construction.

Methods for Cold-start Nodes. Recently, several GNN-based methods (Wu et al., 2019; Liu
et al., 2020; Tang et al., 2020b; Liu et al., 2021; Zheng et al., 2021) have explored degree-specific
transformations to address robustness and cold-start node issues. Tang et al.(Tang et al., 2020b)
introduced a degree-related graph convolutional network to mitigate degree-related bias in node
classification tasks. Liu et al.(Liu et al., 2021) proposed a transferable neighborhood translation
model to address missing neighbors for cold-start nodes. Zheng et al.(Zheng et al., 2021) tackled the
cold-start nodes problem by recovering missing latent neighbor information. These methods require
cold-start-node-specific architectural components, unlike our approach, which does not necessitate
any architectural modifications. Additionally, other studies have focused on long-tail scenarios in
various domains, such as cold-start recommendation(Chen et al., 2020; Lu et al., 2020; Hao et al.,
2021). Imbalance tasks present another common long-tail problem, where there are long-tail instances
within small classes (Lin et al., 2017; Ren et al., 2020; Tan et al., 2020; Kang et al., 2019; Tang
et al., 2020a). Approaches like (Lin et al., 2017; Ren et al., 2020; Tan et al., 2020) address this
issue by adapting the loss for different samples. However, due to the different problem settings, it
is challenging to directly apply these methods to our tasks. We only incorporate the balanced cross
entropy introduced by Lin et al. (Lin et al., 2017) as one of our baselines.

Graph Data Augmentation. Graph data augmentation expands the original data by perturbing or
modifying the graphs to enhance the generalizability of GNNs (Zhao et al., 2022a; Ding et al., 2022).
Existing methods primarily focus on semi-supervised node-level tasks(Rong et al., 2019; Feng et al.,
2020; Zhao et al., 2021; Park et al., 2021) and graph-level tasks (Liu et al., 2022a; Luo et al., 2022).
However, the exploration of graph data augmentation for LP remains limited (Zhao et al., 2022b).
CFLP (Zhao et al., 2022b) proposes the creation of counterfactual links to learn representations from
both observed and counterfactual links. Nevertheless, this method encounters scalability issues due
to the high computational complexity associated with finding counterfactual links. Moreover, there
exist general graph data augmentation methods (Liu et al., 2022b; Hu et al., 2022) that can be applied
to various tasks. LAGNN (Liu et al., 2022b) proposed to use a generative model to provide additional
neighbor features for each node. TuneUP (Hu et al., 2022) designs a two-stage training strategy,
which trains GNNs twice to make them perform well on both warm nodes and cold-start nodes. These
augmentation methods come with the trade-off of introducing extra runtime either before or during
the model training. Unlike TLC-GNN (Yan et al., 2021), which necessitates extracting topological
features for each node pair, and GIANT (Chien et al., 2021), which requires pre-training of the text
encoder to improve node features, our methods are more streamlined and less complex.

B ADDITIONAL DATASETS DETAILS

This section provides detailed information about the datasets used in our experiments. We consider
various types of networks, including citation networks, collaboration networks, and co-purchase
networks. The datasets we utilize are as follows:

• Citation Networks: Cora and Citeseer originally introduced by Yang et al. (2016), consist
of citation networks where the nodes represent papers and the edges represent citations between
papers. IGB-100K (Khatua et al., 2023) is a recently-released benchmark citation network with
high-quality node features and a large dataset size.
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Table 5: Detailed statistics of data splits under the transductive and inductive setting.
Transductive Setting

Datasets Original Graph Testing Isolated Testing Low-degree Testing Warm
#Nodes #Edges #Nodes #Edges #Nodes #Edges #Nodes #Edges

Cora 2,708 5,278 135 164 541 726 662 1,220
Citeseer 3,327 4,552 291 342 492 591 469 887
CS 18,333 163,788 309 409 1,855 2,687 10,785 29,660
Physics 34,493 495,924 275 397 2,062 3,188 25,730 95,599
Computers 13,752 491,722 218 367 830 1,996 11,887 194,325
Photos 7,650 238,162 127 213 516 1,178 6,595 93,873
IGB-100K 100,000 547,416 1,556 1,737 6,750 7,894 23,949 35,109

Inductive Setting

Datasets Original Graph Testing Isolated Testing Low-degree Testing Warm
#Nodes #Edges #Nodes #Edges #Nodes #Edges #Nodes #Edges

Cora 2,708 5,278 149 198 305 351 333 505
Citeseer 3,327 4,552 239 265 272 302 239 339
CS 18,333 163,788 1,145 1,867 1,202 1,476 6,933 13,033
Physics 34,493 495,924 2,363 5,263 1,403 1,779 17,881 42,548
Computers 13,752 491,722 1,126 4,938 239 302 9,235 43,928
Photos 7,650 238,162 610 2,375 169 212 5,118 21,225
IGB-100K 100,000 547,416 5,507 9,708 8,706 13,815 24,903 41,217

• Collaboration Networks: CS and Physics are representative collaboration networks. In these
networks, the nodes correspond to authors and the edges represent collaborations between authors.

• Co-purchase Networks: Computers and Photos are co-purchase networks, where the nodes
represent products and the edges indicate the co-purchase relationship between two products.

Why there are no OGB (Hu et al., 2020) datasets applied? OGB benchmarks that come with
node features, such as OGB-collab and OGB-citation2, lack a substantial number of isolated or
low-degree nodes, which makes it challenging to yield convincing results for experiments focusing
on the cold-start problem. This is primarily due to the split setting adopted by OGB, where the
evaluation is centered around a set of the most recent papers with high degrees. Besides, considering
these datasets have their fixed splitting settings based on time, it will lead to inconsistent problems
to compared with the leaderboard results if we use our own splitting method to ensure we have
a reasonable number of isolated/low-degree nodes. Given these constraints, we opted for another
extensive benchmark dataset, IGB-100K (Khatua et al., 2023), to test and showcase the effectiveness
of our methods on large-scale graphs. We further conducted the experiments on IGB1M, which are
shown in Appendix D.4.

B.1 TRANSDUCTIVE SETTING

For the transductive setting, we randomly split the edges into training, validation, and testing sets
based on the splitting ratio specified in Section 4.1. The nodes in training/validation/testing are all
visible during the training process. However, the positive edges in validation/testing sets are masked
out for training. After the split, we calculate the degrees of each node using the validation graph. The
dataset statistics are shown in Table 5.

B.2 INDUCTIVE SETTING

The inductive setting is considered a more realistic setting compared to the transductive setting, where
new nodes appear after the training process. Following the inductive setting introduced in Guo et al.
(2022) and Shiao et al. (2022), we perform node splitting to randomly sample 10% nodes from the
original graph as the new nodes appear after the training process. The remaining nodes are considered
observed nodes during the training. Next, we group the edges into three sets: observed-observed,
observed-new, and new-new node pairs. We select 10% of observed-observed, 10% of observed-new,
and 10% of new-new node pairs as the testing edges. We consider the remaining observed-new and
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new-new node pairs, along with an additional 10% of observed-observed node pairs, as the newly
visible edges for the testing inference. The datasets statistics are shown in Table 5.

C NODEDUP ALGORITHM

In this section, we provide a detailed description of our algorithm, which is outlined in Algorithm 1.
Compared to the default training of GNNs for LP tasks, NODEDUP incorporates additional augmen-
tation steps, denoted as L1-L5 in Algorithm 1.

Algorithm 1: NODEDUP.

Require: Graph G = {V , E , X}, Supervision Y , AGG, UPDATE, GNNs Layer L, DECODER, Supervised
loss function Lsup.

1: # Augment the graph by duplicating cold-start nodes Vcold.
2: Identify cold node set Vcold based on the node degree.
3: Duplicate all cold nodes to generate the augmented node set V ′ = V ∪ Vcold, whose node feature matrix is

then X′ ∈ R(N+|Vcold|)×F .
4: Add an edge between each cold node v ∈ Vcold and its duplication v′, then get the augmented edge set

E ′ = E ∪ {evv′ : ∀v ∈ Vcold}.
5: Add the augmented edges into the training set and get Y ′ = Y ∪ {yvv′ = 1 : ∀v ∈ Vcold}.
6: # End-to-end supervised training based on the augmented graph G′ = {V ′, E ′,X′}.
7: for l = 1 to L do
8: for v in V ′ do
9: h

′(l+1)
v = UPDATE

(
h

′(l)
v ,AGG

(
{h′(l)

u } : ∀euv ∈ E ′))
10: end for
11: end for
12: for (i, j) in Y ′ do
13: ŷ′

ij = σ
(
DECODER(h′

i,h
′
j)
)

14: end for
15: Loss =

∑
(i,j)∈Y′ Lsup(ŷ

′
ij , yij)

D FURTHER EXPERIMENTAL RESULTS

D.1 SELECTION OF THE THRESHOLD δ.

Our decision to set the threshold δ at 2 is grounded in data-driven analysis, as illustrated in Figure 1
and Figure 6. These figures reveal that nodes with degrees not exceeding 2 consistently perform
below the average Hits@10 across all datasets, and higher than 2 will outperform the average results.
Besides, our choice aligns with methodologies in previous studies (Liu et al., 2020; 2021), where
cold nodes are identified using a fixed threshold across all the datasets. In addition, we conduct
experiments with different thresholds δ on Cora and Citeseer datasets. The results are shown
in Table 6. Our findings were consistent across different thresholds, with similar observations at δ =
1, δ = 2, and δ = 3. This indicates that our method’s effectiveness is not significantly impacted by
changes in this threshold.

D.2 PERFORMANCE ON WARM-WARM AND WARM-COLD LINKS.

To clearly explain the performance improvements of NODEDUP on Warm nodes, we first compared
the number of Warm-Warm and Warm-Cold links in the testing set. Then, we conducted experiments
to compare the performance of our methods on these two sets of links. The results, shown in Table 7,
indicate that the number of Warm-Warm links consistently exceeds that of Warm-Cold links across
all datasets. This means that Warm-Cold links do not dominate the performance of Warm nodes.
Additionally, our methods consistently improve performance on Warm-Cold links while maintaining
performance on Warm-Warm links. These findings demonstrate that our methods do not negatively
impact the learning ability of Warm nodes. The observed improvement on Warm nodes is primarily
due to better learning on Cold nodes, as we demonstrated in Section 3.2.
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Figure 6: Node Degree Distribution and LP Performance Distribution w.r.t Nodes Degrees showing
reverse trends on various datasets.

Table 6: Performance with different thresholds δ on Cora and Citeseer datasets.
δ = 1 δ = 2 δ = 3

Gsage NODEDUP Gsage NODEDUP Gsage NODEDUP

Cora

Isolated 31.34±5.60 42.20±2.30 32.20±3.58 44.27±3.82 31.95±1.26 43.17±2.94

Low-degree 53.98±1.20 57.99±1.34 59.45±1.09 61.98±1.14 59.64±1.01 62.68±0.63

Warm 61.68±0.29 61.17±0.43 61.14±0.78 59.07±0.68 61.03±0.79 59.91±0.44

Overall 58.01±0.57 59.16±0.44 58.31±0.68 58.92±0.82 58.08±0.74 59.99±0.53

Citeseer

Isolated 47.25±1.82 56.49±1.72 47.13±2.43 57.54±1.04 47.31±2.17 56.90±1.12

Low-degree 54.10±0.85 71.09±0.47 61.88±0.79 75.50±0.39 62.97±0.83 75.45±0.40

Warm 72.41±0.35 74.57±1.04 71.45±0.52 74.68±0.67 73.57±0.46 75.02±0.84

Overall 64.27±0.45 70.53±0.91 63.77±0.83 71.73±0.47 64.05±0.42 71.80±0.40

Table 7: Distribution and AUC performance of testing Warm-Warm and Warm-Cold links.
Warm-Warm Warm-Cold

Number GSage NODEDUP(L) NODEDUP Number GSage NODEDUP(L) NODEDUP

Cora 157738 94.92±0.31 95.17±0.19 95.18±0.18 16759 77.06±1.40 81.41±1.18 80.51±1.72

Citeseer 63266 97.21±0.09 97.06±0.21 97.02±0.12 24020 85.40±0.78 87.96±0.79 88.40±0.92

CS 4209161 98.31±0.03 98.30±0.02 98.42±0.02 91458 87.92±0.19 91.47±0.35 90.44±0.84

Physics 11462743 99.01±0.01 99.01±0.02 99.02±0.00 103174 86.21±0.33 89.94±0.31 90.23±0.51

Photos 2984253 97.85±0.06 98.03±0.04 97.87±0.02 104737 59.80±1.33 68.11±0.43 64.32±0.73

Computers 5417165 97.58±0.07 97.60±0.08 97.54±0.09 217090 46.49±0.75 57.32±0.99 57.63±0.49

IGB-100K 6899924 98.70±0.00 98.71±0.02 98.64±0.01 1372994 97.14±0.10 98.63±0.42 98.23±0.06
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Figure 7: Ablation study on duplication frequency and nodes of NODEDUP. (a), (b), (c) show the
performance for Isolated nodes, Low-degree nodes, and Overall settings, respectively. The numbers
displayed in each block represent the differences compared to duplicating cold nodes once.

Table 8: Link prediction performance with different duplication nodes of NodeDup on Citeseer.
"D_*" indicates duplication of "*" group nodes for one time.

Isolated Low-degree Warm Overall

Supervised 47.13 61.88 71.45 63.77
D_Isolated 54.04 72.28 74.53 69.95
D_Cold 57.54 75.50 74.68 71.73
D_Mid-warm 46.93 61.34 71.84 63.75
D_Warm 47.49 62.20 71.54 63.99
D_Random 54.10 72.39 75.05 70.06
D_All 58.87 76.09 76.01 72.44

D.3 INFLUENCE OF THE DUPLICATION FREQUENCY AND NODES

In our experiments, we duplicate cold nodes once and add one edge for each cold node in NODEDUP.
In Figure 7, we present the results of our ablation study, focusing on the effects of duplication
frequency and duplicated nodes on the performance of NODEDUP in terms of Isolated, Low-degree,
and Overall settings. The numbers displayed in each block represent the differences compared to
duplicating cold nodes once. We observe that increasing the duplication times does not necessarily
lead to improvements across all settings, except when duplicating all nodes for Isolated nodes
performance. We also notice that duplicating all nodes multiple times can significantly enhance the
performance on Isolated nodes. However, this strategy negatively impacts the overall performance
due to the increased number of isolated nodes in the graph. As a result, duplicating cold nodes once
remains the optimal strategy, consistently yielding strong performance across all settings.

To make our analysis more comprehensive, we further conducted the experiments to show the
results with duplicating warm nodes, mid-warm nodes, and randomly sampled nodes for one time,
respectively, on Citeseer. The results are shown in Table 8. From the table, we can observe that
duplicating mid-warm and warm nodes are not useful for the LP performance for all the settings.
It’s probably because for the mid-warm and warm nodes, the neighbors’ information and supervised
training signals are informative enough, therefore NODEDUP cannot contribute more. We can also
observe that duplicating random nodes is more effective than duplicating warm nodes but less effective
than duplicating cold nodes and duplicating all nodes.

D.4 PERFORMANCE ON LARGE-SCALE DATASETS

Table 9: Performance on the large-scale dataset.
The best result is bold. Our method consistently
outperforms GSage on IGB1M.

GSage NodeDup

IGB1M

Isolated 82.10±0.06 87.81±0.40

Low-degree 84.73±0.06 90.84±0.03

Warm 89.98±0.02 91.31±0.02

Overall 89.80±0.02 91.29±0.02

As outlined in Section 3.1, our methods incur a
minimal increase in time complexity compared
to base GNNs, with the increase being linearly
proportional to the number of cold nodes. This
ensures scalability. Besides, the effectiveness of
our method is also insensitive to dataset size. We
extend our experiments to the IGB1M dataset,
featuring 1 million nodes and 12 million edges.
The findings, which we detail in Table 9, affirm
the effectiveness of our methods in handling
large-scale datasets, consistent with observations from smaller datasets.
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Table 10: Performance on heterophilic datasets. The best result for each dataset is bold.
GSage NodeDup(L) NodeDup

Chameleon

Isolated 24.91±6.75 30.76±4.02 27.37±2.88

Low-degree 79.09±1.21 80.11±0.68 80.91±0.41

Warm 94.00±0.23 94.01±0.12 93.68±0.44

Overall 92.77±0.19 92.88±0.10 92.57±0.44

Squirrel

Isolated 25.05±3.70 33.07±3.20 30.11±1.57

Low-degree 63.34±2.12 66.61±0.26 68.05±0.80

Warm 93.35±0.22 93.43±0.11 93.82±0.13

Overall 92.89±0.23 93.02±0.11 93.41±0.13

Table 11: Performance compared with heuristic methods and DegFairGNN (Liu et al., 2023). The
best result is bold. NODEDUP, consistently outperforms all the heuristic methods and DegFairGNN.

CN AA RA DegFairGNN GSage NODEDUP

Cora

Isolated 0.00 0.00 0.00 18.70±1.53 32.20±3.58 44.27±3.82

Low-degree 20.30 20.14 20.14 38.43±0.14 59.45±1.09 61.98±1.14

Warm 38.33 38.90 38.90 42.49±1.82 61.14±0.78 59.07±0.68

Overall 25.27 25.49 25.49 39.24±1.10 58.31±0.68 58.92±0.82

Citeseer

Isolated 0.00 0.00 0.00 15.50±1.27 47.13±2.43 57.54±1.04

Low-degree 26.86 27.00 27.00 45.06±0.96 61.88±0.79 75.50±0.39

Warm 37.30 39.02 39.02 55.47±1.08 71.45±0.52 74.68±0.67

Overall 30.81 31.85 31.85 44.58±1.03 63.77±0.83 71.73±0.47

CS

Isolated 0.00 0.00 0.00 17.93±1.35 56.41±1.61 65.87±1.70

Low-degree 39.60 39.60 39.60 49.83±0.68 75.95±0.25 81.12±0.36

Warm 72.73 72.74 72.72 61.72±0.37 84.37±0.46 84.76±0.41

Overall 69.10 69.11 69.10 60.20±0.37 83.33±0.42 84.23±0.39

Physics

Isolated 0.00 0.00 0.00 19.48±2.94 47.41±1.38 66.65±0.95

Low-degree 46.08 46.08 46.08 47.63±0.52 79.31±0.28 84.04±0.22

Warm 85.48 85.74 85.70 62.79±0.82 90.28±0.23 90.33±0.05

Overall 83.87 84.12 84.09 62.13±0.76 89.76±0.22 90.03±0.05

Computers

Isolated 0.00 0.00 0.00 9.36±1.81 9.32±1.44 19.62±2.63

Low-degree 28.31 28.31 28.31 18.90±0.81 57.91±0.97 61.16±0.92

Warm 59.67 63.50 62.84 31.44±2.25 66.87±0.47 68.10±0.25

Overall 59.24 63.03 62.37 31.27±2.22 66.67±0.47 67.94±0.25

Photos

Isolated 0.00 0.00 0.00 12.99±1.51 9.25±2.31 17.84±3.53

Low-degree 28.44 28.78 28.78 20.18±0.21 52.61±0.88 54.13±1.58

Warm 64.53 67.26 66.88 42.72±0.89 67.64±0.55 68.68±0.49

Overall 63.94 66.64 66.26 42.37±0.87 67.32±0.54 68.39±0.48

IGB-100K

Isolated 0.00 0.00 0.00 57.09±21.08 75.92±0.52 88.04±0.20

Low-degree 12.26 12.26 12.26 59.45±21.84 79.38±0.23 88.98±0.17

Warm 30.65 30.65 30.65 65.57±20.43 86.42±0.24 88.28±0.20

Overall 26.22 26.22 26.22 64.16±20.70 84.77±0.21 88.39±0.18

D.5 PERFORMANCE ON HETEROPHILY DATASETS

We have conducted experiments on two heterophilic datasets (i.e., Chameleon (Pei et al., 2020)
and Squirrel (Pei et al., 2020)), with the results shown in Table 10. Our methods improve GNN
performance across all settings on these datasets. Specifically, NodeDup and NodeDup(L) enhance
the performance of Isolated nodes by 9.9% and 23.5% on Chameleon, and by 20.2% and 32.0% on
Squirrel.

D.6 PERFORMANCE COMPARED WITH HEURISTIC METHODS

We compare our method with traditional link prediction baselines, such as common neighbors (CN),
Adamic-Adar(AA), Resource allocation (RA). The results are shown in Table 11. We observe
that NODEDUP can consistently outperform these heuristic methods across all the datasets, with
particularly significant improvements observed on Isolated nodes.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 12: Performance compared with base GNN model and baselines for cold-start methods
(evaluated by MRR). The best result is bold, and the runner-up is underlined. NODEDUP and
NODEDUP(L) outperform GSage and cold-start baselines almost all the cases.

GSage Imbalance TailGNN Cold-brew NODEDUP(L) NODEDUP

Cora

Isolated 16.73±1.50 17.12±0.77 20.88±0.97 15.96±1.60 22.83±0.48 25.61±1.41

Low-degree 38.46±0.62 37.93±1.17 40.19±0.96 35.20±0.55 40.20±1.02 39.78±0.97

Warm 36.97±0.60 34.94±0.87 36.39±0.51 31.97±0.31 36.99±0.41 35.34±0.32

Overall 35.91±0.51 34.59±0.81 36.49±0.59 31.84±0.17 36.89±0.47 35.82±0.34

Citeseer

Isolated 29.36±2.30 28.35±1.02 22.49±1.67 21.91±5.24 34.19±0.77 38.26±1.26

Low-degree 44.13±0.38 44.67±0.44 43.92±1.55 34.65±10.10 51.58±0.56 53.71±0.64

Warm 46.68±0.48 46.95±1.01 45.93±1.17 36.45±7.50 48.89±0.53 48.05±0.42

Overall 42.60±0.59 42.72±0.52 40.87±1.34 33.13±7.90 47.00±0.44 48.05±0.54

CS

Isolated 35.54±0.74 29.61±1.62 30.32±0.92 32.35±0.77 42.22±1.41 44.94±0.60

Low-degree 56.18±0.81 57.44±0.68 46.66±0.61 42.67±0.26 61.20±0.64 61.65±0.84

Warm 58.18±0.84 57.03±0.77 48.32±0.44 43.71±0.41 59.94±0.54 58.67±0.72

Overall 57.73±0.83 56.72±0.73 47.96±0.45 43.48±0.38 59.83±0.52 58.74±0.70

Physics

Isolated 27.73±1.10 33.61±0.34 23.17±0.74 30.62±0.30 41.12±1.10 45.62±2.45

Low-degree 61.40±0.52 62.74±0.27 47.05±0.39 41.95±0.15 64.04±0.43 65.94±0.21

Warm 66.72±0.47 66.03±0.09 55.77±0.49 46.06±0.12 66.94±0.49 66.83±0.04

Overall 66.39±0.47 65.80±0.09 55.36±0.49 45.86±0.12 66.74±0.49 66.72±0.04

Computers

Isolated 4.50±0.75 5.01±0.71 4.88±0.54 4.07±0.46 8.59±1.45 9.65±1.10

Low-degree 26.65±0.62 26.85±0.31 21.22±0.56 23.40±0.59 28.85±1.13 29.78±0.32

Warm 34.11±0.40 33.77±0.17 31.02±0.34 28.75±0.23 35.11±0.31 35.63±0.14

Overall 33.98±0.40 33.65±0.16 30.88±0.34 28.64±0.23 35.00±0.31 35.52±0.13

Photos

Isolated 3.99±0.52 4.79±1.38 5.78±0.94 6.49±0.98 8.23±1.10 7.90±1.55

Low-degree 25.10±1.35 24.60±1.20 20.41±1.29 21.54±0.35 27.90±0.90 26.90±1.29

Warm 34.90±0.57 33.03±0.47 30.79±0.63 29.40±0.23 36.84±0.55 35.69±0.43

Overall 34.71±0.57 32.87±0.47 30.60±0.63 29.26±0.22 36.66±0.54 35.52±0.43

IGB-100K

Isolated 53.20±0.24 50.81±0.41 45.25±0.26 48.42±0.25 59.34±0.51 61.75±0.47

Low-degree 55.93±0.28 55.79±0.30 51.11±0.29 51.92±0.15 62.35±0.49 63.91±0.26

Warm 61.31±0.49 60.63±0.40 55.91±0.18 50.88±0.20 61.56±0.48 61.24±0.19

Overall 60.05±0.43 59.40±0.36 54.65±0.20 50.97±0.17 61.61±0.48 61.73±0.21

D.7 MRR RESULTS COMPARED WITH THE BASE GNN MODEL AND COLD-START BASELINES

Table 12 presents the performance of our methods, evaluated using MRR, compared against the
base GNN model and cold-start baselines. We can observe that NODEDUP(L) consistently achieves
significant improvements over the baseline methods for Isolated and Low-degree nodes across all
datasets. NODEDUP also outperforms baselines in 13 out of 14 cases on the cold nodes. This
further demonstrates the superior effectiveness of our methods in addressing cold node scenarios.
Furthermore, we can also observe that our methods consistently perform on par or above baseline
methods in Warm nodes and the overall setting. This observation further supports the effectiveness of
our methods in maintaining and even improving the performance of Warm nodes.

D.8 EFFICIENCY COMPARISON WITH THE BASE GNN MODEL AND COLD-START BASELINES

The efficiency comparison between our methods and cold-start baselines is presented in Figure 8.
We can observe that our methods and Imbalance exhibit similar efficiency, comparable to GSage.
However, TailGNN and Cold-brew demand significantly more preprocessing and training time.
Cold-brew, in particular, needs the most preprocessing time as it needs to train a teacher model for
distillation.

D.9 PERFORMANCE COMPARED WITH ADDITIONAL COLD-START METHODS

Upsampling (Provost, 2000). In Section 3, we discussed the issue of under-representation of cold
nodes during the training of LP, which is the main cause of their unsatisfactory performance. To
tackle this problem, one straightforward and naive approach is upsampling (Provost, 2000), which
involves increasing the number of samples in the minority class. In order to further demonstrate
the effectiveness of our methods, we conducted experiments where we doubled the edge sampling
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Figure 8: Time-consuming compared with cold-start methods. The histograms show the preprocessing
and training time consumption of each method.

probability of code nodes, aiming to enhance their visibility. The results are presented in Table 13. We
can observe that NODEDUP(L) consistently outperforms upsampling, and NODEDUP outperforms
upsampling in almost all the cases, except for Warm nodes on Cora.

The methods tackling degree bias in GNNs. SAILOR (Liao et al., 2023) proposes a structural
augmentation framework to enhance the representation learning of tail nodes. GRADE (Luo et al.,
2024) improves structural fairness using graph contrastive learning methods. We used GCN as the
encoder for both NODEDUP(L) and NODEDUP to ensure consistency, as both GRADE and SAILOR
used GCN as their encoder. Table 14 shows that our methods outperform these baselines in all
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Table 13: Performance compared with upsampling(evaluated by Hits@10). The best result is bold,
and the runner-up is underlined. NODEDUP(L) consistently outperforms upsampling.

Dataset Method Isolated Low-degree Warm Overall

Cora
Upsampling 32.81±2.75 59.57±0.60 60.49±0.81 57.90±0.65

NODEDUP(L) 39.76±1.32 62.53±1.03 62.07±0.37 60.49±0.49

NODEDUP 44.27±3.82 61.98±1.14 59.07±0.68 58.92±0.82

Citeseer
Upsampling 46.88±0.45 62.32±1.57 71.33±1.35 63.81±0.81

NODEDUP(L) 52.46±1.16 73.71±1.22 74.99±0.37 70.34±0.35

NODEDUP 57.54±1.04 75.50±0.39 74.68±0.67 71.73±0.47

CS
Upsampling 49.63±2.24 75.62±0.13 83.40±0.73 82.34±0.64

NODEDUP(L) 65.18±1.25 81.46±0.57 85.48±0.26 84.90±0.29

NODEDUP 65.87±1.70 81.12±0.36 84.76±0.41 84.23±0.39

Physics
Upsampling 52.01±0.97 79.63±0.13 89.41±0.32 89.33±0.46

NODEDUP(L) 65.04±0.63 82.70±0.22 90.44±0.23 90.09±0.22

NODEDUP 66.65±0.95 84.04±0.22 90.33±0.05 90.03±0.05

Computers
Upsampling 11.36±0.72 58.23±0.88 67.07±0.49 66.87±0.48

NODEDUP(L) 17.11±1.62 62.14±1.06 68.02±0.41 67.86±0.41

NODEDUP 19.62±2.63 61.16±0.92 68.10±0.25 67.94±0.25

Photos
Upsampling 10.92±2.15 51.67±0.98 65.75±0.73 65.45±0.71

NODEDUP(L) 21.50±2.14 55.70±1.38 69.68±0.87 69.40±0.86

NODEDUP 17.84±3.53 54.13±1.58 68.68±0.49 68.39±0.48

IGB-100K
Upsampling 75.49±0.90 79.47±0.11 86.54±0.19 84.87±0.14

NODEDUP(L) 87.43±0.44 88.37±0.24 88.54±0.31 88.47±0.28

NODEDUP 88.04±0.20 88.98±0.17 88.28±0.20 88.39±0.18

Table 14: Performance compared with GRADE (Luo et al., 2024) and SAILOR (Liao et al., 2023).
The best result is bold.

GCN GRADE SAILOR NODEDUP(L) NODEDUP

Cora

Isolated 40.61±3.52 43.29±2.62 45.12±1.29 42.93±2.68 46.71±1.53

Low-degree 63.86±0.78 58.76±1.27 62.98±3.92 64.63±1.60 64.10±1.37

Warm 60.59±0.62 60.00±0.51 57.34±3.80 61.31±0.43 60.26±0.70

Overall 60.16±0.44 56.90±0.71 58.33±3.51 61.02±0.61 59.90±0.89

Citeseer

Isolated 45.56±1.30 50.11±2.24 49.29±2.75 47.84±0.94 50.64±1.10

Low-degree 69.37±0.36 59.49±1.13 65.78±1.11 70.15±1.56 71.13±0.64

Warm 74.68±0.38 70.01±0.50 72.66±0.37 73.26±0.97 72.93±0.78

Overall 67.48±0.42 61.11±0.72 64.80±0.66 67.47±0.83 67.67±0.66
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Figure 9: Performance and time-consuming compared with augmentation methods (Remaining results
of Figure 5). The left histograms show the performance results, and the right histograms show the
preprocessing and training time consumption of each method.

settings. Additionally, both GRADE and SAILOR perform better than vanilla GCN on Isolated
nodes, which is the primary focus of their training. DegFairGNN (Liu et al., 2023) introduces a
learnable debiasing function in the GNN architecture to produce fair representations for nodes, aiming
for similar predictions for nodes within the same class, regardless of their degrees. Unfortunately,
we’ve found in Table 11 that this approach is not well-suited for link prediction tasks for several
reasons: (1) This method is designed specifically for node classification tasks. For example, the
fairness loss, which ensures prediction distribution uniformity among low and high-degree node
groups, is not suitable for link prediction because there is no defined node class in link prediction
tasks. (2) This approach achieves significant performance in node classification tasks by effectively
mitigating degree bias. However, in the context of link prediction, the degree trait is crucial. Applying
DegFairGNN (Liu et al., 2023) would compromise the model’s ability to learn from structural
information, such as isomorphism and common neighbors. This, in turn, would negatively impact
link prediction performance, as evidenced by references (Zhang & Chen, 2018; Chamberlain et al.,
2022).

D.10 ADDITIONAL RESULTS COMPARED WITH AUGMENTATION BASELINES

Figure 9 presents the performance compared with augmentation methods on the remaining datasets.
On Cora and CS datasets, we can consistently observe that NODEDUP and NODEDUP(L) outperform
all the graph augmentation baselines for Isolated and Low-degree nodes. Moreover, for Warm nodes,
NODEDUP can also perform on par or above baselines. On the Computers and Photos datasets,
our methods generally achieve comparable or superior performance compared to the baselines, except
in comparison to TuneUP. However, it is worth noting that both NODEDUP and NODEDUP(L) exhibit
more than 2× faster execution speed than TuneUP on these two datasets.
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Table 15: Performance in inductive settings (Remaining results of Table 2). The best result is bold,
and the runner-up is underlined. Our methods consistently outperform GSage.

GSage NODEDUP(L) NODEDUP

Cora

Isolated 43.64±1.84 45.31±0.83 46.06±0.66

Low-degree 60.06±0.62 60.46±0.91 61.94±2.22

Warm 60.59±1.13 60.95±1.40 62.53±1.23

Overall 57.23±0.33 57.65±0.82 59.24±1.02

CS

Isolated 74.34±0.56 75.42±0.36 77.80±0.68

Low-degree 75.75±0.48 77.02±0.65 81.33±0.60

Warm 82.55±0.27 83.52±0.67 83.55±0.50

Overall 81.00±0.28 82.01±0.59 82.70±0.52

Computers

Isolated 66.81±0.72 67.03±0.51 69.82±0.63

Low-degree 64.17±2.01 65.10±1.76 66.36±0.69

Warm 68.76±0.40 68.78±0.39 70.49±0.41

Overall 68.54±0.42 68.59±0.39 70.40±0.42

Photos

Isolated 68.29±0.67 69.60±0.75 70.46±0.53

Low-degree 63.02±1.51 64.25±1.31 68.49±2.39

Warm 70.17±0.57 71.05±0.70 71.61±0.81

Overall 69.92±0.57 70.84±0.63 71.47±0.77

Table 16: Performance with different encoders (Remaining results of Table 3), where the inner
product is the decoder. The best result for each encoder is bold, and the runner-up is underlined. Our
methods consistently outperform the base models, particularly for Isolated and Low-degree nodes.

GAT NODEDUP(L) NODEDUP JKNet NODEDUP(L) NODEDUP

Cora

Isolated 25.61±1.78 30.73±2.54 36.83±1.76 30.12±1.02 37.44±2.27 43.90±3.66

Low-degree 54.88±0.84 55.76±0.50 56.72±0.81 59.56±0.66 61.93±1.64 62.89±1.43

Warm 55.31±1.14 55.36±1.28 53.70±1.26 58.64±0.12 59.36±1.00 57.67±1.60

Overall 52.85±0.91 53.58±0.80 53.43±0.49 56.74±0.27 58.54±0.83 58.40±1.33

CS

Isolated 33.74±1.98 34.77±0.90 41.76±2.99 54.43±1.77 56.38±2.14 64.79±1.68

Low-degree 70.20±0.47 70.90±0.32 71.92±0.36 73.97±0.72 76.64±0.38 77.77±0.43

Warm 78.39±0.28 78.67±0.33 77.69±0.89 82.38±0.67 83.29±0.37 79.20±0.13

Overall 77.16±0.24 77.49±0.30 77.20±0.80 81.35±0.62 82.41±0.32 78.91±0.13

Computers

Isolated 12.04±2.08 16.84±2.34 17.17±2.22 9.92±3.07 23.81±2.02 25.50±1.32

Low-degree 53.60±1.51 53.62±1.00 53.65±2.35 62.29±1.08 67.21±0.99 68.49±0.70

Warm 60.19±1.19 58.64±0.81 58.55±1.01 69.96±0.33 70.90±0.40 70.66±0.25

Overall 60.03±1.19 58.50±0.80 58.77±1.93 69.77±0.32 70.78±0.40 70.55±0.25

Photos

Isolated 15.31±3.46 18.03±2.50 18.77±3.33 12.77±2.40 19.44±1.31 20.56±1.61

Low-degree 43.11±9.93 43.40±9.61 44.21±9.25 57.27±2.06 59.86±1.09 60.93±0.74

Warm 56.17±8.28 56.75±8.33 56.10±8.35 68.35±0.81 69.56±0.69 69.60±0.50

Overall 55.91±9.22 56.48±8.26 55.93±8.28 68.09±0.82 69.33±0.68 69.38±0.49

D.11 ADDITIONAL RESULTS UNDER THE INDUCTIVE SETTING

We further evaluate and present the effectiveness of our methods under the inductive setting on the
remaining datasets in Table 15. We can observe that both NODEDUP and NODEDUP(L) consis-
tently outperform GSage for Isolated, Low-degree, and Warm nodes. Compared to NODEDUP(L),
NODEDUP is particularly beneficial for this inductive setting.

D.12 ABLATION STUDY

D.12.1 PERFORMANCE WITH VARIOUS ENCODERS AND DECODERS

For the ablation study, we further explored various encoders and decoders on the remaining datasets.
The results are shown in Table 16 and Table 17. From these two tables, we can observe that
regardless of the encoders or decoders, both NODEDUP and NODEDUP(L) consistently outperform
the base model for Isolated and Low-degree nodes, which further demonstrates the effectiveness of
our methods on cold nodes. Furthermore, NODEDUP(L) consistently achieves better performance
compared to the base model for Warm nodes.
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Table 17: Link prediction performance with MLP decoder (Remaining results of Table 4), where
GSage is the encoder. Our methods achieve better performance than the base model.

MLP-Dec. NODEDUP(L) NODEDUP

Cora

Isolated 16.83±2.61 37.32±3.87 38.41±1.22

Low-degree 58.83±1.77 64.46±2.13 64.02±1.02

Warm 58.84±0.86 61.57±0.98 58.66±0.61

Overall 55.57±1.10 60.68±0.66 58.93±0.25

CS

Isolated 5.60±1.14 58.68±0.95 60.20±0.68

Low-degree 71.46±1.08 78.82±0.68 79.58±0.31

Warm 84.54±0.32 85.88±0.22 85.20±0.24

Overall 82.48±0.32 84.96±0.25 84.42±0.22

Computers

Isolated 6.13±3.63 27.74±3.38 26.70±3.98

Low-degree 62.56±1.34 62.60±3.38 63.35±3.64

Warm 69.72±1.31 70.01±2.41 68.43±2.50

Overall 69.53±1.30 69.91±3.11 68.30±2.51

Photos

Isolated 6.34±2.67 18.15±2.02 18.97±1.71

Low-degree 55.63±6.21 56.13±6.36 55.93±7.27

Warm 70.40±6.84 70.67±6.30 69.97±5.07

Overall 69.89±6.81 69.93±6.24 69.69±5.07

Table 18: Performance with GCN (Kipf & Welling, 2016a) and GT (Dwivedi & Bresson, 2020)
encoders, where the inner product is the decoder. The best result for each encoder is bold.

GCN GCN+NodeDup(L) GCN+NodeDup GT GT+NodeDup(L) GT+NodeDup

Cora

Isolated 40.61±3.52 42.93±2.68 46.71±1.53 20.93±2.46 38.82±1.27 37.40±1.53

Low-degree 63.86±0.78 64.63±1.60 64.10±1.37 58.59±0.29 61.16±1.08 61.39±0.89

Warm 60.59±0.62 61.31±0.43 60.26±0.70 58.14±1.15 59.29±0.84 59.07±0.05

Overall 60.16±0.44 61.02±0.61 59.90±0.89 55.40±0.43 58.34±0.19 58.18±0.42

Citeseer

Isolated 45.56±1.30 47.84±0.94 50.64±1.10 36.84±3.26 51.46±1.27 52.34±1.46

Low-degree 69.37±0.36 70.15±1.56 71.13±0.64 60.24±1.18 72.98±1.54 73.77±1.03

Warm 74.68±0.38 73.26±0.97 72.93±0.78 71.14±1.47 74.48±1.08 75.08±0.63

Overall 67.48±0.42 67.47±0.83 67.67±0.66 61.15±1.57 69.67±1.10 70.38±0.86
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Besides GSage, GAT and JKNet, we also conducted further experiments with convolutional-based
GNNs, such as GCN (Kipf & Welling, 2016a) and GT(GraphTransformer) (Dwivedi & Bresson,
2020). The results are shown in Table 18. Our findings indicate that our methods can also improve
performance when using GCN and GT as the encoder. However, since GCN uses the same matrix for
both self-representations and neighbor representations, our methods only benefit from the supervision
aspect. This leads to less pronounced performance improvements on cold nodes compared to using
GT and GSage as the encoder. Specifically, NodeDup shows a 13.10% improvement for GCN,
60.38% for GT, and 29.79% for GSage on isolated nodes. Moverover, NodeDup(L) on average
improves GCN by 5.4%, GT by 62.58%, and GSage by 17.4%.

D.12.2 PERFORMANCE WITH SEAL (ZHANG & CHEN, 2018)

Table 19: Performance with SEAL (Zhang & Chen,
2018) on Cora and Citeseer datasets.

SEAL SEAL + NODEDUP

Cora

Isolated 62.20±1.06 70.73±0.61

Low-degree 66.80±2.83 67.70±4.11

Warm 56.69±2.36 54.87±1.61

Overall 60.60±2.38 60.89±2.36

Citeseer

Isolated 56.92±5.53 66.37±1.01

Low-degree 64.13±2.56 65.54±1.69

Warm 58.81±3.22 60.73±2.75

Overall 60.18±2.98 63.35±1.43

Considering our methods are flexible to integrate
with GNN-based link prediction structures, we
conduct the experiments on top of SEAL (Zhang
& Chen, 2018) on the Cora and Citeseer
datasets. The results are shown in Table 19.
We can observe that adding NODEDUP on top
of SEAL can consistently improve link predic-
tion performance in the Isolated and Low-degree
node settings on these two datasets.

E IMPLEMENTATION DETAILS

In this section, we introduce the implementation
details of our experiments. Our implementation can be found at https://anonymous.4open.
science/r/NodeDup-0241/README.md.

Parameter Settings. We use 2-layer GNN architectures with 256 hidden dimensions for all GNNs and
datasets. The dropout rate is set as 0.5. We report the results over 10 random seeds. Hyperparameters
were tuned using an early stopping strategy based on performance on the validation set. We manually
tune the learning rate for the final results. For the results with the inner product as the decoder, we
tune the learning rate over range: lr ∈ {0.001, 0.0005, 0.0001, 0.00005}. For the results with MLP
as the decoder, we tune the learning rate over range: lr ∈ {0.01, 0.005, 0.001, 0.0005}.

Hardware and Software Configuration All methods were implemented in Python 3.10.9 with
Pytorch 1.13.1 and PyTorch Geometric (Fey & Lenssen, 2019). The experiments were all conducted
on an NVIDIA P100 GPU with 16GB memory.

F LIMITATIONS

In our work, NODEDUP and NODEDUP(L) are specifically proposed for LP tasks. Although cold-
start is a widespread issue in all graph learning tasks, our proposed methods might not be able to
generalize to other tasks, such as node classification, due to their unique design. Furthermore, the
two heterophily datasets we used for evaluation involve graphs where nodes with similar features are
assigned different labels. Our methods may struggle on heterophilic graphs where connected nodes
have dissimilar features, such as molecular networks, which are beyond the scope of this study.
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