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Figure 1: A sketched comparison with existing pipelines. represents a non-tailored component, indicat-
ing current methods focus on either graph construction (a) or retrieval (b) in isolation, while our proposed
Youtu-GraphRAG proposes a unified paradigm (c) for superior complex reasoning performance.

ABSTRACT

Graph retrieval-augmented generation (GraphRAG) has effectively enhanced
large language models in complex reasoning by organizing fragmented knowl-
edge into explicitly structured graphs. Prior efforts have been made to improve
either graph construction or graph retrieval in isolation, yielding suboptimal per-
formance, especially when domain shifts occur. In this paper, we propose a verti-
cally unified agentic paradigm, Youtu-GraphRAG, to jointly connect the entire
framework as an intricate integration. Specifically, (i) a seed graph schema is
introduced to bound the automatic extraction agent with targeted entity types, re-
lations and attribute types, also continuously expanded for scalability over unseen
domains; (i7) To obtain higher-level knowledge upon the schema, we develop
novel dually-perceived community detection, fusing structural topology with sub-
graph semantics for comprehensive knowledge organization. This naturally yields
a hierarchical knowledge tree that supports both top-down filtering and bottom-up
reasoning with community summaries; (i7) An agentic retriever is designed to
interpret the same graph schema to transform complex queries into tractable and
parallel sub-queries. It iteratively performs reflection for more advanced reason-
ing; Extensive experiments across six challenging benchmarks demonstrate the
robustness of Yout u-GraphRAG, remarkably moving the Pareto frontier of per-
formance and efficiency with up to 33.60% saving of token costs and 16.62%
higher accuracy over state-of-the-art baselines. The results indicate our adaptabil-
ity, allowing seamless domain transfer with minimal intervention on schema.

1 INTRODUCTION

Graph retrieval-augmented generation (GraphRAG) has emerged as a promising paradigm to en-
hance large language models (LLMs) with structured knowledge (Xiao et al.} 2025} Lu et al.l|2026),
particularly for complex multi-hop reasoning tasks across multiple documents (Wang et al., [2024;
Zhang et al| |2024). By representing fragmented documents as connected graphs with underlying
relations (He et al. [2024; [Dong et al., 2023)), GraphRAG enables LLMs to traverse explicit paths
among documents and entities, performing complex reasoning that is otherwise infeasible within flat
retrieval (Peng et al.,[2024; Han et al., [2024). The structured approach effectively addresses critical
limitations in conventional RAG (Gao et al., 2023} |[Dong et al., 2024c), which often struggles with
the coherent relations between discrete pieces of information and multi-hop reasoning.
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The evolution of GraphRAG brings two distinct but equally important trajectories since the foun-
dational work of (Edge et al.| [2024). First, in terms of retrieval, LightRAG (Guo et al.l [2024)) pio-
neered vector sparsification to improve efficiency. While GNN-RAG and GFM-RAG advanced this
direction further by incorporating graph neural networks (Mavromatis & Karypis| 2024} [Luo et al.,
2025)) for fine-grained node matching, more recent HippoRAG 1&2 (Jimenez Gutierrez et al., 2024
Gutiérrez et al.L[2025) introduced memory and personalized PageRank algorithms for context-aware
retrieval. Second, in terms of graph construction, existing methods can be broadly categorized into
flat and hierarchical approaches. Early methods, such as KGP (Wang et al., [2024)), rely on existing
hyperlinks or KNN-based graphs, resulting in coarse-grained relations that fail to capture nuanced
hierarchical semantics. More recent advancements, such as GraphRAG (Edge et al.| 2024)), includ-
ing community detection and summarization for multi-level information. Followed by hierarchical
methods like RAPTOR (Sarthi et al.,[2024)) and E2GrathAG (Zhao et al., |2025)), they further refine
the graph using tree-like clustering and recursive summarization to enrich structural representation.
However, both pipelines remain constrained by their isolated optimizations, concentrating on either
construction or retrieval while neglecting their interdependencies. This potentially limits complex
reasoning performance where the cohesive components are equally important to GraphRAG.

To bridge this gap, we aim to answer a critical question:

How can we effectively unify graph construction and retrieval for robust complex reasoning?
This task is challenging for two reasons. First, construction and retrieval are not readily aligned
as two distinct components. It remains difficult to organically establish synergy between them,
where the constructed graph could effectively benefit retrieval with both structures and semantics.
Second, how to properly evaluate the performance remains a tough problem. With the rapid scaling
of LLMs, almost all the existing datasets have already been ‘seen’ before during the pre-training
stage of LLMs. This fails to reflect the real performance of the entire GraphRAG.

In this paper, we propose a vertically unified agentic paradigm, Youtu-GraphRAG, to jointly
consider both graph construction and retrieval as an intricate integration based on graph schema.
To be specific, (i) a graph schema is introduced to bound the extraction agent that ensures the
quality and conciseness with targeted entity types, relations and attribute types; The seed schema
is continuously and automatically expanded based on the feedback. (i7) To obtain higher-level
knowledge upon the schema, we develop dually-perceived community detection, fusing structural
topology with subgraph semantics for comprehensive knowledge clustering. This naturally yields
a hierarchical knowledge tree that supports both top-down filtering and bottom-up reasoning with
community summaries; (7i7) An agentic retriever is designed to interpret the same graph schema
to transform complex queries into parallel sub-queries and perform iterative reflection. The agent
iteratively performs both reasoning and reflection for more advanced performance; (iv) To alleviate
the knowledge leaking problem in pre-trained LLM, we first propose a tailored anonymous dataset
with an ‘Anonymity Reversion’ task. The model is required to revert the anonymized entities back
to its original form with correct, specific named entities. Extensive experiments across six challeng-
ing benchmarks demonstrate the robustness of Yout u—GraphRAG, remarkably moving the Pareto
frontier of performance and efficiency with up to 33.60% saving of token consumption and 16.62%
higher accuracy over SOTA baselines. The results also indicate our remarkable adaptability which
allows seamless domain transfer with minimal intervention on the graph schema, providing insights
of the next evolutionary paradigm for real-world applications.

Contributions. In general, our primary contributions are summarized hereunder:

* We first propose a vertically unified Agentic GraphRAG framework to integrate graph construction
and retrieval for more robust and advanced reasoning, where both construction and retrieval agents
are bounded by graph schema for effective extraction and query decomposition, respectively;

* A novel community detection algorithm is employed to inject high-level summarization upon
graph schema, simultaneously preserving structural and semantic graph properties;

* We present a tailored anonymous dataset and ‘Anonymous Revertion’ task is proposed to prevent
LLM knowledge leaking for fair evaluation of the GraphRAG performance;

* Extensive empirical experiments are conducted over five challenging benchmarks, showing state-
of-the-art performance across diverse reasoning tasks and domains that moves the Pareto frontier
with up to 33.60% saving of token costs and 16.62% higher accuracy.
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Figure 2: A toy overview of Youtu—-GraphRAG that unifies graph construction and retrieval through a
schema-guided agentic paradigm. (¢) An extraction agent automatically processes documents into structured
knowledge via targeted entity/relation extraction; (i7) A four-level knowledge tree is constructed upon the
schema with a community detection that fuses topological structures and graph semantics, enabling hierarchical
reasoning; (i4¢) A retrieval agent decomposes user queries into parallel sub-queries aligned with the schema,
iteratively driving multi-route retrieval.

2 TASK DEFINITION

In this section, we formally define the general GraphRAG pipeline with standardized notations from
scratch, including both graph construction and graph retrieval. We denote scalars as lowercase
alphabets (e.g., a), vectors as boldface lowercase alphabets (e.g., a), matrices as boldface uppercase
alphabets (e.g., A) and copperplate for a set of elements (e.g., A). We refer to GraphRAG as the
task of answering a natural language question by first retrieving structured knowledge from a corpus
and then generating a response.

Given a set of documents D, GraphRAG first leverages a frozen LLM fim(+) to extract im-
portant knowledge, connected by a structured graph G as output. To enrich the understanding
of G, a community detection algorithm feomm(G) is employed to partition G into communities
C = {C1,Cy...C),} to obtain higher-level summarizations. Based on the constructed graph G,
given a complex query ¢ € Q, a retrieval model fieieve (¢, G) = argmax P(Gap | q) traverses the
graph and retrieves top-k question-specific subgraphs G, € G that maximize the similarity with
given query ¢g. The final performance is evaluated from multiple aspects: (i) graph construction
costs including time efficiency and token consumptions; (4¢) retrieval accuracy and efficiency; and
(#44) final answer accuracy comparing dpreq and ground-truths agoiq.

2.1 CONSTRUCTION STAGE

Contemporary GraphRAG frameworks process document corpora D through two complementary
granularity levels of knowledge organization. At the fine-grained level, a triple-structured graph
Guiple = (£, R, D) is extracted using a frozen LLM agent fi1m(d), which identifies atomic relational
triples (h,r,t) from each document d € D, with entities {h,t} € £ and relations € R explicitly
interconnected to capture detailed relational semantics. In parallel, a coarse-grained document graph
Gdoc = (D, C) is constructed by clustering entire documents to preserve broader contextual informa-
tion. To derive higher-level semantic abstractions, community detection algorithms (e.g., Louvain,
Leiden, GMM) partition G into communities C = {C1,Cs,...,Cy, }, each of which is summarized
into a meta-node é; = frm(C;) via LLM-based condensation. The overall construction efficiency
is evaluated based on graph build time ¢.opsuee and computational token cost $.

2.2 RETRIEVAL STAGE

During inference, given a query g € Q, the typical retrieval model fiegieve (¢, G) = argmax P(d | q)
directly returns the top-k similar documents D = {d1,ds---di} as the final answer, while
graph-based methods provide a more explainable subgraph G for multi-hop path traversal, i.e.,
frewieve(q, G) = argmax P(é | q) where G = {eo Iyep 2 Iy ex} € G. Based on the
retrieved subgraph, fiim(q, Q) is employed to generate the final answer. The final performance is
evaluated holistically by the retrieval recall comparing Gaoc and ground truth documents .Adold and
answer accuracy by comparing between apreq and agoiq.

3 APPROACH: YOUTU-GRAPHRAG

In this section, we elaborate on the core methodology of Youtu-GraphRAG, designed to answer
two fundamental research questions: (i) How to achieve unified optimization of graph construction



Published as a conference paper at ICLR 2026

and retrieval for higher robustness and generalizability? (i) How could we enable effective rea-
soning across different knowledge granularities? Correspondingly, our framework integrates three
designs in a vertically unified manner based on graph schema. First, a graph schema-bounded agent
is designed to ensure construction quality while eliminating noise through automatic expansion. Sec-
ond, beyond schema, we present a dual-perception community detection that jointly analyzes both
topological and semantic similarity to create multi-scale knowledge clusters which form a four-level
knowledge tree. Finally, an agentic retriever is designed to effectively decompose questions into
schema-aligned atomic sub-queries with parallel retrieval routes and iterative reflection.

3.1 SCHEMA-BOUNDED AGENTIC EXTRACTION

Existing GraphRAG methods rely on pure LLMs or OpenlE for entity and relation extrac-
tion (Jimenez Gutierrez et al., [2024} \Gutiérrez et al., 2025; [Luo et al., 2025 |[Edge et al.| [2024)), often
introducing noise and 1rrelevant information that compromise graph quality. In contrast, we formu-
late graph extraction as a constrained generation process guided by a compact, domain-specific seed
schema, defined as follows:

S £ <8678r78e\ttr>7 (1)

where S, indicates the targeted entity types (e.g., Person, Disease), S, guides the extraction

with condensed relations (e.g., treats, causes), and S, lists attribute types that could be at-
tached and used to describe any corresponding entities (e.g., occupation, gender). A frozen
LLM-based agent fiim(S, D) is bounded to identify matched information that appear in S, effec-
tively reducing the open-ended search to a structured space defined by the schema S. This confines
the model’s extraction process to identifying instances of the predefined types in S, , S, and Sgy¢;--
Formally, for each document d, we obtain a set of triples hereunder:

T(d) = { (h’ T, t)7 (e,rattn eattr) | {f(h)7 f(t)7 f(e)} €S, {7"’ Tattr} €Sr, ear € Sattr}~ 2)

Therefore, in our paper, we define the graph as Gyipe = (£,R,D), where the entity set £ =
{&r, Ear } includes both named entities and their attributes, and the relation set R comprises both
entity-entity relations and attribute-linking relations (e.g., has_attribute). To enhance scala-
bility and adaptability beyond predefined schemas, we introduce an adaptive agent that dynamically
refines the initial schema S through continuous document interaction. The agent proposes schema
expansions by identifying relational patterns in each document d € D via an update function:

AS = (AS., AS,, ASux) =1[fun(d, S) © 8] > p, S

where S(*) represents the schema at iteration ¢, ;1 = 0.9 serves as a confidence threshold to control

the acceptance of new schema elements. AS contains candidate expansions for entity types, rela-
tions, and attributes, respectively. This dynamic adaptation enables the schema to evolve beyond its
initial pre-definitions while maintaining controlled growth, as the agent selectively incorporates only
high-confidence patterns that demonstrate sufficient frequency and contextual consistency across
documents in the new domain. This could effectively balance between strict schema guidance and
flexible knowledge acquisition for unseen domains.

3.2 UPON SCHEMA: GRAPH INDEXING WITH KNOWLEDGE TREE

The fine-grained raw graphs could quickly become extremely dense and noisy. Typically, a comple-
mentary community detection algorithm f.omm(G) is employed to summarize the knowledge so as to
reorganize the graph in communities C = {C1,Cs . ..C,, }. Contemporary methods apply Louvain,
Leiden, Gaussian Mixture Models (GMM) ((Traag et al.| [2019; Sarthi et al., 2024)), etc., operates
over G with sufficient summaries and abstracts generated by fim(d). C; C G is further summarized
into a high-level meta-node é; = fLim(C;) by fum(C) where é; € G.

However, existing community detection methods, which primarily rely on structural connectivity
while neglecting semantic information, often yield suboptimal partitions in knowledge graphs. To
address this, we propose a novel dual-perception framework that simultaneously optimizes topo-
logical and semantic coherence through a three-stage process, illustrated in Figure [3] The output is
compressed into a depth-L. Knowledge Tree K (L = 4), encapsulating hierarchical levels from coarse
community summaries to fine-grained factual leaves, structured as {Community, Keywords,
Entity-relation Triples, Attributes}.



Published as a conference paper at ICLR 2026

(@]

8 ® [¢h er, e] EEEBSPQFSG Adjacency Matrix
O\é]é%j‘o 5008 Structure Similarity o e
(@) Triple . " )
Triple <-> Subgraph ol (@] B
O% %g Embedding Sematic Similarity A 3o
Input Graph Initial Communities Community Centers
Partitioned by triple-level clustering Based on S?Dual Perception
(a) (b)
-
Iteration #1 omaa LTeration #2 > ':‘\ - A
&1 i y ,-ug;z,' 2o
a - & s
i“o *::] (] @ L 2w, J 5: @ [ LR % -~
S T e _.(f}x, —.® — N G
fklil' 17 [:‘5::] @ s2 T /1 Y ,’Kt\\ "%_ S PN
¥ 24 ¢ < ).( ~
v e e e g e
LA

Pair-wise Community Fusion Final Communities

[©)]

Figure 3: An overview of our dually-perceived community detection. (a) Input graph partitioning into initial
communities via triple embeddings; (b) community center identification through joint consideration of topology
connectivity and subgraph semantic similarity; and (c) iterative pairwise community merging to form the final
hierarchy. Distinct colors represent functionally coherent communities.

Entity Representation. Given a graph G = (£, R), we first encode each entity e; € £ by harvesting

its contextualized embedleg e; € R4 aggregatmg the frozen LM embeddings of all triples within
its one-hop neighborhood

(ei,ref)ENG

“

Simleillrijles].
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Specifically, for each triple (e;,r,e;) € N;, we form a textual sequence and then encode it using
a frozen LM f1y, e.g., all-MiniLM-L6-v2 to obtain a contextualized embedding for each triple.
To this end, the entity representation could effectively preserve both local structural patterns from
one-hop structure and semantic relations via neighbors, enabling clustering based on both signals.

Cluster Initialization. To handle large-scale graphs, we first reduce the search space with a initial
coarse partition by applying K-means clustering on entity embeddings {ei}fil, generating initial
communities {C%O) 0)}. The cluster count k is constrained as k¥ = min (max (2, |£/8]),n),
with 8 = 10 ensuring granularity and = 200 preventing over-fragmentation. We use optimized
KMeans (n_init=5, random_state=42) for reproducibility.

Iterative Community Fusion via Dual-Perception Scoring.

First, to refine the initial clusters, we introduce a dual- perceptlon scoring function ¢(e;,C ,(,L)) that

quantifies the affinity between a node e; and a community Cm at iteration ¢. This score combines
two considerations. (i) topological connectivity overlap (S,) that measures the Jaccard similarity

between the relation incident to e; and those in CT(,?

; (i7) subgraph semantic similarity (S;), which
computes the cosine similarity between the entity embedding F¢ (T

;) and the community centroid

Eew [Fo(T;)], where Fg is a matrix for embedding transformation.
#(ei,Cm) = Sr(€i,Crm) B Ss(ei, Cm), 5)
e (oo = 1) N
T 1w (e) U (Cm)ll2 ©

Ss(ei, Cm) = ¢(fe(Ti), > (fe(Tj))) :
JECm
where S; denotes the Jaccard similarity matrix computed over the multiset of incident relation types
U(-). S¢(i,j) measures the overlap of relation-specific neighborhoods between nodes i and j.

At each iteration ¢ , we select the most representative entity el = argmax ¢(e;,Cp,) for each
community based on the dual-perception score, which combines both structural connectivity and
semantic representativeness. Communities are merged if the divergence between their centroid ex-
pectation values, formulated hereunder:

E[p(es, C)] — Elp(es, C)] < e. 7
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where the merge will only occur when the value is below a threshold e, thereby reducing the match-
ing search space from node-community comparison to node-node comparison, yielding a boosted,
efficient hierarchical community detection.

3.2.1 KNOWLEDGE TREE
To this end, building upon our schema-bounded ex-
Community Detection  Level-4 communities  traction framework, we develop a hierarchical knowl-
e edge organization pipeline that transforms raw graphs
P AN into a structured Knowledge Tree K shown in Figure [4]
/ ® \‘. First, the process begins with our novel dual-perception
Keywords Extraction Level-3 Keywords community detection algorithm, which computes entity-
@ o community affinity through the combined metric, blend-
: ; ing topological connectivity overlap with semantic sub-
Level-2 Triples graph similarity. Second, fiim(Cy,) is then applied to
generate a brief name and description for the entire com-
munity based on the member names. These commu-
nity names are treated as community nodes and inserted
into the original graph, connecting with each member en-
Level-1 Attributes tity with the relation member_of. Third, within each
detected community C,,, we identify pivotal keywords

Attributes by selecting entities maximizing the structural-semantic
% e score arg maxe,ec,, ¢(€i,Crm)-

cele : rection The resulting hierarchy, together with the schema, collec-

Schema-bounded Agentic Extraction tively informs the construction of our four-layer knowl-

edge tree K. The tree maximizes bottom-up semantic

Figure 4: Four-level knowledge tree. coherence at each level, simultaneously preserving fine-

grained reasoning through granular entity-relation/entity-
attribute retrieval (£;) and enhancing high-level community-based filtering (£4). We formally define

itas K = U;}Zl Ly,

{Cm} { =4 (Community)
I, — {arg max ¢(vi,Cm)} £ =3 (Keywords) @®)
= {(h,r,t) | h,t €E, 7 € R} ¢ =2 (Entity-Relation Triples)

{(e,has_attr, {eF : e} (=1 (Attributes)

3.3 AGENTIC RETRIEVER

Schema-enhanced Query Decomposer. The complexity of multi-hop queries in large-scale knowl-
edge tree necessitates an intelligent decomposition mechanism that respects both the explicit schema
constraints and implicit semantic relationships. We propose a schema-guided decomposition ap-
proach illustrated in Appendix By leveraging the graph schema S = (S, S, Sur), We ensure
that each generated atomic sub-query strictly adheres to valid patterns in the knowledge tree, filtered
by the identified schemas with entity types and attribute types. This schema-awareness prevents the
generation of ill-formed queries that would either fail to return results or retrieve irrelevant infor-
mation. Therefore, the final @ = fiim(q,S) = {q1,92...q;}, where i is a pre-defined maximum
number for total atomic sub-queries and each ¢; explicitly targets either: () node-level retrieval
(e, has_attr, a), (it) triple-level matching (h,r,t), or (ii¢) community-level verification C,,, as de-
termined by schema elements S,, S, and Sy

Iterative Reasoning and Reflection. Since reasoning and reflection are two core cognitive capabil-
ities for the agent, following the standard agent framework of perception-reasoning-action cycles,
we formalize our agent as a tuple A = (H, fiim), where H denotes the agent’s historical memory
containing both former reasoning step and the retrieval results to derive insights for new actions, and
the functions fi;y is employed to implement both key operations.

AY = fum(q', 1Y), ©
—— ——

Reasoning  Reflection
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This process addresses the compositional generalization challenge in complex QA by (¢) maintain-
ing explicit symbolic grounding through S during reasoning steps, and (i¢) performing continuous
self-monitoring via reflection to detect and correct reasoning paths. The agent’s operational flow
alternates between forward reasoning with schema-guided query decomposition and retrieval and
backward reflection for complex scenarios, creating a closed-loop framework that progressively
converges to optimal solutions. To maximize the strength of different granularities, we equip the
retrieval with multiple routes, including entity retrieval, triple matching, community filtering and
DFS path traversal. The details could be found in the Appendix [A.3]

4 EXPERIMENTS

To systematically evaluate the model’s retrieval and generation capabilities across diverse scenarios,
we designed a unified experimental framework encompassing evaluation metrics, datasets, and base-
line models. Specifically, we adopt a dual-mode evaluation protocol with both open mode (allowing
the use of parametric knowledge) and reject mode (requiring responses strictly based on retrieved
evidence) to assess the reliability of GraphRAG methods. Experiments are conducted on multi-
ple established and newly constructed anonymous datasets, with comprehensive comparisons across
representative baseline methods. Detailed experimental settings are provided in Appendix [A.4]

4.0.1 EVALUATION METRICS

Following the workflow of RAG, the evaluation is typically divided into two stages: (i) assess
the accuracy of retrieved evidence and (ii) examine the end-to-end performance by evaluating the
quality of LLMs responses generated from the retrieved evidence. In practical deployment scenar-
ios, where multiple valid retrieval references may exist for identical answers, the latter evaluation
paradigm has emerged as the prevailing standard in practical applications. Regarding the assessment
of LLMs responses, several character-based matching protocols, e.g., recall, EM and F1 score were
established. To account for semantic deviations caused by minor character variations, where slight
textual differences may lead to substantially divergent meanings, we employ DeepSeek-V3-0324 to
assess response similarity against ground truth references.

During the reproduction of various GraphRAG frameworks, we observed experimental results ex-
hibit significant variations depending on the prompts in the LLMs generation stage. Specifically,
some frameworks(Zhao et al.|(2025)) instruct to explicitly reject to answer when retrieved evidence
is insufficient, while others(Xiao et al.|(2025)); Sarthi et al.[(2024)) allow LLMs to leverage its para-
metric knowledge or ambiguates the instruction in such cases. Given that most LLMs have been
exposed to extensive corpora during pretraining, we identify answering questions based on LLMs’
knowledge rather than retrieval mechanism as a critical factor for fairly evaluation, which we term
knowledge leaking. To separately assess two critical capabilities: (¢) recognizing knowledge lim-
itations, and (i¢) leveraging LLMs’ parametric knowledge, we therefore implement a dual-mode
evaluation on three widely-used datasets:

* Reject mode. Under this mode, LLMs must reject to answer the question when retrieval fails to
provide sufficient evidence from the given graph. This strictly evaluates the retrieval effectiveness
and prevent hallucination among existing models.

* Open mode. LLMs are allowed to answer using either retrieved content or its inherently paramet-
ric knowledge. This maximally measures the overall capability in real-world practical deployment.

We have reproduced representative baselines and conducted comprehensive evaluations based on
the metrics in this work. The corresponding prompts are provided in[subsection A.6 Moreover, the
observations further underscore the importance of our proposed AnonyRAG dataset to ensure fair
and comprehensive assessment of GraphRAG methods.

4.1 COMPARISON OF TIME AND TOKEN CONSUMPTION

For baselines involving graph construction and community detection stages, this section com-
pares their token and time consumption. All procedures are executed using 32-thread concur-
rent inference to ensure both the efficiency of graph construction and the fairness of compar-
isons. Figure [5a presents the time and token consumption during the graph construction stage for
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Youtu-GraphRAG and five baselines. Our method consistently achieves the lowest token con-
sumption across all six datasets and maintains relatively efficient time performance on five of the
datasets. In the community detection stage, as shown in Figure [5b] we achieve the lowest token con-
sumption compared with the other three baselines, consuming no more than 10,000 tokens on any
dataset. Meanwhile, our method demonstrates consistently efficient performance across all datasets.

Table 1: Overall performance comparisons over benchmark datasets in terms of top-20 Accuracy.

Method \ HotpotQA 2Wiki MuSiQue G-Bench  Annoy-CHS  Annoy-ENG
Open  Reject | Open Reject | Open Reject | Open | Open ‘ Open
Deepseek-V3-0324
Zero-shot LLM 5370 - | 416 - | 257 - | 7092 | 96 | 818
Naive RAG 7990 7240 | 703 389 | 4749 3063 | 7181 | 125 | 4302
E?GraphRAG 68.70 48.80 | 43.20 20.00 | 28.36 8.01 68.66 16.01 35.97
RAPTOR 80.90 73.60 | 70.10 38.40 | 48.50 31.10 73.08 12.08 40.2
LightRAG 7190 56.00 | 58.00 29.20 | 38.98 24.57 70.83 9.16 22.14
GraphRAG 56.10 2640 | 41.80 10.00 | 3220 16.50 75.54 21.66 38.85
G-Retriever 49.00 6.70 | 35.80 5.00 | 23.50 1.70 70.63 4.07 5.08
HippoRAG 81.70  73.10 | 77.90 64.00 | 48.30 36.20 72.89 36.77 40.68
HippoRAG-IRCOT 81.00 74.60 | 78.40 66.00 | 46.70 35.50 73.38 36.05 42.17
HippoRAG2 81.80 7490 | 77.30 4830 | 50.80 37.80 79.37 12.92 43.16
Ours w/o Agent 83.70 7530 | 72.80 57.80 | 51.40 40.00 81.53 37.06 40.05
Youtu-GraphRAG 86.50 81.20 | 85.50 77.60 | 53.60 47.50 86.54 42.88 43.26
Qwen3-32B
Zero-shot LLM 3640 - 3330 - [ 1340 - | 7004 | sI | 649
Naive RAG 7500  69.00 | 58.50 39.60 | 40.64 33.03 | 7269 | 7.56 ‘ 26.84
RAPTOR 79.20  72.90 ‘ 61.20 40.10 ‘ 3899 32.86 ‘ 72.20 ‘ 13.37 ‘ 22.14
HippoRAG 77.00 7180 | 72.80 62.50 | 40.60 32.10 75.64 8.58 32.30
HippoRAG-IRCOT 80.30 76.60 | 74.80 6540 | 4470 37.40 77.11 9. 16 33.15
HippoRAG2 81.80 71.30 | 65.20 39.90 | 51.40 37.70 80.35 12.65 38.36
Ours w/o Agent 83.80 7390 | 7490 5530 | 52.90 40.10 80.74 34.88 35.13
Youtu-GraphRAG 85.90 78.60 | 85.70 74.20 | 54.60 45.30 84.48 39.24 40.05

4.2 MAIN PERFORMANCE COMPARISON

In Table [, we report the top-20 accuracy
across six challenging benchmarks under both
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Figure 6: Youtu-GraphRAG effectively moves the
Pareto frontier with lower token costs and higher per-
formance over six benchmarks.

open and reject modes, based on two strong
LLM backbones, i.e., DeepSeek-V3-0324 and
Qwen3-32b. Across virtually all datasets and
settings, Youtu—-GraphRAG attains the high-
est performance, reflecting its ability to com-
bine precise retrieval with robust reasoning.
Besides, we also include an variant with no
agent for iterative reasoning and reflection as a
lightweight version, i.e., Ours w/o Agent,

fulfilling real-world applications requiring real-time interactive feedback. The distinction between
the two evaluation modes provides complementary perspectives on system capability. Open mode
unlocks the full reasoning potential of the LLM to synthesize an answer regardless of retrieval gaps.
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This mirrors high-coverage real-world deployments where maximizing end-task accuracy outweighs
caution. Youtu-GraphRAG consistently outperforms existing baselines, achieving improvements
from 2 to 8 points over the strongest competitor across datasets. When augmented with our agent
framework, Youtu—-GraphRAG further pushes the performance frontier, reaching top-20 accura-
cies of 86.5%, 85.5%, and 53.6% on HotpotQA, 2Wiki, and MuSiQue respectively under Deepseek-
V3-0324, and 85.9%, 85.7%, and 54.6% under Qwen3-32B, demonstrating a clear advantage in
multi-hop reasoning and cross-document synthesis. Reject mode, by contrast, imposes a stringent
criterion if the retrieved context is insufficient, the model must abstain. Youtu—-GraphRAG at-
tains 81.2%, 77.6%, and 47.5% on HotpotQA, 2Wiki, and MuSiQue, outperforming the strongest
baseline by 7—14 points. Across all datasets, our method achieves consistently higher top-20 accu-
racy, confirming its ability to synergize graph-based retrieval with agent-driven reasoning for both
high-coverage and high-precision scenarios. We value this metric since it directly probes retrieval
quality, as speculative answers are penalized and the acceptance rate becomes a direct function of
retrieval completeness and precision. Our superiority on two anonymous datasets also validates the
generalizability of Youtu-GraphRAG beyond standard benchmarks. Specifically, under the open
mode, it achieves 42.88% and 43.26% top-20 accuracy on Annoy-CHS and Annoy-ENG, respec-
tively, surpassing all baselines by a clear margin. These results also reflect our robust reasoning and
retrieval integration across diverse languages and domains, demonstrating that our approach could
be easily transferred to previously unseen data distributions while maintaining high accuracy.

A key objective of Youtu—-GraphRAG is to jointly optimize performance and efficiency by unify-
ing graph construction and retrieval. Figure [6]illustrates the trade-off between token consumption
during the construction and overall QA performance across six benchmarks. Our approach con-
sistently achieves optimal performance with the least token consumption, effectively shifting the
Pareto frontier of both QA performance and costs compared to all baselines.

While existing GraphRAG methods struggle to balance graph construction cost and answer accuracy,
Youtu-GraphRAG introduces a vertically integrated way combining schema-guided extraction,
dual-perception community detection, and schema-enhanced agentic retrieval to build and reason
over concise yet informative graphs. Our approach shifts the Pareto frontier, achieving state-of-the-
art performance across all benchmarks while reducing graph construction token usage. These results
affirm that synergistic integration of schema alignment, hierarchical knowledge trees, and adaptive
retrieval significantly enhances the practicality and efficiency of GraphRAG.

Table 2: Overall performance comparisons based on DeepSeek in terms of top-10 accuracy.

Method \ HotpotQA 2Wiki MuSiQue G-Bench  Annoy-CHS  Annoy-ENG
| Open Reject | Open Reject Open Reject | Open | Open ‘ Open
Naive RAG ‘ 79.40  68.00 ‘ 67.60 3370 45.58 26.73 ‘ 71.22 ‘ 12.08 ‘ 38.93
RAPTOR ‘ 7820 67.10 ‘ 6740 3640 4588 30.03 ‘ 72.79 ‘ 11.77 ‘ 33.99
G-Retriever 4990 590 | 38.00 3.80 23.50 1.70 70.24 5.38 5.50
LightRAG 7198 58.10 | 65.70 38.10 39.40 22.90 69.74 8.58 18.90
GraphRAG 54.30 23.70 | 40.00 9.80 30.20  16.00 61.39 21.37 38.36
HippoRAG 7820 6940 | 77.10 61.10 4520 30.90 70.14 34.01 40.12
HippoRAG-IRCOT 78.10 7020 | 77.70  60.70  44.40 31.60 72.89 36.19 41.42
HippoRAG2 79.40 7040 | 7460 45.80 49.10 34.00 77.21 13.52 37.24
Ours w/o Agent | 80.50 72.10 | 72.10 54.40 49.80 38.30 80.55 35.17 40.54
Youtu-GraphRAG | 83.40 78.90 | 8230 72.60 52.10 46.90 83.50 38.08 42.57

4.3 ANALYSIS OF GENERALIZABILITY

To examine the domain-transfer capability of Youtu-GraphRAG, we evaluate it across six
heterogeneous benchmarks without any task-specific fine-tuning. As shown in Figure
Youtu—-GraphRAG achieves the best performance in both Open Accuracy and Reject Accuracy
on all datasets, surpassing state-of-the-art GraphRAG baselines by a clear margin.

We attribute this strong generalizability to the intrinsic integration of graph construction and
retrieval: (i) schema-guided extraction yields consistent, domain-adaptive graphs, while dual-
perception community detection builds robust hierarchical structures; (i¢) the agentic query decom-
poser dynamically adapts to various question types. These results confirm that Yout u-GraphRAG
transfers seamlessly to unseen domains, preserving structural and reasoning fidelity.
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Table 3: Ablation studies of our method over six datasets. We evaluate three variants: w/o Commu-
nity detection, w/o Agent coordination, and w/o Schema guidance.

Variants HotptQA  2Wiki MuSiQue G-Bench AnonyRAG-CHS AnonyRAG-ENG
w/o Comm. 79.50 75.10 44.00 85.02 39.97 39.92
w/o Agent 75.30 57.80 40.00 81.53 37.60 40.05
w/o Schema 77.10 73.40 45.60 83.50 35.61 40.32
Youtu-GraphRAG 81.20 77.60 47.50 86.54 42.88 43.26

Open Acc. (%) Reject Acc. (%)

Furthermore, as shown in Table 2} our
method consistently outperforms all base-
lines in both open and reject modes un-
der top-10 retrieval evaluation. In open
mode, Youtu-GraphRAG achieves accura-
cies of 83.4%, 82.3%, and 52.1% on Hot-
potQA, 2Wiki, and MuSiQue, outperforming
s s s wroe - wewa—weswws  the strongest competitor by 4~8 points. Under
reject mode, improvements reach 8~12 points,
Figure 7: We showcase the generalizability over six  reflecting stronger retrieval fidelity and reduced
benchmarks in terms of both open and reject accuracy. speculation. Consistent superiority is also ob-
served on anonymous datasets, e.g., 38.08% on Annoy-CHS, and 42.57% on Annoy-ENG. These
results underscore the robustness and adaptability of our proposed schema-based integration of all
components, even under stricter evaluation with limited hints.

GraphRAG-Bench
V000100

ANOnYRAG-CHS. AnonyRAG-ENG

4.4 ABLATION STUDIES

To quantify the contribution of each component, we perform ablations by removing community
detection (w/o Comm.), agent reasoning and reflection (w/o Agent), and schema guidance (w/o
Schema). Results on six benchmarks are summarized in Table 3]

Specifically, removing community detection leads to a consistent drop across all datasets, particu-
larly on multi-hop QA tasks such as HotpotQA and 2Wiki around 1.7% and 2.5%, indicating that
structuring knowledge into coherent communities facilitates more accurate retrieval and reasoning
for global questions. The absence of agentic schema expandion, reasoning and reflection causes
the most severe degradation on complex reasoning datasets, especially on 2Wiki and MuSiQue with
remarkable 19.8% and 7.5% differences, supporting our motivation that the iterative reasoning-
feedback loop plays an essential role for resolving ambiguous intermediate steps. Eliminating
schema guidance results in noticeable performance drops on knowledge-intensive settings, espe-
cially on AnonyRAG-CHS with 7.27% decreases, highlighting the importance of a high-quality
initialization of seed schema for new domains. This further demonstrates our advantage that only
requires minimum intervention for domain shifts. In conclusion, our model consistently outperforms
all ablated variants, demonstrating the importance of each component for multi-hop inference.

5 CONCLUSIONS

In this paper, we propose Youtu—-GraphRAG, a vertically unified agentic paradigm that jointly
optimizes both aspects through a graph schema. Our framework introduces (i) a schema-guided
agent for continuous knowledge extraction with predefined entity types, relations, and attributes;
(1) dually-perceived community and keyword detection, fusing structural topology with subgraph
semantics to construct a hierarchical knowledge tree that supports top-down filtering and bottom-
up reasoning; (7i7) an agentic retriever interprets the schema to break complex queries into tractable
sub-queries, paired with an iterative reasoning and reflection; and (iv) Anonymity Reversion, a novel
task to mitigate knowledge leakage in LLMs, deeply measuring the real performance of GraphRAG
frameworks supported by a carefully curated anonymous dataset. Extensive experiments across six
challenging benchmarks demonstrate Yout u-GraphRAG’s robustness, advancing the Pareto fron-
tier with up to 33.60% reduction in token costs and 16.62% higher accuracy than state-of-the-art
baselines. Notably, our framework exhibits strong adaptability, enabling seamless domain trans-
fer with minimal schema adjustments. These results underscore the importance of unified graph
construction and retrieval, paving the way for more efficient and generalizable GraphRAG.
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ETHICS STATEMENT

Our research addresses technical problems in the field of information retrieval and knowledge rep-
resentation. The work is mainly about the automated processing of publicly available data and
questions, and involves no human subjects, animals, or environmentally sensitive materials. We
therefore anticipate no direct physical or environmental ethical risks.

REPRODUCIBILITY STATEMENT

Detailed method design, implementation and reference, including dataset curation and sources, base-
lines, experimental settings of this paper, are provided in experimental settings in Section [3]and[A.4]
Baselines have been carefully implemented to ensure fair comparison. The code and data are open-
sourced and could be accessed via the anonymous link:

https://github.com/TencentCloud ADP/Youtu-GraphRAG

REFERENCES

Yuanchen Bei, Weizhi Zhang, Siwen Wang, Weizhi Chen, Sheng Zhou, Hao Chen, Yong Li, Jia-
jun Bu, Shirui Pan, Yizhou Yu, et al. Graphs meet ai agents: Taxonomy, progress, and future
opportunities. arXiv preprint arXiv:2506.18019, 2025.

Junnan Dong, Qinggang Zhang, Xiao Huang, Keyu Duan, Qiaoyu Tan, and Zhimeng Jiang.
Hierarchy-aware multi-hop question answering over knowledge graphs. In The Web Conf, 2023.

Junnan Dong, Zijin Hong, Yuanchen Bei, Feiran Huang, Xinrun Wang, and Xiao Huang. Clr-bench:
Evaluating large language models in college-level reasoning. arXiv preprint arXiv:2410.17558,
2024a.

Junnan Dong, Qinggang Zhang, Chuang Zhou, Hao Chen, Daochen Zha, and Xiao Huang. Cost-
efficient knowledge-based question answering with large language models. NeurIPS, 2024b.

Junnan Dong, Qinggang Zhang, Huachi Zhou, Daochen Zha, Pai Zheng, and Xiao Huang. Modality-
aware integration with large language models for knowledge-based visual question answering. In
ACL, pp. 2417-2429. ACL, 2024c.

Darren Edge, Ha Trinh, Newman Cheng, Joshua Bradley, Alex Chao, Apurva Mody, Steven Truitt,
Dasha Metropolitansky, Robert Osazuwa Ness, and Jonathan Larson. From local to global: A
graph rag approach to query-focused summarization. arXiv preprint arXiv:2404.16130, 2024.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997, 2(1), 2023.

Zirui Guo, Lianghao Xia, Yanhua Yu, Tu Ao, and Chao Huang. Lightrag: Simple and fast retrieval-
augmented generation. arXiv preprint arXiv:2410.05779, 2024.

Bernal Jiménez Gutiérrez, Yiheng Shu, Weijian Qi, Sizhe Zhou, and Yu Su. From rag to memory:
Non-parametric continual learning for large language models. ICML, 2025.

Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan Ding, Yongjia Lei, Mahantesh Halap-
panavar, Ryan A Rossi, Subhabrata Mukherjee, Xianfeng Tang, et al. Retrieval-augmented gen-
eration with graphs (graphrag). arXiv preprint arXiv:2501.00309, 2024.

Xiaoxin He, Yijun Tian, Yifei Sun, Nitesh Chawla, Thomas Laurent, Yann LeCun, Xavier Bresson,
and Bryan Hooi. G-retriever: Retrieval-augmented generation for textual graph understanding
and question answering. NeurIPS, 37:132876-132907, 2024.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop

ga dataset for comprehensive evaluation of reasoning steps. arXiv preprint arXiv:2011.01060,
2020.

11



Published as a conference paper at ICLR 2026

Bernal Jimenez Gutierrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neuro-
biologically inspired long-term memory for large language models. NeurIPS, 37:59532-59569,
2024.

Jiayi Kuang, Ying Shen, Jingyou Xie, Haohao Luo, Zhe Xu, Ronghao Li, Yinghui Li, Xianfeng
Cheng, Xika Lin, and Yu Han. Natural language understanding and inference with MLLM in
visual question answering: A survey. ACM Comput. Surv., 57(8):190:1-190:36, 2025. doi: 10.
1145/3711680. URL https://doi.org/10.1145/3711680.

Junru Lu, Jiarui Qin, Lingfeng Qiao, Yinghui Li, Xinyi Dai, Bo Ke, Jianfeng He, Ruizhi Qiao,
Di Yin, Xing Sun, Yunsheng Wu, Yinsong Liu, Shuangyin Liu, Mingkong Tang, Haodong Lin,
Jiayi Kuang, Fanxu Meng, Xiaojuan Tang, Yunjia Xi, Junjie Huang, Haotong Yang, Zhenyi Shen,
Yangning Li, Qianwen Zhang, Yifei Yu, Siyu An, Junnan Dong, Qiufeng Wang, Jie Wang, Keyu
Chen, Wei Wen, Taian Guo, Zhifeng Shen, Daohai Yu, Jiahao Li, Ke Li, Zongyi Li, and Xiaoyu
Tan. Youtu-llm: Unlocking the native agentic potential for lightweight large language models,
2026. URL https://arxiv.org/abs/2512.24618\

Linhao Luo, Yuan-Fang Li, Gholamreza Haffari, and Shirui Pan. Reasoning on graphs: Faithful and
interpretable large language model reasoning. arXiv preprint arXiv:2310.01061, 2023.

Linhao Luo, Zicheng Zhao, Gholamreza Haffari, Yuan-Fang Li, Chen Gong, and Shirui Pan. Graph-
constrained reasoning: Faithful reasoning on knowledge graphs with large language models.
arXiv preprint arXiv:2410.13080, 2024.

Linhao Luo, Zicheng Zhao, Gholamreza Haffari, Dinh Phung, Chen Gong, and Shirui Pan. Gfm-rag:
graph foundation model for retrieval augmented generation. arXiv preprint arXiv:2502.01113,
2025.

Shengjie Ma, Chengjin Xu, Xuhui Jiang, Muzhi Li, Huaren Qu, Cehao Yang, Jiaxin Mao, and Jian
Guo. Think-on-graph 2.0: Deep and faithful large language model reasoning with knowledge-
guided retrieval augmented generation. arXiv preprint arXiv:2407.10805, 2024.

Costas Mavromatis and George Karypis. Gnn-rag: Graph neural retrieval for large language model
reasoning. arXiv preprint arXiv:2405.20139, 2024.

Boci Peng, Yun Zhu, Yongchao Liu, Xiaohe Bo, Haizhou Shi, Chuntao Hong, Yan Zhang, and
Siliang Tang. Graph retrieval-augmented generation: A survey. arXiv preprint arXiv:2408.08921,
2024.

Libo Qin, Qiguang Chen, Xiachong Feng, Yang Wu, Yongheng Zhang, Yinghui Li, Min Li, Wanxi-
ang Che, and Philip S. Yu. Large language models meet NLP: A survey. CoRR, abs/2405.12819,
2024a. doi: 10.48550/ARXIV.2405.12819. URL https://doi.org/10.48550/arXiv.
2405.12819.

Libo Qin, Qiguang Chen, Yuhang Zhou, Zhi Chen, Yinghui Li, Lizi Liao, Min Li, Wanxiang Che,
and Philip S. Yu. Multilingual large language model: A survey of resources, taxonomy and
frontiers. CoRR, abs/2404.04925, 2024b. doi: 10.48550/ARXIV.2404.04925. URL https:
//doi.org/10.48550/arXiv.2404.04925|

Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie, and Christopher D Man-
ning. Raptor: Recursive abstractive processing for tree-organized retrieval. In The Twelfth Inter-
national Conference on Learning Representations, 2024.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo Wang, Chen Lin, Yeyun Gong, Lionel M
Ni, Heung-Yeung Shum, and Jian Guo. Think-on-graph: Deep and responsible reasoning of large
language model on knowledge graph. arXiv preprint arXiv:2307.07697, 2023.

Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From louvain to leiden: guaranteeing
well-connected communities. Scientific reports, 9(1):1-12, 2019.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539-554, 2022.

12


https://doi.org/10.1145/3711680
https://arxiv.org/abs/2512.24618
https://doi.org/10.48550/arXiv.2405.12819
https://doi.org/10.48550/arXiv.2405.12819
https://doi.org/10.48550/arXiv.2404.04925
https://doi.org/10.48550/arXiv.2404.04925

Published as a conference paper at ICLR 2026

Yu Wang, Nedim Lipka, Ryan A Rossi, Alexa Siu, Ruiyi Zhang, and Tyler Derr. Knowledge graph
prompting for multi-document question answering. In AAAI, volume 38, pp. 19206-19214, 2024.

Yilin Xiao, Junnan Dong, Chuang Zhou, Su Dong, Qianwen Zhang, Di Yin, Xing Sun, and Xiao
Huang. Graphrag-bench: Challenging domain-specific reasoning for evaluating graph retrieval-
augmented generation. arXiv preprint arXiv:2506.02404, 2025.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. Qa-gnn:
Reasoning with language models and knowledge graphs for question answering. arXiv preprint
arXiv:2104.06378, 2021.

Qinggang Zhang, Junnan Dong, Hao Chen, Daochen Zha, Zailiang Yu, and Xiao Huang. Knowgpt:
Knowledge graph based prompting for large language models. NeurIPS, 37:6052-6080, 2024.

Yibo Zhao, Jiapeng Zhu, Ye Guo, Kangkang He, and Xiang Li. E” 2graphrag: Streamlining graph-
based rag for high efficiency and effectiveness. arXiv preprint arXiv:2505.24226, 2025.

13



Published as a conference paper at ICLR 2026

A APPENDIX

A.1 USAGE OF LLMs

This paper was completely written by human beings and has been proofread and slightly polished
with the assistance of LLMs. All LLM-generated content has been thoroughly examined and fact-
checked to uphold the accuracy and integrity of the work. We assume full responsibility for any
errors or inaccuracies that may remain in the final version.

A.2 ILLUSTRATION OF THE DECOMPOSER

Consider the query "Where did Turing Award winners study?" Our method automatically maps
"Turing Award winner" to the appropriate entity type S, : Person with the specific award attribute,
while correctly interpreting "study” as an S, : educated_at. This semantic precision prevents
the common problem of interpretation drift that often occurs in naive decomposition approaches.

When did the explorer reach the city where the headquarters of the
only group larger than Vilaiyaadu Mankatha's record label is located?

Existing Embedding-based Agentic 6raphQ Traditional Agent
Similarity Matching
Qury @) &
. Agent Agent
Embedding 9 9
() ()
Retrieve ] [ o .
\ @ -~ | Planning
¥ schema/ i
Vilaiyaadu Mankatha is located in [..J: g entity — ™ Entity type What is the size of Vilaiyaad:
o yaadu
fype I:: PERSON Mankatha's record label>
The explorer goes to the restaurant [} £8s B I GRGANIZATION 1
S5 :2 4B —  Relation/
ECS — COMPARED_TO Where is Vilaiyaadu Mankatha's
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all the
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Figure 8: The figure contrasts three query-resolution strategies for a multi-hop question. While embedding
matching retrieves disjointed facts (left) and traditional agents use repetitive templates (right), our agentic
decomposer (center) leverages domain schema to plan efficient sub-queries: (1) compare record label revenues,
(2) locate the larger group’s headquarters, and (3) trace the explorer’s visit—achieving precise, with parallel
reasoning and outperforming unstructured retrieval and template-based agents.

A.3 MULTI-ROUTE RETRIEVAL

To handle diverse sub-query types, we implement four parallel retrieval strategies with distinct opti-
mization objectives:

Entity Matching : arg max cos(e, q;)
ecf
Triple Matching : arg max cos((en,r,e¢),q;))
(h,r,t)€G (10)
Community Filtering : arg max cos(ec,,,qi)
CmeK
DFS Path Traversal : P(q;) =ep —e; — --- e, st YV e R,n<d
In general, the four retrieval paths exhibit distinct specialization patterns: (¢) Entity Matching opti-
mally handles single-hop simple queries requiring precise node identification, e.g., atomic fact check
problem; (iz) Triple Matching dominates few-hop reasoning tasks by modeling (h,r,¢) composi-
tional semantics, particularly effective for relationship inference; (#i7) Community Filtering aims to
address global queries, e.g., summarization and cross-domain problems through top-down filtering
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in the cluster; (4) DFS Path Traversal scales to complex multi-constraint problems, we define the
maximum depth d = 5. This specialization aligns with the cognitive spectrum from atomic facts to
complex reasoning scenarios.

A.4 EXPERIMENTAL ANALYSIS
A.4.1 DATASETS

We firstly evaluate Yout u-GraphRAG in dual-mode on three widely used multi-hop QA datasets:
HotpotQA (Yang et al.| (2018)), MuSiQue (Trivedi et al|(2022)) and 2WikiMultiHopQA (abbrevi-
ated as 2Wiki Ho et al.| (2020)), following the setting in (Jimenez Gutierrez et al.|(2024)); Gutiérrez
et al.[(2025)) for fair comparison.

To evaluate the framework’s performance across diverse domains, we also employ GraphRAG-
Bench(Xiao et al.| (2025)), shorted as G-Bench, a benchmark dataset constructed from textbook
corpora. Additionally, to prevent knowledge leaking, we propose two novel bilingual anonymous
datasets, i.e., AnonyRAG-CHS and AnonyRAG-ENG and propose a challenging ‘Anonymous Re-
version’ task.

We anonymize specific entity types (e.g., people, locations) in the dataset to break the model’s mem-
ory shortcuts and prevent it from relying on pretrained knowledge rather than retrieved evidence.
Moreover, we preserve semantic coherence through entity linking, enabling LLMs to maintain dis-
course comprehension despite anonymized mentions. The construction details of the dataset are

documented in [subsection A.7}

A.4.2 BASELINES

We include three pipelines of research as baselines. (i) Naive RAG, as the standard RAG approach
that retrieves top-k document chunks using vector similarity search without any explicit knowl-
edge structuring; (i7) Pure GraphRAG, which builds flat knowledge graphs for retrieval but lacks
hierarchical organization, focusing primarily on relational reasoning through graph traversal algo-
rithms, including GraphRAG (Edge et al.| (2024)), LightRAG (Guo et al.|(2024)), G-Retriever (He
et al.[(2024))) and HippoRAG 1&2 (Jimenez Gutierrez et al.| (2024)); (Gutiérrez et al.| (2025))); (i:2)
Tree-based GraphRAG, represents hierarchical methods that employ recursive clustering and sum-
marization to construct multi-level knowledge trees including RAPTOR (Sarthi et al.| (2024)) and
E2GrathAG (Zhao et al.| (2025)).

To ensure a fair performance comparison, we reproduce all the baselines and Youtu-GraphRAG
with the same setting and evaluate with consistent metrics. In terms of base models, we maintain
DeepSeek-V3-0324 and Qwen3-32B as the base LLMs and a lightweight embedding model all-
MiniLM-L6-v2.

A.5 RELATED WORK

While large language models (LLMs) demonstrate remarkable capabilities in language understand-
ing and reasoning, they are known to be prone to hallucinations—generating confident yet factu-
ally incorrect outputs—especially when reasoning over complex or multi-hop queries (Dong et al.,
2024b;|Qin et al.,[2024b}; [Kuang et al.,[2025;|Dong et al.l|2024a;|Qin et al.| [ 2024a)). Integrating LLMs
with graph-structured knowledge, therefore, combines the generative flexibility of LLMs with the
factual rigor of structured data, enabling more accurate and trustworthy reasoning over complex
domains (Luo et al.l 2023; Dong et al.| [2023}; |Bei et al.| 2025} [Yasunaga et al., 2021} [Luo et al.,
2024). The approach of using LLM agents for graph-based reasoning was initiated by ToG (Sun
et al.| 2023), which explores graphs by sequentially expanding reasoning paths. Building upon this,
ToG 2.0 (Ma et al.,|2024)) significantly refines the retrieval mechanism. It enables interactive access
to both knowledge graphs and textual documents, fostering a context-sensitive reasoning process
through the integration of multi-source information.

Evolving development of GraphRAG has progressed along two complementary research trajectories
since the seminal work of (Edge et al., 2024). The first following approaches have evolved from
LightRAG’s (Guo et al., |2024) vector sparsification techniques to more sophisticated graph-aware
methods. Subsequent innovations include GNN-RAG and GFM-RAG (Mavromatis & Karypis}
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2024;|Luo et al.,2025)), which employ graph neural networks for enhanced node matching, and Hip-
poRAG 1&2 (Jimenez Gutierrez et al.| 2024; Gutiérrez et al., 2025) that introduced memory mech-
anisms and personalized PageRank algorithms for context-aware retrieval. While another group of
methods have focused on improving the quality of knowledge organization, hierarchical approaches
like RAPTOR (Sarthi et al., [2024) and E2GraphRAG (Zhao et al.,[2025) employ tree-like clustering
and recursive summarization to enhance semantic organization. However, current research remain
constrained by their specialized optimizations, either focusing on retrieval or construction in isola-
tion, and lack a unified design. This fragmentation limits their performance on complex reasoning
tasks requiring tight integration of knowledge organization and retrieval capabilities, which makes it
even harder to adjust the entire framework for generalizability especially when domain shifts occur.
Our work bridges this gap by developing a holistic framework that jointly optimizes both aspects
while maintaining graph foundation model properties.

A.6 PROMPT TEMPLATES IN LLMS GENERATION

We present the prompt templates in[A.6.T|and[A.6.2] which designed to evaluate whether permitting
LLMs to utilize its parametric knowledge within the RAG system affects performance. To minimize
confounding factors, we employed minimalistic prompts that solely differentiate between the two
modes.

A.6.1 REJECT MODE

s )

Given the question and the extracted knowledge from different retrieval paths, please answer
the question below. If the extracted knowledge is not enough to answer, please reject to
answer.

Question: {query}

Extracted Knowledge: {context}

Answer:

\ J

A.6.2 OPEN MODE

( \

Given the question and the extracted knowledge from different retrieval paths, please answer
the question below. If the extracted knowledge is not enough to answer, please answer it
based on your own knowledge.

Question: {query}

Extracted Knowledge: {context}

Answer:

A.7 DATA COLLECTION AND PROCESSING

All raw data in this study are sourced from the original texts of four classic novels: Water Margin,
Dream of the Red Chamber, Moby-Dick, and Middlemarch. The copyrights of all these works
have entered the public domain, thus presenting no copyright issues. In selecting data sources, we
pursued two key objectives: (1) Ensuring comprehensive multilingual evaluation coverage, while (2)
Maintaining sufficient complexity in entity representations (e.g., persons, locations) to rigorously
assess model capabilities. The basic statistical information of the dataset is in Table ]

In our data processing methodology, we employed DeepSeek for entity extraction from the corpus,
then the data chunks are anonymized with the extracted entities. Query-answer pairs were con-
structed by DeepSeek using queries from 2Wiki and MuSiQue as seed templates. Upon acquiring
the question-answer pairs, we performed entity anonymization using the same anonymization dic-
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tionary as applied to the corpus. This procedure ensures that LLMs cannot effectively leverage
parametric memorized patterns from questions. A representative example of anonymized question-
answer pairs is presented in Table [5] As clearly demonstrated, while LLMs could handle questions
according to common sense knowledge, their performance significantly degrades when confronted
with anonymized versions of these questions. This phenomenon forces LLMs to rely on retrieved
contextual information rather than depending solely on their parametric knowledge.

To avoid the variance in evaluating subjective questions, we finally converted the questions into two
formats:

Anonymity Reversion. We provide LLMs with anonymized question-answer pairs as context, re-
quiring to infer and reconstruct the original entities that were anonymized. This task specifically
assesses the model’s ability to leverage contextual clues for entity recovery.

Multiple Choice. To diversify question types and ensure objective evaluation, a subset of questions
was converted into multiple-choice format.

We then performed zero-shot filtering to verify model performance on these transformed questions.
This design preserves the original assessment objectives of testing the LLM’s contextual reasoning
capabilities while guaranteeing answer objectivity and uniqueness. Crucially, it mitigates potential
unreliability introduced by LLM-as-judge evaluation paradigms. Table [f] presents representative
cases of these two question formats.

Table 4: Question Type and Difficulty Distribution Statistics

\ Chinese Literature English Literature

Question Type ‘ Difficulty Level Total
‘ Water Margin ~ Dream of Red Chamber ‘ Moby-Dick  Middlemarch ‘

o Simple (<4 hops) 29 26 54 54 163
Objective ‘ Complex (>4 hops) 24 34 51 22 131
Subjective Simple (<4 hops) 65 50 51 116 282

(Anonymous Reversion) | Complex (>4 hops) 146 314 142 219 821
Total | 264 424 | 298 411 | 1397
Table 5: Comparations of anonymized and Non-anonymized questions
Lang Type Question Zero-shot LLM Response Val

cus  Raw  AHRGEFIMEIRABEIFE WERFHS>EHRERSEESBBEF KT Correct
Query L, WL TSy EoE, REHMMRE HTEL.

FAs?

Annoy M[PERSON#2771FEM &% MFFINE|EFF[LOCATION#759], [PERSON#277] Wrong
Query /% JT[LOCATION#759], ]  SRHES (p#eAralis il ™. 1. AT I B 1)
[ SLLZE T T R Le B e 25 g %ﬁﬁﬁﬁ%fﬁﬁ)\ﬁ I, EFRIE A
1

Raw  What does the narrator’s reac- The narrator’s acceptance of Queequeg’s smoking  Correct
Query tion to Queequeg’s smoking in  reveals their deepening friendship and shared com-
bed reveal about their relation-  fort.
ship?
Annoy What does the [PER- To analyze what [PERSON#1999]’s reaction to  Wrong
Query SON#1999]’s  reaction to [PERSON#200]’s smoking in bed reveals about
[PERSON#200]’s smoking in their relationship, we would need more context
bed reveal about their relation-  about the specific reaction and. ..
ship?

A.8 PROMPT TEMPLATES DURING EXTRACTION
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Table 6: Final Question-Answer Formats

Lang Question Ground Truth

Anonymity Reversion

TEIRIE LR SO N X B R E
Q: ZE[PERSON#532)E F [LOCATION#5261/m , MZEM AT bop o onussn o
FVEDJE 2 5 [PERSON#277) i ? JX M EEMBE AL EALBRA e SNo77 g
PR 2% 2 PERSON #4 —FT%L
A: [PERSON#532]£E[LOCATION#110]Kf L (1P )5 5 [PERSON Lo ¢ #503_”§EF
#277)E %, %M ML A [LOCATION#535] I £ R [PERSON# -

N LOCATION#526——H &1l
F #4177 2L A%
?93] NPERSON##4] P (i 41 - LOCATION#110——H®kfEHT

LOCATION#535— kit 1L

AR E 2 AR RO BT A\ 2RI 4 S AT IR, I
B A SR A N AR R

CHS

Please read the following QA pairs

Q: What does [PERSON#200]’s story about the wedding feast

reveal about cultural misunderstandings?

A: The story reveals how cultural misunderstandings, such as
ENG [PERSON#588] mistaking the punchbowl for a finger-glass, can

arise from ignorance of local customs.

313

PERSON#200
PERSON#588

Queequeg
captai

then for all anonymized Persons and Locations, perform infer-
ence to determine the original content that was anonymized.

Multiple Choice

ARSI, [PERSON#3151%4 B BRI 5 B 42 X4
5 S i AR AN A TR 0

CHS A.[LOCATION#340]; [LOCATION#625]3 % C. (&Y, TEEER, BHWEM
B. [LOCATION#340]; [LOCATION#340]Fa+
C. [LOCATION#6251Z4%; [LOCATION#340]
D. [LOCATION#340]/&L; [LOCATION#625]Z 4%

Which two physical traits do [PERSON#1035] and her daughter
[PERSON#445] share in common?

ENG A. Straight hair and round faces B. (Mrs. Garth, daughter Mary)
B. Curly hair and square faces
C. Wavy hair and oval faces
D. Short hair and triangular faces

You are an expert information extractor and structured data organizer. Your task is to analyze
the provided text and extract as many valuable entities, their attributes, and relations as
possible in a structured JSON format.

Guidelines:

1. Prioritize the following predefined schema for extraction;

Schema: {schema}

2. Flexibility: If the context doesn’t fit the predefined schema, extract the valuable knowl-
edge as needed;

3. Conciseness: The Attributes and Triples you extract should be complementary and no
semantic redundancy.

4. Do NOT miss any useful information in the context; 5. Output Format: Return only
JSON.

Example Output:

- Attributes: Map each entity to its descriptive&eatures.

- Triples: List relations between entities in (entity_mentionl, relation, entity_mention2)
format.

_Entitv tvpe<: Man each entitv to ite scchema tvpe ba<ed on the nrovided schema




Published as a conference paper at ICLR 2026

A.8.1 SHCEMA-GUIDED QUERY DECOMPOSITION

You are a professional question decomposition expert specializing in multi-hop reasoning.
Given the following ontology and the question, decompose the complex question into 2-3
focused sub-questions and identify involved schema types.

CRITICAL REQUIREMENTS:

1. Each sub-question must be:

* Specific and focused on a single fact or relationship by identifying all entities, relationships,
and reasoning steps needed

* Answerable independently with the given ontology

* Explicitly reference entities and relations from the original question

* Designed to retrieve relevant knowledge for the final answer

2. For simple questions (1-2 hop), return the original question as a single sub-question 3.
Analyze the question and identify all schema types that might be involved 4. Only return a
concise JSON object with sub_questions array and involved_types object.

Ontology:
{ontology}

Question:
{question}

Example for complex question:

Original: "Which film has the director died earlier, Ethnic Notions or Gordon Of Ghost
City?"

Output:

{

"sub_questions": [

"sub-question": "Who is the director of Ethnic Notions?",
"sub-question": "Who is the director of Gordon Of Ghost City?",
"sub-question": "When did the director of Ethnic Notions die?",
"sub-question": "When did the director of Gordon Of Ghost City die?"
1,

"involved_types": {

"nodes": ["creative_work", "person"],

"relations": ["directed_by"],

"attributes": ["name", "date"]

}

}

Example for simple question:

Original: "What is the capital of France?"
Output:

{

"sub_questions": [

"sub-question": "What is the capital of France?"
1

"involved_types": {

"nodes": ["location"],

"relations": ["located_in"],

"attributes": ["'name"]

}

}
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A.8.2 ITERATIVE REFLECTION AND REASONING

r

You are an expert knowledge assistant using iterative retrieval with chain-of-thought
reasoning.

Current Question:
{current_query}

Available Knowledge Context:
{context}

Previous Thoughts:
{previous_thoughts}

Step step: Please think step by step about what additional information you need to answer
the question completely and accurately.

Instructions:

1. Analyze the current knowledge context and the question

2. Think about what information might be missing or unclear

3. If you have enough information to answer, in the end of your response, write "So the
answer is:" followed by your final answer

4. If you need more information, in the end of your response, write a specific query begin
with "The new query is:" to retrieve additional relevant information

5. Be specific and focused in your reasoning

Your reasoning:

A.9 PROMPT TEMPLATES DURING GENERATION

-~

Given the question and the extracted knowledge from different retrieval paths, please answer
the question below. If the extracted knowledge is not enough to answer, please answer it
based on your own knowledge.

Question: {query}

Extracted Knowledge: {context}

Answer:
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