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ABSTRACT

Graph-level anomaly detection aims to identify abnormal samples of a set of
graphs in an unsupervised manner. It is non-trivial to find a reasonable decision
boundary between normal data and anomalous data without using any anomalous
data in the training stage, especially for data in graphs. This paper first proposes
a novel deep graph-level anomaly detection model, which learns the graph rep-
resentation with maximum mutual information between substructure features and
global structure features while exploring a hypersphere anomaly decision bound-
ary. We implement an orthogonal projection layer to keep the training data dis-
tribution consistent with the decision hypersphere thus avoiding erroneous evalu-
ations. More importantly, we further propose projecting the normal data into the
interval region between two co-centered hyperspheres, which makes the normal
data distribution more compact and effectively overcomes the issue of outliers
falling close to the center of the hypersphere. The numerical and visualization
results on a few graph datasets demonstrate the effectiveness and superiority of
our methods in comparison to many baselines and state-of-the-art.

1 INTRODUCTION

Anomaly detection is an essential task with various applications, such as detecting abnormal patterns
or actions in credit-card fraud, medical diagnosis, sudden natural disasters (Aggarwal, 2017), etc.
Usually, in anomaly detection, the training data only contain normal data and are used to train a
model that can distinguish unusual patterns from abnormal ones. Anomaly detection on tabular
data and images has been extensively studied recently (Ruff et al., 2018; Goyal et al., 2020; Chen
et al., 2022; Liznerski et al., 2021; Sohn et al., 2021). In contrast, there is little work on graph
data despite the fact that graph data anomaly detection is very useful in various problems, such
as identifying abnormal communities in social networks or detecting unusual protein structures in
biology experiments. Compared with the other types of data, graph data is inherently complicated
and rich in structural and relational information. The complexity of graph structure facilitates us to
learn graph-level representations with discriminative patterns in many supervised tasks (e.g., graph
classification). As for graph-level anomaly detection, however, the intricate graph structure brings
many obstacles to this unsupervised learning problem.

Graph anomaly detection usually composes four families: anomalous edge (Ouyang et al., 2020; Xu
et al., 2020), node (Zhu & Zhu, 2020; Bojchevski & Günnemann, 2018), sub-graph (Wang et al.,
2018; Zheng et al., 2018), and graph-level detections (Zheng et al., 2019; Chalapathy et al., 2018).
Herein, the target of the graph-level algorithms is to explore a regular group pattern and distinguish
the abnormal manifestations of the group. Group abnormal behaviors usually foreshadow some un-
usual events and thus play an important role in practical applications. In the past five years, few
approaches have focused on graph-level anomaly detection because of the difficulty of representing
graphs into feature vectors without using any label information. Graph kernel can measure the sim-
ilarity between graphs and regard the result as a representation non-strictly or implicitly. Based on
this, graph anomaly detection task usually performs as two-stage. In our experiments (see Section
4), we also find that one-class SVM with graph kernels sometimes yields unsatisfying performances
since graph kernels may not be effective enough to quantify the similarity between graphs. So
there is a large room for improvement regarding graph anomaly detection to our best knowledge.
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Concerning end-to-end models, Ma et al. (2022) proposed a global and local knowledge distillation
method for graph-level anomaly detection, which learns rich global and local normal pattern infor-
mation by random joint distillation of graph and node representations. The method needs to train
two GCNs jointly at a high time cost. Zhao & Akoglu (2021) combined the Deep SVDD objec-
tive function and graph isomorphism network to learn a hypersphere of normal samples. Qiu et al.
(2022) also sought a hypersphere decision boundary and optimized the representations learned by
k GNNs close to the reference GNN while maximizing the differences between k GNNs, but did
not consider the relationship between the graph-level representation and node features. Collecting
all approaches based on the hypersphere assumption in graph anomaly detection, we find that the
practical decision region may be an ellipsoid instead of a standard hypersphere, thus causing the
error when the standard hypersphere evaluation is employed. Except for that, our experiment also
confirms that anomalous data may appear in decision regions that are not filled with normal data,
especially near the center of the hypersphere.
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Figure 1: Architecture of the proposed models (right top: DOHSC; right bottom: DO2HSC).

In order to effectively explore a better representation without label information and obtain a
more suitable decision boundary with high efficiency, in this paper, we propose a one-class deep
graph-level anomaly detection method and its improved version. The first proposed model, Deep
Orthogonal Hypersphere Contraction (DOHSC), uses the mutual information of local feature maps
and the global representation to learn a high-quality representation and simultaneously optimizes it
to distribute in a hypersphere area. An orthogonal projection layer then renders the decision region
more hyperspherical and compact to decrease evaluation errors. With regard to phenomenon that
anomalous data falling close to the hyperspherical center, an improved graph-level Deep Orthogonal
Bi-Hypersphere Compression (DO2HSC) for anomaly detection architecture is proposed. From a
cross-sectional point of view, DO2HSC limits the decision area (of normal data) to an interval en-
closed by two co-centered hyperspheres and learns the orthogonality-projected representation simi-
larly. The framework of the methods mentioned above is shown in Figure 1 correspondingly. Fur-
thermore, we define a new evaluation way according to DO2HSC, and comprehensive experimental
results verify the effectiveness of all proposed methods. In summary, the main contributions of our
work are listed as follows.

• First, we present a new graph-level hypersphere contraction algorithm for anomaly detec-
tion tasks, which is jointly trained via mutual information loss between local and global
representations and hypersphere decision loss.

• Second, we impose an orthogonal projection layer on the proposed model to promote train-
ing data distribution close to the standard hypersphere, thus avoiding errors arising from
inconsistencies between assessment criteria and actual conditions.

• Finally, we propose an improved graph-level deep orthogonal bi-hypersphere compres-
sion model to further explore a decision region enclosed by two co-centered hyperspheres,
which can effectively prevent anomalous data falling close to the hyperspherical center and
surpass baselines significantly in the experiments.
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2 PROPOSED APPROACH

In this section, we first introduce a joint learning architecture in detail, named as Graph-Level Deep
Orthogonal Hypersphere Contraction. Then an improved algorithm is proposed to compensate for
the underlying assumption’s deficiency.

2.1 GRAPH-LEVEL DEEP ORTHOGONAL HYPERSPHERE CONTRACTION

2.1.1 VALLINA MODEL

Given a set of graphs G = {G1, ..., GN} with N samples, the proposed model aims to learn a k-
dimensional representation and then set a soft-boundary according to it. In this paper, the Graph
Isomorphism Network (GIN) (Xu et al., 2019) is employed to obtain the graph representation in
three stages: first, input the graph data and integrate neighbors of the current node (AGGREGATE);
second, combine neighbor and current node features (CONCAT); finally, integrate all node infor-
mation (READOUT) into one global representation. Mathematically, the i-th node features of l-th
layer and the global features of its affiliated j-th graph would be denoted as

ziΦ = CONCAT({z(l)i }Ll=1),

ZΦ(Gj) = READOUT({ziΦ}
|Gj |
i=1 ),

(1)

where ziΦ ∈ R1×k and ZΦ(Gj) ∈ R1×k. To integrate the contained information and enhance the
differentiation between node-level and global-level representations, we append additional fully con-
nected layers denoted as the forms MΥ(·) and TΨ(·), respectively, where Υ and Ψ are the parameters
of the added layers. So the integrated node-level and graph-level representations are obtained via

hi
Φ,Υ := MΥ(z

i
Φ),

HΦ,Ψ(Gj) := TΨ(ZΦ(Gj)),
(2)

To better capture the local information, we utilize the batch optimization property of neural networks
to maximize the mutual information (MI) between local and global representations in each batch
G ⊆ G, which is defined by Sun et al. (2020) as the following term:

Φ̂, Ψ̂, Υ̂ = argmax
Φ,Ψ,Υ

IΦ,Ψ,Υ (hΦ,Υ,HΦ,Ψ(G)) . (3)

Specifically, the mutual information estimator IΦ,Ψ,Υ follows Jensen-Shannon MI estimator
(Nowozin et al., 2016) with a positive-negative sampling method as below,

IΦ,Ψ,Υ (hΦ,Υ,HΦ,Ψ(G)) : =
∑

Gj∈G

1

|Gj |
∑
u∈Gj

IΦ,Ψ,Υ

(
hu
Φ,Υ(Gj),HΦ,Ψ(G)

)
=

∑
Gj∈G

1

|Gj |
∑
u∈Gj

[
E
(
−σ

(
−hu

Φ,Υ(x
+)×HΦ,Ψ(x)

) )
− E

(
σ
(
hu
Φ,Υ(x

−)×HΦ,Ψ(x)
) )]

,

(4)

where a softplus function σ(z) = log(1 + ez) is activated after vector multiplication between node
and graph representations. For x as an input sample graph, we calculate the expected mutual infor-
mation with its positive samples x+ and negative samples x−, which are generated from distribution
across all graphs in a subset. Given each G = (VG, EG) and node set VG = {vi}|G|

i=1, the positive
and negative samples are divided in this way:

x+ =

{
xij , if vi ∈ Gj ,
0, otherwise. (5)

And x− produces the opposite result in each of the conditions above. In the next step, a data-
enclosing decision boundary is required for our anomaly detection task. According to the assump-
tion that most normal data can locate in a hypersphere, the center of this decision boundary should
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be initialized through

c =
1

N

N∑
i=1

HΦ,Ψ(Gi). (6)

With this center, we expect to optimize the learned representation of normal data to be distributed as
close to it as possible, so that the unexpected anomalous data falling out of this hypersphere would
be detected. Besides, the regularization term is adopted to avoid over-fitting problems. Collectively
denote the weight parameters of Φ, Ψ and Υ as Q := Φ ∪ Ψ ∪ Υ, we formulate the training loss
with two joint objectives – Hypersphere Contraction and MI:

min
Φ,Ψ,Υ

1

|G|

|G|∑
i=1

∥HΦ,Ψ(Gi)− c∥2 + λIΦ,Ψ,Υ (hΦ,Υ,HΦ,Ψ(G)) +
µ

2

∑
Q∈Q

∥Q∥2F , (7)

where |G| denotes the number of graphs in batch G and λ is a trade-off factor, the third term is a
network weight decay regularizer with the hyperparameter µ.

2.1.2 ORTHOGONAL PROJECTION LAYER
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Figure 2: Variations in decision boundary with and without the orthogonal projection layer. In the
left subfigure, the real decision region where training data are distributed may be an ellipsoid (dark
grey). This contradicts with the hypersphere decision boundary (light grey) set by Optimization 7.
After orthogonal projection, the ellipsoid is expected to be transformed into a standard hypersphere,
which avoids the evaluation error. Note: here data are simulated only for illustration.

However, an empirical study shows that a hyperellipsoid is commonly observed during deep repre-
sentation learning. This phenomenon would lead to inaccuracies in the final test because the evalu-
ation results are based on the hypersphere decision region. Problem (7) obviously cannot guarantee
the soft-boundary of learned representation to be a standard hypersphere like Figure 2. Accord-
ingly, we append an orthogonal projection layer after obtaining the global representation. Note that
we pursue orthogonal features of latent representation rather than computing the projection onto
the column or row space of HΦ,Ψ. This method is equivalent to performing PCA and using the
standardized principal components. Our experiments also justify the necessities of this projection
step and standardization process, which will be discussed further in Section 4.4 and Appendix G.
Specifically, the projection layer can be formulated as

H̃Φ,Ψ,Θ(G) = ProjΘ(HΦ,Ψ(G)) = HΦ,ΨW, subject to H̃⊤
Φ,Ψ,ΘH̃Φ,Ψ,Θ = Ik′ (8)

where Θ := {W ∈ Rk×k′} are the projection parameters, Ik′ denotes an identity matrix, and k′ is
the projected dimension.

Note that to achieve (8), one may consider adding a regularization term α
2 ∥H̃

⊤
Φ,Ψ,ΘH̃Φ,Ψ,Θ − Ik′∥2F

with large enough α to the objective, which is not very effective and will lead to one more tuning
hyperparameter. Instead, we propose to achieve (8) via singular value decomposition, i.e.,

UΛV⊤ = HΦ,Ψ,

W := Vk′Λ−1
k′ ,

(9)

4



Under review as a conference paper at ICLR 2023

                  

        

 

    

    

    

    

   

    

    

    

    

   

 
  
 
 
 
 
 
  
 
 
 
 
  
 

              

           

                 

                        

        

 

 

 

 

 

 

 

 

 

 
  
 
 
 
 
 
  
 
 
 
 
  
 

           

                 

(a) Training Data (b) Testing Data

COX2 1; DOHSCFigure 3: Illustration of inevitable flaws in DOHSC on both the training and testing data of COX2.
Left: the ℓ2-norm distribution of 4-dimensional distances learned from the real dataset; Right: the
pseudo-layout in two-dimensional space sketched by reference to the empirical distribution.

where Λ = diag(ρ1, ρ2, ..., ρ|G|) and V are the diagonal matrix with sigular values and right-
singular matrix of HΦ,Ψ, respectively. It needs to be emphasized that Vk′ := [v1, ...,vk′ ] denotes
the first k′ right-singular vectors and Λk′ := diag(ρ1, ..., ρk′). In each forward propagation epoch,
the original weight parameter is substituted to a new matrix W in subsequent loss computations.

2.1.3 ANOMALY DETECTION

Attaching with an orthogonal projection layer, the improved initialization of the center is rewritten
in the following form

c̃ =
1

N

N∑
i=1

H̃Φ,Ψ,Θ(Gi) (10)

and the final objective function for anomaly dectection tasks in a mini-batch would become

min
Θ,Φ,Ψ,Υ

1

|G|

|G|∑
i=1

∥H̃Φ,Ψ,Θ(Gi)− c̃∥2 + λ
∑
G∈G

IΦ,Ψ,Υ

(
hΦ,Υ, H̃Φ,Ψ,Θ(G)

)
+

µ

2

∑
Q∈Q

∥Q∥2F .

(11)

After the training stage, a decision boundary r̂ will be fixed, which is calculated based on the 1− ν
percentile of the training data distance distribution:

r̂ = argmin
r

P(D ≤ r) ≥ ν (12)

where D := {di}Ni=1 follows a sampled distribution P , and di = ∥H̃Φ,Φ,Θ(Gi)− c̃∥. Accordingly,
the anomalous score of i-th instance is defined as follows:

si = d2i − r̂2 (13)

where s = (s1, s2, . . . , sN ). It is evident that when the score is positive, the instance is identified as
abnormal, and the opposite is considered normal.

The detailed procedures of algorithm are summarized into Algorithm 1 (see Appendix A). It starts
with graph representation learning and promotes the training data to approximate the center of a
hypersphere while adding an orthogonal projection layer. Unfortunately, it can be observed from
Figure 3 that the anomalous data would appear in partial regions of the learned decision hypersphere,
which are not filled by the training data, especially the region close to the center. To handle this
particular situation, an improved graph-level anomaly detection approach, termed as Graph-Level
Deep Orthogonal Bi-Hypersphere Compression, will be designed in the next section.

2.2 GRAPH-LEVEL DEEP ORTHOGONAL BI-HYPERSPHERE COMPRESSION

As Figure 3 suggests, we found peculiar phenomena in our empirical results that the learned distribu-
tion of training data sometimes could not satisfy the hypersphere assumption, where anomalous data
might appear within the decision region and therefore led to suboptimal detection performance. To
explore the reason behind, we examine the counter-intuitive behaviors of high-dimensional Gaussian
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distributions, and the simulation results imply the soap-bubble problem, where anomalous samples
could exist near the center of learned hypersphere (see Appendix B for more details). Since DOHSC
cannot detect anomalies close to the center, we propose an improved approach, which sets the de-
cision boundary as an interval region between two co-centered hyperspheres. This can narrow the
decision area’s scope and induce normal data to fill the entire interval area as much as possible.

After the same graph representation learning stage, we firstly utilize the DOHSC model for a few
epochs and initialize the large radius rmax and the small radius rmin of the interval area according to
the 1 − ν percentile and ν of the sample distances distribution, respectively. The aforementioned
descriptions can be denoted mathematically as below.

rmax = argmin
r

P(D ≤ r) ≥ ν,

rmin = argmin
r

P(D ≤ r) ≥ 1− ν.
(14)

After fixing the decision boundaries rmax and rmin, the improved training loss is also set with a
trade-off factor λ, which implicitly emphasizes the importance of the max-min term:

min
Θ,Φ,Ψ,Υ

1

|G|

|G|∑
i=1

(max{di, rmax} −min{di, rmin}) + λ
∑
G∈G

IΦ,Ψ,Υ

(
hΦ,Υ, H̃Φ,Ψ,Θ(G)

)
+

µ

2

∑
Q∈Q

∥Q∥2F .
(15)

This decision loss has the lowest bound rmax − rmin and can be jointly minimized with mutual
information effectively. Besides, the evaluation standard of test data is also needed to change based
on this interval structure. More specifically, all instances located in the inner hypersphere and out of
the outer hypersphere should be identified as anomalous graphs; only those located in the interval
area should be regarded as normal data. Compared with equation 13, we reset a new score function
to award the positive samples beyond [rmin, rmax] and meanwhile punishing the negative samples
within the range. Accordingly, the distinctive scores are calculated by

si = (di − rmax) · (di − rmin), (16)

where i ∈ {1, ..., N}. This way, we can also effectively identify a sample’s abnormality by its
score. In general, the improved deep graph-level anomaly detection algorithm changes the decision
boundary and effectively makes the normal area more compact. Correspondingly, the new practical
evaluation is raised to adapt to the improved detection way. Eventually, we summarize the detailed
procedures of the optimization into Algorithm 2 (see Appendix A).

3 CONNECTION WITH PREVIOUS WORK

Actually, few studies have been undertaken in graph-level anomaly detection (GAD). Existing so-
lutions to GAD tasks can be categorized into two types: a two-stage approach and an end-to-end
one. Two-stage GAD methods first transform graphs into graph embeddings by graph neural net-
works or into similarities between graphs by graph kernels, and then apply off-the-shelf anomaly
detectors such as local outlier factor (LOF) (Breunig et al., 2000), one-class support vector machine
(OCSVM) (Schölkopf et al., 1999), etc. The drawback of the two-stage method is that the graph fea-
ture extractor and outlier detector are independent, and some graph kernels produce “hand-crafted”
features that are deterministic without much space to improve. End-to-end approaches overcome this
problem by utilizing deep graph learning techniques, such as graph convolutional network (GCN)
(Welling & Kipf, 2016) and graph isomorphism network (GIN) (Xu et al., 2019). With an anomaly
measure as the objective, end-to-end approaches jointly learn an effective graph representation for
GAD task (Zhao & Akoglu, 2021; Qiu et al., 2022; Ma et al., 2022). Zhao & Akoglu (2021) opti-
mized one-class model based on deep support vector data description (Deep SVDD) as the anomaly
measure. Here we clarify the differences between (Zhao & Akoglu, 2021) and ours. First, the
proposed model employed mutual information loss in the graph learning stage to obtain the graph
representation incorporating local and global information. On the contrary, Zhao & Akoglu (2021)
directly utilized the readout result of GIN. We also impose an orthogonal projection on the learned
representation to maintain consistency between the learned decision boundary and normal data dis-
tribution. More importantly, we present a new approach to constructing decision boundary. The
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new approach learns two hyperspheres, between which the region accommodates normal data and
hence yields more space for abnormal data. As for graph kernel, we summarized the previous work
in Appendix C.

4 EXPERIMENTS

4.1 DATASET

In this work, we test our method on six real-world graph datasets1, which contain three social
networks datasets (COLLAB, COX2, and IMDB-Binary) and three bioinformatics datasets (DD,
ER MD, and MUTAG). The details of the datasets are shown in Table 1.

Table 1: Description for six datasets.
Datasets # Graphs Avg. # Nodes Avg. # Edges # Classes # Graph Labels

COLLAB 5000 74.49 2457.78 3 2600 / 775 / 1625
COX2 467 42.43 44.54 2 365 / 102

ER MD 446 21.33 234.85 2 265 / 181
MUTAG 188 17.93 19.79 2 63 / 125

DD 1178 284.32 715.66 2 691 / 487
IMDB-Binary 1000 19.77 96.53 2 500 / 500

4.2 BASELINES

We compare our method with the following unsupervised graph-level anomaly detection meth-
ods: Random Walk (RW) (Gärtner et al., 2003; Kashima et al., 2003), Shortest Path Kernel (SP)
(Borgwardt & Kriegel, 2005), Weisfeiler-Lehman Sub-tree Kernel (WL) (Shervashidze et al., 2011),
Neighborhood Hash Kernel (NH) (Hido & Kashima, 2009). Besides graph kernels, we also com-
pare three graph-level representation learning methods: Deep One Class Model with GIN network
(OCGIN) (Zhao & Akoglu, 2021), Graph-level embedding Learning via Mutual Information Max-
imization+Deep SVDD (infoGraph+Deep SVDD) (Sun et al., 2020; Ruff et al., 2018), Global and
Local Knowledge Distillation for Graph-level Anomaly Detection (GLocalKD) (Ma et al., 2022)
and One Class Graph Transformation Learning (OCGTL) (Qiu et al., 2022).

4.3 RESULTS

In this section, extensive experimental results are displayed to validate the effectiveness of the pro-
posed models. The averages and standard deviations of the Area Under Operating Characteristic
Curve (AUC) are used to support the comparable experiments by repeating each algorithm ten times.
The higher value of the AUC metric represents better performance. Tables 2–4 report the AUC met-
ric and its standard deviations. It can be seen that the proposed methods basically achieve the best
AUC values compared to other algorithms on all datasets. Both approaches outperform other state-
of-the-art baselines, and DO2HSC obtains superior performance and get 5% higher performance
than other algorithms on many datasets, such as MUTAG, COLLAB Class 1, and ER MD Class
0, IMDB-Binary Class 1, etc. It is woth mentioning that we defeat infoGraph+Deep SVDD with
a large improvement, which is a degraded version of the proposed models, thus showing that pro-
moting representation learning towards the anomaly detection goal is meaningful and well targeted.

The anomaly detection visualization results of DO2HSC are displayed in Figure 4 and those of
DOHSC are also shown in Appendix F. We draw them by setting the projection dimension to three
directly. Results of different perspectives are given to avoid blind spots in the field of vision, demon-
strating excellent performance. Hence, it can be concluded that the effect of the improved model is
in line with our motivation and shows much potential.

1https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
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Table 2: Average AUCs with standard deviation (10 trials) of different graph-level anomaly detection
algorithms. We assess models by regarding every data class as normal data, respectively. The best
results are marked in bold and ’–’ means out of memory.

COLLAB COX2
0 1 2 0 1

SP+OCSVM 0.5910 ± 0.0000 0.8397 ± 0.0000 0.7902 ± 0.0000 0.5408 ± 0.0000 0.5760 ± 0.0000
WL2+OCSVM 0.5051 ± 0.0000 0.7989 ± 0.0000 0.6977 ± 0.0000 0.5736 ± 0.0000 0.4286 ± 0.0000
WL5+OCSVM 0.5079 ± 0.0000 0.8021 ± 0.0000 0.7884 ± 0.0000 0.5990 ± 0.0000 0.4376 ± 0.0000
WL8+OCSVM 0.5106 ± 0.0000 0.8035 ± 0.0000 0.7953 ± 0.0000 0.5979 ± 0.0000 0.5057 ± 0.0000
WL10+OCSVM 0.5122 ± 0.0000 0.8031 ± 0.0000 0.7996 ± 0.0000 0.5937 ± 0.0000 0.5034 ± 0.0000
NH+OCSVM 0.5976 ± 0.0000 0.8054 ± 0.0000 0.6414 ± 0.0000 0.4841 ± 0.0000 0.4717 ± 0.0000
RW+OCSVM – – – 0.5243 ± 0.0000 0.6553 ± 0.0000

OCGIN 0.4217 ± 0.0606 0.7565 ± 0.2035 0.1906 ± 0.0857 0.5964 ± 0.0578 0.5683 ± 0.0768
infoGraph+Deep SVDD 0.5662 ± 0.0597 0.7926 ± 0.0986 0.4062 ± 0.0978 0.4825 ± 0.0624 0.5029 ± 0.0700
GLocalKD 0.4638 ± 0.0003 0.4330 ± 0.0016 0.4792 ± 0.0004 0.3861 ± 0.0131 0.3143 ± 0.0383
OCGTL 0.6504 ± 0.0433 0.8908 ± 0.0239 0.4029 ± 0.0541 0.5541 ± 0.032 0.4862 ± 0.0224

DOHSC (Ours) 0.9185 ± 0.0455 0.9755 ± 0.0030 0.5450 ± 0.0469 0.6263 ± 0.0333 0.6805 ± 0.0168
DO2HSC (Ours) 0.6718 ± 0.0353 0.9153 ± 0.0070 0.7188 ± 0.0260 0.6329 ± 0.0292 0.6518 ± 0.0481

Table 3: Average AUCs with standard deviation (10 trials) of different graph-level anomaly detection
algorithms. We assess models by regarding every data class as normal data, respectively. The best
results are marked in bold.

ER MD MUTAG
0 1 0 1

SP+OCSVM 0.4092 ± 0.0000 0.3824 ± 0.0000 0.5917 ± 0.0000 0.2608 ± 0.0000
WL2+OCSVM 0.3702 ± 0.0000 0.3262 ± 0.0000 0.5976 ± 0.0000 0.2960 ± 0.0000
WL5+OCSVM 0.4446 ± 0.0000 0.2933 ± 0.0000 0.6509 ± 0.0000 0.2352 ± 0.0000
WL8+OCSVM 0.4571 ± 0.0000 0.3199 ± 0.0000 0.4556 ± 0.0000 0.2176 ± 0.0000
WL10+OCSVM 0.4297 ± 0.0000 0.2761 ± 0.0000 0.5089 ± 0.0000 0.2048 ± 0.0000
NH+OCSVM 0.5155 ± 0.0200 0.3648 ± 0.0000 0.7959 ± 0.0274 0.1679 ± 0.0062
RW+OCSVM 0.4820 ± 0.0000 0.3484 ± 0.0000 0.8698 ± 0.0000 0.1504 ± 0.0000

OCGIN 0.5645 ± 0.0323 0.4358 ± 0.0538 0.8491 ± 0.0424 0.4933 ± 0.1525
infoGraph+Deep SVDD 0.5312 ± 0.1545 0.5682 ± 0.0704 0.8805 ± 0.0448 0.6166 ± 0.2052
GLocalKD 0.5781 ± 0.1790 0.7154 ± 0.0000 0.3952 ± 0.2258 0.2965 ± 0.2641
OCGTL 0.2755 ± 0.0317 0.6915 ± 0.0207 0.6570 ± 0.0210 0.7579 ± 0.2212

DOHSC (Ours) 0.6620 ± 0.0308 0.5184 ± 0.0793 0.8822 ± 0.0432 0.8115 ± 0.0279
DO2HSC (Ours) 0.6867 ± 0.0226 0.7351 ± 0.0159 0.9089 ± 0.0609 0.8250 ± 0.0790

Table 4: Average AUCs with standard deviation (10 trials) of different graph-level anomaly detection
algorithms. We assess models by regarding every data class as normal data, respectively. The best
results are marked in bold and ’–’ means out of memory.

DD IMDB-Binary
0 1 0 1

SP+OCSVM 0.6856 ± 0.0000 0.4474 ± 0.0000 0.4592± 0.0000 0.4716 ± 0.0000
WL2+OCSVM 0.6225 ± 0.0000 0.4946 ± 0.0000 0.4294 ± 0.0000 0.4607 ± 0.0000
WL5+OCSVM 0.7127 ± 0.0000 0.4666 ± 0.0000 0.4940 ± 0.0000 0.4243 ± 0.0000
WL8+OCSVM 0.7343 ± 0.0000 0.4455 ± 0.0000 0.5066 ± 0.0000 0.4143 ± 0.0000
WL10+OCSVM 0.7397 ± 0.0000 0.4302 ± 0.0000 0.5157 ± 0.0000 0.4115 ± 0.0000
NH+OCSVM 0.7424 ± 0.0000 0.3684 ± 0.0000 0.5321 ± 0.0000 0.4652 ± 0.0000
RW+OCSVM – – 0.4951 ± 0.0000 0.5311 ± 0.0000

OCGIN 0.6659 ± 0.0444 0.6003 ± 0.0534 0.4047 ± 0.1083 0.3332 ± 0.0649
infoGraph+Deep SVDD 0.3942 ± 0.0436 0.6484 ± 0.0236 0.6353 ± 0.0277 0.5836 ± 0.0995
GLocalKD 0.1952 ± 0.0000 0.2203 ± 0.0001 0.5383 ± 0.0124 0.4812 ± 0.0101
OCGTL 0.6990 ± 0.0260 0.6767 ± 0.0280 0.6510 ± 0.0180 0.6412 ± 0.0127

DOHSC (Ours) 0.7083 ± 0.0188 0.7579 ± 0.0154 0.6609 ± 0.0033 0.7705 ± 0.0045
DO2HSC (Ours) 0.7320 ± 0.0194 0.7651 ± 0.0317 0.6406 ± 0.0642 0.7101 ± 0.0429
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(a) Training Result

(b) Testing Result

MUTAG 0； DO2HSC

Figure 4: Visualization results of the DO2HSC on MUTAG Class 0 in different perspectives.

4.4 ABLATION STUDY

In this section, we display the ablation study of the orthogonal projection layer on three datasets.
From quantitive comparisons, we concluded that orthogonality positively influences all performance
to some extent. It also well supports our assumption discussed in Section 2.1.2.

Table 5: Ablation study of the orthogonal projection layer. We test models by regarding every data
class as normal data, respectively. The best performance is highlighted in bold.

Orthogonal Projection Layer Class MUTAG COX2 IMDB-Binary

DOHSC
× 0 0.8521 0.5817 0.5880

1 0.8912 0.5737 0.6082

✓
0 0.8639 0.6433 0.6192
1 0.9088 0.6077 0.6830

DO2HSC
× 0 0.8934 0.6281 0.6252

1 0.7504 0.6178 0.6541

✓
0 0.9467 0.7158 0.6933
1 0.9184 0.7074 0.6700

Except for the aforementioned contents, please see the detailed experiment configurations, parame-
ter sensitivity and robustness of the proposed models, supplemented visualizations of distance dis-
tributions for anomaly detection and visualization comparison between proposed models with or-
thogonal projection layer and without orthogonal projection layer in Appendix G, which can also
strongly support our theory and validate the effectiveness.

5 CONCLUSION

This paper has proposed two novel end-to-end graph-level AD methods, DOHSC and DO2HSC,
which combined the effectiveness of mutual information between node-level and global features
to learn graph representation and the power of hypersphere compression. DOHSC and DO2HSC
mitigate the possible shortcomings of hypersphere boundary learning by applying an orthogonal
projection for global representation. Furthermore, DO2HSC projects normal data between the in-
terval area of two co-centered hyperspheres to significantly alleviate the soap-bubble issue. Our
comprehensive experimental results strongly demonstrate the superiority of DOHSC and DO2HSC
on multifarious datasets. In future work, we will explore more efficient and excellent graph repre-
sentations and refine our learning process for decision regions.
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A SUPPLEMENTED ALGORITHM

Algorithm 1 summarizes the procedure of DOHSC in detail. It starts with graph representation
learning and promotes the training data to approximate the center of a hypersphere while adding an
orthogonal projection layer. Also, DO2HSC is recapped in Algorithm 2 and also starts with same
graph representation learning. Differently, DOHSC is utilized of few epochs to initial the decision
boundaries and after that, improved optimization is applied.

Algorithm 1 Graph-Level Deep Orthogonal Hypersphere Contraction (DOHSC)
Input: The input graph set G, dimensions of GIN hidden layers k and orthogonal projection layer

k′, a trade-off parameter λ and the coefficient of regularization term µ, pretraining epoch T ,
learning rate η.

Output: The anomaly detection scores s.
1: Initialize the network parameters Φ, Ψ, Υ and the orthogonal projection layer parameter Θ;
2: for t → T do
3: for each batch G do
4: Calculate IΦ,Ψ,Υ (hΦ,Υ,HΦ,Ψ(G)) via equation 4;
5: Back-propagation GIN and update Φ, Ψ and Υ, respectively;
6: end for
7: end for
8: Update the orthogonal parameter Θ of orthogonal projection layer by equation 9;
9: Obtain the global orthogonal latent representation by equation 8;

10: Initialize the center of hypersphere by equation 10;
11: repeat
12: for each batch G do
13: Calculate total loss via 11;
14: Back-propagation and update Φ, Ψ, Υ and Θ, respectively;
15: Further update the orthogonal parameter Θ of orthogonal projection layer by equation 9;
16: end for
17: until convergence
18: Compute decision boundary r by equation 12;
19: Calculate the anomaly detection scores s through equation 13;
20: return The anomaly detection scores s.

B RELATED PROOF OF BI-HYPERSPHERE LEARNING MOTIVATION

The traditional idea of detecting outliers is to inspect the distribution’s tails with an ideal assumption
that the normal data are Gaussian. Following the assumption, one may argue that an anomalous sam-
ple can be distinguished by its large Euclidean distance to the data center (ℓ2 norm ∥z−c∥, where c
denotes the centroid), and accordingly, the abnormal dataset is {z : ∥z− c∥ > r} for some decision
boundary r. However in high dimensional space, Gaussian distributions look like soap-bubble 2,
which means the normal data are more likely to locate in a bi-hypersphere(Vershynin, 2018), such
as {z : rmin < ∥z−c∥ < rmax}. To better understand this counterintuitive behavior, let us generate
some normal samples X ∼ N (0, Id), where d is the data dimension in {1, 10, 50, 100, 200, 500}.
As Figure 6 indicates, only the univariate Gaussian has a near-zero mode, whereas other high-
dimensional Gaussian distributions leave plenty of offcenter spaces in blank. The soap-bubble prob-
lem in high-dimensional distributions is well demonstrated in Table 6: the higher the dimension is,
the greater the quantities of data further away from the center, especially for 0.01-quantile distance.
Thus, we cannot make a sanguine assumption that all of the normal data locate within some radius
of a hypersphere (i.e. {z : ∥z − c∥ < r}). Using Lemma 1 of (Laurent & Massart, 2000), we can
prove that proposition 1, which matches the values in the Table 6 that when the dimension is larger,
normal data are more likely lies away from center.

Proposition 1 Suppose z1, z2, · · · , zn are sampled from N (0, Id) independently. Then for any zi
and all t ≥ 0, the following inequality holds:

2https://www.inference.vc/high-dimensional-gaussian-distributions-are-soap-bubble/
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Algorithm 2 Graph-Level Deep Orthogonal Bi-Hypersphere Compression (DO2HSC)
Input: The input graph set G, dimensions of GIN hidden layers k and orthogonal projection layer

k′, a trade-off parameter λ and the coefficient of regularization term µ, pretraining epoch T1,
iterations of initializing decision boundaries T2, learning rate η.

Output: The anomaly detection scores s.
Initialize the network parameters Φ, Ψ, Υ and the orthogonal projection layer parameter Θ;

2: for t → T1 do
for each batch G do

4: Calculate IΦ,Ψ,Υ (hΦ,Υ,HΦ,Ψ(G)) via equation 4;
Back-propagation GIN and update Φ, Ψ and Υ, respectively;

6: end for
end for

8: Update the orthogonal parameter Θ of orthogonal projection layer by equation 9;
Obtain the global orthogonal latent representation by equation 8;

10: Initialize the center of hypersphere by equation 10;
for t → T2 do

12: for each batch G do
Calculate total loss via 11;

14: Back-propagation and update Φ, Ψ, Υ and Θ, respectively;
Further update the orthogonal parameter Θ of orthogonal projection layer by equation 9;

16: end for
end for

18: Initialize decision boundaries rmax and rmin via equation 14;
repeat

20: for each batch G do
Calculate the improved total loss via 15;

22: Back-propagation and update Φ, Ψ, Υ and Θ, respectively;
Further update the orthogonal parameter Θ of orthogonal projection layer by equation 9;

24: end for
until convergence

26: Calculate the anomaly detection scores s through equation 16;
return The anomaly detection scores s.

P
[
∥zi∥ ≥

√
d− 2

√
dt
]
≥ 1− e−t.

Figure 5: Histogram of distances (Euclidean norm) from the center of normal samples under
16-dimensional Gaussian distributions N (0, I). Three groups of anomalous data are also 16-
dimensional and respectively sampled from N (µ1,

1
10I), N (µ2, I), and N (µ3, 5I), where the pop-

ulation means µ1, µ2, µ3 are randomized within [0, 1] for each dimension.
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Table 6: Offcenter distance under multivariate Gaussian at different dimensions and quantiles.
Quantile (correspond to rmin) dim=1 dim=10 dim=50 dim=100 dim=200 dim=500

0.01 0.0127 1.5957 5.5035 8.3817 12.5117 20.6978
0.25 0.3115 2.5829 6.5380 9.4908 13.6247 21.8542
0.50 0.6671 3.0504 7.0141 9.9662 14.1054 22.3337
0.75 1.1471 3.5399 7.5032 10.4386 14.5949 22.8200
0.99 2.5921 4.8265 8.7723 11.6049 15.7913 24.0245

We also simulate a possible case of outlier detection, in which data are all sampled from 16-
dimensional Gaussian with orthogonal covariance: 10,000 normal samples follow N (0, I) and
the first group of 1,000 outliers are from N (µ1,

1
10I), the second group of 500 outliers are from

N (µ2, I), and the last group of 2,000 outliers are from N (µ3, 5I). Figure 5 well exemplifies that
abnormal data from other distribution (group-1 outliers) could fall into the small distance away from
the center of the normal samples.

Figure 6: Histogram of distances (Euclidean norm) from the center of 10,000 random samples under
(univariate or) high-dimensional Gaussian distributions N (0, I).

C RELATED WORK ON GRAPH KERNEL

To learn with graph-structured data, graph kernels that measure the similarity between graphs be-
come an established and widely-used approach (Kriege et al., 2020). A large body of work has
emerged in the past years, including kernels based on neighborhood aggregation techniques and
walks and paths. Shervashidze et al. (2011) introduced Weisfeiler-Lehman (WL) algorithm, a well-
known heuristic for graph isomorphism. In Hido & Kashima (2009), Neighborhood Hash kernel was
introduced, where the neighborhood aggregation function is binary arithmetic. The most influential
graph kernel for paths-based kernels is the shortest-path (SP) kernel by Borgwardt & Kriegel (2005).
For walks-based kernels, Gärtner et al. (2003) and Kashima et al. (2003) simultaneously proposed
graph kernels based on random walks, which count the number of label sequences along walks that
two graphs have in common. These graph kernel methods have the desirable property that they do
not rely on the vector representation of data explicitly but access data only via the Gram matrix.

D EXPERIMENT CONFIGURATION

In this part, the experiment settings are listed for reproducing. First, each dataset is divided into
two parts: training and testing sets. We randomly sample eighty percent of the normal data as the
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training set, and the remaining normal data together with the randomly sampled abnormal data in a
one-to-one ratio to form the testing set.

With regard to the experiment settings of compared graph-kernel baselines, we adopted the classical
AD method, One-Class SVM (OC-SVM) (Schölkopf et al., 2001) and used 10-fold cross-validation
to make a fair comparison. All graph kernels via GraKel (Siglidis et al., 2020) to extract a Kernel
matrix and apply OC-SVM in scikit-learn (Pedregosa et al., 2011) are implemented. Specifically,
we selected Floyd Warshall as the SP kernel’s algorithm and set lambda as 0.01 for the RW kernel.
WL kernel algorithm is sensitive to the number of iterations, so we test four types with the iteration
of {2, 5, 8, 10} and denote them as WL2, WL5, WL8, WL10. For all graph kernels, the outputs
are normalized. About infoGraph+Deep SVDD, the first stage runs in 20 epochs, and the second
stage pretrains 50 epochs and trains 100 epochs. In OCGIN, GLocalKD, and OCGTL, their default
or reported parameter settings are adopted to reproduce experimental results. But there still exists
some special situations like, due to the limited device, the relatively large-scale dataset is tested with
a small batch size, such as DD. This may lead to worse performance for compared algorithms.

(a) DOHSC (b) DO2HSC

Figure 7: Convergence curves of the proposed models on the MUTAG dataset.

Regarding our model DOHSC, we firstly set 1 epoch in the pretraining stage to initialize the center
of the decision boundary and then train the model in 500 epochs. The convergence curves are
given in Figure 7 to indicate that the final optimized results are adopted. The improved method
DO2HSC is also set 1-epoch pretraining stage and trains DOHSC 5 epochs to initialize a suitable
center and decision boundaries rmax and rmin, where the percentile ν of rmax is fixed to 0.05. After
initializing, the model is trained in 500 epochs. For both proposed approaches, the trade-off factor
λ is set to 10 to ensure decision loss as the main optimization objective. Dimensions of the GIN
hidden layer and orthogonal projection layer are fixed as 16 and 8, respectively. About the backbone
network, a 4-layer GIN and a 3-layer fully connected neural network are adopted. Besides, the
averages and standard deviations of the Area Under Operating Characteristic Curve (AUC) are used
to support the comparable experiments by repeating each algorithm ten times. The higher value of
the AUC metric represents better performance. When calculating the AUC of graph-kernel baselines,
we estimated the radius of the hypersphere as 99 percentile of all squared distances to the separating
hyperplane and then determined the score as the difference between squared distances and its square
radius. Regarding our model DOHSC, we firstly set 1 epoch in the pretraining stage to initialize the
center of the decision boundary and then train the model in 500 epochs. The convergence curves are
given in Figure 7. The improved method DO2HSC is also set 1-epoch pretraining stage and trains
DOHSC 5 epochs to initialize a suitable center and decision boundaries rmax and rmin, where the
percentile ν of rmax is fixed to 0.1. After initializing, the model is also trained in 500 epochs. For
both proposed approaches, the trade-off factor λ is set to 10. Dimensions of the GIN hidden layer
and orthogonal projection layer are fixed as 16 and 8, respectively. About the backbone network, a
4-layer GIN and a 3-layer fully connected neural network are adopted. Besides, the averages and
standard deviations of the Area Under Operating Characteristic Curve (AUC) are used to support the
comparable experiments by repeating each algorithm ten times. The higher value of the AUC metric
represents better performance. When calculating the AUC of graph-kernel baselines, we estimated
the radius of the hypersphere as 99 percentile of all squared distances to the separating hyperplane
and then determined the score as the difference between squared distances and its square radius.

E DOHSC AND DO2HSC ON NON-GRAPH DATA

Since our DOHSC and DO2HSC can also be applied to non-graph data such as images, here we
compare them with some state-of-the-art anomaly detections Ruff et al. (2018); Goyal et al. (2020);
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Liznerski et al. (2021) on Fashion-MNIST. The results are reported in Table 7. First, DOHSC
and DO2HSC obtained seven best AUCs out of ten in total. And in the remaining three classes,
the proposed models still achieved comparable performance with gaps of less than 2%. Second,
Deep SVDD plays an important baseline role relative to DOHSC and DOHSC defeats it by a large
margin in all classes. It further verifies that the proposed orthogonal projection is meaningful and
helpful. In general, bi-hypersphere learning also performs sufficiently on common datasets and is
very competitive compared to these state-of-the-art anomaly detection algorithms (Deep SVDD,
DROCC and FCDD). In terms of the average AUC values for all classes of the dataset in Table 8,
our algorithm outperforms all the compared baselines reproduced above, but it is worth mentioning
that the reported performance of the IGD (Scratch) algorithm (Chen et al., 2022) is superior to our
algorithm with no more than 2% gap.

Table 7: Average AUCs in one-class anomaly detection on Fashion-MNIST.
Normal Class Deep SVDD (Ruff et al., 2018) DROCC (Goyal et al., 2020) FCDD (Liznerski et al., 2021) DOHSC DO2HSC

T-shirt 0.8263 ± 0.0342 0.8931 ± 0.0072 0.8143 ± 0.0101 0.9153 ± 0.0082 0.9196 ± 0.0064
Trouser 0.9632 ± 0.0072 0.9835 ± 0.0054 0.9855 ± 0.0014 0.9817 ± 0.0060 0.9839 ± 0.0020
Pullover 0.7885 ± 0.0398 0.8656 ± 0.0140 0.8423 ± 0.0052 0.8007 ± 0.0204 0.8768 ± 0.0122

Dress 0.8607 ± 0.0124 0.8776 ± 0.0269 0.9143 ± 0.0120 0.9178 ± 0.0230 0.9171 ± 0.0084
Coat 0.8417 ± 0.0366 0.8453 ± 0.0143 0.8607 ± 0.0213 0.8805 ± 0.0258 0.9038 ± 0.0140

Sandal 0.8902 ± 0.0281 0.9336 ± 0.0123 0.9089 ± 0.0165 0.8932 ± 0.0287 0.9308 ± 0.0070
Shirt 0.7507 ± 0.0158 0.7789 ± 0.0188 0.7750 ± 0.0038 0.8177 ± 0.0124 0.8022 ± 0.0045

Sneaker 0.9676 ± 0.0062 0.9624 ± 0.0059 0.9874 ± 0.0007 0.9678 ± 0.0050 0.9677 ± 0.0075
Bag 0.9039 ± 0.0355 0.7797 ± 0.0749 0.8584 ± 0.0222 0.9122 ± 0.0258 0.9090 ± 0.0105

Ankle Boot 0.9488 ± 0.0207 0.9589 ± 0.0207 0.9432 ± 0.0050 0.9756 ± 0.0127 0.9785 ± 0.0038

Table 8: Mean AUC of all classes on Fashion-MNIST.
Deep SVDD DROCC FCDD IGD (Chen et al., 2022) DOHSC DO2HSC

Mean AUC 0.8742 0.8879 0.8890 0.9201 0.9063 0.9189

F SUPPLEMENTED VISUALIZATION

This part shows the related supplemented visualization results of the anomaly detection task.

From Section 4, we can see some DOHSC results are improved a lot through DO2HSC. For ex-
ample, compared with DOHSC, DO2HSC often improves the results by less than 2% on most of
the datasets. But on class 1 of ER MD, DO2HSC has a more than 20% improvement. Here the
distance distributions of DOHSC and DO2HSC on ER MD are given in Figure 8 to prove this im-
provement. In Subfigure (a), the anomalous data appear in the distance interval [0,1], especially
in the region close to the center, and less or even none of the normal data distributes in it. On the
contrary, DO2HSC divided normal data and anomalous data more specifically, and both sides of the
interval have anomalous data, as we assumed before.
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Figure 8: Visualizations of DOHSC and DO2HSC on ER MD dataset.
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Figure 9: Distance distributions were obtained by infoGraph+Deep SVDD, the proposed model,
and the improved proposed model on COX2. The first row represents the distance distribution of the
training samples in relation to the decision boundary. The last row indicates the distance distribution
of the test data with respect to the decision boundary.

Figure 9 shows the distance distributions of the two-stage method, the proposed model DOHSC,
and the improved DO2HSC. Here, the distance is defined as the distance between the sample and
the center of the decision hypersphere. The distance distribution denotes the sample proportion in
this distance interval to the corresponding total samples. It can be intuitively observed that most
distances of instances are close to the decision boundary because of the fixed learned representation.
As mentioned earlier, the jointly-trained algorithm has mitigated the situation, and the obtained
representation makes many instances have smaller distances from the center of the sphere.

However, like we wrote in Section 2, anomalous data may occur in regions with less training data,
especially the region close to the center, which is also confirmed by (a) and (b) of Figure 9. Dif-
ferently, DO2HSC effectively shrinks the decision area, and we find that the number of outliers is
obviously reduced due to a more compact distribution of training data.

F.1 PARAMETER SENSITIVITY AND ROBUSTNESS

To claim the stability of our models, we analyze the parameter sensitivity and robustness of DOHSC
and DO2HSC, respectively. Consider that the projection dimension varies in {4, 8, 16, 32, 64,
128} while the hidden layer dimension of the GIN module ranges from 4 to 128. In Figure 11, the
DO2HSC model has less volatile performances than DOHSC, especially when the training dataset
is sampled from COX2 class 0, as Subfigure (d) shows. Noticeably, a higher dimension of the GIN
hidden layer usually displays a better AUC result since the quality of learned graph representations
improves when the embedding space is large enough.

In addition, we assess different aspects of model robustness. More specifically, the AUC results
about two ”ratios” are displayed: 1) Different sampling ratios for the training set; 2) Different ratios
of noise disturbance for the learned representation. In Subfigures (c) (f), the purple bars regard
normal data as class 0, while green bars treat normal data as class 1. Notice that most AUC results
are elevating along with a higher ratio of authentic data in the training stage, demonstrating our
models’ potential in the unsupervised setting. On the other hand, when more noise is blended into
the training dataset, the AUC performances of yellow line and blue line always stay stable at a high
level. This outcome verifies our models’ robustness in response to the alien data.
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(b) Testing Result

               

  

  

  

  

  

  

 

 

 

  

  

  

 

 

  
  

  
     

(a) Training Result

Figure 10: Visualization results of the DOHSC with MUTAG in different perspectives.

                  

     

 

   

   

   

   

   

   

   

   

   

 

 
 
 

                          

                          

                   

                   
          

          

             

                 

 

   

      

   

 
 
 

    

   

    

   

    
  

  

          

          

             

                 

 

   

      

   

 
 
 

    

   

    

   

    
  

  

                  

     

 

   

   

   

   

   

   

   

   

   

 

 
 
 

                          

                          

                   

                   

          

          

             

                 

 

   

      

   

 
 
 

    

   

  

   

  
    

  
  

          

          

             

                 

 

   

      

   

 
 
 

    

   

  

   

  
    

  
  

(a) (b) (c)

(d) (f)(e)

Figure 11: Parameter sensitivity and robustness of the proposed models. (a)-(b) Parameter sensitivity
of DOHSC with different hidden layer dimensions of GIN and projection dimensions on COX2 with
Class 0 and Class 1, respectively. (d)-(e) Parameter sensitivity of DO2HSC with the same settings.
(c) and (f) shows the performance impacts with different ratios of the training set on the IMDB-
Binary dataset and added noise disturbances on the MUTAG dataset while training DOHSC and
DO2HSC, respectively.

The percentile parameter sensitivity is also given in this part. It is worth mentioning that we test
DOHSC with varying percentile in {0.01, 0.1, ..., 0.8} and test DO2HSC only in {0.01, 0.05, 0.1}
because two radii of DO2HSC is obtained by percentile ν and 1− ν. Two radii will be equal when
ν = 0.5 and the interval between two co-centered hyperspheres will disappear. From the table, the
performance would decrease when a larger percentile is set obviously. For example, on the MUTAG
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dataset, setting the percentile as 0.01 is more beneficial for DOHSC than setting it as 0.8, and setting
the percentile as 0.01 is better than setting it as 0.1 for DO2HSC due to the change of the interval
area.

Table 9: Parameter sensitivity of the proposed methods with different percentiles (all normal data is
set to Class 0.

Method Dataset/Percentile 0.01 0.1 0.5 0.8

DOHSC MUTAG 0.9527 (0.0187) 0.9497 (0.0249) 0.9112 (0.0099) 0.8675 (0.1287)
COX2 0.6041 (0.0661) 0.6022 (0.0789) 0.5232 (0.0494) 0.5523 (0.0572)

Method Dataset/Percentile 0.01 0.05 0.1 -

DO2HSC MUTAG 0.9089 (0.0609) 0.8041 (0.1006) 0.6769 (0.1207) –
COX2 0.6329 (0.0292) 0.6149 (0.0187) 0.5830 (0.0713) –

G SUPPLEMENTED RESULTS OF ABLATION STUDY

First, the ablation study of whether orthogonal projection needs standardization is conducted. To
be more precise, we are pursuing orthogonal features, i.e., finding a projection matrix for orthog-
onal latent representation (with standardization) instead of computing the projection onto the col-
umn or row space of the projection matrix (non-standardization), though they are closely related to
each other. This is equivalent to performing PCA and using the standardized principal components.
Therefore, we show the comparison between DOHSC with standardization and without standard-
ization. From Table 10, it is observed that the performance of DOHSC without standardization is
acceptable and most results of it are better than the two-stage baseline, i.e., infoGraph+Deep SVDD.
It verifies the superiority of the end-to-end method over the two-stage baselines. However, the model
with standardization outperforms the non-standardized one in almost all cases.

Table 10: Comparison of the orthogonal projection layer with or w/o standardization.
Class infoGraph+Deep SVDD DOHSC (Non-Standardization) DOHSC

MUTAG 0 0.8805 ± 0.0448 0.8521 ± 0.0650 0.8822 ± 0.0432
1 0.6166 ± 0.2052 0.6918 ± 0.1467 0.8115 ± 0.0279

COX2 0 0.4825 ± 0.0624 0.5800 ± 0.0473 0.6263 ± 0.0333
1 0.5029 ± 0.0700 0.5029 ± 0.0697 0.6805 ± 0.0168

ER MD 0 0.5312 ± 0.1545 0.4881 ± 0.0626 0.6620 ± 0.0308
1 0.5682 ± 0.0704 0.6740 ± 0.0356 0.5184 ± 0.0793

DD 0 0.3942 ± 0.0436 0.4029 ± 0.0354 0.7083 ± 0.0188
1 0.6484 ± 0.0236 0.6903 ± 0.0215 0.7579 ± 0.0154

IMDB-Binary 0 0.6353 ± 0.0277 0.5149 ± 0.0655 0.6609 ± 0.0033
1 0.5836 ± 0.0995 0.6505 ± 0.0585 0.7705 ± 0.0045

COLLAB
0 0.5662 ± 0.0597 0.6067 ± 0.1007 0.9185 ± 0.0455
1 0.7926 ± 0.0986 0.8958 ± 0.0141 0.9755 ± 0.0030
2 0.4062 ± 0.0978 0.4912 ± 0.2000 0.5450 ± 0.0469

Besides, the ablation study of using the mutual information maximization loss is shown in Table 11.
It can be intuitively concluded that mutual information loss does not always have a positive impact
on all data. This also indicates that the anomaly detection optimization method and orthogonal
projection we designed are effective instead of entirely due to the loss of mutual information.

To demonstrate the effectiveness of the orthogonal projection layer (OPL), we conduct ablation
studies and visualize the comparison of 3-dimensional results produced with OPL and without OPL,
respectively. For each model trained on a particular dataset class, we show the result without OPL
on the left side, while the result with OPL is displayed on the right. As Figure 12 illustrates, OPL
drastically improves the distribution of the embeddings to be more spherical rather than elliptical.
Similarly, with the help of OPL, other embeddings show a more compact and rounded layout.
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Table 11: Comparison of the loss supervision with or w/o mutual information loss (MIL).
Class DOHSC (Non-MIL) DOHSC DO2HSC (Non-MIL) DO2HSC

MUTAG 0 0.9456 ± 0.0189 0.8822 ± 0.0432 0.8308 ± 0.0548 0.9089 ± 0.0609
1 0.7597 ± 0.0802 0.8115 ±0.0279 0.7915 ± 0.0274 0.8250 ± 0.0790

COX2 0 0.6349 ± 0.0466 0.6263 ± 0.0333 0.6143 ± 0.0302 0.6329 ± 0.0292
1 0.6231 ± 0.0501 0.6805 ± 0.0168 0.6576 ± 0.1830 0.6518 ± 0.0481

ER MD 0 0.5837 ± 0.0778 0.6620 ± 0.0308 0.5836 ± 0.0909 0.6867 ± 0.0226
1 0.6465 ± 0.0600 0.5184 ± 0.0793 0.7424 ± 0.0385 0.7351 ± 0.0159

DD 0 0.4738 ± 0.0412 0.7083 ± 0.0188 0.6882 ± 0.0221 0.7320 ± 0.0194
1 0.7197 ± 0.0185 0.7579 ± 0.0154 0.7376 ± 0.0244 0.7651 ± 0.0317

IMDB-Binary 0 0.5666 ± 0.0810 0.6609 ± 0.0033 0.6303 ± 0.0538 0.6406 ± 0.0642
1 0.6827 ± 0.0239 0.7705 ± 0.0045 0.6810 ± 0.0276 0.7101 ± 0.0429

COLLAB
0 0.9330 ± 0.0539 0.9185 ± 0.0455 0.5415 ± 0.0182 0.6718 ± 0.0353
1 0.9744 ± 0.0017 0.9755 ± 0.0030 0.9293 ± 0.0023 0.9153 ± 0.0070
2 0.8275 ± 0.0765 0.5450 ± 0.0469 0.8452 ± 0.0243 0.7188 ± 0.0260

   
 

    

    

    

    

 

      

   

 

   

    

   

   

  

 

   

 

  

 

  

          

   

 

    

 

        

   

 

   

       
   

  

 

 

 

  

 

  

 

       

 

 

 

 

   
 

    

    

    

    

 

      

   

 

   

    

 

 

 

 

  

  

   

  

 

  

  
  

 

   

   

   

  

 

 

  

  

  

      
           

   

    

    

    

    

 

   

   

   

   

     
        

   

    

   

    

 

   

   

 

   

   

 

   

    

        

 

 

 

 

  

  

   

  

 

  

  
  

 

  

 

 

 

  

 

  

 

       

 

 

 

 

(a) DOHSC

(a) DOHSC

(b) DO2HSC

(b) DO2HSC

MUTAG 1

MUTAG 0

Figure 12: Visualizations on the MUTAG dataset Class 0 (left: with OPL; right: without OPL).

   
 

    

    

    

    

 

      

   

 

   

    

   

   

  

 

   

 

  

 

  

          

   

 

    

 

        

   

 

   

       
   

  

 

 

 

  

 

  

 

       

 

 

 

 

   
 

    

    

    

    

 

      

   

 

   

    

 

 

 

 

  

  

   

  

 

  

  
  

 

   

   

   

  

 

 

  

  

  

      
           

   

    

    

    

    

 

   

   

   

   

     
        

   

    

   

    

 

   

   

 

   

   

 

   

    

        

 

 

 

 

  

  

   

  

 

  

  
  

 

  

 

 

 

  

 

  

 

       

 

 

 

 

(a) DOHSC

(a) DOHSC

(b) DO2HSC

(b) DO2HSC

MUTAG 1

MUTAG 0
Figure 13: Visualizations on the MUTAG dataset Class 1 (left: with OPL; right: without OPL).

   

   

  

  

     
  

  

   
 

    
 

 

   

 

 

   

 

   

  

   

    

    

   

 

   

   

   

 
   

   

       
         

        
    

  

 

  

 

 

 

  

 

 
   

    
  

   

   

  

 

 

  

 

  

         

   

  

 

 

    

  

  

   
   

    
     

    
    

    

    

 

 

   

   

   

    

   

   

    
         

   

   

   

  

  

 

 

  

 

  

 
     

  

(a) DOHSC

(a) DOHSC

(b) DO2HSC

(b) DO2HSC

COX2 0

COX2 1

Figure 14: Visualizations on the COX2 dataset Class 0 (left: with OPL; right: without OPL).
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(a) DOHSC

(a) DOHSC

(b) DO2HSC

(b) DO2HSC

COX2 0

COX2 1

Figure 15: Visualizations on the COX2 dataset Class 1 (left: with OPL; right: without OPL).
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