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ICB UMR 6303 CNRS, Université Marie et Louis Pasteur, UTBM, F-90010 Belfort Cedex, France

Samir Jabbar Samir.Jabbar@u-bourgogne.fr
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Abstract

Neuro-symbolic artificial intelligence (NSAI) represents a transformative approach in artifi-
cial intelligence (AI) by combining deep learning’s ability to handle large-scale and unstruc-
tured data with the structured reasoning of symbolic methods. By leveraging their comple-
mentary strengths, NSAI enhances generalization, reasoning, and scalability while address-
ing key challenges such as transparency and data efficiency. This paper systematically stud-
ies diverse NSAI architectures, highlighting their unique approaches to integrating neural
and symbolic components. This study then evaluates these architectures against compre-
hensive set of criteria, including generalization, reasoning capabilities, transferability, and
interpretability, therefore providing a comparative analysis of their respective strengths and
limitations. Notably, the Neuro → Symbolic ← Neuro model consistenty outperforms its
counterparts across all evaluation metrics. This result aligns with state-of-the-art research
that highlight the efficacy of such architectures in harnessing advanced technologies like
multi-agent systems. Moreover, our NSAI framework using retrieval-augmented illustrates
how the 4D printing ontology can be systematically enriched with additional classes, object
properties, data properties and individuals.

1. Introduction

Neuro-symbolic artificial intelligence (NSAI) is fundamentally defined as the combination
of deep learning and symbolic reasoning (Garcez and Lamb, 2023). This hybrid approach
aims to overcome the limitations of both symbolic and neural artificial intelligence (AI)
systems while harnessing their respective strengths. Symbolic AI excels in reasoning and
interpretability, whereas neural AI thrives in learning from vast amounts of data. By
merging these paradigms, NSAI aspires to embody two fundamental aspects of intelligent
cognitive behavior: the ability to learn from experience and the capacity to reason based
on acquired knowledge (Valiant, 2003).

NSAI offers a promising avenue for addressing limitations of purely symbolic or neural
systems. For instance, while neural networks (NNs) often struggle with interpretability,
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symbolic AI systems are rigid and require extensive domain knowledge. By combining the
adaptability of neural models with the explicit reasoning capabilities of symbolic meth-
ods, NSAI systems aim to provide enhanced generalization, interpretability, and robust-
ness. These characteristics make NSAI particularly well-suited for solving complex, real-
world problems where adaptability and transparency are critical (Hamilton et al., 2024).
Kautz (Kautz, 2022) identifies several NSAI architectures that effectively integrate these
paradigms, each architecture offers unique advantages but also poses specific challenges in
terms of scalability, interpretability, and adaptability. A systematic evaluation of these
architectures is imperative to understand their potential and limitations, guiding future
research in this rapidly evolving field. The goal of evaluating NSAI architectures is to
determine which ones are best suited to specific needs based on relevant criteria and to
facilitate their adoption across various domains.

Therefore, this research aims to explore the core categories of NSAI and examine the
insights that this classification yields regarding their strengths and limitations. The study is
structured around three primary objectives: (i) to define, analyze and extend existing NSAI
architectures, (ii) to develop a systematic framework for assessing these architectures across
various criteria, and (iii) to demonstrate the Symbolic → Neuro → Symbolic paradigm in
a practical 4D printing use case, illustrating how Large Language Models (LLMs) can be
leveraged to enrich and expand a 4D printing ontology.

2. Neuro-Symbolic AI Architectures

This section provides an overview of various NSAI architectures, offering insights into their
design principles, integration strategies, and unique capabilities. While Kautz’s classifi-
cation serves as a foundational framework, we extend it by incorporating additional ar-
chitectural perspectives—most notably the fibring architecture—and by introducing more
granular subclassifications within the compiled architecture to capture the evolving land-
scape of NSAI systems. This expanded categorization highlights the diversity of design
strategies and the broad applicability of NSAI techniques, emphasizing their potential for
more interpretable, robust, and data-efficient AI solutions.

2.1. Sequential

As part of the sequential NSAI, the Symbolic → Neuro → Symbolic architecture involves
systems where both the input and output are symbolic, with a NN acting as a mediator for
processing. Symbolic input, such as logical expressions or structured data, is first mapped
into a continuous vector space through an encoding process. The NN operates on this
encoded representation, enabling it to learn complex transformations or patterns that are
difficult to model symbolically. Once the processing is complete, the resulting vector is
decoded back into symbolic form, ensuring that the final output aligns with the structure
and semantics of the input domain. A formulation of this architecture is presented below:

y = fneural(x) (1)

where x is the symbolic input, fneural(x) represents the NN that processes the input, and
y is the symbolic output. This architecture can be used in a semantic parsing task, where
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the input is a sequence of symbolic tokens (e.g., words). Here, each token is mapped to
a continuous embedding via word2vec or a similar method (Mikolov, 2013; Pennington
et al., 2014). The NN then processes these embeddings to learn compositional patterns or
transformations. From this, the network’s output layer decodes the processed information
back into a structured logical form (eg. knowledge-graph triples).

2.2. Nested

The nested NSAI category is composed of two different architectures. The first – Sym-
bolic[Neuro] – places a NN as a subcomponent within a predominantly symbolic system.
Here, the NN is used to perform tasks that require statistical pattern recognition, such as
extracting features from raw data or making probabilistic inferences, which are then utilized
by the symbolic system. This architecture can formally defined as follows:

y = gsymbolic(x, fneural(z)) (2)

where x represents the symbolic context, z is the input passed from the symbolic reasoner
to the NN, fneural(z) expresses the neural model processing the input, and gsymbolic the
symbolic reasoning engine that integrates neural outputs. A well-known instance of this
architecture is AlphaGo (Silver et al., 2016), where a symbolic Monte-Carlo tree search
orchestrates high-level decision-making, while a NN evaluates board states, providing a
data-driven heuristic to guide the symbolic search process (Coulom, 2006).

The second architecture – Neuro[Symbolic] – integrates a symbolic reasoning engine as
a component within a neural system, allowing the network to incorporate explicit symbolic
rules or relationships during its operation. The symbolic engine provides structured reason-
ing capabilities, such as rule-based inference or logic, which complement the NN’s ability to
generalize from data. By embedding symbolic reasoning within the neural framework, the
system gains interpretability and structured decision-making while retaining the flexibility
and scalability of neural computation. This integration is particularly effective for tasks that
require reasoning under constraints or adherence to predefined logical frameworks (Heule
et al., 2016). This configuration can be described as follows:

y = fneural(x, gsymbolic(z)) (3)

where x represents the input data to the neural system, z is the input passed from the NN
to the symbolic reasoner, gsymbolic is the symbolic reasoning function, and fneural denotes the
NN processing the combined inputs. This framework can be exemplified by considering a
scenario where a symbolic reasoning engine processes structured data—such as a maze—to
generate a solution path. In this example, a neural network encodes the problem into a
latent representation and subsequently decodes it into a symbolic sequence of actions (e.g.,
forward, turn left, turn right).

2.3. Cooperative

As a cooperative framework, Neuro | Symbolic uses neural and symbolic components as
interconnected coroutines, collaborating iteratively to solve a task. NNs process unstruc-
tured data, such as images or text, and convert it into symbolic representations that are
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easier to reason about. The symbolic reasoning component then evaluates and refines these
representations, providing structured feedback to guide the NN’s updates. This feedback
loop continues over multiple iterations until the system converges on a solution that meets
predefined symbolic constraints or criteria. By combining the strengths of NNs for gen-
eralization and symbolic reasoning for interpretability, this approach achieves robust and
adaptive problem-solving (Mao et al., 2019). This architecture can be described as follows:

z(t+1) = fneural(x, y
(t)), y(t+1) = gsymbolic(z

(t+1)), ∀t ∈ {0, 1, . . . , n} (4)

where x represents non-symbolic data input, z(t) is the intermediate symbolic representation
at iteration t, y(t) is the symbolic reasoning output at iteration t, fneural(x, y

(t)) expresses the
NN that processes the input x and feedback from the symbolic output y(t), gsymbolic(z

(t+1))
is the symbolic reasoning engine that updates y(t+1) based on the neural output z(t+1), and
n is the maximum number of iterations or a convergence threshold. The hybrid reasoning
halts when the outputs y(t) converge (e.g., |y(t+1) − y(t)| < ϵ)), where ϵ is a small threshold
denoting minimal change between successive outputs, or when the maximum iterations n is
reached. For instance, this architecture can applied in autonomous driving systems, where
a NN processes real-time images from vehicle cameras to detect and classify traffic signs.
It identifies shapes, colors, and patterns to suggest potential signs, such as speed limits or
stop signs. A symbolic reasoning engine then evaluates these detections based on contextual
rules—like verifying if a detected speed limit sign matches the road type or if a stop sign
appears in a logical position (e.g., near intersections). If inconsistencies are detected, such
as a stop sign identified in the middle of a highway, the symbolic system flags the issue and
prompts the neural network to re-evaluate the scene. This iterative feedback loop continues
until the system reaches consistent, high-confidence decisions, ensuring robust and reliable
traffic sign recognition, even in challenging conditions like poor lighting or partial occlusions.

2.4. Compiled

As part of the compiled NSAI, NeuroSymbolicLoss uses symbolic reasoning into the loss func-
tion of a NN. The loss function is typically used to measure the discrepancy between the
model’s predictions and the true outputs. By incorporating symbolic rules or constraints,
the network’s training process not only minimizes prediction error but also ensures that the
output aligns with symbolic logic or predefined relational structures. This allows the model
to learn not just from data but also from symbolic reasoning, helping to guide its learning
process toward solutions that are both accurate and consistent with symbolic principles.

L = Ltask(y, ytarget) + λ · Lsymbolic(y) (5)

where y is the model prediction, ytarget represents the ground truth labels, Ltask is the task-
specific loss (e.g., cross-entropy), Lsymbolic is the penalization for violating symbolic rules,
λ the Weight balancing the two loss components, and L the final loss, combining both the
task-specific loss and the symbolic constraint penalty to guide model optimization. This
architecture is typically useful in the field of 4D printing, where structures need to be
optimized at the material level to achieve a target shape. In such a case, a NN predicts the
material distribution and geometric configuration that allows the structure to adapt under
external stimuli. The training process incorporates a physics-informed loss function, where,
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in addition to minimizing the difference between predicted and desired mechanical behavior,
the model is penalized whenever the predicted deformation violates symbolic mechanical
constraints, such as equilibrium equations or the stress-strain relationship.

A second compiled NSAI architecture, called NeuroSymbolicNeuro
, uses symbolic reasoning

at the neuron level by replacing traditional activation functions with mechanisms that
incorporate symbolic reasoning. Rather than using standard mathematical operations like
ReLU or sigmoid, the neuron activation is governed by symbolic rules or logic. This allows
the NN to reason symbolically at a more granular level, integrating explicit reasoning steps
into the learning process. This architecture can be described as follows:

y = gsymbolic(x) (6)

where: x represents the pre-activation input, gsymbolic(x) is the symbolic reasoning-based
activation function, and y the final neuron. This architecture can find application in lean
approval systems, where neural activations are driven by symbolic financial rules rather
than traditional functions. One example is the collateral-based constraint neuron, which
dynamically adjusts the risk score based on the value of the pledged collateral. When the
collateral’s value falls below a predefined threshold relative to the loan amount, the neuron
applies a strict penalty that substantially increases the risk score, effectively preventing the
system from underestimating the associated financial risk.

Finally, the last compiled architecture, Neuro:Symbolic → Neuro, uses a symbolic rea-
soner to generate labeled data pairs (x, y), where y is produced by applying symbolic rules
or reasoning to the input x. These pairs are then used to train a NN, which learns to map
from the symbolic input x to the corresponding output y. The symbolic reasoner acts as
a supervisor, providing high-quality, structured labels that guide the NN’s learning process
(Riegel et al., 2020). This architecture can be governed as follows:

Dtrain = {(x, gsymbolic(x)) | x ∈ X} (7)

where Dtrain is the training dataset, x denotes the unlabeled data, gsymbolic(x) represents
symbolic rules generating labeled data, and X the set of all input data.

2.5. Ensemble

Another promising architecture, called Neuro → Symbolic ← Neuro uses multiple inter-
connected NNs via a symbolic fibring function, which enables them to collaborate and
share information while adhering to symbolic constraints. The symbolic function acts as
an intermediary, facilitating communication between the networks by ensuring that their
interactions respect predefined symbolic rules or structures. This enables the networks to
exchange information in a structured manner, allowing them to jointly solve problems while
benefiting from both the statistical learning power of NNs and the logical constraints im-
posed by the symbolic system (Garcez and Gabbay, 2004). This architecture can formally
defined as follows:

y = gfibring({fi}ni=1) (8)

where fi represents the individual NN, gfibring is the logic-aware aggregator that enforces
symbolic constraints while unifying the outputs of multiple NNs, n the number of NNs, and
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y is the combined output of interconnected NNs, produced through the symbolic fibring
function gfibring. For instance, two NNs communicate through activation states, which
enables dynamic exchange of learned representations (Garcez and Gabbay, 2004).
Finally, we substantially advance Hertz’s foundational taxonomy by introducing two pio-
neering paradigms: the NeuroSymbolicLoss

architecture, which embeds symbolic constraints
directly into the neural loss function, and a fibring-based ensemble mechanism that orches-
trates multiple neural modules via a logic-aware aggregator to enforce explicit symbolic
rules. Beyond these extensions, we deliver an unprecedentedly granular taxonomy for each
architectural family, detailing their integration pathways, iterative dynamics, and unique
trade-offs.

3. Evaluation of NSAI Architectures

Ensuring the reliability and practical applicability of NSAI architectures requires a system-
atic evaluation across multiple well-defined criteria. Such an evaluation not only identifies
the strengths and limitations of the architectures but also fosters trust among stakehold-
ers by emphasizing interpretability, transparency, and robustness—qualities essential in
domains such as healthcare, finance, and autonomous systems. Moreover, a rigorous assess-
ment provides benchmarks that can stimulate the development of next-generation models.
The following sections delineate the key criteria for evaluating NSAI architectures.

3.1. Core Criteria

NSAI architectures are evaluated on several key aspects and each of these high-level cate-
gories is further subdivided into subcategories that specify the precise dimensions and met-
rics employed for rigorous assessment. Generalization—the capacity to extend learned
representations beyond the training dataset to perform effectively in novel or unforeseen
situations, which is assessed by out-of-distribution performance (Yang et al., 2024), mean-
ing the model maintains accuracy when inputs deviate from the training distribution; by
contextual flexibility (Patel et al., 2015), where it adapts seamlessly to new domains or
tasks with minimal retraining; and by relational accuracy (Ye et al., 2024), capturing its
ability to identify genuine dependencies in data while suppressing spurious correlations;
Scalability—the ability to sustain efficiency as data volumes and computational demands
increase, which includes large-scale adaptation (Dean et al., 2012), where the system pro-
cesses and derives insights from massive datasets end-to-end; hardware efficiency (Silvano
et al., 2023), which optimizes computational resource utilization across both low-resource
devices and high-performance infrastructures; and complexity management (Tan and Le,
2019), meaning the architecture can grow in depth or breadth without incurring prohibitive
latency or deployment overhead; Data Efficiency—the capacity to learn effectively from
limited data, assessed by data reduction (Song et al., 2023), which achieves target perfor-
mance with fewer labeled examples; by data optimization (Zhu, 2005), where unlabeled or
weakly labeled data are leveraged through semi- or self-supervised learning; and by incre-
mental adaptability (Gunasekara et al., 2023), meaning new samples can be incorporated
on the fly without requiring a full retraining cycle; Reasoning—the integration of neural
pattern recognition and symbolic manipulation to derive logical conclusions, evaluated by
logical reasoning (Hou, 2025), in which explicit rules are systematically applied for precise
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inference; by relational understanding (Li et al., 2025), where complex inter-entity relation-
ships are comprehended; and by cognitive versatility (Ke et al., 2025), meaning the model
combines deductive, inductive and abductive paradigms to address a wide range of prob-
lem classes; Robustness—the resilience to noise, adversarial perturbations and dynamic
environments, assessed by perturbation resistance (Meng et al., 2022), where stable outputs
are maintained under noisy or malicious inputs; by adaptive resilience (Liu et al., 2024),
meaning functionality endures amid shifting or unpredictable conditions; and by bias re-
silience (Hort et al., 2024), in which systematic errors are detected and mitigated to uphold
fairness and accuracy; Transferability—the ability to apply acquired knowledge across
different domains and tasks with minimal overhead, evaluated by multi-domain adapta-
tion (Zhou et al., 2022), where representations generalize across disparate data regimes; by
multi-task learning (Zhang and Yang, 2021), in which heterogeneous objectives are han-
dled concurrently via shared representations; and by personalization (Zhang et al., 2024),
meaning fine-grained adjustments meet individual user or application requirements; and
Interpretability—ensuring transparent and trustworthy decision processes, assessed by
transparency (Lipton, 2018), which reveals the clarity of internal mechanisms; by expla-
nation (Ribeiro et al., 2016), where the model generates comprehensible justifications for
its outputs; and by traceability (Spoczynski et al., 2025), meaning the full sequence of
operations and feature contributions underlying each decision can be reconstructed.

3.2. Evaluation Methodology

The evaluation of NSAI architectures was conducted using a systematic approach to ensure
a robust and transparent assessment of their performance across multiple criteria. This
process relied on three key sources: scientific literature, empirical findings, and an analysis
of the design principles underlying each architecture. The scientific literature served as
the primary source of qualitative insights, offering detailed analyses of the strengths and
limitations of various architectures; the specific studies consulted are listed in Appendix A.

Foundational research and state-of-the-art studies provided evidence of performance in
areas such as scalability, reasoning, and interpretability, helping to guide the evaluation.
Additionally, empirical results from experimental studies and benchmarks offered quanti-
tative data, enabling objective comparisons across architectures. Metrics such as accuracy,
adaptability, and efficiency were particularly valuable in validating the claims made in re-
search papers. The design principles of each technology were also considered to understand
how neural and symbolic components were integrated. This analysis provided insights into
the inherent capabilities and constraints of each architecture, such as its suitability for
handling complex reasoning tasks, scalability to large datasets, or adaptability to dynamic
environments.

For each main criterion, architectures are rated on a four-point scale according to how
many of its three sub-criteria they satisfy: if all three sub-criteria are met, the rating is
High, reflecting consistently performance; if two are met, the rating is Medium, indicating
generally satisfactory results with some limitations; if only one sub-criterion is met, the
rating is Low–Medium, denoting limited strengths; and if none are met, the rating is Low,
signifying significant weaknesses or inconsistent outcomes. In this way, each architecture
receives a quantitative score ranging from 0 to 3, ensuring a balanced and evidence-based
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evaluation. It provides a clear understanding of the strengths and weaknesses of each
architecture, enabling meaningful comparisons and guiding future advancements in NSAI
research and applications.

3.3. Results and Discussion

Appendix B provides a comparative analysis of various NSAI architectures across seven
main evaluation criteria and their respective sub-criteria. This comprehensive evaluation
highlights the strengths and weaknesses of each architecture.

Overall, the Neuro → Symbolic ← Neuro architecture emerges as the best-performing
model, consistently achieving high ratings across all criteria. Its exceptional performance
in generalization, scalability, and interpretability makes it highly suitable for real-world
applications that demand reliability, adaptability, and transparency. While other architec-
tures also perform well in specific areas, the versatility and robustness of Neuro → Symbolic
← Neuro set it apart as the most balanced and capable solution. This conclusion aligns
with findings in the state of the art, which highlight the effectiveness of Neuro → Sym-
bolic ← Neuro architectures in leveraging advanced AI technologies, such as multi-agent
systems (MAS). MAS are well-documented for their robustness, particularly in dynamic
and distributed environments, where their ability to coordinate, adapt, and reason collec-
tively enables superior performance. For instance, (Subramanian et al., 2024) demonstrated
that incorporating neuro-symbolic approaches into multi-agent RL enhances both inter-
pretability and probabilistic decision-making. This makes such systems highly robust in
environments with partial observability or uncertainties. These attributes are particularly
valuable in Neuro → Symbolic ← Neuro architectures, as they address the critical need for
transparency and robustness in complex real-world applications.

3.4. Ontology Application

The rapid advancements in 4D printing have introduced a need for structured frameworks
to manage and formalize the diverse knowledge involved in designing transformable sys-
tems, and the HERMES ontology (Dimassi et al., 2021) addresses this by providing a
semantic and logical foundation—built upon the Basic Formal Ontology (BFO)—for rep-
resenting spatiotemporal transformations, material behaviors, and additive-manufacturing
processes. While ontologies like HERMES offer a rigorous, interoperable schema for en-
coding domain knowledge, they remain largely static and ill-suited to unstructured text or
evolving datasets. In contrast, LLMs excel at processing and generating human-like text
and can dynamically complete ontological entries (e.g., suggesting “mechanical property”
in a triple such as (Material, has, ?)) based on contextual cues. Recent multimodal LLMs
(e.g., GPT-4V (Achiam et al., 2023)) further extend this capability by jointly reasoning
over text and images, thereby enabling ontologies to adapt in real time to new discoveries
and heterogeneous inputs.

Using the Symbolic → Neuro → Symbolic architecture, our RA-MLLMs framework
bridges unstructured sources and structured knowledge by tightly coupling a fine-tuned
multimodal LLM with ontology-driven reasoning. As depicted in Figure 1, published articles
are first split into individual textual sections and extracted figures, each encoded into dense
vectors and indexed in a high-performance retrieval store, while material datasets undergo
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Figure 1: Retrieval-augmented MLLMs (RA-MLLMs) architecture

a column-centric pipeline—column names and descriptions are parsed and fed into the LLM
via a one-shot prompting technique to map each field to an ontology class (instantiating
each row as an instance of its corresponding class) and to identify relationships among
these fields. At inference, the MLLM retrieves the most relevant text or image snippets and
produces context-aware outputs, from which a dedicated triplet-extraction module pulls
candidate triples. These newly extracted triples, together with existing entries from the
MATKG knowledge graph (Venugopal and Olivetti, 2024), are submitted to a downstream
symbolic reasoner, which performs rigorous validation (coherence, semantic consistency,
structural checks and duplicate elimination) and ontology construction before populating
and enriching the HERMES ontology. This continuous Symbolic → Neuro → Symbolic loop
ensures real-time knowledge updates and, through the LLM’s generative and multimodal
power, delivers enriched insights for the design and optimization of intelligent material
systems.

Table 1 presents a side-by-side comparison of the original HERMES ontology and the
three stages of our automated enrichment pipeline—article mining (based on a corpus of
1,500 articles), dataset (from 8 materials databases (Jain et al., 2013a; Kuenneth and Ram-
prasad, 2022; hyd, 2023; Crews et al., 2012; of Chicago, 2023; Jain et al., 2013b; Takahashi
et al., 2024; NASA)) extraction, and MATKG integration—as well as the aggregated total
of enriched entities contributed by each source, which exceeds 12.5 million, most of which
originate from dataset extraction due to the high density of structured, field-level informa-
tion in curated material databases. The quality of the extracted triplets is underpinned by a
Graph BERTScore F1 (Saha et al., 2021) of 0.7, demonstrating high semantic fidelity. This
enriched ontology then dramatically enhances knowledge discovery and underpins a fully au-
tomated design-to-manufacturing workflow, thereby accelerating innovation in 4D printing
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(Bougzime et al., 2025). Furthermore, it provides a robust foundation for explainable-AI
decision-support systems, enabling domain experts to justify and transparently interpret
every inference drawn from the ontology.

Table 1: HERMES ontology vs. RA-MLLMs framework results

HERMES Ontology
Extended Ontology

Summary

Article Dataset MATKG

Classes 170 5,706 144 - 5,849

Object properties 48 1,331 26 - 1,357

Data properties 13 4,390 - 2 (+ 445,370 rela-
tions)

4,392

Instances 9 16,651 12,540,671 6,629 12,563,951

4. Conclusion

This study evaluates several NSAI architectures against a comprehensive set of criteria.
Among the architectures investigated, Fibring architecture emerges as the most balanced
and robust solution. It consistently demonstrates superior performance across multiple
criteria. These results align with recent advancements in the field, which emphasize the
role of multi-agent systems in enhancing robustness and adaptability. Future work will be
focused on exploring the scalability of this architecture in even larger and more diverse
environments. Additionally, advancing the integration of symbolic reasoning within multi-
agent systems may further enhance their robustness and cognitive versatility. As the field
evolves, Neuro → Symbolic ← Neuro architectures are likely to remain at the forefront
of innovation, offering practical and scientifically grounded solutions to the most pressing
challenges in AI.
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Appendix A.

Table 2 summarizes the key scientific articles we used to evaluate each architecture.

Appendix B.

Table 3 presents the benchmark results for the Sequential, Ensemble and Cooperative archi-
tectures; Table 4 details the performance of the Nested architecture; and Table 5 summarizes
the outcomes for the Compiled architecture.
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Table 2: Set of relevant published NSAI architectures considered in the proposed study

Architecture References

Symbolic → Neuro → Symbolic (Kouris et al., 2021), (Sutherland et al., 2019), (Gu et al.,
2019), (Cui et al., 2021), (Xu and Li, 2019), (Cowen-Rivers
et al., 2019), (Bounabi et al., 2021), (Es-Sabery et al.,
2021), (Lima et al., 2019), (Zhou et al., 2021), (Gong et al.,
2020), (Tato et al., 2019), (Langton and Srihasam, 2021),
(Braşoveanu and Andonie, 2019), (Pinhanez et al., 2021),
(Dehua et al., 2021), (Fazlic et al., 2019), (D’Souza et al.,
2019), (Ayyanar et al., 2019), (Hu et al., 2021), (Chen et al.,
2020b), (Manda et al., 2020), (Honda and Hagiwara, 2019),
(Schon et al., 2019), (Amin, 2019)

Neuro[Symbolic] (Heule et al., 2016), (Madan et al., 2021)

Symbolic[Neuro] (Silver et al., 2016), (Chen et al., 2021a), (Chen et al.,
2021b), (Pacheco and Goldwasser, 2021), (Chaturvedi et al.,
2019), (Qin et al., 2021)

Neuro | Symbolic (Mao et al., 2019), (Yao et al., 2018), (Shi et al., 2021), (Škrlj
et al., 2021), (Wang and Pan, 2021), (Lemos et al., 2020),
(Huang et al., 2019)

Neuro → Symbolic ← Neuro (Das et al., 2021), (Garcez and Gabbay, 2004), (Belle et al.,
2023), (Guo et al., 2025), (Jiang et al., 2024), (Guo et al.,
2024), (Maldonado et al., 2024), (He, 2024), (Lo et al., 2024)

Neuro:Symbolic → Neuro (Lample and Charton, 2019), (Yabloko, 2020), (Zhou et al.,
2020), (Saveleva et al., 2021), (Gupta et al., 2021), (Demeter
and Downey, 2020), (Jiang et al., 2021), (Kogkalidis et al.,
2020), (Zhang et al., 2021), (Sen et al., 2020), (Huo et al.,
2019), (Jiang et al., 2020), (Liu et al., 2021), (Chaudhury
et al., 2021), (Verga et al., 2020), (Socher et al., 2013)

NeuroSymbolicLoss (Serafini and Garcez, 2016), (Raissi et al., 2019), (Chen
et al., 2020a), (Graziani et al., 2019), (Altszyler Lemcovich
et al., 2020), (Hussain and Cambria, 2018)

NeuroSymbolicNeuro
(Smolensky et al., 2016) (Smolensky, 1990), (Xu et al.,
2023), (Marra et al., 2019), (Shi et al., 2020), (Dragone et al.,
2021), (Riegel et al., 2020), (West et al., 2021)
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Table 3: Comparison of NSAI architectures (Part 1): Sequentiel, Ensemble and Cooperative

Main Criterion Sub-Criterion Symbolic Neuro Symbolic Neuro → Symbolic ← Neuro Neuro|Symbolic

Generalization

Out-of-dist. yes (Honda and Hagiwara, 2019) yes (Belle et al., 2023) yes (Yao et al., 2018)

Continuous flex. yes (Kouris et al., 2021) yes (Guo et al., 2025) yes (Lemos et al., 2020)

Relative prec. yes (Fazlic et al., 2019) yes (Garcez and Gabbay, 2004) no

Summary High High Medium

Scalability

Large-scale adapt. yes (Cowen-Rivers et al., 2019) yes (Lo et al., 2024) yes (Škrlj et al., 2021)

Hardware efficiency no yes (Jiang et al., 2024) no

Complexity yes (Braşoveanu and Andonie, 2019) yes (Maldonado et al., 2024) no

Summary Medium High Low–Medium

Data Efficiency

Reduction no yes (He, 2024) yes (Mao et al., 2019)

Optimization yes (Manda et al., 2020) yes (Das et al., 2021) yes (Škrlj et al., 2021)

Incremental adapt. yes (Pinhanez et al., 2021) yes (Guo et al., 2024) no

Summary Medium High Medium

Reasoning

Logical reason. yes (Ayyanar et al., 2019) yes (Guo et al., 2025) yes (Shi et al., 2021)

Comprehension yes (Hu et al., 2021) yes (Maldonado et al., 2024) yes (Huang et al., 2019)

Versatility yes (Zhou et al., 2021) yes (Garcez and Gabbay, 2004) yes (Wang and Pan, 2021)

Summary High High High

Robustness

Perturbations no yes (Guo et al., 2025) yes (Škrlj et al., 2021)

Adaptability yes (Pinhanez et al., 2021) yes (He, 2024) yes (Mao et al., 2019)

Bias handling no yes (Guo et al., 2024) no

Summary Low–Medium High Medium

Transferability

Multi-domain yes (Sutherland et al., 2019) yes (Maldonado et al., 2024) yes (Lemos et al., 2020)

Multi-task yes (Dehua et al., 2021) yes (Jiang et al., 2024) no

Personalization yes (Es-Sabery et al., 2021) yes (Guo et al., 2024) no

Summary High High Low–Medium

Interpretability

Transparency yes (Lima et al., 2019) yes (Belle et al., 2023) yes (Lemos et al., 2020)

Explanation yes (Langton and Srihasam, 2021) yes (Garcez and Gabbay, 2004) yes (Wang and Pan, 2021)

Traceability yes (Amin, 2019) yes (Das et al., 2021) yes (Shi et al., 2021)

Summary High High High
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Table 4: Comparison of NSAI architectures (Part 2): Nested

Main Criterion Sub-Criterion Symbolic[Neuro] Neuro[Symbolic]

Generalization

Out-of-dist. no yes (Madan et al., 2021)

Continuous flex. yes (Chen et al., 2021a) no

Relative prec. yes (Qin et al., 2021) no

Summary Medium Low–Medium

Scalability

Large-scale adapt. no yes (Heule et al., 2016)

Hardware efficiency no no

Complexity no no

Summary Low Low–Medium

Data Efficiency

Reduction yes (Chen et al., 2021b) yes (Madan et al., 2021)

Optimization yes (Pacheco and Goldwasser, 2021) yes (Madan et al., 2021)

Incremental adapt. yes (Silver et al., 2016) no

Summary High Medium

Reasoning

Logical reason. yes (Chen et al., 2021a) yes (Heule et al., 2016)

Comprehension yes (Chaturvedi et al., 2019) no

Versatility yes (Qin et al., 2021) no

Summary High Low–Medium

Robustness

Perturbations yes (Silver et al., 2016) yes (Madan et al., 2021)

Adaptability yes (Chaturvedi et al., 2019) no

Bias handling no no

Summary Medium Low–Medium

Transferability

Multi-domain yes (Chaturvedi et al., 2019) no

Multi-task no no

Personalization no no

Summary Low–Medium Low

Interpretability

Transparency yes (Chen et al., 2021a) yes (Madan et al., 2021)

Explanation yes (Chen et al., 2021b) yes (Heule et al., 2016)

Traceability yes (Qin et al., 2021) yes (Madan et al., 2021)

Summary High High
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Table 5: Comparison of NSAI architectures (Part 3): Compiled

Main Criterion Sub-Criterion Neuro:Symbolic → Neuro NeuroSymbolicLoss
NeuroSymbolicNeuro

Generalization

Out-of-dist. yes (Socher et al., 2013) no no

Continuous flex. no no no

Relative prec. no no no

Summary Low–Medium Low Low

Scalability

Large-scale adapt. yes (Huo et al., 2019) yes (Hussain and Cambria, 2018) yes (Smolensky, 1990)

Hardware efficiency yes (Lample and Charton, 2019) yes (Serafini and Garcez, 2016) yes (Xu et al., 2023)

Complexity no no no

Summary Medium Medium Medium

Data Efficiency

Reduction no yes (Raissi et al., 2019) yes (Smolensky et al., 2016)

Optimization yes (Gupta et al., 2021) yes (Graziani et al., 2019) yes (Marra et al., 2019)

Incremental adapt. no no no

Summary Low–Medium Medium Medium

Reasoning

Logical reason. yes (Kogkalidis et al., 2020) yes (Serafini and Garcez, 2016) yes (Smolensky et al., 2016)

Comprehension yes (Liu et al., 2021) yes (Chen et al., 2020a) yes (Smolensky, 1990)

Versatility yes (Jiang et al., 2021) no no

Summary High Medium Medium

Robustness

Perturbations yes (Zhou et al., 2020) no yes (Shi et al., 2020)

Adaptability yes (Sen et al., 2020) no no

Bias handling yes (Verga et al., 2020) no yes (Dragone et al., 2021)

Summary High Low Medium

Transferability

Multi-domain no no no

Multi-task no yes (Hussain and Cambria, 2018) yes (Smolensky et al., 2016)

Personalization no no no

Summary Low Low–Medium Low–Medium

Interpretability

Transparency yes (Saveleva et al., 2021) yes (Altszyler Lemcovich et al., 2020) yes (Smolensky, 1990)

Explanation yes (Chaudhury et al., 2021) yes (Hussain and Cambria, 2018) yes (Smolensky et al., 2016)

Traceability yes (Yabloko, 2020) yes (Chen et al., 2020a) yes (Smolensky, 1990)

Summary High High High
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