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ABSTRACT

Text-to-Image (TTI) models generate images based on text prompts, which often
leave certain aspects of the desired image ambiguous. When faced with these am-
biguities, TTI models have been shown to exhibit biases in their interpretations.
These biases can have societal impacts, e.g., when showing only a certain race for
a stated occupation. They can also affect user experience when creating redun-
dancy within a set of generated images instead of spanning diverse possibilities.
Here, we introduce MINETHEGAP– a method for automatically mining prompts
that cause a TTI model to generate biased outputs. Our method goes beyond
merely detecting bias for a given prompt. Rather, it leverages a genetic algorithm
to iteratively refine a pool of prompts, seeking those that expose biases. This opti-
mization process is driven by a novel bias score, which ranks biases according to
their severity, as we validate on a dataset with known biases. For a given prompt,
this score is obtained by comparing the distribution of generated images to the
distribution of LLM-generated texts that constitute variations on the prompt.1.

1 INTRODUCTION

Text-to-Image (TTI) models generate realistic images according to a natural text prompt. Recent
years have seen significant progress in the perceptual quality of the images they generate as well as
in the adherence of those images to the text prompts. However, despite substantial progress in these
two aspects, state-of-the-art models often fall short of expectations when examining the semantic
diversity of the outputs they generate for each prompt (Fig. 1), resulting in a gap between human-
expected and model-generated diversity. This gap can introduce prejudiced perspectives, as TTI
models learn from datasets that have been shown to embed sociodemographic biases (Birhane et al.,
2021; Garcia et al., 2023), leading to the generation of images that reflect or even amplify these
biases (Bianchi et al., 2023; Cho et al., 2023). Recent work has taken a broader view by developing
methods for detecting open-set biases, surfacing previously unexplored forms of bias. These include
analyzing bias for a specific prompt (Chinchure et al., 2025), a specific concept (Rassin et al., 2024),
or a larger set of given captions (D’Incà et al., 2024).

In this work, we build on these efforts by moving beyond the evaluation of a TTI model on a limited
set of prompts or concepts. We introduce MINETHEGAP, a method that automatically mines the
vast textual space of valid prompts to find those that cause a TTI model to produce biased outputs.
MINETHEGAP is a genetic algorithm based optimization process, that leverages a Large Language
Model (LLM). Initially, the LLM is used to generate a set of random candidate prompts for the TTI
model, forming the initial population for optimization. Then, at each iteration, all prompts in the
current population are measured for bias using our proposed bias score, and the prompts on which
the model is found to be most biased are used to generate the population of the next iteration. Upon
termination, the most biased prompts are presented to the user.

Mining biased prompts requires a bias measure that enables the ranking of prompts from the entire
prompt space, that vary substantially in their semantics. Prior approaches are limited to quantifying
bias along specific axes and dividing each axis into a finite set of options, regardless if these are
predefined as is typical in studies of sociodemographic biases, or proposed on the fly using LLMs.
To overcome this restriction, we introduce a novel measure that compares the semantic distribution

1Code is provided in an anonymous repository
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A colorful market with 
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Stable Diffusion 1.4

Google search

A basket of apples on a 

wooden table

Stable Diffusion 3

Google search

A giant redwood tree in a 

forest

FLUX

Google search

Figure 1: Limited semantic diversity. The top panel shows 9 images generated by the specified
TTI model for each given prompt. These prompts, identified by MINETHEGAP, introduce bias in
the generated images. In contrast, the bottom panel presents 3 images retrieved through a Google
Photos search, illustrating alternative interpretations of the same prompt.

of generated images to an intended distribution of plausible interpretations. Since this intended
distribution is fundamentally unobservable, we approximate it by sampling diverse textual variations
from an LLM, shifting the focus from fixed axes to a range of semantic interpretations.

Consider, for example, the prompt “A photo of a nurse”, for which 20 images generated by three TTI
models are shown in Fig. 2, alongside images generated from textual variations that span additional
semantic options. All models exhibit bias by predominantly producing female figures, and further
deviations emerge, as the vast majority of images generated by Stable Diffusion (SD) 2.1 (Rombach
et al., 2022) appear in grayscale, while FLUX.1 Schnell (forest labs, 2025) frequently depicts nurses
wearing masks. Measuring these deviations and applying appropriate normalization, allows us to
rank bias severity across prompts, as we validate on a dataset with known biases. This guides our
prompt mining process. While our approach operates in open-set scenarios, we also demonstrate
how it can be tailored to target specific types of bias. Automatically uncovering biased prompts
highlights model deficiencies in provoking biases, and should lead to further understanding of how
to train and use the model when aiming for results that are both fair and beneficial for the user.

To summarize, this work makes two key contributions: (i) It introduces an automatic method for
revealing biased prompts in TTI models, enabling the discovery of both well-known and previ-
ously unseen open-set biases. (ii) It proposes a new bias measure that moves beyond axis-based
approaches, which depend on defined attributes and categories. Instead, our bias measure compares
the distribution of generated images to that of plausible textual variations of a prompt, efficiently
capturing deviations from the expected distribution.

2 RELATED WORK

Bias in TTI models. Bias in TTI models has been a growing concern, with various approaches
developed to detect and mitigate biased outputs focusing on particular types of well-defined bi-
ases such as race and gender (Luccioni et al., 2024; Clemmer et al., 2024; Gandikota et al., 2024).
These methods require prior knowledge of the specific biases investigated. To move beyond prede-
fined biases, open-set bias detection methods aim to uncover biases without the need to pre-define
them (Kim et al., 2024; Chinchure et al., 2025). Other approaches tackle this from the perspective
of output diversity (Orgad et al., 2023; Sadat et al., 2024; Rassin et al., 2024). Regardless of the de-
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SD 1.4

SD 2.1

FLUX

Variations

(a) t-SNE visualization (b) Prompt generations (c) Prompt variation generations

Figure 2: t-SNE visualization of images generated with the prompt “a photo of a nurse” and
its variations. Each point in (a) represents a CLIP embedding of a generated image, projected into
2D space using t-SNE. The gray points, along with their overlaid kernel density estimate, provide
a desired reference distribution of images. These images (shown in (c)) were generated using SD 3
with textual variations of the prompt that specify gender, race, style, and surroundings. Inspecting
the generations of three TTI models to the prompt (images shown in (b)) reveals that all of them show
bias, predominantly generating female figures. However, SD 2.1 tends to further produce grayscale
images and FLUX frequently depicts nurses wearing masks, indicating model-specific tendencies.

tection method, recent advancements enable their mitigation (Kim et al., 2024; Parihar et al., 2024).
Closest to our work is D’Incà et al. (2024) which introduces a pipeline for evaluating open-set biases
in TTI models, applied on a set of real textual captions, such that the evaluated biases depend on
this set of captions and are restricted to it. Our method complements these efforts by proposing an
automatic method for identifying prompts that cause a TTI model to generate biased outputs, from
the unconstrained textual prompt space. This is achieved without relying on predefined captions,
concepts, or specific bias categories, yet it can also be adapted to target them when desired.

Genetic algorithms. Genetic algorithms are gradient-free optimization processes where a popula-
tion of candidate solutions iteratively improves by selecting the best candidates to generate the next
population. They have been widely applied to prompt optimization tasks (Xu et al., 2022; Tanaka
et al., 2023; He et al., 2024), including in the context of TTI models, where they are used to re-
fine prompts for improved image quality and text-image consistency (Pavlichenko & Ustalov, 2023;
Tran et al., 2023; Mañas et al., 2024). Broadly speaking, these methods remain within a constrained
search space refining a given prompt. Our approach differs by searching the entire prompt space of
TTI models to uncover prompts that inherently induce biased outputs of the TTI model.

3 AUTOMATIC MINING

MINETHEGAP is a genetic algorithm-based approach that optimizes over the high-dimensional dis-
crete space of valid prompts for a TTI model, denoted by P . Since the space of prompts is non-
differentiable, we formulate this as a gradient-free optimization problem, refining a population of
candidate prompts through iterative selection and mutation. In this section we introduce our general
framework for optimizing over P , which is applicable to any objective. Section 4 discusses our
proposed bias objective, used throughout the paper.

Our algorithm employs an evolutionary search procedure that iteratively refines a population of b
prompts by selecting those that expose significant bias while introducing new candidates to maintain
exploration. The optimization runs for a fixed number of iterations, where at each iteration the best
prompts are compared to the best prompts found thus far, such that the final output consists of the
top K prompts identified during the entire process. Figure 3 shows the population of prompts across
three iterations, illustrating how the search evolves. The framework consists of the following steps.

Initial population. The optimization begins with an initial population of b diverse prompts, de-
signed to broadly cover the space of possible biases. Ideally, this population approximates a uniform
sample from the space of valid prompts, P . To generate such a set, we instruct an LLM to return b
candidate prompts in a single query. These are then parsed and used as the starting population.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

top 

prompts

top ranked

A group of zebras

 in savannas

A yellow banana

 on a wooden table

Zebras in a 

forest clearing

A herd of 

antelopes on hills

A banana on a 

metal table

A yellow apple 

on a stone floor

mutations

A busy street

 in Tokyo

random

Iteration k-1 Iteration k+1Iteration k

top ranked

Zebras in a forest 

clearing

A yellow apple on a 

stone floor

Rhinos in a 

forest clearing

Cheetahs in a 

sunlit glade

A ripe orange 

on a wooden floor

A green granny 

smith on a stone wall

mutations

A scientist working

in a laboratory

random
top 

prompts

top ranked

Rhinos in a 

forest clearing

A scientist working

in a laboratory

Elephants in a forest 

meadow

Horses in a 

woodland glade

A chemist in a 

factory lab

A researcher working 

in a greenhouse

mutations

A group of children 

playing soccer

random
top 

prompts

Figure 3: Mining pipeline. Three iterations demonstrate the optimization evaluation process. In
iteration k, we rank the population from the previous iteration (represented by the sentences in the
orange and purple frames at iteration k − 1) and select the top-ranked (shown in the green frame).
We then generate mutations for each of the top-ranked sentences and add random sentences to form
the next population. This process repeats in the subsequent iteration k+1. Throughout all iterations,
sentences are retained in the top prompts bucket if their loss improves on previous top prompts.

Selection. To identify the fittest prompts in each iteration, we rank them according to an objective
function that quantifies the property of interest. Our framework is independent of the objective
used, however for mining biases, we apply the objective defined in Sec. 4.1. This function scores
each prompt, where lower values indicate a stronger presence of bias. Since the goal is to mine
prompts that best optimize this objective, the s prompts with the lowest scores are selected for
further refinement, serving as the foundation for the next generation of prompts. Figure 3 illustrates
the selection when s = 2 prompts are carried over to the next iteration (“top ranked” panel).

Mutation. After selecting the most relevant prompts, a mutation step generates new candidates by
exploring diverse modifications to these prompts. Unlike simple rephrasings, these modifications
introduce changes that should lead to visually distinct outputs. To achieve this, an LLM is instructed
to generate m new modifications for each selected prompt which maintain some connection to the
original prompt but allow for creative exploration through substitutions of subjects, omissions, or
modifications that significantly alter the expected visual result. For example, given the prompt “a
doctor”, the LLM may generate related but distinct concepts such as “a nurse” or “a dentist”, as
illustrated in App. C.2. The mutation pane of each iteration in Fig. 3 shows the newly generated
mutations, with arrows pointing from each top-ranked prompt to its corresponding mutations.

Random candidate injection. In high-dimensional search spaces such as P , genetic algorithms
might converge to suboptimal solutions if the population becomes too homogeneous. To avoid this,
we inject additional randomly generated prompts at each iteration. These candidates, generated
independently by the LLM, introduce genetic diversity into the population and allow the algorithm
to explore more areas of the solution space. Since we use the same population size in each iteration,
the number of random candidates to inject, denoted by r, is given by r = b− s×m.

As mentioned above, our optimization (i.e., mining) procedure is generic in that it can work with
any loss, not necessarily only with bias scores. In App. A we illustrate this optimization method on
the simple task of mining prompts that produce red, blue and green images. In this example, the loss
being minimized is the mean squared error (MSE) between the generated images and a synthetic
image of the target color. In this simple setting, our algorithm typically converges in four iterations.

4 RANKING BIAS

To guide the selection process in our mining framework, we require a bias ranking function that
assigns a score to each prompt. This score should reflect the extent to which the TTI model exhibits
bias when generating images for that prompt. Traditional methods for ranking prompts according
to the bias they exhibit, either focus on predefined biases or on LLM generated potential biases, and
examine the distribution of images for each class associated with the bias. Here, we propose an
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Prompt: Street food dish, Bias score: 1.053

Explanation: 
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Figure 4: Measuring bias through least-aligned elements. Comparison between more (left) and
less (right) biased scenarios. In the more biased example, we observe gaps in alignment, where
certain textual variations fail to find well-matching images. In contrast, the less biased example
demonstrates a more varied distribution of similarity scores, indicating that the TTI model success-
fully spans the range of plausible interpretations. We set α = 20th percentile which results in taking
the minimum over the maximum similarities.

efficient, fully automatic approach that does not require specifying the nature of the bias in advance
and provides an interpretable ranking of prompts.

A key challenge in quantifying bias is determining the expected image distribution for a given
prompt. Ideally, we would want to compare with a human-expected distribution, which is unknown.
To address this, we leverage an LLM to approximate the expected variations in how a given prompt
could be interpreted. Specifically, we use the LLM to generate a set of diverse textual variations of
the prompt, designed to span its possible ambiguities. Unlike the mutation step in the mining pro-
cess, which aims to refine candidate prompts, this process explicitly models the different plausible
meanings embedded within a single prompt, providing a reference for evaluating the TTI model’s
outputs. Examples of textual variations and how they differ from the mutations are given in App. C.

4.1 MEASURING BIAS THROUGH LEAST-ALIGNED ELEMENTS

Given a prompt p, we generate N images using a TTI model, Ip = {I1, · · · , IN}, and N variations
of the prompt using an LLM, Vp = {v1, · · · , vN}. We then embed both sets into a shared latent
space, and compare their distributions. If the set of generated images fails to span the diversity of the
textual variations, then this suggests that the model is biased towards certain interpretations of the
prompt. To quantify the gap between the two distributions, we construct an N ×N similarity matrix
S between the two sets of embeddings, such that element Si,j measures the similarity between the ith

text variation and the jth generated image, as visualized in Fig. 4. We then construct our bias score
(where lower means more biased) as the combination of two complementary scores, as follows.

The missed visual concepts score measures how well the generated images cover the diversity of the
textual interpretations. For each textual variation, we identify the image most aligned to it by taking
the maximum similarity score across all images. Namely, for the ith text variation, we compute
maxj Si,j . A text that is represented in the visual domain has at least one image strongly aligned
with it. Now, we want no more than α percent of the text variations to have low maximal alignment
scores. We therefore compute the lower αth percentile of these maximum scores, Qα{maxj Si,j}.
Similarly, the least-aligned images score measures how well each generated image aligns with the
textual variations. For each image, we compute the maximum similarity across all textual variations,
identifying the closest matching text. Namely, for the jth image, we compute maxi Si,j . Again,
we extract the lower αth percentile among these maxima, Qα{maxi Si,j}, as an indication for the
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More biased: air conditioning installer

Less biased: teller 

Figure 5: Visual example for gender bias. Ac-
cording to both BLS data and our metric, air
conditioning installer is the most gender-biased
profession. Teller is among the least gender-
biased and we rank it as least biased.
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Figure 6: Bias scores across CFG values. Each
box plot summarizes the distribution of mea-
sured losses across prompts for a given model
and CFG setting. As anticipated, as CFG in-
creases, outputs are scored as more biased.

images that have no strong correspondence to any textual interpretation. This identifies cases where
the TTI model generates images that do not align with reasonable textual variations, indicating bias.

Finally, to obtain a single relative bias score, we take the average of the missed visual concepts score
and the least-aligned images score, and normalize by the mean similarity across the entire matrix,

bias =
1
2 (Qα{maxj Si,j}+Qα{maxi Si,j})

1
N2

∑
i,j Si,j

. (1)

The normalization is needed because the absolute similarity values are meaningful only when com-
paring semantically close objects. But across different prompts, we are mainly interested in cap-
turing variance within the matrix, rather than absolute magnitudes. This objective provides a single
ranking criterion that reflects the severity of bias in the interpretation of a TTI model of a given
prompt, and is used in the selection phase of our optimization process.

Inherent explainability. The objective described above has an implicit advantage, which is its
inherent ability to communicate to a user the source of the bias. This is achieved by identifying the
missing visual concepts in the textual variations, and the least-aligned images among the generated
outputs. An example is given in the bottom part of Fig. 4 for both high and low bias scores.

4.2 VALIDATING OUR BIAS SCORE

To validate our bias score, we assess its ability to capture known biases in TTI models. It is well
established that these models often generate stereotypical representations of professions, associating
certain occupations with specific genders or ethnicities. A primary source of this phenomenon stems
from real-world demographic imbalances that are manifested in the datasets used for training.

Previously, Luccioni et al. (2024) demonstrated that bias in TTI models can be quantitatively ranked
and compared to ground-truth occupational statistics, such as those from the U.S. Bureau of Labor
Statistics (BLS). Their method focuses on societal biases (e.g., gender and race) and shows a corre-
lation between the ranks assigned by their bias detection framework and the actual gender majority
in each profession. Inspired by their evaluation, we apply our bias ranking on the same dataset and
evaluate it against the ground-truth majority demographic for each occupation. Specifically, we use
a set of images generated by SD 1.4 with the prompt “Photo portrait of X” where X is a profession
taken from the BLS (see more details in Luccioni et al. (2024)). Then, we generate 15 variations
for each prompt through a Cartesian combination of gender and race attributes. All images and
variations are embedded to a shared latent space where we compare CLIP (Radford et al., 2021),
SigLIP (Zhai et al., 2023), and SigLIP-2 (Tschannen et al., 2025). For evaluating the ranking we
use Spearman’s rank correlation coefficient, ρ. Luccioni et al. (2024) achieved ρ = 0.68 while our
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bias score achieves ρ = 0.72, 0.63, 0.62 using CLIP, SigLIP and SigLIP 2 respectively. All variants
positively correlate with the ground truth, with CLIP showing strongest alignment and exceeding
the baseline; we therefore adopt it as the shared latent space. Ten images for professions that our
score ranked as highly biased and mostly unbiased are shown in Fig. 5, and App. B.1 presents a
comparison between our ranking and the ranking reported by Luccioni et al. (2024).

To further validate our findings, we analyzed how classifier-free guidance (CFG) (Ho & Salimans,
2021) affects the bias score. Increasing CFG is known to reduce sample diversity by favoring image
quality and text alignment. For 45 random prompts, we generated sets of 15 images driven by the
same random seeds, one set for each CFG value, and computed the bias score against the same set of
LLM-generated textual variations. As shown in Fig. 6, across three SD models, higher CFG strength
results in more biased outputs, aligning with expectations and reinforcing the validity of our score. A
complementary experiment, discussed in App. B.2, demonstrates that applying CADS (Sadat et al.,
2024), known to increase sample diversity, yields less biased outputs according to our score.

5 EXPERIMENTS

We proceed to evaluate our complete method. MINETHEGAP utilizes an LLM both to drive the
optimization process and to create reference texts for bias assessments. For both purposes, we
use Llama 3.1-8B-Instruct (Dubey et al., 2024; Meta-AI, 2024) as the core LLM. Comparisons to
LLaDA 8B-Instruct (Nie et al., 2025) and Qwen 2.5-7B-Instruct (Yang et al., 2024) are reported
in App. D.1, showing the mined prompts are relatively similar while they differ from the captions
from COCO. We refer to the prompts used to instruct the LLM on the various tasks as meta-prompts
and list them in App. C.1. We experiment with four TTI models: SD 1.4, SD 2.1 (Rombach et al.,
2022), SD 3 (Esser et al., 2024), and FLUX.1 Schnell (forest labs, 2025).

Implementation details. The optimization process runs with a population size of b = 15 prompts
per iteration, each limited to eight words. At each step, the top s = 5 most biased prompts (according
to our score) are selected, and each of them undergoes m = 2 mutations. To complete the quota,
r = 5 random prompts are injected in each iteration. An ablation study of these choices is provided
in App. A.1. To ensure robustness in our findings, we run 50 independent mining processes per
model, each starting with a different randomly sampled initial population using seeds 0 through 49.
When calculating the bias score, we generate N = 15 images and text variations for each prompt.
The least-aligned images score and missed visual concepts score are computed using the 4th smallest
similarity value from the ordered set of 15, corresponding to approximately the 25th percentile.

Mining open-set biases. Figure 7 shows qualitative results of images generated with mined
prompts. For each prompt, we also present a visualization of the text variations that attained the
lowest alignment score (i.e., the lower αth percentile of similarity scores), by showing images gener-
ated by the TTI model for those texts. These examples highlight cases in which the model produces
biased outputs, repeating semantic options where other visual concepts are applicable. Furthermore,
it is evident that when the TTI model is fed with the textual variation as the prompt, it does generate
images that depict the additional concepts. This indicates that even though the TTI model is capable
of generating images that exhibit a wide range of interpretations to the prompt, it is often biased
towards specific interpretations. Appendix D presents additional results, providing a broader per-
spective on the types of prompts identified as biased. To illustrate the mining process, Fig. 8 shows a
segment of an optimization, plotting candidate prompt scores across iterations to highlight how the
process refines the prompt pool toward increasingly biased prompts. To assess the effectiveness of
the optimization process, we compare the bias scores of prompts mined by MINETHEGAP to those
of randomly sampled prompts from the initial population, and to captions from COCO (Lin et al.,
2014). As shown in App. A, mined prompts consistently attain lower losses, indicating that they in-
duce stronger bias according to our metric. Furthermore, the variance in bias scores is significantly
smaller for mined prompts, suggesting that the genetic search strategy converges to a stable set of
highly biased prompts.

Mining specified biases. Interestingly, we show that by simply adjusting the meta-prompts of the
LLM, we can restrict MINETHEGAP to detect biases of a particular type or on specific subjects.
More specifically, by instructing the LLM to generate prompt variations that retain the original
meaning of the prompt, but allow different aspects such as gender and age, we manage to generate
variations that enable capturing these biases effectively. See visual examples in Fig. 7 and App. D.2.
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Figure 7: Mined biased prompts for four TTI models. For each model, 15 images were generated
using a mined prompt. The resulting images are highly similar, exhibiting repetitive semantics.
At the bottom of each example, we show images generated from text variations to illustrate the
additional concepts the TTI model should incorporate. Top pane illustrates open-set mining showing
that in FLUX.1 Schnell, the dog consistently runs toward the camera with no other figures present,
and SD 2.1 consistently zooms in on violets. Prompts in bottom pane were mined specifically on
gender, race, age or clothing. SD 1.4 generated Caucasian toddlers with blond hair, while associated
variations exhibit greater demographic diversity, including children of different races and hair colors.
Similarly, SD 3 generates only superhero costumes of Superman.

Cross-model bias evaluation. We generate images for the biased prompts mined for each model
using all other models and compute their respective bias scores. As seen in Fig. 9, each model ex-
hibits the strongest bias when evaluated on its own mined prompts, confirming that MINETHEGAP
effectively mines the prompts that are biased for the particular model being examined. Nonetheless,
bias scores remain relatively low even when examining the mined prompts on other models, suggest-
ing that similar types of biases exist in all evaluated models. Additionally, a global ranking of the
models emerges based on their average bias scores. Among the four models tested, SD 1.4 exhibits
the least bias (highest bias score), followed by SD 2.1, SD 3, and finally FLUX.1 Schnell, which
ranks as the most biased (lowest bias score). This aligns with the results of Rassin et al. (2024).

Comparison to OpenBias (D’Incà et al., 2024). OpenBias detects biases in TTI models by gen-
erating bias proposals for a given set of captions, asking closed-set VQA questions, and aggregating
responses across related images. This approach misses biases that are difficult to define or query, but
which our mining process does surface. For example, the bias proposals for “The person is holding a
hotdog with onions on it” focus on the person or food type (Fig. 10), asking questions like “how old
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Figure 8: Illustrative segment of the mining
process. Points represent prompts, with colors
distinguishing random prompts from those gen-
erated by mutation. Gray lines connect the top
five selected prompts in each iteration to their
mutations in the next iteration. Red line marks
the overall best loss up to each iteration.

SD 1.4 SD 2.1 SD 3 FLUX

Model used for image generation

1.00
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Most biased prompts

SD 1.4

SD 2.1

SD 3

FLUX

Figure 9: Cross-model bias evaluation. Each
model is evaluated for bias on prompts mined
for all other models, by generating corresponding
images. E.g. second boxplot from the left depicts
the bias scores for SD 1.4 on the biased prompts
mined for SD 2.1. Each model achieves its low-
est score on prompts mined specifically for it.

The person is holding a hotdog with onions on it

Bias proposals of OpenBias:

(1) Food type (3) Person gender

(2) Person age (4) Person activity

Our missed visual concepts:

(1) at a backyard barbecue (3) a child

(2) steaming hot dog (4) in a stadium

Figure 10: Comparison with OpenBias. Person-related queries (gender, activity, age) cannot be
answered when no person is present, and food type is already specified in the prompt. In contrast,
our concepts (identity, location) are more diverse and reveal the underlying bias.

is the person?” which are irrelevant when no person appears in the images. Similar issues arise for
the other proposals. In contrast, our missed visual concepts focus on the location or the (in)existence
of a child, and thus expose more relevant bias in the prompt. Running the full OpenBias pipeline on
our mined prompts in App. D.3 further confirm these shortcomings. We also performed quantitative
comparisons evaluating OpenBias against our method in the BLS setting. Using VQA-based gender
classification, OpenBias yields a Spearman correlation of ρ = 0.64, which is below our ρ = 0.72.

6 CONCLUSION

We proposed MINETHEGAP, a method for automatic discovery of prompts that lead a given TTI
model to produce biased outputs. The results highlight how these models tend to favor certain
interpretations while overlooking alternative, yet equally valid, visual representations. By leveraging
an LLM-driven approach to explore the space of prompts and measure bias in a gradient-free manner,
our method successfully optimizes for prompts that elicit systematically biased outputs. Having the
ability to find these biases automatically should foster the development of TTI models that produce
more fair, diverse and creative generations, ultimately enhancing the user’s experience.

A limitation of our approach is that it relies on an LLM to approximate the target distribution, which
itself might be biased. We attempt to reduce bias by instructing the LLM to span ambiguities, yet
bias may still remain. Additionally, we measure the gap between the textual and visual distributions
using CLIP similarity, restricting the analysis to features it is sensitive to. Our design choices aim
to mitigate this, comparing against explicit textual variations (e.g., “a female doctor”) rather than
the prompt itself (e.g., “a doctor”), pushing CLIP to differentiate between concrete alternatives. We
believe that better LLMs and better text-vision models may help overcome both these limitations.
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ETHICS STATEMENT

This paper aims to advance the field of Machine Learning by introducing a method for automatically
discovering biases in Text-to-Image models. While our work has potential societal implications,
both positive and negative, we do not identify any specific consequences that require particular
emphasis. Instead, we hope our contributions will support ongoing efforts to develop more fair and
transparent generative models.

REPRODUCIBILITY STATEMENT

All experimental details are provided in Sec. 3, Sec. 4, Sec. 5 and in App. C. We provide our code
repository in an anonymous repository at https://anonymous.4open.science/r/MineTheGap-67BA,
and will release the repository publicly upon acceptance. The repository contains scripts for run-
ning the general mining process across all TTI models evaluated in the paper, along with examples
illustrating how to constrain the search space for specific use cases.

LLM USAGE

LLMs were used in this work as a tool to refine the writing and grammar of the manuscript, and did
not play a critical role.
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APPENDIX

A ANALYSIS OF THE OPTIMIZATION PROCESS

To illustrate the convergence behavior of our optimization method, we apply it to a simplified task
where the objective is to generate images dominated by a specific color—red, blue, or green. In this
setting, the loss function is defined as the mean squared error between the generated image and a
synthetic image of the target color. The meta-prompts used to guide the LLM remain unchanged
from our standard mining procedure. Figure S1 shows the image with the lowest MSE at each
iteration step. Notably, within just three to four iterations, the optimization converges to prompts that
yield the desired color, visually demonstrating the efficiency and generality of the method beyond
bias discovery.

Iteration 0 Iteration 1 Iteration 3Iteration 2

B
lu

e 
R

ed
 

G
re

en
 

Figure S1: Convergence of the mining procedure on a synthetic task. For each iteration, the best
(lowest loss) image is shown. The optimization minimizes the MSE between a generated image and
a solid color image (blue, red, or green). Within four iterations, the method reliably finds prompts
that produce images dominated by the target color.

To further assess the effectiveness of our optimization process, we analyze the bias scores of prompts
mined using MINETHEGAP compared to randomly generated prompts from the initial population,
and to captions from COCO (Lin et al., 2014). As illustrated in Fig. S2, the mined prompts con-
sistently achieve lower bias scores, demonstrating that our method successfully identifies prompts
that elicit stronger biases from the model. In addition to lower scores, the mined prompts exhibit
reduced variance across runs, suggesting that the optimization converges toward a stable set of high-
bias prompts. To strengthen this analysis we report an experiment in which, instead of optimizing,
we instruct an LLM to generate 15 new random prompts at each of the 25 iterations. This process
is repeated 10 times for each of the four TTI models and the mean over the best loss achieved at
each iteration is reported in Fig. S3. Plotting this baseline against the curve of averaging 10 min-
ing processes for each model shows that mining achieves consistently lower losses, indicating its
effectiveness in uncovering biased prompts and its superiority over evaluating disjoint random sets.

A.1 ABLATION STUDY ON OPTIMIZATION HYPER-PARAMETERS

To evaluate how the composition of the prompt population influences the mining process, we per-
formed an ablation study on the key hyper-parameters that define it at each iteration: the number of
selected prompts s, the number of mutations per selected prompt m, and the number of randomly
injected prompts r, which is determined by the constraint r = 15 − s × m, given a fixed batch
size of b = 15. Table S1 reports the average loss and standard deviation for five configurations
across four TTI models, with each configuration averaged over 10 runs. Across all models, the five
configurations produced broadly similar performance, with FLUX.1 Schnell achieving lowest losses
under the setting without random candidate injection. For consistency, however, we adopt the third
configuration (s = 5, m = 2, r = 5) throughout the paper, as it strikes a balance between exploiting
promising prompts and exploring new regions of the prompt space.
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Figure S2: Losses for random vs. mined
prompts. Box plots show the distribution of
bias scores for captions from COCO (blue), for
prompts randomly sampled at initialization (yel-
low), and for prompts mined through our op-
timization method (green). Across all models,
mined prompts consistently yield lower scores,
indicating stronger model biases as measured by
our metric.
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Figure S3: Loss trajectories for mining versus
random prompt generation. At each of 25 it-
erations, the random baseline generates 15 new
prompts using an LLM, while mining follows the
proposed mining process. Curves show the mean
of the best loss across 10 runs per model. Mining
consistently achieves lower losses than random
generation, indicating its effectiveness in identi-
fying biased prompts.

Table S1: Ablation study on optimization hyper-parameters

Model Selected Mutations Random Loss
SD 1.4 5 1 10 1.0210 ± 0.0019

3 2 9 1.0201 ± 0.0018
5 2 5 1.0174 ± 0.0011
7 2 1 1.0163 ± 0.0022
5 3 0 1.0165 ± 0.0031

SD 2.1 5 1 10 1.0194 ± 0.0015
3 2 9 1.0188 ± 0.0011
5 2 5 1.0174 ± 0.0025
7 2 1 1.0159 ± 0.0026
5 3 0 1.0167 ± 0.0020

SD 3 5 1 10 1.0188 ± 0.0018
3 2 9 1.0166 ± 0.0025
5 2 5 1.0155 ± 0.0020
7 2 1 1.0154 ± 0.0015
5 3 0 1.0157 ± 0.0022

FLUX.1 Schnell 5 1 10 1.0166 ± 0.0020
3 2 9 1.0152 ± 0.0026
5 2 5 1.0143 ± 0.0014
7 2 1 1.0148 ± 0.0021
5 3 0 1.0131 ± 0.0016
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B SUPPLEMENTARY RESULTS FOR BIAS SCORE VALIDATION

B.1 SOCIETAL BIAS RANKING

To complement the results reported in the main paper, Tab. S2 lists the full set of professions used
to evaluate our bias score against real-world occupational statistics. For each profession, we show
the ground-truth gender ratios from the U.S. Bureau of Labor Statistics, the ranking reported by
Luccioni et al. (2024), and our ranking. As discussed in Sec. 4.2 in the main text, both methods ex-
hibit a positive Spearman’s rank correlation with the ground truth, with our score achieving slightly
stronger alignment.

Table S2: Comparison of societal bias ranking

Profession Male
Percentage

Female
Percentage

GT
Ranking

Stable Bias
Ranking

Our
Ranking

air conditioning installer 98.50 1.50 1 5 1
electrician 98.30 1.70 2 15 10
plumber 97.90 2.10 3 11 14
mechanic 97.70 2.30 4 8 17
roofer 97.10 2.90 5 3 8
drywall installer 96.90 3.10 6 2 5
plane mechanic 96.80 3.20 7 17 23
sheet metal worker 96.10 3.90 8 14 6
construction worker 95.50 4.50 9 10 2
machinery mechanic 94.90 5.10 11 4 3
firefighter 94.90 5.10 11 20 16
groundskeeper 93.80 6.20 12 9 12
hairdresser 7.60 92.40 13 21 20
carpet installer 92.30 7.70 14 14 15
truck driver 92.10 7.90 15 8 4
tractor operator 90.90 9.10 16 1 11
maid 11.30 88.70 17 27 13
taxi driver 88.00 12.00 18 26 7
therapist 12.90 87.10 19 26 34
police officer 84.70 15.30 20 24 24
social worker 16.40 83.60 21 39 40
cleaner 83.00 17.00 22 37 25
social assistant 18.80 81.20 23 23 28
machinist 80.60 19.40 25 6 27
butcher 80.60 19.40 25 12 18
aide 19.60 80.40 26 32 30
teacher 20.80 79.20 27 30 32
metal worker 78.00 22.00 28 16 9
teller 23.90 76.10 29 35 39
singer 76.00 24.00 30 40 37
interviewer 24.10 75.90 31 28 36
mental health counselor 24.40 75.60 32 31 38
industrial engineer 74.00 26.00 33 18 19
tutor 29.50 70.50 34 33 31
correctional officer 69.60 30.40 35 36 22
architect 68.40 31.60 36 19 29
fast food worker 34.30 65.70 37 38 33
health technician 35.70 64.30 38 22 26
school bus driver 44.70 55.30 39 29 21
artist 45.80 54.20 40 34 35
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B.2 THE EFFECT OF CADS ON MEASURED BIAS

Complementing the experiments in Sec. 4 validating our bias score, we conducted a comparison
using the Condition-Annealed Diffusion Sampler (CADS) (Sadat et al., 2024), a technique known
to increase output diversity. Specifically, we sampled 45 random prompts and, for each, generated
two sets of 15 images driven by the same random seeds, one using the standard sampling procedure
and another using the CADS sampler. We then computed our bias score for both sets based on
the same set of LLM-generated textual variations. This experiment was performed on both SD 1.4
and SD 2.1. As shown in Fig. S4, the CADS-generated images received higher (i.e., less biased)
average scores for SD 1.4, further supporting the validity of our metric. For SD 2.1 the trend is less
prominent, aligning with the fact that CADS leads to smaller semantic modifications for this model,
as seen in App. B.

SD 1.4 SD 2.1

Model

1.02

1.04

1.06

1.08

1.10

1.12

L
os

s

w/o CADS

w/ CADS

Figure S4: Validating the bias loss with CADS sampling. Box plots of bias scores for images
generated by Stable Diffusion 1.4 and 2.1 for random prompts, with and without CADS. CADS
sampling, which is known to increase diversity, is seen to increases the scores (i.e., lowers measured
bias), supporting that our metric captures bias.

To complement the quantitative CADS evaluation, Fig. S5 presents qualitative examples illustrating
the effect of CADS on the diversity of generated outputs. For both SD 1.4 and SD 2.1 models,
we show three prompts for which 15 images were generated both with and without the CADS
scheduler, using identical seeds for fair comparison. These examples visually demonstrate how
CADS increases output variability, particularly for SD 1.4. In contrast, SD 2.1 shows less noticeable
improvement in semantic diversity, consistent with the smaller differences in bias scores observed
in the quantitative results.
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A group of children playing in a park
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A small bird perched on a branch
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A field of sunflowers
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A family having a picnic outdoors
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A stack of old books on a shelf
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Figure S5: Visual impact of CADS on TTI output diversity. For each prompt, the top row shows
images generated with the standard sampling method, while the bottom row shows results after
applying CADS sampler. Consistent with the findings in Fig. S4, CADS has a stronger effect on SD
1.4 (top) by increasing visual diversity, whereas its impact on SD 2.1 (bottom) is more limited.
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C EXPERIMENTAL DETAILS

C.1 META-PROMPTS

The meta-prompts for Llama-3.1-8B-Instruct are comprised of a system message and a user mes-
sage, where the system message indicates the general task of generating sentences to be evaluated
within a Python pipeline, and the user prompts differ between the usages.

System prompt
The same system prompt is used for all configurations:

You are a creative Python assistant that generates lists of sentences in the format [”sen-
tence 1”, ”sentence 2”, ...]. Always output answers with correct syntax, formatted ex-
actly as requested. No preambles or postambles. Do not include newline characters
(\n) in the generated output. Describe real life scenarios and avoid the word ”futuris-
tic”.

User prompts
To generate random prompts, for the initial population and while injecting random candidates:

Generate N diverse, short (3-8 words), and simple prompts for a Text-to-Image model.
Include a diverse set of prompts, varying in length, that depict: 1. Objects, elements of
daily life, and man-made structures (e.g., tools, food, personal items, or buildings). 2.
People, their roles, and activities (e.g., individuals, professions, or social interactions).
3. Animals, nature, and landscapes (e.g., wildlife, plants, or scenic or urban views). Fo-
cus on creativity and ensure each prompt is different, simple, grammatically correct,
and visually distinct. Avoid using vague or generic descriptive adjectives like ”beau-
tiful” ”serene” ”calm” ”stunning” or similar subjective terms. Do not use commas,
quotation marks, or brackets within the generated prompts. Format the response as a
Python list as follows: [”prompt 1”, ”prompt 2”, ..., ”prompt N”].

To generate N mutations of a given prompt candidate:

Generate N diverse, short (3-8 words), and simple variations of the Text-to-Image
model prompt: ”¡prompt¿”, varying in length. Ensure the variations retain some con-
nection to the original prompt but allow for creative exploration through substitutions
of the subjects, omissions or modifications that result in visually distinct and diverse
outputs. For example, for 3 variations of the prompt: ”a doctor”, you could gener-
ate related professions such as [”a nurse”, ”a surgeon”, ”a therapist”]. Avoid simple
synonym substitutions or minor rephrasings that do not lead to a noticeable visual
difference (e.g., changing ”kid” to ”child”). Avoid using vague or generic descriptive
adjectives like ”beautiful” ”serene” ”calm” ”stunning” or similar subjective terms. Do
not use commas, quotation marks, or brackets within the generated prompts. Format
the response as a Python list as follows: [”prompt 1”, ”prompt 2”, ..., ”prompt N”].

To generate N variations of a given prompt candidate:

Generate N diverse, short and concise variations of the Text-to-Image model prompt:
”¡prompt¿”. The variations should retain the original meaning but explore different
interpretations of any ambiguity in the original prompt. Variations could address any
unspecified aspects of the subjects and of the style or setting of the image. Avoid using
vague or generic descriptive adjectives like ”beautiful” ”serene” ”calm” ”stunning” or
similar subjective terms. Do not use commas, quotation marks, or brackets within the
generated variations. Format the response as a Python list as follows: [”variation 1”,
”variation 2”, ..., ”variation N”].
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C.2 EXAMPLES FOR PROMPT MUTATIONS

We list examples for m = 2 mutations generated for multiple prompts, as explained in Sec. 3. Recall
that the goal of the mutation step is to explore diverse modifications to candidate prompts which
introduce meaningful changes that lead to visually distinct outputs. Appendix C.3 lists variations
generated for the same prompts.

• Prompt 1: A photo of a doctor
– A photo of a nurse in uniform
– A dentist in a clinic

• Prompt 2: A close-up of a butterfly on a flower
– A dragonfly perched on a green stem
– A close-up of a bee on a daisy

• Prompt 3: A landmark in daylight
– A tower in afternoon glow
– A lighthouse on a rocky coastline

C.3 EXAMPLES FOR PROMPT VARIATIONS

We list examples for N = 15 variations generated for multiple prompts, as explained in Sec. 4.
Recall that variations of a prompt are generated as an approximation for the human-expected diver-
sity in images generated for the prompt p , by modeling the different plausible meanings embedded
within the given prompt. Appendix C.2 lists mutations generated for the same prompts.

• Prompt 1: A photo of a doctor
– A photo of a doctor in a quiet office
– A photo of a doctor in a scrubs uniform
– A photo of a doctor in a modern hospital
– A photo of a doctor in a clinic
– A photo of a male doctor
– A photo of a doctor taking a patient’s temperature
– A photo of a doctor in a hospital room
– A photo of a doctor with a patient’s chart
– A photo of a doctor in a traditional setting
– A photo of a doctor in a busy emergency room
– A photo of a female doctor
– A photo of a doctor with a medical instrument
– A close-up photo of a doctor wearing a white lab coat
– A photo of a doctor holding a stethoscope
– A photo of a doctor examining a patient

• Prompt 2: A close-up of a butterfly on a flower
– A close-up of a monarch butterfly on a patch of clover
– A close-up of a butterfly with its proboscis extended on a trumpet vine
– A close-up of a butterfly feeding on nectar from a zinnia
– A close-up of a butterfly with iridescent wings on a daisy
– A close-up of a swallowtail butterfly on a red salvia
– A close-up of a butterfly with its wings folded on a carnation
– A close-up of a blue morpho butterfly on a white lily
– A close-up of a butterfly perched on the center of a sunflower
– A close-up of a butterfly on a single stem of a gladiolus
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– A close-up of a butterfly resting on the petals of a peony
– A close-up of a butterfly perched on the edge of a flower pot
– A close-up of a butterfly with its wings spread on a lavender
– A close-up of a monarch butterfly on a purple coneflower
– A close-up of a painted lady butterfly on a bouquet of wildflowers
– A close-up of a butterfly on a flower in a garden with a trellis

• Prompt 3: A landmark in daylight
– A massive monument in the rain
– A city monument in the afternoon
– A futuristic cityscape in artificial light
– A historic lighthouse in morning light
– A scenic bridge in overcast weather
– A medieval castle in the golden hour
– A mountain peak at sunrise
– A dramatic cliffside in harsh sunlight
– A ancient temple in dappled shade
– A famous painting come to life in daylight
– A small village church in warm light
– A natural rock formation in soft focus
– A famous statue in direct sunlight
– A grand cathedral at midday
– A modern skyscraper at dawn
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D ADDITIONAL RESULTS

To further illustrate the effectiveness of our mining process in exposing biased or non-diverse be-
havior in TTI models, we present additional qualitative results for each of the four studied models in
Figs. S6 to S9. Each figure shows a representative set of mined prompt, where for each prompt we
present two sets of 15 generated images. The top row, titled Mined, displays 15 images generated by
the TTI model to the mined prompt using different random seeds. These reflect the inherent diversity
(or lack thereof) in the model’s generations for the prompt. The bottom row, titled Variations, shows
15 images generated using the variations of the same prompt generated by Llama 3.1-8B-Instruct
for calculating our bias score. These represent additional plausible interpretations of the original
prompt.

Comparing these rows gives a visual assessment of the extent to which the model’s generations
align with the semantic space of valid interpretations. Across models, we observe that the top rows
often display limited visual diversity or focus on narrow aspects of the prompt, while the bottom
rows contain more varied outputs - indicating missed visual concepts in the native generations of the
model.

Figure S10 shows word clouds generated from the 50 most biased prompts mined for each of the four
TTI models. These visualizations illustrate common terms that tend to induce biased or non-diverse
outputs, revealing tendencies towards words related to nature such as field and forest.
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Figure S6: Visualization of the missed visual concepts in prompts mined for FLUX.1 Schnell.
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Figure S7: Visualization of the missed visual concepts in prompts mined for SD 3.
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Figure S8: Visualization of the missed visual concepts in prompts mined for SD 1.4.
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Figure S9: Visualization of the missed visual concepts in prompts mined for SD 2.1.

SD 1.4 SD 2

SD 3 FLUX

Figure S10: Recurring terms in mined prompts. Word clouds generated from the 50 most biased
prompts mined for each model. The recurrence of words that are related to nature such as field,
forest and green, suggests that these terms often result in limited visual diversity.
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D.1 MINING WITH DIFFERENT LLMS

Since MINETHEGAP is agnostic to the choice of LLM, we evaluate its behavior when driven by dif-
ferent models. We run 20 mining processes for FLUX.1 Schnell driven by LLaDA 8B-Instruct (Nie
et al., 2025) and 20 driven by Qwen 2.5-7B-Instruct (Yang et al., 2024), and compare them with
the runs driven by Llama 3.1–8B–Instruct. For each run, we use the K = 5 most biased prompts,
yielding 100 prompts per LLM. As a baseline, we also sample 100 captions from COCO. We embed
all four sets (Qwen-mined, Llama-mined, LLaDA-mined, COCO captions) using CLIP and compute
the mean nearest-neighbor cosine similarity between every pair of sets, as reported in Fig. S11. We
find that prompts mined by the three LLMs are more similar to each other than to random captions
from COCO. To further analyze the distributions, in Fig. S12 we project the CLIP embeddings of
all sets into 2D using t-SNE. The mined prompts from different LLMs exhibit relatively similar
distributions, while COCO captions occupy sub-regions of the semantic space.
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Figure S11: Nearest-neighbor similarity of prompt sets. Mean cosine similarity to nearest-
neighbor between prompts mined with Llama, LLaDa and Qwen, and captions from COCO. Prompts
mined with different LLMs are more similar to each other than to COCO captions.

Llama

LLaDa

Qwen

COCO

Figure S12: t-SNE visualization of prompts. 2D projection of CLIP embeddings for mined
prompts (Llama, LLaDA, Qwen) and COCO captions. Mined prompts form overlapping distri-
butions with some clustering, while COCO captions occupy subregions of the space.
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D.2 MINING SPECIFIC BIASES

To qualitatively demonstrate that MINETHEGAP can uncover particular types of bias, we adjusted
the meta-prompts guiding the LLM used during the mining process. Specifically, for the discovery
of sociodemograohic biases, while generating random prompts and prompt mutations we instructed
the LLM (Llama 3.1–8B–Instruct) to depict people (e.g., their roles, activities, professions, or so-
cial interactions). For generating the corresponding prompt variations, the meta-prompt instructs
to retain the original meaning of the prompt but explicitly vary aspects such as gender, race, and
age. This focused prompting allows our method to target specific sociodemographic biases. Fig-
ure S13 illustrates two examples: the left pane shows outputs generated by SD 3 for a mined prompt
where all images depict male firefighters, while the right pane shows SD 1.4 generating images a
female teacher. In contrast, the associated prompt variations generated by the LLM exhibit greater
demographic diversity, including female firefighters and male teachers.
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SD 1.4: A teacher grading papers at her desk
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Figure S13: Gender Bias. By controlling the meta prompts used for Llama 3.1-8B-Instruct, we
manage to capture specific biases such as gender and race. On the left pane, all images show a male
firefighter although the prompts is gender-free. On the right pane, all images show a female teacher.
The variations, on the other hand, are much more diverse including a female firefighter, a teacher of
Asian decent, and a male teacher with a beard.

Figure S14 presents four examples of prompts illustrating specific target biases. To surface biases
of specific object categories, the LLM was instructed to generate prompts that include an adequate
object in both random and mutations phases, and instructed to vary features of the object and its
setting during the text variations phase. For bias in the style of the outputs, only the meta-prompt
instructing to generate variations differ from the open-set setting, asking to explore different image
styles. Independent runs were conducted on general objects, food items, and clothing, and Fig. S14
mentions the setting each shown prompt was mined for. Thanks to the prompt variations which
exhibit greater diversity under each subject, we manage to capture these biased prompts, highlighting
the flexibility of our method in automatically mining specific kinds of representational biases when
desired.
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Figure S14: Mining specific biases. When aiming to reveal specific biases, controlling the meta
prompts used for Llama 3.1-8B-Instruct enables capturing such targets. The images generated to the
variations which constitute the missed visual concepts reveal the source of the bias. For example, all
the croissant images depict a single object from a similar angle, and all images of the woman exhibit
the same style of coat.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

D.3 SUPPLEMENTARY RESULTS FOR THE COMPARISON WITH OPENBIAS

We provide additional qualitative comparisons with OpenBias. Figure S15 presents captions from
COCO that were marked to exhibit high biases according to our bias score, while OpenBias failed
to surface their biases. For example, in the prompt “A young boy with face paint all over his face,”
OpenBias proposed bias candidates related to the paint color as well as the child’s gender and age.
The VQA responses for the color candidates were nearly uniform, masking any detectable bias, and
the age or race of the child could not be reliably inferred by the VQA. In contrast, our method gen-
erates diverse prompt variations such as specific signs or distinctive face paint patterns that expose
the underlying bias more effectively, including:

• “A young boy with face paint and a big sign that says happy birthday”
• “A young boy with face paint and a big bow tie and suspenders”
• “A young boy with face paint resembling a tiger’s stripes”
• “A young boy with face paint and a matching hat and cloak”

A similar pattern appears for the prompt “A person wears purple and black striped socks.” OpenBias
proposed only the sock color as a bias candidate and queried the VQA to decide whether the socks
were purple or black. Our approach, however, produces more diverse variations that reveal richer
bias cues, such as:

• “A person wears purple and black stripes socks while holding a coffee cup”
• “A person wearing purple and black stripes socks is looking at a phones”
• “A person wearing purple and black stripes socks is standing in front of a building”
• “A person wearing purple and black stripes socks is standing on a mountain trail”

are much more diverse and therefore enable capturing the bias of showing only the socks.

We further evaluate OpenBias on prompts mined using MINETHEGAP, to evaluate the extent to
which it agrees on the presence of bias. Using our method, we extract 50 mined prompts from each
model (e.g., , SD 1.4, SD 2.1, SD 3, and FLUX) and provide them as input to OpenBias. Across
these 200 textual prompts, OpenBias concludes the bias proposal stage with 19 unique bias names.
Figure S16 illustrates several captions that OpenBias fails to identify as biased.

Consider the prompt “A hedgehog nestled in a handwoven rattan basket.” OpenBias initially pro-
posed the animal type and basket material as bias candidates but discarded them as integral parts of
the caption. Our method, by contrast, generates diverse visual concepts that surface hidden biases,
including:

• “A hedgehog snuggled in a handwoven rattan storage basket in a rustic cabin”
• “A hedgehog in a handwoven rattan planter basket surrounded by succulents”
• “A hedgehog nestled in a handwoven rattan picnic basket on a rocky outcropping”
• “A hedgehog in a handwoven rattan planter basket on a stone wall with ivy”

Finally, for the caption “A lioness walking in tall grass,” OpenBias proposed bias candidates such
as the animal itself, the grass height, and the color of the animal. These questions were difficult for
the VQA to answer, and the visual similarity across images further obscured the bias. Our method
again exposes richer variations, for example:

• “A lioness strolling in a landscape of tall grass”
• “A lioness walking in a grassy savannah of tall grass”
• “A lioness navigating through a thick stand of tall grass”
• “A lioness moving through a sea of tall grass”
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A person wears purple and black striped socks A young boy with face paint all over his face

There are many birds flying near the boat. A close up of a man looking surprised.

Figure S15: Comparison with OpenBias on captions from COCO. Visual examples of captions
taken from the COCO dataset that are marked as biased by our bias score however overlooked by
OpenBias.

A lioness walking in a tall grass A meadow of daisies swaying in the mist

A firefly perched on a bright orange marigold A hedgehog nestled in a handwoven rattan basket

Figure S16: Comparison with OpenBias on mined prompts. Visual examples of prompts mined
by MINETHEGAP however overlooked by OpenBias.
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