

000 001 HiCHUNK: EVALUATING AND ENHANCING RE- 002 TRIEVAL AUGMENTED GENERATION WITH HIERAR- 003 CHICAL CHUNKING 004 005

006 **Anonymous authors**

007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Retrieval-Augmented Generation (RAG) enhances the response capabilities of
014 language models by integrating external knowledge sources. However, docu-
015 ment chunking as an important part of RAG system often lacks effective eval-
016 uation tools. This paper first analyzes why existing RAG evaluation benchmarks
017 are inadequate for assessing document chunking quality, specifically due to evi-
018 dence sparsity. Based on this conclusion, we propose HiCBench, which includes
019 manually annotated multi-level document chunking points, synthesized evidence-
020 dense question answer(QA) pairs, and their corresponding evidence sources. **We**
021 **also propose HiChunk, a hierarchical document structuring framework using fine-**
022 **tuned LLMs and the Auto-Merge retrieval algorithm to enhance retrieval quality.**
023 Experiments demonstrate that HiCBench effectively evaluates the impact of dif-
024 ferent chunking methods across the entire RAG pipeline. Moreover, HiChunk
025 achieves better chunking quality within reasonable time consumption, thereby en-
026 hancing the overall performance of RAG systems.
027
028

1 INTRODUCTION

030 RAG (Retrieval-Augmented Generation) enhances the quality of LLM responses to questions be-
031 yond their training corpus by flexibly integrating external knowledge through the retrieval of rele-
032 vant content chunks as prompts(Lewis et al., 2020). This approach helps reduce hallucinations(Chen
033 et al., 2024b; Zhang et al., 2025), especially when dealing with real-time information(He et al.,
034 2022) and specialized domain knowledge(Wang et al., 2023; Li et al., 2023). Document chunking,
035 a crucial component of RAG systems, significantly impacts the quality of retrieved knowledge and,
036 consequently, the quality of responses. Poor chunking methods may separate continuous fragments,
037 leading to information loss, or combine unrelated information, making it more challenging to re-
038 trieve relevant content. For instance, as noted in Bhat et al. (2025), the optimal chunk size varies
039 significantly across different datasets.

040 Although numerous benchmarks exist for evaluating RAG systems(Bai et al., 2024; Dasigi et al.,
041 2021; Duarte et al., 2024; Zhang et al., 2024; Yang et al., 2018b; Kočiský et al., 2018; Pang et al.,
042 2021), they mostly focus on assessing either the retriever’s capability or the reasoning ability of
043 the response model, without effectively evaluating chunking methods. We analyzed several datasets
044 to determine the average word and sentence count of evidence. As shown in Table 1, existing
045 benchmarks generally suffer from evidence sparsity, where only a few sentences in the document
046 are relevant to the query. As illustrated in Figure 1, this sparsity of evidence makes these datasets
047 inadequate for evaluating the performance of chunking methods. In reality, user tasks might be
048 evidence-dense, such as enumeration or summarization tasks, requiring chunking methods to ac-
049 curately and completely segment semantically continuous fragments. Therefore, it is essential to
effectively evaluate chunking methods.

050 To address this, we introduce **Hierarchical Chunking Benchmark(HiCBench)**, a benchmark for doc-
051 ument QA designed to effectively evaluate the impact of chunking methods on different components
052 of RAG systems, including the performance of document chunking, retrievers, and response models.
053 HiCBench’s original documents are sourced from OHRBench. We curated documents of appropri-
ate length for the corpus and manually annotated chunking points at various hierarchical levels for

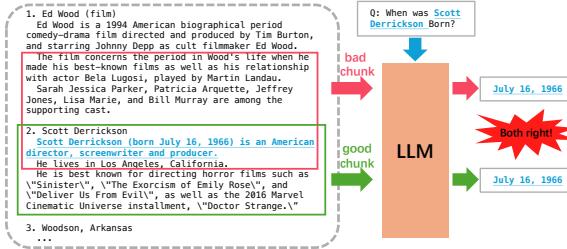
054 evaluation purposes. These points are used to assess the chunker’s performance and construct QA
 055 pairs, followed by using LLMs and the annotated document structure to create evidence-dense QA,
 056 and finally extracting relevant evidence sentences and filtering non-compliant samples using LLMs.
 057

058 Additionally, existing document chunking methods only consider linear document structure(Duarte
 059 et al., 2024; Xiao et al., 2024; Zhao et al., 2025; Wang et al., 2025), while user problems may
 060 involve fragments with different semantic granularity, and linear document structure makes it diffi-
 061 cult to adaptively adjust during retrieval. Therefore, we propose the **HiChunk** frame-
 062 work(**HiChunk**), which employs fine-tuned LLMs for hierarchical document structuring and incor-
 063 porates iterative reasoning to address the challenge of adapting to extremely long documents. For
 064 hierarchically structured documents, we introduce the Auto-Merge retrieval algorithm, which adap-
 065 tively adjusts the granularity of retrieval chunks based on the query, thereby maximizing retrieval
 066 quality. In this work, our main contributions are as follows:
 067

- 068 • We introduce HiCBench, a benchmark designed to assess the performance of chunker and
 069 the impact of chunking methods on retrievers and response models within RAG systems.
 070 HiCBench includes information on chunking points at different hierarchical levels of doc-
 071 uments, as well as sources of evidence and factual answers related to evidence-dense QA,
 072 enabling better evaluation of chunking methods.
- 073 • We propose the HiChunk framework, a document hierarchical structuring framework that
 074 allows RAG systems to dynamically adjust the semantic granularity of retrieval chunks.
- 075 • We conduct comprehensive performance evaluations on several open-source datasets and
 076 HiCBench, analyzing the impact of different chunking methods across three dimensions:
 077 performance of chunker, retriever, and responder.

077 Table 1: Statistics of benchmarks.

079 Dataset	080 Qasper	081 OHRBench	082 GutenQA
083 Num_{doc}	084 416	085 1261	086 100
087 Sent_{d}	088 164	089 176	090 5,373
091 Word_{d}	092 4.2k	093 5.4k	094 146.5k
095 Num_{qa}	096 1,372	097 8,498	098 3,000
099 Word_{q}	100 8.9	101 20.6	102 16.0
103 Word_{a}	104 16.0	105 5.6	106 26.0
107 Word_{e}	108 239.4	109 36.5	110 39.3
111 Sent_{e}	112 10.5	113 1.7	114 1.7



096 Figure 1: Different methods produce the same answer.

097 2 RELATED WORKS

098 **Traditional Text Chunking.** Text chunking divides continuous text into meaningful units like
 099 sentences, phrases, and words, with our focus on sentence-level chunking. Recent works have explored
 100 various approaches: (Cho et al., 2022) combines text chunking with extractive summarization using
 101 hierarchical representations and determinantal point processes (DPPs) to minimize redundancy, (Liu
 102 et al., 2021) presents a pipeline integrating topical chunking with hierarchical summarization, and
 103 (Zhang et al., 2021) develops an adaptive sliding-window model for ASR transcripts using phonetic
 104 embeddings. However, these LSTM and BERT(Devlin et al., 2019) based methods face limitations
 105 from small context windows and single-level chunking capabilities.

106 **RAG-oriented Document Chunking.** Recent research has explored content-aware document
 107 chunking strategies for RAG systems. LumberChunker(Duarte et al., 2024) uses LLMs to identify
 108 semantic shifts, but may miss hierarchical relationships. PIC(Wang et al., 2025) proposes pseudo-
 109 instruction for document chunking, guide chunking via document summaries, though its single-
 110 level approach may oversimplify document structure. AutoChunker(Jain et al., 2025) employs tree-
 111 based representations but primarily focuses on noise reduction rather than multi-level granularity.
 112 Late Chunking(Günther et al., 2024) embeds entire documents before chunking to preserve global
 113 context, but produces flat chunk lists without modeling hierarchical relationships. **LongRefiner**(Jin
 114 et al., 2025) introduced two-level chunking, but it is constrained by the model input length and
 115 hallucination issues. In contrast, our **HiChunk** method creates multi-level document representations,
 116 chunking from coarse sections to fine-grained paragraphs. This enables RAG systems to retrieve
 117 information at appropriate abstraction levels, effectively bridging fragmented knowledge gaps.

108 **Limitations of Existing Text Chunking Benchmarks.** The evaluation of text chunking and RAG
 109 methods heavily relies on benchmark datasets. Wiki-727k(Koshorek et al., 2018),VT-SSum(Lv
 110 et al., 2021) and NewsNet(Wu et al., 2023) are typically chunked into flat sequences of paragraphs
 111 or sentences, without capturing the multi-level organization (e.g., sections, subsections, paragraphs)
 112 inherent in many real-world documents. This single-level representation limits the ability to evaluate
 113 chunking methods that aim to preserve or leverage document hierarchy, which is crucial for com-
 114 prehensive knowledge retrieval in complex RAG scenarios. While Qasper(Dasigi et al., 2021), Hot-
 115 potQA(Yang et al., 2018a) and GutenQA(Duarte et al., 2024) are designed for RAG-related tasks,
 116 they do not specifically provide mechanisms or metrics for evaluating the efficacy of document
 117 chunking strategies themselves. Their focus is primarily on end-to-end RAG performance, where
 118 the impact of chunking is implicitly measured through retrieval and generation quality. This makes
 119 it challenging to isolate and assess the performance of different chunking methods independently,
 120 hindering systematic advancements in hierarchical document chunking. Our work addresses these
 121 gaps by proposing a method that explicitly considers multi-level document chunking and constructs
 122 a novel benchmark from a chunking perspective.

123 3 HiCBENCH CONSTRUCTION

124 In order to construct the HiCBench dataset, we performed additional document hierarchical struc-
 125 turing and created QA pairs to evaluate document chunking quality, building on the OHRBench
 126 document corpus(Zhang et al., 2024). **It contains documents from various fields in the real world,**
 127 **such as academia, finance, law, manual, and so on.** We filter documents with fewer than 4,000
 128 words and those exceeding 50 pages. For retained documents, we manually annotated the hierar-
 129 chical structure and used these annotations to assist in the generation of QA pairs and to assess the
 130 accuracy of document chunking.

131 **Task Criteria** To ensure that the constructed QA pairs could effectively evaluate the quality of
 132 document chunking, we aimed for the evidence associated with each QA pair to be widely dis-
 133 tributed across a complete semantic chunk. Failure to fully recall such a semantic chunk would
 134 result in missing evidence, thereby degrading the quality of the generated responses. To achieve this
 135 objective, we established the following standards to regulate the generation of QA pairs:

- 136 • **Evidence Completeness and Density:** Evidence completeness ensures that the evidence
 137 relevant to the question is comprehensive and necessary within the context. Evidence den-
 138 sity requires that evidence constitutes a significant proportion of the context, enhancing the
 139 QA pair’s utility for evaluating chunking methods.
- 140 • **Fact Consistency:** To ensure the constructed samples can evaluate the entire retrieval-
 141 based pipeline, it is essential that the generated responses remain consistent with the an-
 142 swers when provided with full context, and that the questions are answerable.

143 **Task Definition** We define three different task types to evaluate the quality of chunking:

- 144 • **Evidence-Sparse QA (T_0):** The evidence related to the QA is confined to one or two
 145 sentences within the document.
- 146 • **Single-Chunk Evidence-Dense QA (T_1):** Evidence sentences related to the QA constitute
 147 a substantial portion of the context within a single complete semantic chunk. **The chunk**
 148 **size ranges from 512 to 4096 tokens.**
- 149 • **Multi-Chunk Evidence-Dense QA (T_2):** Evidence sentences related to the QA are dis-
 150 tributed across multiple complete semantic chunks, covering a significant portion of the
 151 context. **The chunk size ranges from 256 to 2048 tokens.**

152 **QA Construction** We use a prompt-based approach using DeepSeek-R1-0528¹ to generate can-
 153 didate QA pairs, followed by a series of filtering processes to ensure the retained QA pairs meet the
 154 criteria of evidence completeness, density, and fact consistency. The specific process is as follows:

155 ¹<https://huggingface.co/deepseek-ai/DeepSeek-R1-0528>

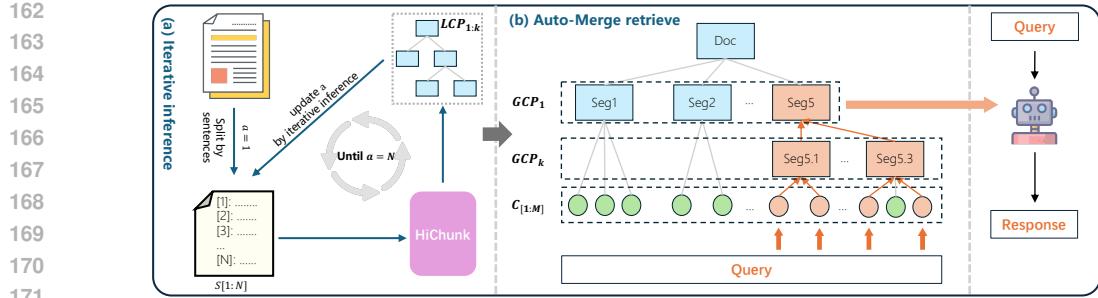


Figure 2: Overview of the proposed HiChunk framework.

1. **Document Hierarchical Annotation and Summarization:** To enable LLMs to gain an overall understanding of the specific document D while constructing QA pairs, we first generated summaries for corresponding sections based on the annotated hierarchical structure, denoted as $S \leftarrow LLM_s(D)$. These summaries will be used in QA pair generation.
2. **Generation of Questions and Answers:** We randomly selected one or two chunks from all eligible document fragments as context C , then generated candidate QA pairs using (S, C) , where $(Q, A) \leftarrow LLM_{qa}(S, C)$.
3. **Ensuring Evidence Completeness and Density:** Referring to Friel et al. (2024), we use LLMs to extract sentences from context C related to the QA pair as evidence, denoted as $E \leftarrow LLM_{ee}(C, Q, A)$. To mitigate hallucination effects, this step will be repeated five times, retaining sentences that appeared at least four times as the final evidence. Furthermore, to ensure evidence density, we remove samples which the ratio of evidence is less than 10% of context C .
4. **Ensuring Fact Consistency:** We applied Fact-Cov metric(Xiang et al., 2025) to filter test samples. We first extract the facts from answer A , denoted as $F \leftarrow LLM_{fe}(Q, A)$ ¹. Contexts C used for constructing QA pairs will be provided to LLMs to generate response R' , denoted as $R' \leftarrow LLM_r(Q, C)$. Then, the Fact-Cov metric will be calculated by $\text{Fact_Cov} \leftarrow LLM_{fc}(F, R')$ ¹. This process will be repeated 5 times. We retain samples with an average Fact-Cov metric exceeding 80%. Samples below this threshold are deemed unanswerable. All prompts used for QA construction are provided in subsection A.6.

4 METHODOLOGY

This section primarily introduces the HiChunk framework. The overall framework is illustrated in Figure 2. The aim is for the fine-tuned LLMs to comprehend the hierarchical relationships within a document and ultimately organize the document into a hierarchical structure. This involves two subtasks: identification of chunking points and determination of hierarchy levels. Through **prompts**, HiChunk converts these two subtasks into text generation task. In model train of HiChunk, we use Gov-report(Huang et al., 2021), Qasper(Dasigi et al., 2021) and Wiki-727k(Koshorek et al., 2018) to construct training instructions, which are publicly available datasets with explicit document structure. Meanwhile, we augment the training set by randomly shuffling document chapters and deleting document content.

During inference, HiChunk first splits a document D into a list of sentences $S = [s_1, s_2, \dots, s_N]$ (each sentence is assigned a unique ID). The goal is to output a set of hierarchical chunk points that partition S into non-overlapping, semantically complete chunks. Each chunk point is represented as a tuple: $(id, level)$, it represents a semantic break at a specific hierarchy level.

Although the chunking result of HiChunk has semantic integrity, the variability in the chunk length distribution caused by the semantic chunking method can lead to disparities in semantic granularity, which can affect retrieval quality. To mitigate this, we apply a fixed-size chunking approach on the results of HiChunk to produce $C_{[1:M]}$, and propose the Auto-Merge retrieval algorithm to balance issues of varying semantic granularity and the semantic integrity of retrieved chunks.

¹<https://github.com/GraphRAG-Bench/GraphRAG-Benchmark>

216 **Iterative Inference** For documents exceeding the model’s input length limit L , we employ a sliding
 217 window approach. In each iteration, we greedily select the longest possible text segment starting
 218 from the current position that fits within the limit L . The model then predicts local chunk points for
 219 this segment, which are subsequently aggregated into the global document structure.

220 However, iterative inference suffers from hierarchical drift phenomenon. Due to the lack of complete
 221 structural information about document, the model may incorrectly predict the first chunking point of
 222 the current inference process as a level-1 segment, thereby causing local hierarchical misalignment.
 223 To mitigate this problem, we construct residual text lines from known document structures to guide
 224 the model making correct hierarchical judgments. The complete iterative inference procedure is
 225 illustrated in algorithm 1.

226 **Auto-Merge Retrieval Algorithm** To balance the semantic richness and completeness of recalled
 227 contexts, we propose Auto-Merge retrieval algorithm. This algorithm uses a series of conditions
 228 to control the extent to which child nodes are merged upward into parent nodes. Auto-Merge al-
 229 gorithm traverses the query-ranked chunks $C_{[1:M]}^{sorted}$, using \mathcal{N} to record the nodes that have been
 230 recalled. During the i -th step of the traversal, we first record the current used token budget,
 231 $T_{used} = \sum_{n \in \mathcal{N}} \text{len}(n)$. We then add $C_{[i]}^{sorted}$ to \mathcal{N} and denote the parent of $C_{[i]}^{sorted}$ by p . Fi-
 232 nally, we merge upward when the following conditions are met:

- **Coherence ($Cond_1$):** The retrieval set contains multiple children from the same parent. Formally, the number of retrieved children must be at least two: $|\mathcal{N} \cap \text{children}(p)| \geq 2$.
- **Substantiality ($Cond_2$):** The total length of the retrieved children covers a significant portion of the parent text. We require $\sum_{n \in (\mathcal{N} \cap \text{children}(p))} \text{len}(n) \geq \theta^* * \text{len}(p)$. Here, θ^* is an adaptive threshold defined as:

$$\theta^*(T_{used}, p) = \frac{1}{3} \times \left(1 + \frac{T_{used}}{T_{max}} \right)$$

242 where T_{used} is the current token usage and T_{max} is the total budget. This design ensures
 243 that θ^* starts low and increases as the budget fills up. Intuitively, this encourages **higher-
 244 ranking chunks** (processed when T_{used} is low) to merge more aggressively, prioritizing
 245 structural integrity for the most relevant information.

- **Feasibility ($Cond_3$):** The remaining token budget is sufficient to accommodate the full
 246 parent node after replacing its children.

248 The detailed procedure is outlined in algorithm 2.

250 **Algorithm 1:** iterative inference

251 **input** : Document D , Input length L
 252 **output**: Global chunk points $GCP_{1:k}$

253 1 $S[1:N] \leftarrow \text{SentTokenize}(D)$;
 254 2 $a \leftarrow 1$;
 255 3 $b \leftarrow \text{argmax}_{\hat{b}}(S[a:\hat{b}] \leq L)$;
 256 4 $\text{res_lines} \leftarrow \text{None}$;
 257 5 $GCP_{1:k} \leftarrow [] * k$;
 258 6 **while** $1 \leq a < b \leq N$ **do**
 259 7 $LCP_{1:k} \leftarrow \text{HiChunk}(S[a:b],$
 260 $\text{res_lines})$;
 261 $GCP_{1:k} \leftarrow \text{Merge}(GCP_{1:k}, LCP_{1:k})$;
 262 **if** $\text{len}(LCP_1) \geq 2$ **then**
 263 $a \leftarrow LCP_1[-1]$;
 264 $\text{res_lines} \leftarrow \text{None}$;
 265 **else**
 266 $a \leftarrow b$;
 267 $\text{res_lines} \leftarrow \text{ResLines}(GCP_{1:k})$;
 268 **if** $\text{argmax}_{\hat{b}}(S[a:\hat{b}] \leq L)$;
 269 16 **return** $GCP_{1:k}$

250 **Algorithm 2:** retrieval algorithm

251 **input** : Token budget T , Chunks $C_{[1:M]}$,
 252 Query q
 253 **output**: Retrieval context ctx

254 1 $C_{[1:M]}^{sorted} \leftarrow \text{Sorted}(C_{[1:M]}, q)$;
 255 2 $\mathcal{N} \leftarrow [], T_{used} \leftarrow 0$;
 256 3 **for** $i \leftarrow 1$ **to** M **do**
 257 4 $\mathcal{N} \leftarrow \mathcal{N} + C_{[i]}^{sorted}$;
 258 $\text{ctx}, T_{used} \leftarrow \text{Context}(\mathcal{N})$;
 259 $p \leftarrow \text{parent}(C_{[i]}^{sorted})$;
 260 **while** $Cond_{[1,2,3]}$ **do**
 261 **if** $T_{used} \geq T$ **then**
 262 **break**
 263 $\mathcal{N} \leftarrow \text{Merge}(\mathcal{N}, p)$;
 264 $\text{ctx}, T_{used} \leftarrow \text{Context}(\mathcal{N})$;
 265 $p \leftarrow \text{parent}(p)$;
 266 **if** $T_{used} \geq T$ **then**
 267 **break**
 268 15 **return** $\text{ctx}[:T]$

270

5 EXPERIMENTS

271

5.1 DATASETS AND METRICS

274 The test subsets of Gov-report(Huang et al., 2021) and Qasper(Dasigi et al., 2021) datasets will
 275 be used for evaluation of chunking accuracy. For the Gov-report dataset, we only retain documents
 276 with document word count greater than 5k for experiments. To evaluate the accuracy of the chunking
 277 points, we use the $F1$ metrics of the chunking points. The $F1_{L_1}$ and $F1_{L_2}$ correspond to the chunking
 278 points of the level 1 and level 2 chunks, respectively. And the $F1_{L_{all}}$ metric does not consider
 279 the level of the chunking point. The Qasper, GutenQA(Duarte et al., 2024), and OHRBench(Zhang
 280 et al., 2024) datasets contain evidence relevant to the question. These datasets will be used in the
 281 evaluation for context retrieval.

282 For the full RAG pipeline evaluation, we used the publicly available datasets LongBench(Bai et al.,
 283 2024), Qasper, GutenQA, and OHRBench. the LongBench RAG evaluation contains 8 subsets from
 284 different datasets, with a total of 1,550 **QA** pairs, which can be categorized into single document
 285 **QA** and multiple document **QA**. The Qasper dataset contains 1,372 **QA** pairs from 416 documents.
 286 The GutenQA dataset contains 3,000 **QA** pairs based on 100 documents. In GutenQA, the average
 287 number of words in a document is 146,506, which is significantly higher than the other datasets.
 288 The documents of OHRBench come from seven different areas. We keep the documents with word
 289 counts greater than 4k in OHRBench and use the original **QA** pairs corresponding to these documents
 290 as a representative of the task T_0 , denoted as OHRBench(T_0). We use the F1 score and
 291 Rouge metrics to assess the quality of LLM responses. All experiments are conducted in the code
 292 repository of LongBench².

293 Furthermore, HiCBench will be used for comprehensive evaluation, including chunking accuracy,
 294 evidence recall rate, and RAG response quality assessment. To avoid biases from sparse text quality
 295 evaluation metrics, we employ the Fact-Cov(Xiang et al., 2025) metric for response quality eval-
 296 uation of HiCBench. The Fact-Cov metric is repeatedly calculated 5 times to take the average.
 297 Statistics information of datasets used in experiment are shown in Table 2.

298

Table 2: Statistics of dataset used in experiments.

Dataset	Qasper	GutenQA	OHRBench(T_0)	HiCBench(T_1, T_2)
Num _{doc}	416	100	214	130
Sent _d	164	5,373	886	298
Word _d	4.2k	146.5k	26.8k	8.5k
Num _{qa}	1,372	3,000	4,702	(659, 541)
Word _q	8.9	16.0	22.2	(31.0, 33.0)
Word _a	16.0	26.0	4.8	(130.1, 126.4)
Word _e	239.4	39.3	39.1	(561.5, 560.5)
Sent _e	10.5	1.7	1.7	(20.5, 20.4)

309

5.2 COMPARISON METHODS

310 We primarily compared **two** types of chunking methods: rule-based chunking methods and
 311 semantic-based chunking methods. All the comparison methods are as follows:

- 314 • **FC200**: Fixed chunking is a rule-based method, which first divide the document into sen-
 315 tences and then merge sentences based on a fixed chunking size. Here, the fixed chunking
 316 size is 200.
- 317 • **SC**: Semantic **Chunker**(Xiao et al., 2024) uses an embedding model to calculate the sim-
 318 ilarity between adjacent paragraphs for chunking. We use bge-large-en-v1.5(Xiao et al.,
 319 2024) as the embedding model.
- 320 • **LC**: LumberChunker(Duarte et al., 2024) employs LLMs to predict the positions for chunk-
 321 ing. In our experiments, we use Deepseek-r1-0528(DeepSeek-AI, 2025) as the prediction
 322 model. The sampling temperature set to 0.1.

323 ²<https://github.com/THUDM/LongBench/tree/main>

- 324
- 325 • **HC200**: [HiChunk](#) is the proposed method. In the model training for HiChunk. We further
 - 326 chunk the chunks of HiChunk by the fixed chunking method. The fixed chunking size is
 - 327 set to 200, denoted as HC200.
 - 328 • **HC200+AM**: "+AM" represents the result of introducing Auto-Merge retrieval algorithm
 - 329 on the basis of HC200.

330 **5.3 EXPERIMENTAL SETTINGS**

331

332 In the model training of HiChunk, Gov-report(Huang et al., 2021), Qasper(Dasigi et al., 2021) and

333 Wiki-727k(Koshorek et al., 2018) are the train datasets, which are publicly available datasets with

334 explicit document structure. We use Qwen3-4B(Team, 2025) as the base model, with a learning

335 rate of 1e-5 and a batch size of 64. The maximum length of training and inference is set to 8192

336 and 16384 tokens, respectively. Meanwhile, the length of each sentence is limited to within 100

337 characters. Due to the varying sizes of chunks resulting from semantic-based chunking, we limit

338 the length of the retrieved context based on the number of tokens rather than the number of chunks

339 for a fair comparison. The maximum length of the retrieved context is set to 4096 tokens. We also

340 compare the performance of different chunking methods under different retrieved context length

341 settings in subsection 5.6. In the RAG evaluation process, we consistently use Bge-m3(Chen et al.,

342 2024a) as the embedding model for context retrieval. As for the response model, we use three

343 different series of LLMs with varying scales: Llama3.1-8B(Dubey et al., 2024), Qwen3-8B, and

344 Qwen3-32B(Team, 2025).

345 **5.4 CHUNKING ACCURACY**

346

347 To comprehensively evaluate the performance of the semantic-based chunking method, we con-

348 ducted experiments using two publicly available datasets, along with the proposed benchmark, to

349 assess the cut-point accuracy of the chunking method. Since the SC and LC chunking methods are

350 limited to performing single-level chunking, we evaluated only the F1 scores for the initial level

351 of chunking points and the F1 scores without regard for the hierarchy of chunking points. The

352 evaluation results are presented in Table 3. In the Qasper and Gov-report datasets, which serve

353 as in-domain test sets, the HC method shows a significant improvement in chunk accuracy com-

354 pared to the SC and LC methods. Additionally, in HiCBench, an out-of-domain test set, the HC

355 method exhibits even more substantial accuracy improvements. These findings demonstrate that

356 HC enhances the base model’s performance in document chunking by focusing exclusively on the

357 chunking task. Moreover, as indicated in the subsequent experimental results presented in subsec-

358 tion 5.5, the accuracy improvement of the HC method in document chunking leads to enhanced

359 performance throughout the RAG pipeline. This includes improvements in the quality of evidence

360 Table 3: Chunking accuracy. **HC** means the result of HiChunk without fixed-size chunking. The

361 best result is in **bold**.

362

Chunk Method	Qasper			Gov-Report			HiCBench		
	$F1_{L_1}$	$F1_{L_2}$	$F1_{L_{all}}$	$F1_{L_1}$	$F1_{L_2}$	$F1_{L_{all}}$	$F1_{L_1}$	$F1_{L_2}$	$F1_{L_{all}}$
SC	0.0759	-	0.1007	0.0298	-	0.0616	0.0487	-	0.1507
LC	0.5481	-	0.6657	0.1795	-	0.5631	0.2849	-	0.4858
HC	0.6742	0.5169	0.9441	0.9505	0.8895	0.9882	0.4841	0.3140	0.5450

363 **5.5 RAG-PIPELINE EVALUATION**

364

365 We evaluated the performance of various chunking methods on the LongBench, Qasper, GutenQA,

366 OHRBench, and HiCBench datasets, with the results detailed in Table 4. The performance of each

367 subset in LongBench is shown in Table A1. The results demonstrate that the HC200+AM method

368 achieves either optimal or suboptimal performance on most LongBench subsets. When consider-

369 ing average scores, LumberChunk remains a strong baseline. However, as noted in Table 2, both

370 GutenQA and OHRBench datasets exhibit the feature of evidence sparsity, meaning that the evi-

371 dence related to QA pairs is derived from only a few sentences within the document. Consequently,

372 the different chunking methods show minimal variation in evidence recall and response quality

373 metrics on these datasets. For instance, using Qwen3-32B as the response model on the GutenQA

dataset, the evidence recall metrics of FC200 and HC200+AM are 64.5 and 65.53, and the Rouge metrics are 44.86 and 44.94, respectively. Another example is OHRBench dataset, the evidence recall metrics and Rouge metrics of FC200, LC, HC200 and HC200+AM are very close. In contrast, the Qasper and HiCBench datasets contain denser evidence, where a better chunking method results in higher evidence recall and improved response quality. Again using Qwen3-32B as an example, on the T_1 task of HiCBench dataset, the evidence recall metric for FC200 and HC200+AM are 74.06 and 81.03, the Fact-Cov metrics are 63.20 and 68.12, and the Rouge metrics are 35.70 and 37.29, respectively. These findings suggest that the evidence-dense QA in the HiCBench dataset is better suited for evaluating the quality of chunking methods, enabling researchers to more effectively identify bottlenecks within the overall RAG pipeline.

Table 4: RAG-pipeline evaluation results (ERec: Evidence Recall, FC: Fact Coverage). The best result is in **bold**, and the sub-optimal result is in underlined

Chunk Method	LongBench Score	Qasper		GutenQA		OHRBench(T_0)		HiCBench(T_1)			HiCBench(T_2)		
		ERec	F1	ERec	Rouge	ERec	Rouge	ERec	FC	Rouge	ERec	FC	Rouge
Llama3.1-8B													
FC200	42.49	84.08	47.26	64.43	30.03	67.03	51.01	74.84	47.82	28.43	74.61	46.79	30.97
SC	42.12	82.08	47.47	58.30	28.58	62.65	49.10	72.14	46.80	28.43	73.49	45.28	30.92
LC	42.73	<u>87.08</u>	<u>48.20</u>	63.67	<u>30.22</u>	68.42	<u>51.85</u>	76.64	<u>50.84</u>	<u>29.62</u>	76.12	<u>49.12</u>	<u>32.01</u>
HC200	43.17	86.16	48.09	<u>65.13</u>	29.95	<u>68.25</u>	51.33	78.52	49.87	29.38	78.76	49.11	31.80
+AM	<u>42.90</u>	87.49	48.95	65.47	30.33	67.84	51.92	<u>81.59</u>	55.58	30.04	80.96	53.66	33.04
Qwen3-8B													
FC200	43.95	84.32	45.10	64.50	33.47	67.07	48.18	74.06	47.35	33.83	72.95	43.45	35.27
SC	43.54	82.22	44.55	58.37	32.71	62.18	46.79	71.42	46.07	33.30	72.36	42.97	34.76
LC	44.83	87.43	46.05	63.67	33.87	68.79	49.28	75.53	48.27	34.12	75.14	46.80	35.93
HC200	43.90	86.49	45.95	<u>65.20</u>	33.89	<u>68.57</u>	49.06	<u>77.68</u>	47.37	<u>34.30</u>	78.10	46.20	<u>36.32</u>
+AM	<u>44.41</u>	87.85	45.82	65.53	34.15	68.31	49.61	81.03	50.75	35.26	80.65	49.02	37.28
Qwen3-32B													
FC200	46.33	84.32	46.49	64.50	44.86	67.07	46.89	74.06	63.20	35.70	72.95	60.87	37.17
SC	46.29	82.22	46.39	58.37	43.59	62.18	45.43	71.26	61.09	35.64	72.36	59.23	37.09
LC	47.43	<u>87.43</u>	46.82	63.67	44.45	68.79	47.92	75.53	<u>64.76</u>	36.15	75.14	<u>62.75</u>	38.02
HC200	46.71	86.49	<u>46.99</u>	<u>65.20</u>	44.83	<u>68.57</u>	47.71	<u>77.68</u>	63.93	<u>36.55</u>	78.10	62.51	<u>38.26</u>
+AM	<u>46.92</u>	87.85	47.25	65.53	44.94	68.31	<u>47.89</u>	81.03	68.12	37.29	80.65	66.36	39.37

5.6 INFLUENCE OF RETRIEVAL TOKEN BUDGET

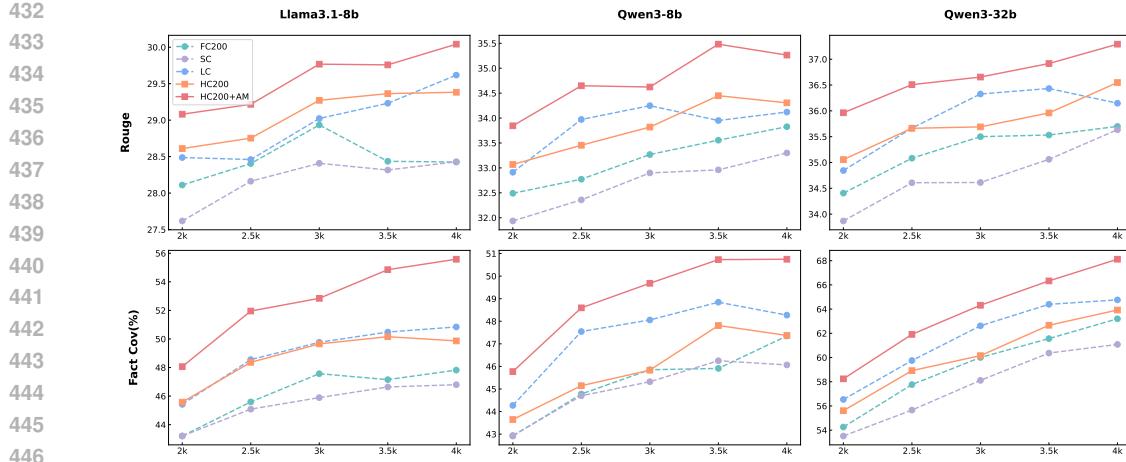
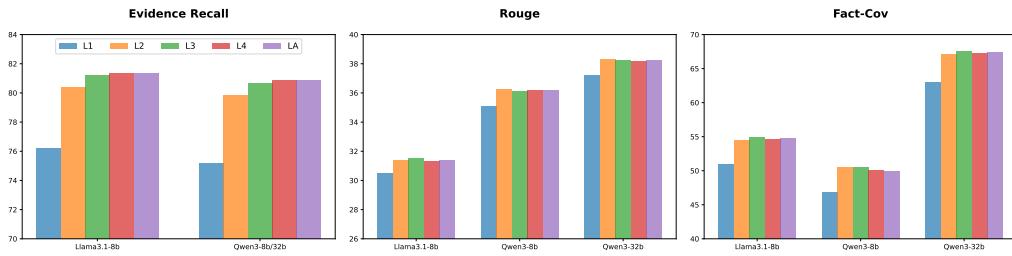
Since HiCBench is more effective in assessing the performance of chunking methods, we evaluated the impact of our proposed method on the T_1 task of HiCBench under different retrieve token budgets: 2k, 2.5k, 3k, 3.5k and 4k tokens. We compared the effects of various chunking methods by calculating the Rouge metrics between responses and answers, as well as the Fact-Cov metrics. The experimental findings are illustrated in Figure 3. The results demonstrate that a larger retrieval token budget usually leads to better response quality, so it is necessary to compare different chunking methods under the same retrieval token budget. HC200+AM consistently achieves superior response quality across various retrieve token budget settings. These experimental results underscore the effectiveness of HC200+AM method. We further present the correspond curves of the evidence recall metrics in subsection A.2.

5.7 EFFECT OF MAXIMUM HIERARCHICAL LEVEL

In this section, we examine the impact of limiting the maximum hierarchical level of document structure obtained by HiChunk. The maximum level ranges from 1 to 4, denoted as $L1$ to $L4$, while LA represents no limitation on the maximum level. We measure the evidence recall metric on different settings. As shown in Figure 4. This result reveals that the Auto-Merge retrieval algorithm degrades the performance of RAG system in the $L1$ setting due to the overly coarse-grained semantics of $L1$ chunks. As the maximum level increases from 1 to 3, the evidence recall metric also gradually improves and remains largely unchanged thereafter. These findings highlight the importance of document hierarchical structure for enhancing RAG systems.

5.8 TIME COST FOR CHUNKING

As document chunking is essential for RAG systems, it must meet specific timeliness requirements. In this section, we analyze the time costs associated with different semantic-based chunking meth-

Figure 3: Performance of HiCBench(T_1) under different retrieval token budget from 2k to 4k.Figure 4: Evidence recall metric across different maximum level on HiCBench(T_1 and T_2).

ods, as presented in Table 5. Although the SC method exhibits superior real-time performance, it consistently falls short in quality across various datasets compared to other baselines. However, the LC method demonstrates reasonably good performance, but its chunking speed is considerably slower than other semantic-based methods, limiting its applicability within RAG systems. In contrast, the HC method achieves the highest chunking quality among all baseline methods while maintaining an acceptable time cost, making it well-suited for implementation in real scenarios.

Table 5: Time cost of different chunking methods.

Dataset	Avg. Word	SC		LC		HC	
		Time(s/doc)	Chunks	Time(s/doc)	Chunks	Time(s/doc)	Chunks
Qasper	4,166	0.4867	43.83	5.4991	18.32	1.4993	15.08
Gov-report	13,153	1.3219	114.72	15.4321	40.89	4.3382	29.79
OHRBench(T_0)	26,808	3.0943	249.14	37.3935	89.68	14.5776	92.23
GutenQA	146,507	16.5028	1,453.00	132.4900	393.52	60.1921	232.85
HiCBench	8,519	1.0169	80.12	13.4414	41.48	5.7506	51.35

5.9 ABLATION STUDY FOR AUTO-MERGE

To verify the necessity and robustness of the rule design in the Auto-Merge algorithm, we conducted ablation experiments on its core merging conditions, using Qwen3-8B as the generator. The results are presented in Table 6.

When only $Cond_3$ (token budget constraint) is retained, the algorithm achieves optimal performance on evidence-dense tasks (HiCBench), with ERec of 81.43, Rouge of 36.33, and Fact-Cov of 51.35. However, its performance degrades notably on evidence-sparse tasks: the LongBench Score drops to 43.25, and the ERec on OHRBench is only 66.72. This indicates that relying solely on a single rule leads to poor generalization across diverse task types, lacking sufficient robustness.

486
487
488 Table 6: Ablation study for merging conditions of Auto-Merge.
489
490
491

Condition Combination	HiCBench(T_1 and T_2)			LongBench Score	Qasper		OHRBench(T_0)	
	ERec	Rouge	Fact-Cov		ERec	F1	ERec	Rouge
$Cond_3$ Only	81.43	36.33	51.35	43.25	86.73	45.29	66.72	48.78
$Cond_3 + Cond_1$	80.55	36.08	50.70	43.80	87.54	45.83	68.18	49.56
$Cond_3 + Cond_1 + Cond_2$	80.86	36.17	49.97	44.41	87.85	45.82	68.31	49.61

492
493
494 After adding $Cond_1$ (semantic intersection constraint), the ERec of Qasper and OHRBench in-
495 creases by 0.81 and 1.46, respectively, proving that semantic intersection constraints can mitigate
496 “meaningless merging”, thereby enhancing retrieval accuracy for evidence-sparse tasks.
497

498 With the addition of $Cond_2$ (length ratio constraint), the performance across all datasets tends to be
499 balanced: LongBench Score increases to 44.41 (increases by 1.16), while HiCBench performance
500 only slightly decreases (ERec decrease by 0.57). These results confirm that the combination of mul-
501 tiple complementary rules enables the Auto-Merge algorithm to adapt to both evidence-dense and
502 evidence-sparse tasks, significantly improving its robustness. Furthermore, we conducted a sensi-
503 tivity analysis on the threshold θ^* of $Cond_2$, and the detailed results are provided in subsection A.3.
504

505 5.10 COMBINATION WITH LATE-CHUNKING

506
507 In order to verify the complementarity of HiChunk with other optimization techniques, we supple-
508 mented the combination of Late-Chunking with various chunking methods and conducted experi-
509 ments on HiCBench. The experiment setting is consistent with Günther et al. (2024), using jina-
510 embeddings-v3(Sturua et al., 2024) as the embedding model. The results are presented in Table 7.
511
512

513 Table 7: The performance of combining the Late-Chunking and different chunking methods on
514 HiCBench(T_1 and T_2). The best result is in **bold**, and the sub-optimal result is in underlined

Methods	w/o Late-Chunking			w/ Late-Chunking		
	ERec	Rouge	Fact-Cov	ERec	Rouge	Fact-Cov
C200	75.59	34.19	46.71	78.04	34.33	49.12
SC	73.07	34.17	45.60	78.07	34.16	48.45
LC	77.89	34.84	<u>49.16</u>	<u>79.93</u>	<u>35.16</u>	<u>50.65</u>
HC200	<u>78.13</u>	<u>34.93</u>	48.03	79.29	34.84	49.77
HC200+AM	80.87	36.34	51.49	81.20	36.00	52.71

523
524 Late-Chunking universally enhances the ERec and Fact-Cov metrics of various chunking meth-
525 ods. Regardless of whether Late-Chunking is integrated, HC200+AM consistently delivers the best
526 performance across all evaluated settings. This result validates the flexibility of the HiChunk frame-
527 work, whose design enables seamless integration with other RAG optimization techniques (e.g.,
528 Late-Chunking) to further boost end-to-end performance.
529

530 531 6 CONCLUSION

532
533 This paper begins by analyzing the shortcomings of current benchmarks used for evaluating RAG
534 systems, specifically highlighting how evidence sparsity makes them unsuitable for assessing dif-
535 ferent chunking methods. As a solution, we introduce HiCBench, a QA benchmark focused on
536 hierarchical document chunking, which effectively evaluates the impact of various chunking meth-
537 ods on the entire RAG process. Additionally, we propose the HiChunk framework, which, when
538 combined with the Auto-Merge retrieval algorithm, significantly enhances the quality of chunking,
539 retrieval, and model responses compared to other baselines.

540 **7 REPRODUCIBILITY STATEMENT**
 541

542 To ensure the reproducibility of this work, we provide the complete data, code, and environment
 543 required for the experiment, as well as detailed descriptions of the entire experimental process in
 544 <https://anonymous.4open.science/r/HiChunk>:

- 545
- 546 • The complete datasets used in experiment, including proposed HiCBench dataset, is available on `./dataset` directory.
 - 547
 - 548 • The complete code for model training, inference, the Auto-Merge retrieval algorithm, and evaluation pipelines is available on `./pipeline` directory.
 - 549

550 By providing the aforementioned resources and details, we aim to empower the research community
 551 to fully reproduce our results, build upon our work, and advance the field of retrieval-augmented
 552 generation. All materials are carefully anonymous under the double-blind review process to maintain
 553 the integrity of the review.

554 **REFERENCES**
 555

556 Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
 557 Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilin-
 558 gual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and
 559 Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Com-
 560 putational Linguistics (Volume 1: Long Papers)*, pp. 3119–3137, Bangkok, Thailand, August
 561 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.172. URL
 562 <https://aclanthology.org/2024.acl-long.172/>.

563

564 Sinchana Ramakanth Bhat, Max Rudat, Jannis Spiekermann, and Nicolas Flores-Herr. Re-
 565 thinking chunk size for long-document retrieval: A multi-dataset analysis. *arXiv preprint
 566 arXiv:2505.21700*, 2025.

567

568 Jianlyu Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. M3-embedding:
 569 Multi-linguality, multi-functionality, multi-granularity text embeddings through self-knowledge
 570 distillation. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the As-
 571 sociation for Computational Linguistics: ACL 2024*, pp. 2318–2335, Bangkok, Thailand, August
 572 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.137. URL
 573 <https://aclanthology.org/2024.findings-acl.137/>.

574

575 Jiawei Chen, Hongyu Lin, Xianpei Han, and Le Sun. Benchmarking large language models in
 576 retrieval-augmented generation. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 577 volume 38, pp. 17754–17762, 2024b.

578

579 Sangwoo Cho, Kaiqiang Song, Xiaoyang Wang, Fei Liu, and Dong Yu. Toward unifying text seg-
 580 mentation and long document summarization. *arXiv preprint arXiv:2210.16422*, 2022.

581

582 Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A. Smith, and Matt Gardner. A dataset of
 583 information-seeking questions and answers anchored in research papers. In Kristina Toutanova,
 584 Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cot-
 585 terell, Tanmoy Chakraborty, and Yichao Zhou (eds.), *Proceedings of the 2021 Conference of
 586 the North American Chapter of the Association for Computational Linguistics: Human Lan-
 587 guage Technologies*, pp. 4599–4610, Online, June 2021. Association for Computational Linguis-
 588 tics. doi: 10.18653/v1/2021.naacl-main.365. URL <https://aclanthology.org/2021.naacl-main.365/>.

589

590 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
 591 2025. URL <https://arxiv.org/abs/2501.12948>.

592

593 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 594 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of
 595 the North American chapter of the association for computational linguistics: human language
 596 technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

- 594 André V. Duarte, João DS Marques, Miguel Graça, Miguel Freire, Lei Li, and Arlindo L. Oliveira.
 595 LumberChunker: Long-form narrative document segmentation. In Yaser Al-Onaizan, Mo-
 596 hit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Lin-
 597 guistics: EMNLP 2024*, pp. 6473–6486, Miami, Florida, USA, November 2024. Association
 598 for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.377. URL <https://aclanthology.org/2024.findings-emnlp.377/>.
- 600 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 601 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 602 *arXiv e-prints*, pp. arXiv–2407, 2024.
- 603
- 604 Robert Friel, Masha Belyi, and Atindriyo Sanyal. Ragbench: Explainable benchmark for retrieval-
 605 augmented generation systems. *arXiv preprint arXiv:2407.11005*, 2024.
- 606
- 607 Michael Günther, Isabelle Mohr, Daniel James Williams, Bo Wang, and Han Xiao. Late chunk-
 608 ing: contextual chunk embeddings using long-context embedding models. *arXiv preprint
 609 arXiv:2409.04701*, 2024.
- 610 Hangfeng He, Hongming Zhang, and Dan Roth. Rethinking with retrieval: Faithful large language
 611 model inference. *arXiv preprint arXiv:2301.00303*, 2022.
- 612
- 613 Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for
 614 long document summarization. In *Proceedings of the 2021 Conference of the North American
 615 Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp.
 616 1419–1436, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/
 617 2021.naacl-main.112. URL <https://aclanthology.org/2021.naacl-main.112>.
- 618 Arihant Jain, Purav Aggarwal, and Anoop Saladi. Autochunker: Structured text chunking and its
 619 evaluation. In *Proceedings of the 63rd Annual Meeting of the Association for Computational
 620 Linguistics (Volume 6: Industry Track)*, pp. 983–995, 2025.
- 621
- 622 Jiajie Jin, Xiaoxi Li, Guanting Dong, Yuyao Zhang, Yutao Zhu, Yongkang Wu, Zhonghua Li, Ye Qi,
 623 and Zhicheng Dou. Hierarchical document refinement for long-context retrieval-augmented gen-
 624 eration. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
 625 (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
 626 (Volume 1: Long Papers)*, pp. 3502–3520, Vienna, Austria, July 2025. Association for Com-
 627 putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.176. URL
 628 <https://aclanthology.org/2025.acl-long.176/>.
- 629 Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis,
 630 and Edward Grefenstette. The narrativeqa reading comprehension challenge. *Transactions of the
 631 Association for Computational Linguistics*, 6:317–328, 2018.
- 632
- 633 Omri Koshorek, Adir Cohen, Noam Mor, Michael Rotman, and Jonathan Berant. Text segmentation
 634 as a supervised learning task. In Marilyn Walker, Heng Ji, and Amanda Stent (eds.), *Proceedings
 635 of the 2018 Conference of the North American Chapter of the Association for Computational Lin-
 636 guistics: Human Language Technologies, Volume 2 (Short Papers)*, pp. 469–473, New Orleans,
 637 Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-2075.
 638 URL <https://aclanthology.org/N18-2075/>.
- 639 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 640 Heinrich Kütter, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
 641 ation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 642 9459–9474, 2020.
- 643
- 644 Xianzhi Li, Samuel Chan, Xiaodan Zhu, Yulong Pei, Zhiqiang Ma, Xiaomo Liu, and Sameena
 645 Shah. Are chatgpt and gpt-4 general-purpose solvers for financial text analytics? a study on
 646 several typical tasks. *arXiv preprint arXiv:2305.05862*, 2023.
- 647 Yang Liu, Chenguang Zhu, and Michael Zeng. End-to-end segmentation-based news summariza-
 648 tion. *arXiv preprint arXiv:2110.07850*, 2021.

- 648 Tengchao Lv, Lei Cui, Momcilo Vasiljevic, and Furu Wei. Vt-ssum: A benchmark dataset for video
 649 transcript segmentation and summarization. *arXiv preprint arXiv:2106.05606*, 2021.
 650
- 651 Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi, Nikita Nangia, Jason Phang, Angelica Chen,
 652 Vishakh Padmakumar, Johnny Ma, Jana Thompson, He He, et al. Quality: Question answering
 653 with long input texts, yes! *arXiv preprint arXiv:2112.08608*, 2021.
- 654 Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Günther, Bo Wang, Markus Krim-
 655 mel, Feng Wang, Georgios Mastrapas, Andreas Koukounas, Nan Wang, et al. jina-embeddings-
 656 v3: Multilingual embeddings with task lora. *arXiv preprint arXiv:2409.10173*, 2024.
 657
- 658 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.
 659
- 660 Cunxiang Wang, Xiaoze Liu, Yuanhao Yue, Xiangru Tang, Tianhang Zhang, Cheng Jiayang, Yunzhi
 661 Yao, Wenyang Gao, Xuming Hu, Zehan Qi, et al. Survey on factuality in large language models:
 662 Knowledge, retrieval and domain-specificity. *arXiv preprint arXiv:2310.07521*, 2023.
- 663 Zhitong Wang, Cheng Gao, Chaojun Xiao, Yufei Huang, Shuzheng Si, Kangyang Luo, Yuzhuo Bai,
 664 Wenhao Li, Tangjian Duan, Chuancheng Lv, et al. Document segmentation matters for retrieval-
 665 augmented generation. In *Findings of the Association for Computational Linguistics: ACL 2025*,
 666 pp. 8063–8075, 2025.
 667
- 668 Haoqian Wu, Keyu Chen, Haozhe Liu, Mingchen Zhuge, Bing Li, Ruizhi Qiao, Xiujun Shu, Bei
 669 Gan, Liangsheng Xu, Bo Ren, et al. Newsnet: A novel dataset for hierarchical temporal segmen-
 670 tation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 671 pp. 10669–10680, 2023.
- 672 Zhishang Xiang, Chuanjie Wu, Qinggang Zhang, Shengyuan Chen, Zijin Hong, Xiao Huang, and
 673 Jinsong Su. When to use graphs in rag: A comprehensive analysis for graph retrieval-augmented
 674 generation. *arXiv preprint arXiv:2506.05690*, 2025.
 675
- 676 Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-
 677 pack: Packed resources for general chinese embeddings. In *Proceedings of the 47th Interna-
 678 tional ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
 679 '24*, pp. 641–649, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
 680 9798400704314. doi: 10.1145/3626772.3657878. URL <https://doi.org/10.1145/3626772.3657878>.
 681
- 682 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
 683 and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
 684 answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Pro-
 685 ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp.
 686 2369–2380, Brussels, Belgium, October–November 2018a. Association for Computational Lin-
 687 guistics. doi: 10.18653/v1/D18-1259. URL <https://aclanthology.org/D18-1259/>.
 688
- 689 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
 690 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
 691 answering. *arXiv preprint arXiv:1809.09600*, 2018b.
- 692 Junyuan Zhang, Qintong Zhang, Bin Wang, Linke Ouyang, Zichen Wen, Ying Li, Ka-Ho Chow,
 693 Conghui He, and Wentao Zhang. Ocr hinders rag: Evaluating the cascading impact of ocr on
 694 retrieval-augmented generation. *arXiv preprint arXiv:2412.02592*, 2024.
 695
- 696 Qinglin Zhang, Qian Chen, Yali Li, Jiaqing Liu, and Wen Wang. Sequence model with self-adaptive
 697 sliding window for efficient spoken document segmentation. In *2021 IEEE Automatic Speech
 698 Recognition and Understanding Workshop (ASRU)*, pp. 411–418. IEEE, 2021.
 699
- 700 Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
 701 Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: A survey on hallucination in large
 language models. *Computational Linguistics*, pp. 1–46, 2025.

702 Jihao Zhao, Zhiyuan Ji, Zhaoxin Fan, Hanyu Wang, Simin Niu, Bo Tang, Feiyu Xiong, and Zhiyu
 703 Li. MoC: Mixtures of text chunking learners for retrieval-augmented generation system. In
 704 Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Pro-
 705 ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 5172–5189, Vienna, Austria, July 2025. Association for Compu-
 706 tational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.258. URL
 707 <https://aclanthology.org/2025.acl-long.258/>.
 708

711 A APPENDIX

713 A.1 DETAIL OF LONGBENCH

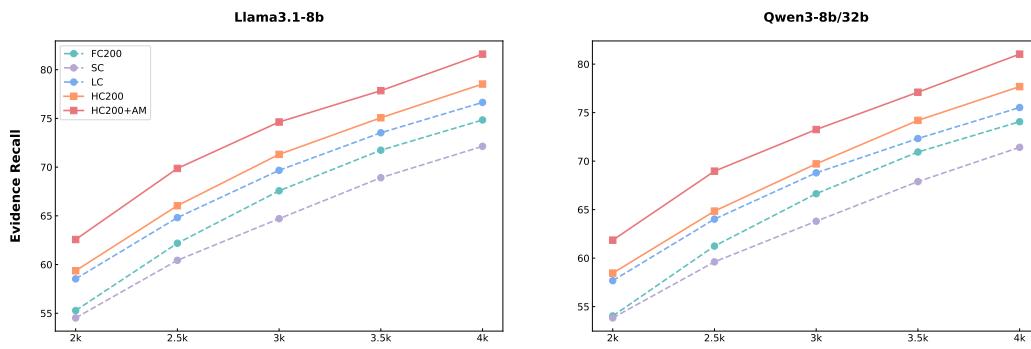
715 In this section, we present the metric of each subset of the different chunking methods on Long-
 716 Bench, and the results are shown in Table A1.

718 Table A1: RAG-pipeline evaluation on LongBench and each subset. The best result is in **bold**, and
 719 the sub-optimal result is in underlined. Qasper* is the subset of LongBench.

Chunk Method	Single-Doc QA				Multi-Doc QA				Avg
	NarrativeQA	Qasper*	MFQA-en	MFQA-zh	HotpotQA	2WikiM	MuSiQue	DuReader	
Llama3.1-8B									
FC200	24.59	42.68	52.54	56.14	56.81	46.66	29.99	30.51	42.49
SC	24.59	42.12	52.10	57.43	54.34	45.44	30.24	30.68	42.12
LC	22.93	42.64	<u>52.65</u>	58.54	55.85	47.00	<u>31.58</u>	<u>30.68</u>	42.73
HC200	23.75	<u>43.57</u>	54.04	<u>57.51</u>	56.52	48.29	31.06	30.65	43.17
+AM	<u>24.46</u>	43.85	52.10	56.65	57.27	46.24	<u>31.82</u>	30.84	42.90
Qwen3-8B									
FC200	22.60	<u>44.47</u>	53.46	57.26	61.13	48.63	36.59	27.43	43.95
SC	24.73	43.69	52.83	58.66	56.22	46.77	37.83	<u>27.59</u>	43.54
LC	<u>24.55</u>	43.41	54.58	59.60	60.50	51.00	37.37	27.60	44.83
HC200	21.96	42.38	51.23	58.47	62.84	49.57	<u>38.03</u>	26.74	43.90
+AM	21.79	46.37	52.81	<u>58.86</u>	61.94	47.17	39.09	27.28	<u>44.41</u>
Qwen3-32B									
FC200	26.09	43.70	50.87	60.44	63.61	58.03	39.40	28.50	46.33
SC	26.19	43.47	49.54	61.63	61.37	58.13	40.65	29.34	46.29
LC	26.35	44.75	50.21	63.01	<u>63.31</u>	60.22	42.69	<u>28.91</u>	47.43
HC200	27.01	44.44	49.69	<u>62.16</u>	61.85	61.24	38.54	28.54	46.71
+AM	26.97	44.49	50.28	60.47	61.67	62.37	40.80	28.29	46.92

731 A.2 EVIDENCE RECALL UNDER DIFFERENT TOKEN BUDGET

732 In this section, we further present the curve of evidence recall metric at different retrieval context
 733 length settings (from 2k to 4k). The results are shown in Figure A1. Compared with other chunking
 734 methods, the HC200+AM method always maintains the best performance.



754 Figure A1: Evidence recall metric across different token budget on HiCBench(T_1).
 755

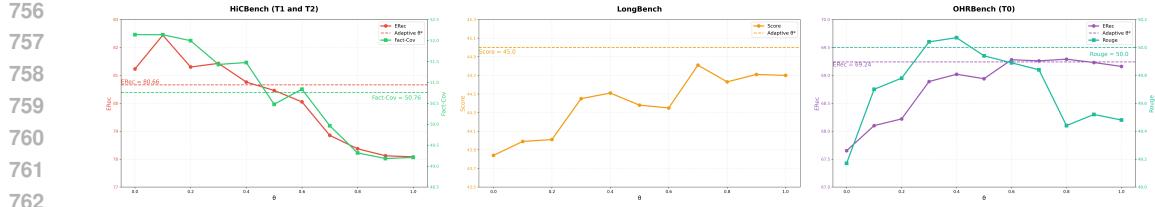


Figure A2: Performance changes across different θ on HiCBench, LongBench, and OHRBench. Dashed line represents the result of the adaptive θ^* .

A.3 SENSITIVITY ANALYSIS ON THRESHOLD θ^* OF $Cond_2$

The physical meaning of θ^* in $Cond_2$ is the minimum ratio of the total length of child nodes to the parent node length (controlling merging granularity). In order to verify the robustness of the Auto-Merge algorithm. We conduct the experiment by fixing θ from 0.0 to 1.0 (with an interval of 0.1) to test performance changes on three datasets. We use Qwen3-8B as generator model. The results are as Figure A2.

When θ ranges from 0.1 to 0.6, HiCBench’s ERec remains above 80.05% and OHRBench’s Rouge remains above 49.89%, indicating that the algorithm is robust to threshold variations; As θ increases, the performance of evidence-dense tasks decreases (ERec drops to 78.08% at $\theta=1.0$), while the performance of evidence-sparse tasks improves when $\theta > 0.5$, reflecting the granularity demand differences between the two types of tasks; The adaptive threshold θ^* achieves cross-task balance through dynamic adjustment: it maintains high evidence recall on HiCBench (80.66%) while achieving the optimal Score (45.00) on LongBench and Rouge (50.00) on OHRBench. This proves that it can adapt to different tasks without manual parameter tuning, with better robustness than fixed thresholds.

A.4 FEW-SHOT PROMPTING EXPERIMENTS

To verify the necessity of fine-tuning, we have supplemented few-shot prompted experiments on HiCBench dataset. The base model is Qwen3-4B (consistent with the base model in the paper). We set two scenarios (1-shot and 3-shot) to compare their performance with the fine-tuned HiChunk, thereby validating the core value of fine-tuning for hierarchical chunking tasks. We use Qwen3-8B to generate response. The supplementary experimental results are presented in Table A2.

Table A2: Comparison of Chunking Accuracy and End-to-End RAG Performance: Few-Shot Prompting (1-shot/3-shot) vs. Fine-Tuned HiChunk on HiCBench.

Method	Chunking Accuracy			RAG Performance					
				w/o Auto-Merge			w/ Auto-Merge		
	$F1_{L1}$	$F1_{L2}$	$F1_{ALL}$	ERec	Rouge	Fact-Cov	ERec	Rouge	Fact-Cov
HC _{1-shot}	0.1784	0.1128	0.2328	72.35	33.14	44.02	73.47	34.53	46.62
HC _{3-shot}	0.2500	0.1203	0.2199	72.26	33.08	43.97	73.05	34.04	46.55
HC _{ft}	0.4841	0.3140	0.5450	77.87	35.21	46.84	80.86	36.17	49.97

The experimental results demonstrate that increasing the number of few-shot examples did not effectively improve the model’s performance in chunking accuracy or the full-link performance of the subsequent RAG pipeline. Furthermore, all few-shot schemes show a significant performance gap compared to the fine-tuned HiChunk method. This fully confirms that fine-tuning is a necessary prerequisite for achieving high-quality hierarchical chunking of HiChunk.

A.5 USE OF LLMs IN WRITING

In paper writing, AI tools are used for the following purposes: (1) Grammar checking and identifying word inconsistencies. (2) Polishing writing to improve fluency of the paper. Notably, the conception, development, and finalization of this research are completed entirely by the authors. AI tools were utilized solely for auxiliary purposes, and under no circumstances were they involved in

810 core scientific reasoning or decision-making. The authors have meticulously reviewed and edited
 811 all content to ensure its validity and alignment with their original intent, thereby guaranteeing the
 812 academic integrity of this work.
 813

814 A.6 PROMPTS

815

816 **Listing A1: Prompt for segment summarization.**

817

818 ****Task:****
 819 You are tasked with analyzing the provided document sections and their
 820 hierarchical structure. Your goal is to generate a concise and
 821 informative paragraph describing the content of each section and
 822 subsection.

823 ****Instructions:****

824 1. Each section or subsection is identified by a header in the format
 825 '---SECTION xxx---' (for example, '---SECTION 1---', '---SECTION
 826 2.1---', etc.).
 827 2. For every section and subsection, write a brief, clear, and
 828 informative paragraph summarizing its content. Do not omit any
 829 section or subsection.
 830 3. Present your output as a JSON object with the following structure:
 831 ```json
 832 {
 833 "SECTION 1": "description of section 1",
 834 "SECTION 1.1": "description of section 1.1",
 835 ...
 836 "SECTION n.m": "description of section n.m"
 837 }
 838 ```
 839 4. Ensure that each key in the JSON object matches the exact section
 840 identifier (e.g., 'SECTION 2.1.3'), and do not include any
 841 sections or subsections that are not present in the provided
 842 document fragment.
 843 5. Do not add any commentary or explanation outside the JSON object.

844

845 ****Document Fragment:****

846

847 **Listing A2: Prompt for QA construction.**

848

849 You are provided with a document that includes a detailed structure of
 850 sections and subsections, along with descriptions for each.
 851 Additionally, complete contents are provided for a few selected
 852 sections. Your task is to create a question and answer pair that
 853 effectively captures the essence of the selected sections. Finally,
 854 you need to extract the facts which are mentioned in the answer.

855 <Type of Generated Q&A Task: Evidence-dense Dependent Understanding task>
 856 Understanding task means that, the generated question-answering pairs
 857 that require the responder to extract information from documents.
 858 The answer should be able to find directly in the documents without
 859 any reasoning.
 860 Evidence-dense dependent means that the facts about generated question
 861 are wildly distributed across all parts of the retrieved sections.

862 <Criteria>

863 - The question MUST be detailed and be based explicitly on information
 864 in the document.
 865 - The question MUST include at least one entity.
 866 - Question must not contain any ambiguous references, such as 'he',
 867 'she', 'it', 'the report', 'the paper', and 'the document'. You MUST
 868 use their complete names.
 869 - The context sentence the question is based on MUST include the name of
 870 the entity. For example, an unacceptable context is "He won a bronze

```

864     medal in the 4 * 100 m relay". An acceptable context is "Nils
865     Sandstrom was a Swedish sprinter who competed at the 1920 Summer
866     Olympics."
867 - **THE MOST IMPORTANT: Evidence-dense dependency**, Questions must
868     require understanding of ENTIRE selected sections. Never base Q&A on
869     isolated few sentences. For example, a question comply the
870     **Evidence-dense dependency** criteria means that the facts about
871     this question should be wildly distributed across all parts of the
872     retrieved sections.
873
874 <Output Format>
875 Your response should be structured as follows:
876     ````json
877     {{ "question": "Your generated question here",
878         "answer": "Your generated answer here"
879     }}
880
881 <Document Structure and Description>
882     {section_description}
883
884 <Retrieved Section and Content>
885     {section_content}

```

Listing A3: Prompt for evidence retrieval.

```

886
887 **Task:** Analyze the relationship between context sentences and answer sentences.
888
889 **Instructions:** 1. You are given:
890     - A context fragment, with each sentence numbered as follows:
891         '[serial number]: context sentence content'
892     - A question and its corresponding answer, with each answer sentence
893         numbered as follows: '<serial number>: answer sentence content'
894 2. For each sentence in the answer, identify which sentence(s) from the
895     context provide the information used to construct that answer
896     sentence.
897 3. Present your findings in the following JSON format:
898     ````json
899     {{ "<answer_sentence_id_1>": "[context_sentence_id_1], ...,
900         [context_sentence_id_n]", "<answer_sentence_id_2>": "[context_sentence_id_1], ...,
901         [context_sentence_id_m]", ...
902         "<answer_sentence_id_i>": "[context_sentence_id_1], ...,
903         [context_sentence_id_j]" }
904     }}
905
906
907 **Notes:** - Only include answer sentences that have supporting evidence in the
908     context.
909 - If an answer sentence does not have a source in the context, do not
910     include it in the JSON output.
911 - Use only the serial numbers (not the full sentences) for both context
912     and answer sentences in your JSON output.
913 - If multiple context sentences support an answer sentence, list all
914     relevant context sentence numbers, separated by commas.
915
916 **Context Sentences:** {context_sentence_list}

```

```

918 **Question:**  

919 {question}  

920  

921 **Answer Sentences:**  

922 {answer_sentence_list}

```

923

924 **Listing A4: Prompt for model training.**

925

You are an assistant good at reading and formatting documents, and you are also skilled at distinguishing the semantic and logical relationships of sentences between document context. The following is a text that has already been divided into sentences. Each line is formatted as: "{line number} @ {sentence content} ". You need to segment this text based on semantics and format. There are multiple levels of granularity for segmentation, the higher level number means the finer granularity of the segmentation. Please ensure that each Level One segment is semantically complete after segmentation. A Level One segment may contain multiple Level Two segments, and so on. Please incrementally output the starting line numbers of each level of segments, and determine the level of the segment, as well as whether the content of the sentence at the starting line number can be used as the title of the segment. Finally, output a list format result, where each element is in the format of: "{line number}, {segment level}, {be a title?}".

939

940

>>> Input text:

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971