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ABSTRACT

Vision-language foundation models (e.g., CLIP) have shown remarkable perfor-
mance across a wide range of tasks. However, deploying these models may be
unreliable when significant distribution gap exists between the training and test
data. The training-free test-time dynamic adapter (TDA) is a promising approach
to address this issue by storing representative test samples to guide the classifica-
tion of subsequent ones. However, TDA only naively maintains a limited number
of reference samples in the cache, leading to severe test-time catastrophic forget-
ting when the cache is updated by dropping samples. In this paper, we propose
a simple yet effective method for DistributiOnal Test-time Adaptation (Dota).
Instead of naively memorizing representative test samples, Dota continually esti-
mates the distributions of test samples, allowing the model to continually adapt to
the deployment environment. The test-time posterior probabilities are then com-
puted using the estimated distributions based on Bayes’ theorem for adaptation
purposes. To further enhance the adaptability to uncertain samples, we introduce
a new human-in-the-loop paradigm which identifies uncertain samples, collects
human feedback, and incorporates it into the Dota framework. Extensive exper-
iments validate that Dota enables model to continually learn during test-time,
resulting in a significant improvement compared to state-of-the-art methods.

1 INTRODUCTION

Recent advances in vision-language foundation models have shown remarkable vision understand-
ing capabilities across a broad range of tasks by training on web-scale image-text pairs (Radford
et al., 2021; Lavoie et al., 2024; Zhai et al., 2023). Taking CLIP as an example, it can conduct zero-
shot classification without the need for additional training data using predefined prompts (Radford
et al., 2021). However, CLIP may still face challenges when handling various specific applications
during test time, especially when there is a significant distribution gap between the training and test
data (Shu et al., 2022; Karmanov et al., 2024; Feng et al., 2023).

Test-time adaptation methods are typically employed to address the distribution gap between the
training and test datasets by fine-tuning the original model during test time (Boudiaf et al., 2022;
Chen et al., 2022; Wang et al., 2021). Test-time adaptation aligns well with real-world applica-
tions where models need to adapt to new environments quickly. There are two primary lines to
achieve test-time adaptation on the vision-language foundation models. Early works advocate learn-
ing prompts during test time with the test data (Shu et al., 2022; Feng et al., 2023). However,
these methods require significant computational resources to optimize the learnable prompts via
backpropagation and gradient descent. This significant resource overhead makes them unsuitable
in applications when fast inference speed is widely required. Therefore, a more efficient method,
Training-Free Dynamic Adapter (TDA), has been proposed (Karmanov et al., 2024) recently. To
avoid the training process with backpropagation, TDA maintains a lightweight cache during testing
to store representative test samples and guide the classification of subsequent test samples.

Although TDA has achieved significant efficiency compared to previous methods, it still faces chal-
lenges due to the limited cache capacity. Specifically, TDA naively preserves a limited number
of typical samples in the cache during test time and dynamically updates the cache with higher
classification-confidence samples. This strategy leads to test-time forgetting, because when new
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confident samples are added, the previous cached samples must be discarded. As a result, relying
solely on a few high-confidence samples stored in the cache may lead to a suboptimal classifier.

To address the above issue, we introduce a novel method called DistributiOnal Test-Time Adaptation
(Dota). Dota continually estimates the distribution of test samples to adapt the test environment.
Specifically, under the mild assumption that the embedding distribution of each class follows a
Gaussian distribution (Hastie & Tibshirani, 1996), we propose an efficient method to continually es-
timate the distribution of different classes. Once the distributions of different classes are estimated,
we can easily calculate the posterior probabilities of subsequent test samples based on Bayes’ the-
orem and obtain a test-time classifier for test-time adaptation. Similar to TDA, this process does
not require gradient backpropagation, avoiding the complex computational overhead during testing,
leading to more than 20 times faster inference speed. Moreover, unlike TDA memorizing represen-
tative test samples, Dota can continually adapt to the test environment by estimating the distribution
of different classes. Last but not least, to further improve the performance of the model in dealing
with uncertain or risky samples during test-time adaptation, we introduce a new human-in-the-loop
paradigm. This approach enables the model to detect uncertain samples and then adapt during test
time with the aid of human feedback. This paradigm is crucial in scenarios where the model needs
to adapt quickly to handle uncertainty during test-time. The contributions of this paper are:

• We propose a novel distributional test-time continual learning framework which improve the per-
formance of existing visual-language foundation models in downstream tasks.

• Within this framework, we propose a simple yet effective method to enhance the foundation model
by efficiently estimating the distribution of different categories during test time.

• We first define the test-time adaptation problem with human feedback, which allows the model to
detect high-uncertainty samples and perform test-time adaptation under human feedback.

• Extensive experiments on diverse datasets validate the effectiveness of the proposed method,
demonstrating a significant improvement. The code will be released for reproducing the results.

2 RELATED WORK

Test-time adaptation (TTA) focuses on addressing the distribution shift between training and test
data by learning from the test data. Early efforts to improve TTA performance primarily involve
adjusting batch normalization layers and designing unsupervised objective functions (Nado et al.,
2020; Wang et al., 2020; Khurana et al., 2021; Lim et al., 2023). For example, TENT (Wang et al.,
2020) optimizes the affine parameters in batch normalization layers by minimizing the entropy of
the prediction probability. MEMO (Zhang et al., 2022a) applies variant augmentation methods to
a single test sample and optimizes model parameters by minimizing the entropy of the prediction
probability. T3A (Iwasawa & Matsuo, 2021) achieves test-time adaptation by adjusting the trained
linear classifier using prototypes. To enhance the performance of vision-language models during
testing, TPT (Shu et al., 2022) introduces adaptive text prompts and optimizes the prompts through
entropy minimization. Building on this, DiffTPT (Feng et al., 2023) leverages pre-trained stable
diffusion models to generate diverse augmented data for use in test-time prompt tuning. However,
TPT and DiffTPT rely heavily on gradient backpropagation to optimize the prompts, making them
computationally expensive and resource-intensive during testing. TDA (Karmanov et al., 2024) pro-
poses a lightweight test-time adaption method by storing representative test samples. To enable
practical test-time adaptation in dynamic, time-correlated test data streams, such as autonomous
driving, RoTTA introduces novel robust batch normalization, a memory bank for balanced sam-
pling, and a time-aware reweighting strategy(Yuan et al., 2023). A recent advancement in test-time
adaptation with distribution shift, which introduces the concept of universal TTA to address domain
non-stationarity and temporal correlation, ensuring robust model performance across diverse scenar-
ios (Marsden et al., 2024). Compared to TDA and T3A, which naively stores typical test samples,
we achieve continuous adaptation by estimating the distribution of test samples, leading to a more
efficient and adaptive solution.

Distribution estimation for recognition. Distribution estimation leverages statistical properties of
data to dynamically update models, enabling effective recognition in scenarios with new classes or
shifting distributions(Hastie & Tibshirani, 1996). For instance, Bendale & Boult (2015) introduces
a recognition system capable of continuously learning new object categories within an open-world
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framework by extending nearest class mean algorithms into a nearest non-outlier (NNO) algorithm.
Snell et al. (2017) propose prototypical networks, which leverage distribution estimation by repre-
senting each class with a prototype computed as the mean of embedded support points, enabling
classification through metric space distances and achieving excellent results in few-shot and zero-
shot learning scenarios. De Lange & Tuytelaars (2021) introduce a system for continual prototype
evolution, enabling online learning and prediction from non-stationary data streams through efficient
memory schemes and a novel objective function. In this paper, Dota revisits principles in the litera-
ture on continual learning via nearest class mean classifiers (Bendale & Boult, 2015; Mensink et al.,
2013) for improving the performance of vision-language models at test time with human feedback.

Uncertainty estimation aims to estimate the reliability of decision. Traditional methods for un-
certainty estimation often require additional training processes. For example, ensemble learning
(Lakshminarayanan et al., 2017; Liu et al., 2019) and Bayesian neural networks (MacKay, 1992;
Gal & Ghahramani, 2016) estimate uncertainty by obtaining the distribution of prediction. How-
ever, these methods typically introduce additional computational costs during inference. To address
this, regularization-based methods have been proposed to constrain the confidence of the model dur-
ing training, preventing overfitting and thereby improving uncertainty estimation (Malinin & Gales,
2018; Sensoy et al., 2018; Han et al., 2022; 2024). However, these methods focus on modifying the
training process, such as changing the model architecture or loss function, to estimate uncertainty.
They are not applicable to foundation models that have already been fully trained. Therefore, in this
paper, we focus on estimating uncertainty during the inference stage using test samples.

Vision-language models have demonstrated strong vision understanding capabilities benefiting
from training on large-scale datasets (Radford et al., 2021; Zhai et al., 2023; Lavoie et al., 2024).
Among them, CLIP (Radford et al., 2021) is the most representative method by maximizing the sim-
ilarity between image and their corresponding text embeddings. To further enhance performance of
CLIP on downstream tasks, prompt learning-based methods have been proposed by optimizing the
prompts of the text encoder (Zhou et al., 2022a;b; Bai et al., 2024; Khattak et al., 2023). Moreover,
to reduce the computational cost associated with gradient calculations in prompt learning, efficient
CLIP adaptation methods have been introduced (Gao et al., 2024; Zhang et al., 2022b; Wang et al.,
2024; Li et al., 2024; Yu et al., 2023). These methods enable downstream task adaptation using only
a small number of training samples in the embedding space. Orthogonal to above methods, this
paper focuses on continuously adapting to environments during testing by leveraging test samples.

3 METHOD

Zero-shot classification. During the pre-training stage, CLIP1 trains its image and text encoders
using large-scale image-text pairs. This is achieved by maximizing the cosine similarity between
the image and text embeddings through contrastive loss. Unlike traditional classifiers trained on
closed-set labels, CLIP leverages open-set semantic information in the image-text pairs to learn a
broader range of visual concepts. Consequently, during the test stage, CLIP can perform zero-shot
classification without additional training. Specifically, given a test sample x for K-class classifica-
tion, where x represents the image embedding obtained from the image encoder, the corresponding
zero-shot prediction probability P zs

k for class k is calculated as:

P zs
k (y = k|x) = exp(cos(x,wk)/τ)∑K

k=1 exp(cos(x,wk)/τ)
, (1)

where zs refers to zero-shot. wk is the classification weight for class k, obtained by encoding
the corresponding prompt, e.g., “a photo of {class}”, with the class token replaced by the specific
category name. τ is the learned temperature parameter in CLIP, and cos(·, ·) denotes the cosine
similarity. The above classification process can be understood as comparing the obtained image
embedding with the text prompt and selecting the most similar category as the final decision.

3.1 DISTRIBUTIONAL TEST-TIME ADAPTATION

Motivation. When CLIP is deployed in various environments, the performance tends to degrade
due to the changes of data distribution, especially when the test data has a significant distribution
gap from the CLIP training data. Test-time adaptation can effectively adapt the foundational model

1While this paper primarily focuses on CLIP, our approach is also applicable to other similar models.
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Figure 1: Pipeline of the proposed method. During test time, a stream of test samples is evaluated
with original zero-shot classifier, and we estimate the distributions for the test samples during test-
ing, enabling the model to continually learn from the test samples and the zero-shot classification
probabilities. As the number of test samples increases, the estimated test sample data distribution
will become more accurate. Finally the test-time classifier can then be obtained using the estimated
distributions according to Bayes’ theorem for test-time adaptation.

to new environments quickly during the test stage. Current state-of-the-art method TDA maintains a
cache during test-time to preserve representative samples of different classes, which then guide the
classification of the following test samples. However, TDA may lead to a severe test-time forgetting
problem when the cache is updated due to only maintaining the embeddings of very limited test
samples without learning the underlying relationships between the sample and label. To this end,
we propose distributional test-time adaptation (Dota), which aims to continuously learn from test-
time data by estimating the test sample distribution. Specifically, as shown in Fig. 1, we propose to
online estimate the data distribution of samples in the current test environment during testing. Once
obtaining the distribution, we can leverage Bayes’ theorem to naturally infer the test-time posterior
distribution of different classes for new test samples to adapt the test-time environment.

Classification with classical Gaussian discriminant analysis. Formally, inspired by classical
Gaussian discriminant analysis (Hastie & Tibshirani, 1996), we assume that the embedding distri-
bution of each class k follows a Gaussian distribution, i.e., P (x|y=k) = N (µk,Σk), where µk and
Σk are the mean vector and covariance matrix of class k, respectively. Using Bayes’ theorem, the
posterior probability P (y = k|x) of class k can be given by P (y = k|x) = P (x|y=k)P (y=k)

P (x) , where

P (x) =
∑K

k=1 P (x|y= k)P (y= k) and P (y= k) is the prior probability. In practice, we set the
prior probability to 1/K for simplicity. Then P (y=k|x) can be obtained with

P (y= k |x) = exp(fk(x))∑K
k=1 exp(fk(x))

, (2)

where fk(x) = − 1
2 (x−µk)

TΣ−1
k (x−µk)− 1

2 log |Σk|. The discriminant function fk(x) measures
how well a sample x fits the distribution of class k. The detail can be found in the Appendix A.2.

Parameter estimation with zero-shot predictive probability. We can conduct classifier updat-
ing with the Gaussian discriminant analysis. Unfortunately, during testing, we cannot access to the
ground-truth labels for the N test samples, whose input embeddings are denoted as {xn}Nn=1. There-
fore, we try to use the zero-shot predictive probability to estimate the distribution (Hastie & Tibshi-
rani, 1996). Specifically, we first estimate the zero-shot posterior probability {P zs

k }Kk=1. Then, we
maximize the likelihood by estimating the means {µ̂k}Kk=1 and covariances {Σ̂k}Kk=1. This process
can be viewed as a single iteration of the EM algorithm (Moon, 1996), where obtaining the zero-shot
classification probability corresponds to the expectation step, and estimating {µ̂k, Σ̂k}Kk=1 based on
the zero-shot predicted probability corresponds to the maximization step, adhering to the principle
of maximum likelihood estimation. Formally, {µ̂k, Σ̂k}Kk=1 can be estimated with:

µ̂k =
∑N

n=1 P zs
k (y=k|xn)xn∑N

n=1 P zs
k (y=k|xn)

, Σ̂k=
∑N

n=1 P zs
k (y=k|xn)(xn−µ̂k)(xn−µ̂k)

T∑N
n=1 P zs

k (y=k|xn)
. (3)

The above estimation can also be intuitively understood as reweighting, where the zero-shot pre-
dicted probabilities are used as weights to adjust the contributions of different samples, thereby
mitigating the impact of the potential inaccuracies in the zero-shot predicted probabilities.
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Test-time distribution estimation. When estimating data distribution at test time, one another
challenge is that we evaluate the test samples sequentially in a streaming manner instead of access-
ing all samples simultaneously. This necessitates a strategy to appropriately adjust the estimation
method in Eq. 3 through effective initialization, and then allowing the parameters to be updated
quickly as new test samples arrive. To achieve this goal, Dota maintains the distribution informa-
tion of different classes (i.e., mean and covariance matrix) during testing, and updates its distribution
information based on its representation information after obtaining new samples. Initialization of
{µ̂k, Σ̂k}Kk=1. We can initialize the estimated mean of different classes in a way that aligns it with
the original zero-shot classifier {wk}Kk=1, i.e., µ̂0

k = wk and Σ̂0
k = σ2I, where σ2 is a hyperpa-

rameter that determines the initial variance and I is the identity matrix. Update of {µ̂k, Σ̂k}Kk=1.
We employ the update form described in (Dasgupta & Hsu, 2007), which is capable of estimating
Gaussian distribution parameters in an online setting. Theoretically, for any sequence, the average
regret of the update form converges to zero in the limit. Specifically, given a batch of test samples
at step t, the updated µ̂t

k, Σ̂
t
k can be computed based on the µ̂t−1

k , Σ̂t−1
k as follows:

µ̂t
k =

ct−1
k µ̂t−1

k +
∑

n P zs
k (y=k|xn)xn

ct−1
k +

∑
n P zs

k (y=k|xn)
and Σ̂t

k =
ct−1
k Σ̂t−1

k +
∑

n P zs
k (y=k|xn)(xn−µ̂t−1

k )(xn−µ̂t−1
k )T

ct−1
k +

∑
n P zs

k (y=k|xn)
,

(4)
where ct−1

k is the sum of the confidences of the cumulative number of observed samples of class k at
step t− 1, and c0k = 1, with ctk updated as ctk = ct−1

k +
∑

n P
zs
k (y=k|xn). Then, we can use Eq. 2

to calculate the test-time adapted posterior probability. In practice, Eq. 4 is a generalized vector
update version that works effectively with different test batch sizes. For consistency with compar-
ison methods, we set the batch size to 1 in our experiments. To reduce computational complexity
when inverting the covariance matrix Σ̂k, similar to the approach in (Anderson et al., 1958; Fried-
man, 1989), we approximate the covariance by averaging across all classes, reducing the number
of matrix inversions from K to 1, thereby improving efficiency. Additionally, we apply shrinkage
regularization to the precision matrix to enhance the stability of the inversion process as follows:
Λ̂ = [(1 − ϵ)Σ̂ + ϵI]−1, where ϵ = 10−4 is the shrinkage parameter. The term ϵI ensures that the
eigenvalues of the covariance matrix are well-conditioned, maintaining the desired properties such
as positive definiteness and rank stability.

Comparison with single image TTA(Khurana et al., 2021). In single image TTA, the model
makes predictions based solely on the given test instance. However, Dota is a versatile TTA method
that works seamlessly in both single-image and multi-image settings benefiting from its vectorized
distribution estimation strategy and preserving class means and covariance matrix parameters.

3.2 TEST-TIME ADAPTION WITH HUMAN FEEDBACK

Figure 2: Test-time uncertainty estima-
tion is employed to identify unconfident
samples, prompting the input of human
feedback. The feedback, combined with
the prediction of model, is then utilized
for test-time adaptation.

Test-time adaption with human feedback. Dota en-
hances model performance by estimating the data distri-
bution of incoming test samples. However, relying solely
on zero-shot predicted probability distributions for this
estimation may lead to inaccuracies, particularly for orig-
inally uncertain samples. The predicted probabilities of
these uncertain samples often fail to provide reliable in-
formation for accurate distribution estimation. To address
this, we propose a new task that incorporates human feed-
back during test-time adaptation, establishing a simple
yet effective human-in-the-loop paradigm. Specifically,
after the model is deployed, we aim to obtain label in-
formation on uncertain samples with human in real-time
and use it for test-time adaptation. This approach enables
quick and effective performance improvements on uncer-
tain samples during testing.

Test-time uncertainty estimation. To achieve the test-
time adaption with human feedback, we first define the
test-time uncertainty estimation task, which aims to de-
termine whether the current test sample is uncertain based
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on the information from the previous test samples stream. Formally, given a test sample xi and
the previously tested samples {xn}i−1

n=1, our objective is to evaluate whether the current sample
xi is uncertain, leveraging information from both the previous inference samples {xn}i−1

n=1 and
xi itself. To achieve this goal, we propose a simple yet effective method based on the confi-
dence scores of past samples2. Specifically, we store the confidence scores of all past test sam-
ples and use this information to determine whether the current test sample falls within the low-
est percentile of confidence scores. Formally, given the confidence score si of the current sam-
ple xi, where si = max({P zs

k (y= k|xi)}Kk=1), we classify xi as uncertain if si ≤ sγ . where
sγ = percentile({sn}in=1, γ) represents the value at the γ-th percentile of the confidence scores
{sn}in=1, with γ indicating the proportion of scores when sorted in ascending order. In other words,
sγ corresponds to the score below which γ proportion of the sorted confidence scores fall. More-
over, γ can be viewed as a hyperparameter that controls the proportion of samples classified as
uncertain, which can be used to control the degree of human involvement during the testing pro-
cess. Compared with the traditional method of judging whether the decision is uncertain only based
on the current sample, we can obtain relative uncertainty estimation to improve the adaptability of
model to the test data distribution and more robust threshold setting. Then as shown in Fig. 2 when
sample is uncertain, we can collect human feedback, manually determine its true label, and use the
method in Sec. 3.1 to continuously update the model. Why confidence from zero-shot classifier.
The estimated confidence is derived from a zero-shot classifier because the pre-trained CLIP model
demonstrates strong calibration in the zero-shot setting (Minderer et al., 2021). We can also use other
calibration methods (Tu et al., 2024; Wang et al.) to further improve the reliability of confidence.

Difference between test-time adaption with human feedback and active learning. Active learn-
ing (Holub et al., 2008; Sener & Savarese, 2018; Ash et al., 2020; Bang et al., 2024) is a paradigm
where a model selects the most informative samples for labeling to optimize learning efficiency. The
core difference in sample selection strategies between active learning and test-time adaptation with
human feedback lies in the data availability setting. Specifically, active learning assumes simultane-
ous access to a small labeled dataset and the entire pool of unlabeled data, enabling the scoring and
selection of the most valuable samples for labeling from the complete dataset. In contrast, test-time
adaptation with human feedback processes a continuous stream of data, where each sample is pre-
sented sequentially and cannot be revisited later. This necessitates immediate, on-the-fly decisions
about collecting human feedback based solely on the current sample and insights from previously
observed samples, without prior access to the entire dataset.

Similarity between test-time adaptation with human-feedback and active learning. Both active
learning and test-time adaptation with human feedback involve scoring samples to assess their value,
using criteria such as uncertainty (Nguyen et al., 2022), diversity (Sener & Savarese, 2018; Ash
et al., 2020), or confidence (Li & Sethi, 2006). In this work, we adopt a simple confidence-based
scoring method to decide whether to collect human feedback. We also explore other criteria, such
as similarity-based scoring in our experiments.

3.3 ADAPTIVE FUSION OF ZERO-SHOT AND TEST-TIME CLASSIFIER

As the number of test samples increases, the reliability of the estimated test sample distribution
improves (Dasgupta & Hsu, 2007). However, when the number of test samples is insufficient, the
estimated distribution may be unreliable. To address this, we introduce a dynamic zero-shot classi-
fication and test-time result fusion approach, allowing the model to rely more on zero-shot classifi-
cation during stages where the sample size for distribution estimation is insufficient. Formally, the
final fusion probability is defined as follows:

Pk(y = k|x) = exp(cos(x,wk)/τ+λfk(x))∑K
k=1[exp(cos(x,wk)/τ+λfk(x))]

, (5)

where λ = min(ρc, η). Here, c represents the number of test samples, and ρ and η are hyper-
parameters that control the weight of the test-time classifier logits. The value of λ increases with
the number of test samples when this number is insufficient, gradually approaching the maximum
value η. This approach encourages the model to rely on the zero-shot classifier results when the test
samples are insufficient to estimate the distribution, mitigating the potential negative impact of the
test-time classifier. The whole pseudo code is shown in Alg. 1.

2We propose a simple yet effective solution and leave the task of improving performance to future work.
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4 EXPERIMENTS

Benchmarks. Consistent with prior works (Shu et al., 2022; Feng et al., 2023; Karmanov et al.,
2024), we conduct our main experiments on natural distribution shifts and cross-domain general-
ization scenarios. For the natural distribution shifts scenario, we utilize multiple datasets including
ImageNet (Deng et al., 2009), ImageNet-A (Hendrycks et al., 2021b), ImageNet-R (Hendrycks et al.,
2021a), ImageNetV2 (Recht et al., 2019), and ImageNet-S (Wang et al., 2019), which serve as mea-
sures of the robustness of our approach. In the cross-domain generalization scenario, we evaluate
the performance of the model across 10 diverse image classification datasets, each representing a
distinct domain with different classes: Aircraft (Maji et al., 2013), Caltech101 (Fei-Fei et al., 2004),
Cars (Krause et al., 2013), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), Flower102
(Nilsback & Zisserman, 2008), Food101 (Bossard et al., 2014), Pets (Parkhi et al., 2012), SUN397
(Xiao et al., 2010), and UCF101 (Soomro et al., 2012). This benchmark provides a comprehensive
evaluation of the adaptability of the model during test time across various class spaces.

Evaluation metrics. When there is no human feedback, We report the accuracy of different meth-
ods. When human feedback is available, we evaluate performance using two metrics: standard
accuracy (ACC) and feedback-enhanced accuracy (ACC⋆). ACC evaluates accuracy using the pre-
dicted labels before incorporating human feedback, ensuring comparability with other methods by
using the same number of test samples. In contrast, ACC⋆ uses the updated labels for samples with
human feedback to evaluate the overall accuracy, highlighting the benefit of incorporating feedback.

Choice of hyperparameters. To ensure a fair comparison with other methods, we used the same
experimental settings, adjusting model hyperparameters based on the validation set. However, we
repeated the experiments and found that the proposed method is inherently robust to hyperparameter
variations, achieving strong performance on the test set without hyperparameters tuning.

Comparison method. We compare the proposed method with TPT (Shu et al., 2022), DiffTPT
(Feng et al., 2023), ZERO (Farina et al., 2024), TDA (Karmanov et al., 2024), BoostAdapter (Zhang
et al., 2024b) and HisTPT(Zhang et al., 2024a). To be consistent with the previous works (Karmanov
et al., 2024), we also include the baseline zero-shot performance of CLIP, using the ensemble of 80
hand-crafted prompts (Radford et al., 2021). We compare with ATPT(Sarkar et al., 2024) that also
incorporates human feedback.

4.1 COMPARISON WITH STATE-OF-THE-ARTS METHODS

Method BP-free Continual adaption ImageNet ImageNet-A ImageNet-R ImageNet-S Average ImageNetV2

CLIP-ViT-B/16 ✓ ✗ 68.34 49.89 77.65 48.24 61.03 61.88
TPT ✗ ✗ 68.98 54.77 77.06 47.94 62.19 63.45
DiffTPT ✗ ✗ 70.30 55.68 75.00 46.80 61.95 65.10
TDA ✓ ✗ 69.51 60.11 80.24 50.54 65.10 64.67
Dota ✓ ✓ 70.68 61.19 81.17 51.33 66.09 64.41

Dota 5% feedback ✓ ✓ 71.01 61.44 81.41 52.13 66.50 64.45
Dota 5% feedback⋆ ✓ ✓ 74.52 64.72 85.01 55.99 70.06 68.11
Dota 15% feedback ✓ ✓ 71.83 61.83 81.78 53.34 67.20 64.53
Dota 15% feedback⋆ ✓ ✓ 80.91 71.33 90.15 64.18 76.64 75.38

CLIP-ResNet-50 ✓ ✗ 59.81 23.24 60.72 35.48 44.81 52.91
TPT ✗ ✗ 60.74 26.67 59.11 35.09 45.40 52.91
DiffTPT ✗ ✗ 60.80 31.06 58.80 37.10 46.94 55.80
TDA ✓ ✗ 61.35 30.29 62.58 38.12 48.09 55.54
Dota ✓ ✓ 61.82 30.81 62.81 37.52 48.24 55.27

Dota 5% feedback ✓ ✓ 62.12 31.01 63.04 37.86 48.51 55.30
Dota 5% feedback⋆ ✓ ✓ 65.92 35.32 67.42 42.31 52.74 59.05
Dota 15% feedback ✓ ✓ 62.77 31.13 63.34 38.48 48.93 55.34
Dota 15% feedback⋆ ✓ ✓ 73.22 43.66 74.98 51.07 60.73 66.51

Table 1: Top-1 accuracy and accuracy with human feedback(with ⋆)(%) under the natural distribu-
tion shifts scenario. For clarity, the best and second-best results that do not require human-feedback
are shown in bold and underlined, respectively. Dota 5% and 15% feedback indicate test-time adap-
tation with human-feedback on uncertain samples, with approximately 5% and 15% of the samples
being uncertain (γ = 0.05 or 0.15). BP-free and continual adaption indicate whether the method
does not require gradient backpropagation and has the ability of continuous adaptation. Last column
shows the failure cases of Dota. Detailed reasons are in the experimental results section.
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Method Kather PanNuke WSSS4LUAD Average
PLIP (Baseline) 45.60 71.56 70.31 62.49
TDA 49.39 71.56 72.13 64.36
DOTA 55.22 72.25 72.32 66.60
5% Human Feedback 56.52 72.35 72.62 67.16
5% Human Feedback* 57.82 73.83 73.25 68.30
15% Human Feedback 58.32 72.46 72.79 67.86
15% Human Feedback* 61.60 76.91 74.41 70.97

Table 2: Comparisons of PLIP and proposed
methods across medical datasets.

Results under the natural distribution shifts sce-
nario and the cross-domain generalization sce-
nario. We first compare Dota with state-of-the-art
methods in the context of natural distribution shifts.
Tab. 1 and Tab. 3 present the experimental results, re-
vealing several key observations. (1) Leveraging dis-
tribution modeling of the representation of test data,
Dota achieves superior performance without requir-
ing gradient backpropagation. (2) Performance of
Dota can be further improved by incorporating human feedback. For example, with the ViT-B/16
backbone, introducing human feedback for approximately 5% of uncertain inference samples dur-
ing test-time adaptation leads to an additional average performance improvement of 0.41%. When
the collected human feedback was used to replace the model’s original predictions, model perfor-
mance was further significantly improved. (3) The performance improvement achieved by DOTA
on ResNet-50 is notably smaller compared to ViT-B/16. This discrepancy can be attributed to differ-
ences in representation dimensions. Specifically, ResNet’s representation dimension is 1024, while
ViT-B/16’s is 512. In our method, this results in a significant increase in the number of parameters
required to estimate the test data distribution. (4) Dota achieves better performance with human
feedback. As shown in Tab. 3, compared to TDA and ATPT, Dota achieves an average performance
of 70.96 with 5% feedback, while ATPT and TDA achieve 67.26 and 65.31, respectively. (5) While
our approach demonstrates the advantage of continuously estimating the distribution of test data,
allowing for adaptation to test data, it does not consistently outperform TDA on all the dataset. For
example, as shown in Tab. 1, on ImagenetV2 datasets with only 10 samples per class, Dota does
not significantly exceed TDA.

Method Aircraft Caltech101 Cars DTD EuroSAT Flower102 Food101 Pets SUN397 UCF101 Average

CLIP-ViT-B/16 23.22 93.55 66.11 45.04 50.42 66.99 82.86 86.92 65.63 65.16 64.59
TPT 24.78 94.16 66.87 47.75 42.44 68.98 84.67 87.79 65.50 68.04 65.10
DiffTPT 25.60 92.49 67.01 47.00 43.13 70.10 87.23 88.22 65.74 62.67 65.47
TDA 23.91 94.24 67.28 47.40 58.00 71.42 86.14 88.63 67.62 70.66 67.53
ZERO 25.21 93.66 68.04 46.12 34.33 67.68 86.53 87.75 65.03 67.77 64.21
BoostAdapter 27.45 94.77 69.30 45.69 61.22 71.66 87.17 89.51 68.09 71.93 68.68
HisTPT 26.90 94.50 69.20 48.90 49.70 71.20 89.30 89.10 67.20 70.10 67.60
Dota 25.59 94.32 69.48 47.87 57.65 74.67 87.02 91.69 69.70 72.06 69.01

ATPT 5% feedback 24.85 94.27 67.86 48.23 49.88 72.36 86.77 90.65 67.51 70.23 67.26
TDA 5% feedback 23.13 91.36 64.73 41.78 55.54 69.47 85.87 89.48 64.54 67.17 65.31
Dota 5% feedback 26.73 94.56 70.95 49.82 65.00 76.86 87.17 92.78 70.49 75.26 70.96
TDA 15% feedback 23.73 91.93 66.02 44.27 64.06 70.52 85.97 90.52 65.8 71.56 67.44
Dota 15% feedback 28.65 95.01 73.01 53.78 76.60 79.70 87.41 93.54 71.82 79.33 73.89

CLIP-ResNet-50 16.11 87.26 55.89 40.37 25.79 62.77 74.82 82.97 60.85 59.48 56.63
TPT 17.58 87.02 58.46 40.84 28.33 62.69 74.88 84.49 61.46 60.82 57.66
DiffTPT 17.60 86.89 60.71 40.72 41.04 63.53 79.21 83.40 62.72 62.67 59.85
TDA 17.61 89.70 57.78 43.74 42.11 68.74 77.75 86.18 62.53 64.18 61.03
HisTPT 18.10 87.20 61.30 41.30 42.50 67.60 81.30 84.90 63.50 64.10 61.20
Dota 18.06 88.84 58.72 45.80 47.15 68.53 78.61 87.33 63.89 65.08 62.20

TDA 5% feedback 15.75 84.91 54.47 37.77 48.86 64.43 76.66 82.53 57.7 60.48 58.36
Dota 5% feedback 18.81 89.25 59.22 47.10 59.36 69.63 78.75 88.28 64.65 68.04 64.31
TDA 15% feedback 16.05 85.52 56.17 41.02 55.1 65.81 76.87 84.41 59.24 63.05 60.32
Dota 15% feedback 19.62 89.98 60.34 51.83 68.19 72.59 79.06 88.96 65.96 72.46 66.90

Table 3: Top-1 accuracy (%) under the cross-domain generalization scenario.

Method Testing Time Accuracy Gain

CLIP-ViT-B/16 11.82min 68.34 0

TPT 447min 68.98 +0.64
DiffTPT 1346min 70.30 +1.96
TDA 22min 69.51 +1.17
Dota (Ours) 22min 70.68 +2.34

Table 4: Comparisons of our Dotawith
other methods in terms of efficiency
(Testing Time) and effectiveness (Accu-
racy). The final column shows the accu-
racy gain compared with the baseline.

Results under other dataset and CLIP-like foundation
model. We conducted experiments using PLIP (Huang
et al., 2023) as the backbone and baseline for comparison,
evaluating our method on three medical image datasets
Kather, PanNuke, and WSSS4LUAD. The results, sum-
marized in Tab. 2, show that DOTA consistently outper-
formed other methods, with further accuracy improve-
ments observed when incorporating human feedback.

Inference time comparison. To illustrate the efficiency
of the proposed method, we conduct evaluation about the
inference time using the ViT-B/16 backbone on the ImageNet (Deng et al., 2009) dataset. The
experimental results are shown in Tab. 4. From the table, we can see that the proposed method
is faster than the methods that require gradient backpropagation. For example, Dota is 24 times
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faster than TPT, and 61 times faster than DiffTPT. Therefore, test-time adaptation methods that
require gradient backpropagation may not be applicable during deployment due to the performance
limitations of the inference device. At the same time, compared with TDA, the speed of the proposed
method is comparable, but the performance is higher.

4.2 ABLATION STUDIES AND FURTHER ANALYSIS

σ2 0.0001 0.001 0.002 0.004 0.008 0.02

Acc 70.58 70.63 70.68 70.64 70.56 70.36

η\ρ 0.005 0.01 0.02 0.03

0.2 70.68 70.66 70.51 70.43
0.3 70.66 70.51 70.28 70.16
0.4 70.66 70.48 70.19 70.03
0.5 70.66 70.44 70.08 69.91

Table 5: Hyperparameters analysis on
the σ2 and (ρ, η) combinations.

faHyperparameters analysis. To validate the sensitiv-
ity of our model to hyperparameters, we conduct system-
atic experiments and analyses. First, we evaluate the hy-
perparameter σ2 while keeping other parameters fixed.
The results showed minimal impact on model accuracy,
with performance ranging from 70.36 to 70.68. Next,
we test different ρ and η combinations, observing stable
performance across combinations. For instance, accuracy
ranged from 70.68 to 69.91 as ρ and η varied. Notably,
all hyperparameter combinations show that the proposed
method outperforms the original zero-shot classifier, in-
dicating that TTA can significantly enhance performance
even without a validation set for hyperparameter tuning.

The necessity of adaptive fusion of zero-shot and test-time classifier. We conduct ablation study
to show that adaptive fusion of zero-shot and test-time classifier is necessary. The specific exper-
imental results are shown on the Tab. 5. It can be observed that as ρ increases (indicating the
diminishing effect of dynamic fusion), the performance of Dota consistently decreases.

Feedback ratio Acc Acc⋆

0% 70.68 70.68
1% 70.77 71.52
2% 70.79 72.26

Table 6: ACC with limited feedback.

Performance analysis with limited human feedback.
We conducted experiments with human feedback ratios
of 1% and 2%. The results, shown in Tab. 6, demonstrate
that the model achieves absolute performance improve-
ment even with only 1% feedback.

Performance on non-i.i.d. data streams. During test-
ing, the distribution of test data may change continuously (Gong et al., 2022; Yuan et al., 2023;
Marsden et al., 2024). To evaluate the model’s robustness under test distribution shift, we con-
ducted corresponding experiments on multiple distribution shift settings. The experimental results
are shown in Tab. 7. Details are shown in Appendix A.1. We can see that the proposed method is
relatively robust to the test-time distribution shift.

Distribution I.I.D (5,0.1) (5, 0.5) (5,1) (10,0.1) (10, 0.5) (10,1)

Performance 70.68 70.45 70.52 70.83 70.39 70.55 70.66

Table 7: Performance comparison on i.i.d and
non-i.i.d. test dataset.

Feedback instances 0 1 2 - 6 7 - 11 12 - 16

Number of Classes 300 203 390 92 15

Table 8: Number of feedback instances received
by different classes under a 5% feedback rate.

Analysis of continuous learning ability and test-time forgetting of TDA. When testing on the
ImageNet dataset, we record the performance of the most recent 5,000 test samples and compare
them with the original zero-shot classifier performance, recording the relationship between the im-
provement in model performance and the number of test samples seen. The results are shown in
Fig. 3. From the experimental results, we can see that the proposed method gradually improves the
model performance as the number of test samples increases. In contrast, the improvement of TDA
first increases and then decreases, and it is unable to continuously learn from the test data stream due
to the test-time forgetting problem. We show the performance of the last 50% of test samples and
all samples on more datasets in Tab. 9. The experimental results clearly show that the performance
of the last 50% of test samples is significantly higher than the overall performance. The above im-
provement is due to the fact that the estimated distribution becomes more reliable as the number of
observed test samples increases. However, TDA is different, and its performance has declined on
multiple datasets.
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Method Aircraft Caltech101 Cars DTD Flower102 Food101 Pets SUN397 UCF101

TDA (all test samples) 23.91 94.24 67.28 47.40 71.42 86.14 88.63 67.62 70.66
TDA (last 50% test samples) 26.57 93.59 66.95 46.22 71.75 86.02 89.26 67.86 72.20
Dota (All test samples) 25.59 94.32 69.48 47.87 74.67 87.02 91.69 69.70 72.06
Dota (last 50% test samples) 27.11 94.65 69.88 50.95 75.89 87.10 93.02 70.67 73.20

Table 9: Performance of Dota and TDA with ViT-B/16 across multiple datasets, comparing overall
accuracy and the last 50% of test samples to show continuous adaptability.

Accuracy analysis of the selected uncertain samples. We evaluate the zero-shot classification
accuracy of the selected uncertain samples. The experimental results are shown in Tab. 10. From
the table, we can see that the uncertain samples found using the proposed confidence-based method
usually have lower zero-shot classification accuracy. The zero-shot classifier averages 64.59% accu-
racy, but for the 5% uncertain samples found by our method, it drops to 25.87%. This demonstrates
that the proposed method accurately detects samples with low classification confidence, enabling
efficient label collection through a human-in-the-loop approach. Confidence is more effective than
similarity in identifying uncertain samples, as it accounts for similarities across multiple classes,
while maximum similarity focuses on just one class.

Feedback Percentile Method Aircraft Caltech101 Cars DTD EuroSAT Flower102 Food101 Pets SUN397 UCF101 Average

- CLIP 23.22 93.55 66.11 45.04 50.42 66.99 82.86 86.92 65.63 65.16 64.59

5% Random 19.17 84.09 51.14 47.54 37.06 71.59 76.2 93.33 67.72 62.62 61.05
Similarity 19.32 91.95 51.76 30.36 5.00 42.86 54.56 50.00 55.61 32.22 43.36

Confidence 11.80 68.35 25.00 15.87 20.51 9.63 31.74 37.93 19.79 18.09 25.87

15% Random 17.16 84.81 58.9 44.72 38.53 65.67 77.5 89.72 63.71 58.94 59.97
Similarity 21.37 95.74 58.94 32.70 13.73 37.89 63.40 65.74 55.91 45.68 49.11

Confidence 11.36 71.81 29.81 18.12 19.63 20.16 44.91 52.04 30.66 21.42 31.99

Table 10: Top-1 accuracy (%) of uncertainty samples selected by different methods. Lower accuracy
suggests better identification of uncertain samples by the method.

Figure 3: Improvement of different methods
in model performance as the number of en-
countered test samples increases.

Analysis of uncertain samples. To illustrate test-
time adaptation with human feedback, we analyze
the distribution of feedback across ImageNet classes
under a 5% feedback rate. From the Tab. 8, it can
be seen that the amount of human feedback col-
lected for different categories is imbalanced, with
some categories receiving more feedback and oth-
ers receiving less. Similar conclusions were also ob-
served in active learning of CLIP (Bang et al., 2024).
These findings highlight the potential for further re-
finement of the methods. Addressing the observed
class imbalance during sample selection and human
feedback acquisition could further enhance the ef-
fectiveness of our approach.

5 CONCLUSION AND FUTURE WORK

We propose a method for continuous test-time adaptation, which enhances the original zero-shot
classifier by continually adapting through online estimation of the test sample distribution and ob-
taining test-time posterior probabilities. To achieve this, we introduce an online distribution param-
eter estimation method that can estimate the distribution of test samples during testing by using the
prediction probabilities from the zero-shot classification of the data stream samples. Additionally,
to further adapt to uncertain samples that the base model may encounter during deployment, this
work is the first to define the task of test-time adaptation, which detects uncertain samples and col-
lects human feedback labels. By leveraging the human feedback on uncertain samples, the proposed
continuous adaptation method is further improved. Dota demonstrates superior performance and
comparable speed across various scenarios. In the future, we believe that exploring better test-time
uncertainty estimation methods to collect human feedback and conduct test-time adaptation repre-
sents a promising direction in Human-AI collaboration.
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A APPENDIX

A.1 RESULTS ACROSS MULTIPLE DATA ORDERING.

We conducted experiments on five test data in different ordering on multiple datasets. The experi-
mental results are shown in the Tab. 11. From the experimental results, we can see that the order of
test data has little effect on the prediction performance.

Dataset Method\Data ordering 1 2 3 4 5 Average

ImageNet Dota 70.57 70.70 70.70 70.61 70.45 70.61
ImageNet Dota with 5% human feedback 71.09 71.10 71.00 70.85 70.90 70.99
ImageNet Dota with 15% human feedback 71.86 71.76 71.74 71.85 71.93 71.83
eurosat Dota 57.78 56.99 58.15 57.28 57.22 57.48
eurosat Dota with 5% human feedback 64.89 65.38 64.74 64.60 66.28 65.18
eurosat Dota with 15% human feedback 75.68 77.90 76.85 77.57 76.93 76.99
OxfordPets Dota 91.88 91.71 91.80 91.71 91.99 91.82
OxfordPets Dota with 5% human feedback 92.56 93.05 92.78 92.89 92.56 92.77
OxfordPets Dota with 15% human feedback 93.84 93.68 93.68 93.62 93.70 93.70

Table 11: Experimental results across multiple datasets and test data orderings.

We conducted additional experiments to evaluate the model’s performance under non-i.i.d. data
distribution during testing, using the ImageNet dataset as a benchmark. By employing a Dirichlet
distribution, we simulated varying degrees of non-i.i.d. data streams, adjusting the concentration pa-
rameter and dividing the dataset into 5 and 10 time slices for analysis. The details of the experiments
are shown as follows:

Time Slices: We divided the ImageNet dataset into 5 and 10 time slices, where each slice contains
varying numbers of samples and class distributions.

Concentration Parameter ([α]K): The concentration parameter of the Dirichlet distribution con-
trols the uniformity of class distributions across slices. Smaller α values (e.g., 0.1) create highly
uneven distributions, while larger values (e.g., 0.5 and 1) result in more uniform distributions.

Evaluation Setting: Since the sizes of sub-datasets for each time slice are unequal, the final average
accuracy is a weighted average based on the number of samples in each slice. The experimental
results are summarized below.

α Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Average

0.1 68.67 69.72 71.60 71.14 71.08 70.45
0.5 69.57 70.75 69.53 71.85 70.83 70.52
1 69.47 71.59 71.06 69.92 71.83 70.83

Table 12: Performance on non-i.i.d. data streams (5 slices).
α Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6 Slice 7 Slice 8 Slice 9 Slice 10 Average

0.1 70.44 69.48 67.26 70.25 71.49 68.91 73.03 70.48 69.72 72.39 70.39
0.5 69.01 69.30 72.10 71.04 69.83 69.90 70.30 70.63 72.34 70.81 70.55
1 67.23 70.12 71.01 68.25 69.76 71.14 72.01 72.59 71.46 71.75 70.66

Table 13: Performance on non-i.i.d. data streams (10 slices).

From the experimental results, we can see that the model shows strong robustness to non-i.i.d. data
streams, with only minimal accuracy decline under small α (e.g., α = 0.1). Moreover, for rela-
tively mild test distribution changes, our approach adapts well by incorporating human feedback
and online distribution estimation. Simple modifications, such as a sliding window mechanism,
could further improve performance. However, in extreme distribution shift scenarios, performance
may be impacted due to challenges in reliably estimating the distribution with insufficient samples.

A.2 MORE DETAILS AND EXPLANATION ABOUT THE fk(x) IN EQ. 2.

The function fk(x), often referred to as the discriminant function, measures how well a data point x
fits the distribution of class k. It is derived from Gaussian Discriminant Analysis and consists of two
main components. The first component is the Mahalanobis distance, − 1

2 (x − µk)
TΣ−1

k (x − µk),
which calculates the squared distance between x and the class mean µk, scaled by the inverse of the
covariance matrix Σk. This term captures the similarity of x to the center of the class, considering
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feature correlations. The second component is the normalization term, − 1
2 log |Σk|, which accounts

for the determinant of the covariance matrix Σk and reflects the spread (or volume) of the Gaussian
distribution for class k. This ensures that classes with larger variances are normalized appropriately.
Intuitively, a larger value of fk(x) indicates a higher likelihood that x belongs to class k. In classifi-
cation, fk(x) is used within the softmax function to compute the posterior probability P (y = k | x),
which determines the most likely class for x: P (y = k | x) = exp(fk(x))∑K

k=1 exp(fk(x))
.

A.3 PERFORMANCE COMPARISON BETWEEN DIFFERENT SAMPLE SELECTION METHOD

We incorporate more sample selection strategies. The experimental results are shown in the table
below. From the experimental results in Tab. A.3, it can be seen that the confidence-based selection
can achieve better performance.

Human-Feedback Method Acc Acc⋆

0% Dota 70.68 70.68

5%
Random 70.86 72.34
Similarity 71.08 73.48
Confidence 71.01 74.52

15%
Random 71.28 75.61
Similarity 71.68 78.18
Confidence 71.83 80.91

Table 14: Experimental results with different human-feedback percentages and selection strategies.

Algorithm 1: The distributional test-time adaptation pseudocode of Dota.

Input: The embedding of N test samples {xn}Nn=1, zero-shot classification weights
[w1, · · · ,wK ];

Initializing the distribution of different class;
for each test sample xi do

Obtain the zero-shot classification probability with Eq. 1;
Determine whether xi is an uncertain sample according to Sec. 3.2;
Collect human feedback if needed;
Update the distribution of different class with Eq. 4;
Obtain the test-time classification probability with Eq. 2;
Obtain the final classification result with Eq. 5.

A.4 DETAILS OF COMPARISON METHOD.

We compare the proposed method with the following method: (1) TPT (Shu et al., 2022) is a test
time prompt tuning method. (2) DiffTPT (Feng et al., 2023) introduces more diverse test sample
augmentation with diffusion model. TPT and DiffTPT require gradient backpropagation to update
prompt, so they require greater computational cost. (3) TDA (Karmanov et al., 2024) introduce
an efficient test-time adaption method do not need backpropagation, which works with a cache
containing representative samples to conduct test time adaption with these samples. To be consistent
with the previous works (Shu et al., 2022; Karmanov et al., 2024), we also include the baseline zero-
shot performance of CLIP, using the ensemble of 80 hand-crafted prompts (Radford et al., 2021).

A.5 THE NECESSITY OF ESTIMATING DISTRIBUTION WITH ZERO-SHOT PROBABILITY.

We compared the performance of the Dota with a simplified version that only uses high-confidence
samples to estimating the distribution of different calsses. This experiment aimed to understand the
necessity of estimating distribution with zero-shot probability rather than high-confidence samples.
The experimental results are shown in Tab. A.5. From the experimental results, we can see that in
most cases, using all data to update the distribution parameters will not lead to a decrease in model
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performance, but will help improve the performance of the model. These findings highlight the
importance of low confidence samples.

Method Caltech101 Cars DTD EuroSAT Flower102 Food101 Pets SUN397 UCF101 Average

TDA 94.24 67.28 47.40 58.00 71.42 86.14 88.63 67.62 70.66 72.38
Dota (learn from high confidence samples) 94.10 68.08 45.70 58.60 72.06 88.06 89.47 69.90 68.80 72.75

Dota 94.32 69.48 47.87 57.65 74.67 87.02 91.69 69.70 72.06 73.49

Table 15: Ablation study comparing the performance of Dota with a variant that uses only the high
confidence samples to estimate the distribution parameters.

A.6 EFFECTIVENESS OF TTA WITH HUMAN FEEDBACK ON LARGE-SCALE TEST DATASET.

We evaluate the impact of incorporating human feedback on model performance using a larger
dataset (over 1 million test samples). Specifically, we introduce more human feedback during the
early stages of model testing (the first 50,000 samples), but stop introducing feedback or updating
the model in the later stages of testing. The experimental results are as follows. It can be seen that
when the model is adapted during testing with human feedback, the more test samples the model
has in the future, the greater the benefits it brings, and the lower the cost of human feedback.

Model Performance (%) in terms of standard ACC

Original CLIP 70.14

DOTA without human feedback 70.89
DOTA with Feedback rate at 0.75% 72.01
DOTA with Feedback rate at 1% 72.44
DOTA with Feedback rate at 2% 73.15

Table 16: Experimental results with different human-feedback percentages on large-scale dataset.

A.7 THE NECESSITY OF DISTRIBUTION ESTIMATION.

We compared the performance of the Dota with a simplified version that only uses the mean,
excluding the estimation of the Gaussian distribution by removing the covariance matrixs. This ex-
periment aimed to understand the necessity of continual distribution estimation in enhancing model
accuracy. The experimental results are shown in Tab. 17. The third row in the table presents the
accuracy reductions across different datasets when the covariance matrix is removed. The results
indicate a consistent decrease in accuracy across all datasets, with a particularly notable drop of
3.41% on the UCF101 dataset. These findings highlight the importance of continual distribution
estimation.

Method Aircraft Caltech101 Cars DTD EuroSAT Flower102 Food101 Pets SUN397 UCF101 Average

Dota 25.59 94.32 69.48 47.87 57.65 74.67 87.02 91.69 69.70 72.06 69.01

w/o covariance 24.99 92.09 67.29 45.62 54.99 70.89 86.40 90.11 67.62 68.65 66.87
-0.60 -2.23 -2.19 -2.25 -2.66 -3.78 -0.62 -1.58 -2.08 -3.41 -2.14

Table 17: Ablation study comparing the performance of Dota with a variant that uses only the
mean, excluding the estimation of the Gaussian distribution (by removing the covariance matrix).
The significant drop (third row) in model performance without distribution estimation highlights the
importance of distributional test-time adaptation.

A.8 EFFECTS OF DIFFERENT UNCERTAINTY SAMPLE SELECTION STRATEGIES.

To evaluate the effectiveness of the proposed confidence-based test-time uncertainty estimation for
selecting samples to collect human feedback , we designed two alternative strategies for compari-
son. First, we randomly selected inference samples for human feedback. Second, we replaced the
confidence in the proposed method (as described in Sec. 3.2) with the maximum cosine similarity.
The experimental results, shown in Tab. 18, demonstrate that the confidence-based uncertainty sam-
ple selection method significantly improves test-time adaptation performance compared to random
selection and the cosine similarity-based approach. However, designing more effective methods for
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identifying uncertain samples to collect human feedback remains an open problem, which we leave
for future exploration.

Feedback Percentile Method Aircraft Caltech101 Cars DTD EuroSAT Flower102 Food101 Pets SUN397 UCF101 Average

5%
Random 26.58 94.36 70.22 48.94 65.25 75.48 87.08 92.07 70.18 73.43 70.36

Similarity 27.06 94.36 70.30 50.24 63.38 76.17 87.11 92.42 70.28 74.41 70.57
Confidence 26.73 94.56 70.95 49.82 65.00 76.86 87.17 92.78 70.49 75.26 70.96

15%
Random 28.68 94.69 71.57 50.83 74.63 76.37 87.15 92.34 70.93 75.71 72.29

Similarity 29.46 94.56 72.27 53.84 71.09 78.97 87.24 93.08 71.42 76.55 72.85
Confidence 28.65 95.01 73.01 53.78 76.60 79.70 87.41 93.54 71.82 79.33 73.89

Table 18: Top-1 accuracy (%) of experimental results using the ViT-B/16 backbone with different
methods for selecting uncertainty samples for human feedback. Random, Similarity, and Confidence
refer to Randomly selecting inference samples, selecting based on zero-shot cosine similarity, and
selecting based on the confidence of the zero-shot classifier, respectively.

A.9 IMPLEMENTATION DETAILS.

All the models in our experiments are built upon the pre-trained CLIP model (Radford et al., 2021)
that consists of an image encoder and a text encoder. Test-time adaptation is set for single-image
scenarios, using a batch size of 1. For natural distribution shifts scenario, we tune all our hyperpa-
rameters using the single ImageNet validation set. For the cross-domain generalization scenario, we
perform hyperparameter search using the corresponding validation sets. We adjust σ2 within [0.001,
0.002, 0.004], then search for the best η across [0.2, 0.3, 0.4, 0.5] and ρ across [0.005, 0.01, 0.02,
0.03], with the shrinkage parameter ϵ set to 0.0001. We use top-1 accuracy (%) as our evaluation
metric. All experiments are conducted using a single NVIDIA RTX 4090 GPU and a 12-core Intel
Xeon Platinum 8352V CPU.

A.10 LIMITATIONS AND FUTURE WORKS.

Method ViT-B/16 ResNet-50

CLIP 61.88 52.91

TDA 64.67 55.54
Dota (All test samples) 64.41 55.27
Dota (The last 50% of test samples ) 65.06 55.82

Table 19: Comparisons of our Dota with
other methods on the ImageNetV2 dataset,
where each class contains only 10 samples.

Here we briefly discuss the limitations of our method
and outline potential directions for future work. (1)
While our approach demonstrates the advantage of
continuously estimating the distribution of test data,
allowing for adaptation to test data, it does not con-
sistently outperform TDA on all the dataset. For ex-
ample, as shown in Tab. 19, on ImagenetV2 (Recht
et al., 2019) datasets with only 10 samples per class,
Dota does not significantly exceed TDA. However,
its performance on the last 50% of the test samples shows a clear improvement. This indicates
that the proposed model has the potential to further improve as more test samples becomes avail-
able. Moreover, as demonstrated in Fig. 3, our method gradually outperforms TDA over time. To
avoid the limitation, a promising way for future research is designing a mechanism to evaluate the
reliability of the adapter, allowing dynamic decisions on whether to introduce it based on its reli-
ability. (2) This paper also introduces the novel task of test-time adaptation with human feedback
and proposes an initial approach. Future work could focus on refining methods to accurately detect
unreliable samples and selectively incorporate human feedback, providing a valuable direction for
further improvement.

Broader impact. Foundational models are being widely deployed, but they do not always adapt
perfectly to the distribution of test data. Collecting new data and fine-tuning models for specific
applications can be costly and slow in response. Therefore, allowing models to adapt to unseen
data during test time can enhance their generalization and adaptability. This approach has potential
in fields like healthcare and assistive technologies, as it can help reduce subgroup bias caused by
insufficient data for minority groups during training and improve fairness.
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Dataset Classes Validation Size Test Size Task

ImageNet 1,000 N/A 50,000 Classification
ImageNet-V2 1,000 N/A 10,000 Generalization
ImageNet-S 1,000 N/A 50,889 Generalization
ImageNet-A 200 N/A 6,862 Generalization
ImageNet-R 200 N/A 30,000 Generalization

Aircraft 100 3,333 3,333 Aircraft recognition
Caltech101 100 1,649 2,465 Object recognition
Cars 196 1,635 8,041 Car recognition
DTD 47 1,128 1,692 Texture classification
EuroSAT 10 5,400 8,100 Remote sensing classification
Flowers102 102 1,633 2,463 Flower recognition
Food101 101 20,200 30,300 Food classification
Pets 37 736 3,669 Pet classification
SUN397 397 3,970 19,850 Scene recognition
UCF101 101 1,898 3,783 Action recognition

Table 20: Datasets details.
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