
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SELF-EVOLVING MULTI-AGENT NETWORKS FOR
SOFTWARE DEVELOPMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

LLM-driven multi-agent collaboration (MAC) systems have demonstrated impres-
sive capabilities in automatic software development at the function level. However,
their heavy reliance on human design limits their adaptability to the diverse de-
mands of real-world software development. To address this limitation, we introduce
EvoMAC, a novel self-evolving paradigm for MAC networks. Inspired by tradi-
tional neural network training, EvoMAC obtains text-based environmental feedback
by verifying the MAC network’s output against a target proxy and leverages a
novel textual backpropagation to update the network. To extend coding capabili-
ties beyond function-level tasks to more challenging software-level development,
we further propose RSD-Bench, a requirement-oriented software development
benchmark, which features complex and diverse software requirements along with
automatic evaluation of requirement correctness. Our experiments show that: i)
The automatic requirement-aware evaluation in RSD-Bench closely aligns with
human evaluations, validating its reliability as a software-level coding benchmark.
ii) EvoMAC outperforms previous SOTA methods on both the software-level
RSD-Bench and the function-level HumanEval benchmarks, reflecting its superior
coding capabilities.

1 INTRODUCTION

Automatic software development focuses on generating code from natural language requirements.
Code is a universal problem-solving tool, and this automation presents significant potential to provide
substantial benefits across all areas of our lives (15). Recently, the industry has introduced several
large language model (LLM)-driven coding assistants, including Microsoft’s Copilot (20), Amazon’s
CodeWhisperer (1), and Google’s Codey (7). These coding assistants significantly advance human
efficiency and yield considerable commercial benefits. Despite the initial success of LLMs in assisting
with line-level coding, they struggle to tackle more complex coding tasks. This limitation stems
from the restricted reasoning abilities of single LLMs and their lack of capacity for long-context
understanding (25; 13; 26).

To handle function-level coding tasks, numerous multiple language agent collaboration (MAC)
systems have been proposed (8; 4; 10; 31; 16; 21). These MAC systems function as LLM-driven
agentic workflow. They follow human-designed standardized operating procedures to divide the
complex coding tasks into simpler subtasks within the workflow, allowing each agent to conquer
specific subtasks. These MAC systems significantly advance coding capabilities from line-level to
function-level tasks. However, current MAC systems rely on heuristic designs. These human-crafted
static systems have two inherent limitations: i) their performance is confined to human initialization.
Given the diversity of real-world coding tasks, human design cannot fully address the specific needs
of each task; and ii) they lack the flexibility to adapt to new tasks. This rigidity necessitates that
researchers and developers manually decompose tasks and create prompts. The complexity of this
process inhibits effective human optimization for adapting to new challenges.

To address these limitations, we present EvoMAC, a novel self-evolving paradigm for MAC networks.
EvoMAC’s key feature is its ability to iteratively adapt both agents and their connections during
test time for each task. Inspired from the standard neural network training, the core idea of self-
evolution is to obtain text-based environmental feedback by verifying the MAC network’s generation
against a target proxy, then leverage a novel textual back-propagation to update the MAC network.
Following this general paradigm, we specify EvoMAC for software development, which comprises

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

three essential components: i) an adaptable MAC network-based coding team that generates code
through feed-forward; ii) a specifically designed testing team that creates unit test cases serving as
the target proxy and verifies the generated code in the compiler to produce objective feedback; and
iii) an updating team that uses the textual back-propagation algorithm to update the coding team. By
cycling these three components, the coding team can iteratively evolve and generate codes that are
better aligned with the unit test cases, eventually fulfilling more requirements of the coding task.

Our self-evolving MAC network has the potential to further advance coding capabilities from function-
level to more complex software-level tasks. As it can iteratively address lengthier task requirements
and cater to realistic software development demands. However, existing benchmarks typically focus
on specific individual functions (5; 3; 30; 12) or bug-fixing (11), leaving a significant gap in providing
comprehensive requirements for software development. This gap makes it difficult to fully assess the
potential of our self-evolving MAC network.

To support the development of software-level coding capabilities, we propose RSD-Bench, a novel
requirement-oriented software development benchmark. It is the first benchmark that features both
complex and diverse software requirements, as well as the automatic evaluation of requirement
correctness. RSD-Bench involves 53 coding tasks with 616 requirements, covering two typical
software types, Website, and Game, and two requirement difficulty levels, Basic and Advanced. Each
coding task consists of two components: i) multiple requirements that clearly outline measurable
software functionalities, item by item, and ii) paired black-box test cases that automatically verify
the correctness of each requirement. RSD-Bench can achieve automatic evaluation with these
synchronized pairs of requirements and test cases. The RSD-Bench introduces new software-level
challenges, including lengthy requirement analysis and long-context coding, which are essential in
real-world software development but are absent in existing benchmarks.

To validate the effectiveness of our proposed EvoMAC and RSD-Bench, we conduct three key
evaluations. First, we compare our automatic evaluation in RSD-Bench with human evaluation,
achieving a coherence score of 99.22%, demonstrating its reliability. Second, we compare EvoMAC
against five multi-agent and three single-agent baselines. EvoMAC significantly outperforms previous
SOTAs by 26.48%, 34.78%, and 6.10% on Website Basic, Game Basic, and HumanEval, respectively,
underscoring its effectiveness. Third, we evaluate EvoMAC with varying evolving times and two
different driving LLMs. The results indicate that EvoMAC consistently improves with more evolving
times and shows convincing enhancements regardless of the driving LLM used, further demonstrating
the effectiveness of our self-evolving design.

To sum up, our contributions are:

• We propose EvoMAC, a novel self-evolving MAC network, and apply it to software development.
EvoMAC can iteratively adapt both agents and their connections during test time for each task.

• We propose RSD-Bench, a novel requirement-oriented software development benchmark. It is
the first benchmark that features both complex and diverse software requirements, as well as the
automatic evaluation of requirement correctness.

• We conduct comprehensive experiments and validate that: automatic evaluation in RSD-Bench is
highly aligned with human evaluation; EvoMAC outperforms previous SOTAs, and self-evolving
promises continuous improvement with evolving times.
2 RELATED WORKS

LLM-based multi-agent collaboration. LLM-driven multi-agent collaboration (MAC) systems (29;
9; 34; 27; 8; 4; 18) enable multiple agents to share information and collaboratively complete the
overall task. These MAC systems function as agentic workflows. They have demonstrated enhanced
problem-solving capabilities in various domains, such as mathematics (10), software development (23;
8), embodied task (19) and social simulation (34; 22; 14). However, these systems (27; 6) heavily
rely on manually designed workflows, which lack generalizability and the labor-intensive nature of
manual design poses significant limitations. To address this issue, we propose a novel self-evolving
paradigm, which allows agents to update and improve through external feedback, enabling dynamic
adaptation and more advanced performance across varied tasks.

Software development benchmarks. Software development benchmarks aim to evaluate models
in the task of generating code from natural language descriptions (32). These benchmarks typically
include task definitions and evaluation criteria. Existing benchmarks can be categorized into three

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: The general self-evolving paradigm.

types: i) function completion (HumanEval (5), MBPP (3), EvalPlus (17), xCodeEval (12)); ii) bug
repair (SWE-bench (11)); and iii) software generation (SRDD (23), SoftwareDev (8)). Function
completion and bug repair benchmarks are confined to function-level task definitions, missing the
diverse realistic software requirements. Software generation benchmarks often depend on expensive
human evaluations or indirect similarity-based measurements, unable to automatically and accurately
verify the requirement correctness. To address these limitations, we introduce RSD-Bench, the first
benchmark contains both diverse software requirements and automatic evaluation of requirement
correctness. It can support the development of more realistic software-level coding capabilities.

3 EVOMAC: SELF-EVOLVING MULTI-AGENT COLLABORATION NETWORK

This section presents EvoMAC, a novel self-evolving multi-agent collaboration network and its
application to software development. The key feature of EvoMAC is its ability to iteratively adapt
both agents and their connections during test-time for each task, mimicking the back-propagation
process, a core algorithm in neural network training. We first formulate a general self-evolving
paradigm in Sec. 3.1 and then describe its application to software development in Sec. 3.2.

3.1 A GENERAL SELF-EVOLVING PARADIGM VIA TEXTUAL BACKPROPAGATION

Multi-agent collaboration network. A multi-agent collaboration (MAC) network is a computational
graph representing agentic workflows, where multiple agents empowered by LLMs interact as
interconnected nodes to coordinate and share information for complex task-solving. The intuition
behind to divide the complex task into more specific and manageable subtasks for each agent,
allowing the overall task to be gradually conquered through the agentic workflow. Mathematically, we
represent a MAC network with N autonomous agents as a directed acyclic graph A = (V, E), where
V = {vi}Ni=1 is the set of N nodes, and E = {ei,j}i,j∈[1,...,N],i̸=j is the set of directed edges with no
circles. The i-th node vi represents the i-th autonomous agent with the prompt pi, which specifies
its subtask. The edge ei,j represents the task dependency between the i-th agent and the j-th agent,
indicating that the j-th agent’s subtask should be executed after the i-th agent’s subtask in the agentic
workflow. The overall graph topology specifies the agentic workflow. Analogy to traditional neural
networks, agents function similarly to neurons, with agent prompts serving as neurons’ weights and
the agentic workflow as the layers and connections.

The feed-forward pass of MAC network is the execution of the agentic workflow. In this process,
each agent is given two inputs: the initial task requirement and the output from the previous agent.
Using these, each agent produces an output that fulfills its specific subtask. Eventually, the last
agent’s generation constitutes the final output, integrating all completed subtasks. Note that the initial
task requirement is input to each agent as context, providing supplementary details to aid in the
implementation of each subtask.

Recently, various MAC networks have been designed using human expertise to assign fixed agent
prompts and workflows (8; 4), resembling untrained neural networks. However, these designs solely
rely on human priors and lack adaptability, causing limited performance improvement over a single
agent. To overcome this, inspired by neural network training, we propose a self-evolving paradigm
for multi-agent collaboration networks, enabling both agents and their connections to dynamically
evolve during test-time for each given task.

Optimization problem. Here we consider a general generation task. During test-time, given a task,
the MAC network performs a feed-forward pass to generate the final output without knowing its
quality. The key to evolution during test-time is to set up a target proxy for the MAC network to
guide its improvements in the generated output. Here we consider this target proxy as the conditions
for task completion, such as unit tests in coding, and we can produce such a target proxy by another

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

group of autonomous agents based on the same task description. Then, the quality of each generated
output can be verified according to the target proxy. This approach relies on two key assumptions:
(i) generating a target proxy is significantly simpler than completing the original generation task,
and (ii) the generated output can be correctly verified against the target proxy through an objective
environment. These assumptions are practical in many applications. For example, in code generation,
producing unit tests, the expected input-output pairs, is much easier than generating the entire code;
meanwhile, a code compiler naturally acts as the objective environment to check the correctness of
the generated code against the unit test, providing objective and informative feedback.

Mathematically, let X be the textual description of a task. Given the MAC network Ag , the generated
output is G = Φ(X,Ag), where Φ(·, ·) is the general feed-forward operator that executes the
agentic workflow, processing the input text through the MAC network. Similarly, the target proxy is
T = Φ(X,At), where At is another MAC network designed for producing the target proxy. Note
that we aim to evolve and optimize Ag , while keep At predefined and fixed. The optimization of our
self-evolution is formulated as,

A∗
g = min

Ag

⟨Φ(X,Ag),T⟩E , subject to: T = Φ(X,At) , (1)

where ⟨·, ·⟩E is an objective environment executor that receives the generated output and the target
proxy as inputs and outputs a text-based environmental feedback. Akin to the loss function in
traditional neural network training, which quantifies the difference between the generated output
and the ground-truth, the objective in equation 1 evaluates whether the generated output meets the
conditions of the task completion using the environment, subsequently producing execution reports as
the text-based environmental feedback. Here the minimization operation min is defined to reduce the
failures during execution. With the guidance of the target proxy and the objective feedback given by
the environment, the MAC network can improve its success rate of task completion during test-time.

Note that, another straightforward way to enable the MAC network’s evolution is through the self-
critique strategy (33; 24; 28; 2), which employs a critique agent to assess the generated output directly.
This approach has two inherent limitations: i) the critique may be subjective and biased, and ii) the
critique agent can have hallucinations, causing inconsistencies and errors. These limitations can cause
the MAC network to become entrenched in its own preferences or evolve in the wrong direction,
especially iterating multiple times; see our experimental validations in Tab. 2. In comparison, our
approach leverages an environment executor to provide objective feedback, preventing bias and
hallucinations.

While we use the analogy between our self-evolution process and neural network training for
motivating, they are significantly different in three key aspects: (i) our self-evolution occurs at test
time without a dedicated training phase; (ii) it evolves for each specific task individually rather than
over a batch of samples; and (iii) the environmental feedback are usually texts, not be numerical
values, which cannot be optimized by the standard backpropagation. This motivates us to propose
our textual backpropagation.

Solution based on textual backpropagation. The self-evolution solution iteratively updates the
MAC network using a textual backpropagation algorithm, guided by the environmental feedback. The
core idea is to analyze the influence of each agent in the MAC network Ag to the final environmental
feedback and use these analyses to update the agent prompts and the agentic workflow in Ag. This
is achieved by two collaborative agents, each responsible for one of the two key steps: (i) textual
gradient analysis and (ii) network updates.

First, the gradient agent takes the environmental feedback as the input and outputs textual gradients
that describe the impact of each agent in the MAC network. Let A(k)

g and L(k) be the MAC
network and the environment feedback at the k-th iteration. The textual gradient is then ∇L(k) =

G(A(k)
g ,L(k)), where G(·, ·) is the gradient analysis operator managed by the gradient agent; see its

prompt in Appendix. The textual gradient details three-fold information for each agent inside A(k)
g :

1) whether this agent’s subtask is fulfilled; 2) whether this agent introduces errors; and 3) whether
any subtask is missed in the current MAC network.

Second, based on the textual gradients, the updating agent iterates the MAC network as A(k+1)
g =

U(A(k)
g ,∇L(k)), where U(·, ·) is the updating operator managed by the updating agent. This operator

guides the updates from three-folds: 1) removing the agents whose subtasks have been completed; 2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: EvoMAC takes task requirements as input and iteratively updates the coding team to
generate code that better fulfills the requirements.

revising the erroneous agent’s prompts by adding potential solutions provided in the gradient analysis;
and 3) adding new agents for missing subtasks and restructuring the workflows based on the subtask
dependencies noted in the gradient analysis; see the prompt details in Appendix. These adjustments
address existing issues and fulfill unmet requirements in the current generation of the MAC network,
promising improvements in the updated version.

Note that, the key of the textual backpropagation is the prompt designs for both gradient analysis
and network updates. The design must i) thoroughly evaluate the subtask of each agent in the MAC
network according to the objective environment feedback and determine necessary adjustments to
the MAC network to address existing issues, fulfilling the unmet requirements; and ii) maintain
coherence, ensuring that issues identified by the gradient agent can be effectively resolved by the
updating agent’s modifications to the MAC network.

3.2 SELF-EVOLUTION FOR SOFTWARE DEVELOPMENT

In this section, we apply the self-evolving paradigm to the task of software development. The
overall architecture of the proposed self-evolving multi-agent collaboration network for software
development is illustrated in Fig. 1. Given a coding task, the coding team, corresponding to the MAC
network Ag, generates all the codes through its forward-pass; the testing team, associated with the
MAC network At, is responsible for creating the target proxy; that is, unit tests of the coding task; and
the objective environment tool is realized through the compiler. The identified bugs during execution
form the textual environmental feedback. The updating team, consisting of two collaborative agents,
manages the textual backpropagation. By continuously cycling through feed-forward, feedback
collection and textual backpropagation processes, the coding team is iteratively refined to more
closely align with the test cases.

Since unit test generation is much easier than the original logical code generation, the testing team
usually can produce high-quality test cases, which are closely aligned with the task requirements.
Then, improving alignment with the unit tests through MAC network updates ensures better adherence
to the actual task requirements.

Coding team for feed-forward. In the feed-forward process, the coding team synthesizes code
according to the given coding task. To handle the extensive software requirements, the coding team
is implemented as a MAC network. It divides the comprehensive requirements into a sequence of
smaller, more specific function implementation subtasks, and progressively conquers them through
the agentic workflow. Unlike existing MAC systems that heuristically decompose coding tasks and
define the agentic workflow, we initialize the MAC network using a novel self-organizing approach.
A coding organizer agent automatically and flexibly decomposes the task requirements into subtasks
and assembles the coding agent team accordingly. The number of coding agents is dynamic, adjusting
in response to the task requirements. Note that, the quality of the generated code is unknown during
the forward pass, which necessitates the self-evolving paradigm to iteratively refine the generation.

Testing team and compiler for feedback collection. To verify whether the generated code meets
the requirements of the coding task, we employ unit tests as the target proxy. These test cases consist

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

of input-output pairs tailored to specific requirements. For example, a test case for a keyboard control
requirement would detail the type of control as the input and describe the expected behavior as the
output. To create flexible and comprehensive unit tests, we set up the testing team as a MAC network
and also initialize it in a self-organized way. A testing organizer agent automatically decomposes our
specified key testing criteria into subtasks and accordingly forms the testing agent team .

Once the test cases and generated code are ready, they are executed in the compiler, which functions
as the environmental tool, producing execution logs. These logs clearly point out the gap between the
generated code and the test cases. It shows satisfied testing requirements, existing function errors, and
unmet testing requirements. This feedback information can be used to verify whether each agent’s
subtask is accomplished and guide the MAC network update.

Updating team for textual back-propagation. The updating team consists of two collaborative
agents: the gradient agent and the updating agent, adjusting the MAC network based on the execution
logs, including the agent prompts and workflows. This process consists of two steps. First, the
gradient agent summarizes the textual gradient by identifying accomplished subtasks for satisfied
requirements, appending new subtasks for unmet requirements, and analyzing errors to detail their
originating agents and revising suggestions. Second, the updating agent modifies the coding agent
team by removing agents that have completed their subtasks, adding new agents for the new subtasks,
and revising agent prompts to address issues identified in the previous generation. The agent workflow
is updated once the agent team is revised, based on the dependencies among the subtasks.

4 RSD-BENCH: REQUIREMENT-ORIENTED SOFTWARE DEVELOPMENT
BENCHMARK

This section introduces RSD-Bench, a requirement-oriented benchmark designed to assess the
ability of models to handle software-level coding tasks. Each coding task involves multiple detailed
software requirements. These requirements specify each functionality and constraint of the software,
item by item, serving as measurable benchmarks for assessing the software’s effectiveness. As shown
in Fig. 3, unlike previous instruction-oriented approaches (23; 8) which rely on brief instructions as
input, RSD-Bench uses comprehensive software requirements as input, complemented by unit test
cases to automatically evaluate the correctness. This benchmark provides software-level coding tasks
and automatic evaluation, aligning more closely with real-world software development practices.
4.1 BENCHMARK CONSTRUCTION

RSD-Bench involves two typical real-world software types: game and website. They can reflect
different coding capacities demanded in realistic software development. Game often requires handling
dynamic interactions, real-time state changes, and user-driven operations, focusing on elements like
logic execution, initialization, and game state transitions. Website emphasizes static and dynamic
content management, user interaction through forms and buttons, and ensuring page elements are
displayed and functional. RSD-Bench involves diverse requirements, each paired with a test case.
Specifically, RSD-Bench provides 53 unique coding tasks and 616 test cases. For details on generating
software requirements and test cases, see Appendix.

RSD-Bench introduces two requirement difficulty levels, including basic and advanced, to reflect the
varying complexity of real-world software development tasks. The basics reflect the fundamental and
more achievable requirements, such as interaction, control, and logging. The advanced reflects more
complex software functionalities, such as game logical rules, and dynamic web content management.
The details can be referred to the appendix.

4.2 AUTOMATIC EVALUATION

RSD-Bench supports automatic evaluation of requirement correctness. It achieves this by pairing a
specifically designed black-box test case with each requirement. The test case can directly verify
whether the generated code achieved the requirement. Its evaluation metric is the accuracy, which
quantifies the proportion of correctly passed test cases. It is similar to the pass@1 metric in
HumanEval (5), which evaluates the pass ratio of correctly achieved functions against the total
functions via unit test verification. It is a fully automated evaluation process, eliminating the need for
human involvement while still providing accurate and reliable assessments.

Previous benchmarks for software code generation mainly rely on two evaluation methods. One
method is human evaluation (8), which is time-consuming and not scalable for large datasets. The
other method is indirect evaluations (23), which defines metrics like consistency, completeness, and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Cosine Similarity

Consistency: 0.89

Software Requirement

Language

Data Storage

Objective
Develop a website (DailyHeealthTips)

Generated Codes

app.py

@app.route('/login', methods=['POST’])
def login_page():
 # Implement the login logic here.
 return render_template('login.html')

templates/login.html

(Additional code omitted)

PASSED test_login_elements
FAILED test_login_functionality

{'advanced’: 0,
'basic’: 2,
'total’: 13}

Accuracy (Ours): 2 / 13

Additional Pass to Test cases omitted...----------------------------

Test Reports (RSD-Bench)

1 Completeness: 11

Do not find (`pass`/`TODO`)

Check for executability

1 Executability : 11

Quality = 0.89*1*1= 0.89

Software Instruction

A website called
DailyHeealthTips where

users receive daily health
tips, log in to their accounts,

view tips, and submit
feedback, with all data

stored in local text files. The
website also offers

personalized health advice
based on user profiles.

• Elements:
• Username Filed’s ID: username_field
• Password Filed’s ID: password_filed

Page Design
Login Page

User Data: Stored in users.txt
• Example: john_doe,securepassword

<form action="{{ url_for('login') }}"
method="post">

 <div class="form-group">
 ···
 </div>

Software
Requirement Codes

Daily Tips Page
Tips Archive Page

Evaluation Metrics

Figure 3: Comparison between instruction-oriented and requirement-oriented evaluations. RSD-
Bench accurately reflects requirement fulfillment with the proposed accuracy score of 2/13, while
the indrection evaluation misjudges with high scores (0.89), failing to detect missing functionality.

quality. Consistency measures how closely the generated software aligns with the original requirement
description by comparing the cosine similarity between the two. Completeness is determined by
detecting the presence of placeholder (such as pass or TODO), which results in a binary value of
0 or 1. Quality is then calculated as the product of several factors: consistency, completeness, and
executability. As illustrated in Fig. 3, they could not measure the correctness of the generated code
in fulfilling requirements. In contrast, RSD-Bench’s test cases-based evaluation is more rigorous
and precise. These test cases can accurately verify the correctness of generated code in fulfilling the
requirements. RSD-Bench promises reliable and scalable automatic evaluation. In the experiments,
we have validated the significant advantages of the proposed automatic evaluation over the previous
metrics, including consistency and quality; see Fig. 4.

4.3 FEATURES

Challenging and diverse software requirements. RSD-Bench features long-context software
requirements (averaging 507/1011 words for game and website tasks, respectively), unlike instruction-
oriented benchmarks (5; 3; 11) that rely on brief prompts. These detailed requirements better reflect
real-world lengthy and complex software development challenges.

Requirement-aware precise and efficient evaluation. RSD-Bench employs detailed software
requirements and automated unit tests to precisely measure how well generated software meets
its objectives. Generated codes are evaluated based on pass rates from running specific test cases,
offering an accurate and efficient process. In contrast, instruction-oriented benchmarks rely on brief
prompts, which lack constraints and make evaluation less reliable, often requiring labor-intensive or
indirect evaluation.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Baselines. To validate the effectiveness of our EvoMAC, we conducted comparisons against both
single-agent and multi-agent baselines. The single-agent baselines involve three prominent large
models: GPT-4o-Mini (gpt-4o-mini), Claude-3.5-Sonnet (claude-3-5-sonnet-20240620), and Gemini
(gemini-1.5-flash). For multi-agent baselines, we included five state-of-the-art (SOTA) methods:
MetaGPT (8), Autogen (27), Mapcoder (10), Agentverse (6), and ChatDev (23). To ensure a fair
comparison, all multi-agent baselines, including our EvoMAC, are powered by the efficient and
powerful GPT-4o-Mini model. Additionally, to demonstrate the adaptability and robustness of our
EvoMAC, we developed two EvoMAC variants using GPT-4o-Mini and Claude-3.5-Sonnet.

Datasets. Our experiments cover both the proposed RSD-Bench and the standard coding benchmark
HumanEval (5). HumanEval comprises 164 Python function completion problems, where the task is
to generate code from a single function description.

5.2 EFFECTIVENESS OF RSD-BENCH’S EVALUATION AND EVOMAC

RSD-Bench’s automatic evaluation metric (accuracy) is highly aligned with human evaluation.
Our primary goal is to validate the effectiveness of the proposed automatic evaluation in RSD-Bench
by comparing it with two existing evaluation metrics: consistency and quality, both from SRDD (23).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Performance of four methods in terms of four evaluation metrics, including human
evaluation, our automatic evaluation (accuracy), consistency, and quality. WB and WA represent
Web Basic and Web Advanced respectively. GB and GA represent Game Basic and Game Advanced
respectively. Our accuracy metric is highly aligned with human evaluation across four dataset settings.

Table 1: Comparison of EvoMAC with five multi-agent and three single-agent SOTA baselines, all
powered by GPT-4o-Mini. Red values represent the percentage improvement of EvoMAC, shade in
pink, over the single-agent baselines, shade in grey.

RSD-Bench HumanEval
(%)Website(%) Game(%)Method Model

Basic Advanced Basic Advanced Pass@1
Gemini-1.5-Flash 29.79±1.00 11.61±2.34 21.74±6.39 6.45±6.97 73.17
Claude-3.5-Sonnet 58.90±1.48 37.11±1.06 44.20±5.41 18.29±13.26 89.02Single

Agent GPT-4o-Mini 62.90±2.52 44.40±4.21 42.76±15.50 30.10±11.87 88.41
MetaGPT 15.41±0.00 0.00±0.00 16.67±2.71 0.00±0.00 88.41
Autogen 25.68±4.14 5.40±3.34 17.39±1.78 0.00±0.00 85.36

MapCoder 34.70±1.59 14.57±0.66 29.71±6.72 7.52±6.10 90.85
Agentverse 15.41±0.00 0.00±0.00 37.67±8.20 16.13±4.55 90.85Multi

Agent ChatDev 62.67±0.28 43.45±0.77 53.63±5.70 32.26±4.55 70.73
89.38±1.01 65.05±1.56 77.54±2.04 51.60±4.54 94.51EvoMAC +26.48 +20.65 +34.78 +21.50 +6.10

For a fair comparison, our golden standard is human evaluation, conducted by two expert code
engineers who manually verify the fulfillment of requirements by interacting with the developed
software. This process is tedious, taking around four hours per expert to evaluate the entire benchmark.
The effectiveness of an evaluation metric depends on how closely it aligns with human evaluation.

Fig. 4 presents the performance of four methods in terms of four evaluation metrics, including human
evaluation, our automatic evaluation, consistency, and quality. We see that: i) our automatic evaluation
is highly aligned with human evaluation across two software types (Website and Game), four methods,
(GPT-4o-Mini, MetaGPT, ChatDev, and our EvoMAC), and two requirement difficulties (Basic and
Advanced). The correlation coefficient between human evaluation and our accuracy metric is 0.9922,
demonstrating the effectiveness of the proposed automatic evaluation in RSD-Bench; ii) Consistency
and quality metrics differ significantly from human evaluation, with correlation coefficients of 0.2583
and 0.3041, respectively. This discrepancy occurs because consistency in SRDD measures similarity,
and quality in SRDD focuses on executability, which does not guarantee that all requirements are met.
This highlights the need for RSD-Bench, as the SRDD benchmark does not support requirement-
oriented software development.

EvoMAC outperforms previous SOTAs on both software-level and function-level coding bench-
marks: RSD-Bench and HumanEval. Tab. 1 compares EvoMAC with five multi-agent and three
single-agent SOTA baselines, all powered by GPT-4o-Mini for a fair comparison. We see that
EvoMAC significantly outperforms previous SOTAs across all datasets. EvoMAC outperforms
single-agent methods by 26.48% on the RSD-Bench Website Basic and 34.78% on the RSD-Bench
Game Basic, as well as surpassing existing multi-agent methods by over 20%. This highlights the
effectiveness of multi-agent collaboration and the power of EvoMAC.

5.3 EFFECTIVENESS OF EVOLVING

Fig. 6 shows the accuracy of EvoMAC over multiple evolving iterations on the RSD-Bench and
HumanEval. Each figure presents two curves: one for EvoMAC powered by GPT-4o-Mini (red) and
the other by Claude-3.5 (blue). We have the following findings:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Website (b) Game (c) HumanEval
Figure 6: Effect of EvoMAC performance across evolving times empowered by GPT-4o-Mini
and Claude-3.5-Sonnet on Website, Game, and HumanEval datasets. The figure shows EvoMAC
continuously improves with the evolving times on both LLM drives.

Table 2: Ablation study about coding/testing team with
single/multi-agent, with/without evolving, and with/without
environment tool. Best performances are bolded.

Coding Testing Evol. Env. Website(%) Game(%)
Basic Advanced Basic Advanced

a) Single - - - 63.70 41.70 42.76 30.10
b) Multi - - - 67.47 39.27 68.10 41.93
c) Single Single ✓ ✓ 80.82 60.32 71.73 41.93
d) Multi Single ✓ ✓ 83.90 60.72 76.08 41.93
e) Single Multi ✓ ✓ 83.56 61.94 73.91 45.16
f) Multi Multi ✓ - 78.08 52.23 55.80 33.32
g) Multi Multi ✓ ✓ 90.75 67.20 77.54 51.60

0 1 2 3 4 5
Evolving Times

0

50

100

150

200

250

Co
un

t

Website
Page Display
Browsing
Content Manage
Community
User Manage

0 1 2 3
Evolving Times

0

20

40

60

80

Co
un

t

Game

Logic
Operation
Initialization
Log
Syntax

Figure 5: Failure case distribution across
evolving times on Website and Game.

EvoMAC continuously improves with the evolving times. Fig. 6 shows that as evolving iterations
increase, performance consistently improves across all five dataset settings, covering two difficulty
levels, two software types, and both requirement-oriented and function complement benchmarks.
This highlights the effectiveness, generalizability, and robustness of the self-evolving approach,
encouraging EvoMAC to evolve whenever possible.

EvoMAC indistinguishably improves with different driving LLM. From Fig. 6, we see that: i)
both EvoMAC variants continuously improve with evolving iterations, demonstrating the robustness
of the self-evolving design; ii) the two curves do not intersect, indicating that the EvoMAC variant
powered by a more powerful single model consistently outperforms the other, highlighting the
advantage of using a stronger model. Success builds on success.

Failure case analysis. Fig. 5 shows the failure case statistics across iterations for Website and Game,
showing a general decrease in errors as iterations progress. We see that: i) the most common errors
are page display issues in Website and logic errors in Game; ii) page errors are resolved more quickly,
while logic errors persist, suggesting that more isolated issues are easier to fix during the evolution
process. This results in a sharp initial performance improvement as sipler problems are addressed
early, followed by a plateau as more complex issues remain unresolved, shown in Fig. 6.

5.4 ABLATION STUDY

To assess the effectiveness of each component, Table 2 details an ablation study featuring seven
EvoMAC variants.

Effectiveness of objective environment feedback. Environment feedback, such as code execution
logs, is essential for software development. Variant f) omits this tool, instead using an LLM-driven
agent to critique the code. Comparing Variant g) with Variant f) shows a notable performance drop:
Website tasks decrease by 12.67% and 14.97%, and Game tasks by 21.74% and 18.28% for Basic and
Advanced levels, respectively. This underscores the importance of objective environmental feedback,
as agent-driven critiques may introduce bias and fail to guide the evolution effectively.

Effectiveness of multi-agent collaboration in coding team and testing team. Comparing Variant
g) to Variant e), we observe a performance decrease of 7.19% and 5.26% on Website Basic and
Advanced respectively, when the coding team is reduced to a single agent. Similarly, comparing
Variant g) to Variant d), there is a performance drop of 6.85% and 6.48% on Website Basic and
Advanced respectively, also when the team is reduced to a single agent. These results demonstrate

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 7: EvoMAC outperforms previous multi-agent and single-agent systems across all the context
lengths across the four dataset settings on RSD-Bench.

Figure 8: We show the generated code of single-agent, GPT-4o-Mini, and multi-agent systems,
ChatDev, and our EvoMAC (iteration =0/1) given the Website task (RecipeHub). After evolving,
EvoMAC can revise previous issues and fulfill the task requirement.

the necessary for involving multi-agent collaboration, highlighting that multi-agent setups offer more
flexible adjustments and enhanced capabilities for evolution.

Effectiveness in handling varied task token lengths. Fig. 7 shows a comparison of task token
lengths and performance across GPT-4o-Mini, ChatDev, and EvoMAC. We see that: i) EvoMAC
consistently outperforms ChatDev and GPT-4o-Mini across all context lengths, with its self-evolving
mechanism enabling the identification and correction of missed contexts and errors during iterations;
ii) EvoMAC experiences less performance degradation on the RSD-Bench Website than on the Game,
as Website tasks are more modular and can be broken into subtasks, whereas Game tasks require
more coordinated management, making them more challenging.

5.5 CASE STUDY

Fig. 8 presents the generated code by a single agent, GPT-4o-Mini, multi-agent systems, ChatDev, and
our EvoMAC before and after evolving (iteration=0/1). We see that: i) EvoMAC after evolving can
correct issues from previous iterations and successfully fulfill the task requirements; ii) multi-agent
systems tend to better comprehend the task requirements and produce more well-structured code.

6 CONCLUSION

We propose EvoMAC, a novel self-evolving paradigm for MAC networks. EvoMAC iteratively
adapts agents and their connections during the testing phase of each task. It achieves this with a novel
textual back-propagation algorithm. EvoMAC can push coding capabilities beyond function-level
tasks and into more complex, software-level development. Furthermore, we propose RSD-Bench, a
novel requirement-oriented software development benchmark. RSD-Bench features both complex
and diverse software requirements, as well as the automatic evaluation of requirement correctness.
Comprehensive experiments validate that the automatic requirement-aware evaluation in RSD-Bench
aligns closely with human evaluation. EvoMAC outperforms previous SOTAs in both software-level
RSD-Bench and function-level HumanEval benchmarks.

Future works. In the future, we plan to introduce a reward model to enhance the self-evolving
paradigm’s ability to learn from feedback and extend the RSD-Bench to more software types.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

[1] Amazon. CodeWhisperer. In https://platform.qa.com/course/amazon-codewhisperer-generating-code-ai-
4679/introduction, 2022.

[2] Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to retrieve,
generate, and critique through self-reflection. ArXiv, abs/2310.11511, 2023.

[3] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

[4] Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan
Liu. Chateval: Towards better llm-based evaluators through multi-agent debate. In The Twelfth International
Conference on Learning Representations.

[5] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet,
Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-
Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir
Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba.
Evaluating large language models trained on code. 2021.

[6] Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan, Yujia Qin,
Yaxi Lu, Ruobing Xie, et al. Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors in agents. arXiv preprint arXiv:2308.10848, 2(4):6, 2023.

[7] Google. Codey. In https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/codechat-
bison, 2023.

[8] Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent collaborative
framework. arXiv preprint arXiv:2308.00352, 2023.

[9] Wenyue Hua, Lizhou Fan, Lingyao Li, Kai Mei, Jianchao Ji, Yingqiang Ge, Libby Hemphill, and Yongfeng
Zhang. War and peace (waragent): Large language model-based multi-agent simulation of world wars.
arXiv preprint arXiv:2311.17227, 2023.

[10] Md. Ashraful Islam, Mohammed Eunus Ali, and Md Rizwan Parvez. Mapcoder: Multi-agent code
generation for competitive problem solving, 2024.

[11] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2023.

[12] Mohammad Abdullah Matin Khan, M Saiful Bari, Xuan Long Do, Weishi Wang, Md Rizwan Parvez, and
Shafiq Joty. xcodeeval: A large scale multilingual multitask benchmark for code understanding, generation,
translation and retrieval, 2023.

[13] Jiaqi Li, Mengmeng Wang, Zilong Zheng, and Muhan Zhang. Loogle: Can long-context language models
understand long contexts?, 2024.

[14] Junkai Li, Siyu Wang, Meng Zhang, Weitao Li, Yunghwei Lai, Xinhui Kang, Weizhi Ma, and Yang Liu.
Agent hospital: A simulacrum of hospital with evolvable medical agents, 2024.

[15] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom, Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de, Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey,
Cherepanov, James Molloy, Daniel Jaymin Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando
de, Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code generation with alphacode.
Science, 378:1092 – 1097, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

[16] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code generation with alphacode.
Science, 378(6624):1092–1097, December 2022.

[17] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and LINGMING ZHANG. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

[18] Zhao Mandi, Shreeya Jain, and Shuran Song. Roco: Dialectic multi-robot collaboration with large language
models. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pages 286–299.
IEEE, 2024.

[19] Zhao Mandi, Shreeya Jain, and Shuran Song. Roco: Dialectic multi-robot collaboration with large language
models. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pages 286–299.
IEEE, 2024.

[20] Microsoft. Copilot. In https://www.microsoft.com/en-us/microsoft-copilot/meet-copilot, 2023.

[21] Anton Osika. GPT-Engineer. In https://github.com/AntonOsika/gpt-engineer, 2023.

[22] Xianghe Pang, Shuo Tang, Rui Ye, Yuxin Xiong, Bolun Zhang, Yanfeng Wang, and Siheng Chen. Self-
alignment of large language models via monopolylogue-based social scene simulation. In Forty-first
International Conference on Machine Learning, 2024.

[23] Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chatdev: Communicative
agents for software development. arXiv preprint arXiv:2307.07924, 2023.

[24] Karthik Valmeekam, Matthew Marquez, and Subbarao Kambhampati. Can large language models really
improve by self-critiquing their own plans? ArXiv, abs/2310.08118, 2023.

[25] Chonghua Wang, Haodong Duan, Songyang Zhang, Dahua Lin, and Kai Chen. Ada-leval: Evaluating
long-context llms with length-adaptable benchmarks, 2024.

[26] Xindi Wang, Mahsa Salmani, Parsa Omidi, Xiangyu Ren, Mehdi Rezagholizadeh, and Armaghan Eshaghi.
Beyond the limits: A survey of techniques to extend the context length in large language models, 2024.

[27] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and Chi Wang.
Autogen: Enabling next-gen llm applications via multi-agent conversation, 2023.

[28] Yifan Xu, Xiao Liu, Xinghan Liu, Zhenyu Hou, Yueyan Li, Xiaohan Zhang, Zihan Wang, Aohan Zeng,
Zhengxiao Du, Wenyi Zhao, Jie Tang, and Yuxiao Dong. Chatglm-math: Improving math problem-solving
in large language models with a self-critique pipeline. ArXiv, 2024.

[29] Yuzhuang Xu, Shuo Wang, Peng Li, Fuwen Luo, Xiaolong Wang, Weidong Liu, and Yang Liu. Exploring
large language models for communication games: An empirical study on werewolf. arXiv preprint
arXiv:2309.04658, 2023.

[30] Guang Yang, Yu Zhou, Xiang Chen, and Xiangyu Zhang. Codescore-r: An automated robustness metric
for assessing the functionalcorrectness of code synthesis, 2024.

[31] John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering. ArXiv,
abs/2405.15793, 2024.

[32] Zibin Zheng, Kai-Chun Ning, Jiachi Chen, Yanlin Wang, Wenqing Chen, Lianghong Guo, and We-
icheng Wang. Towards an understanding of large language models in software engineering tasks. ArXiv,
abs/2308.11396, 2023.

[33] Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen, Shuai
Wang, Xiaohua Xu, Ningyu Zhang, et al. Symbolic learning enables self-evolving agents. arXiv preprint
arXiv:2406.18532, 2024.

[34] Caleb Ziems, William Held, Omar Shaikh, Jiaao Chen, Zhehao Zhang, and Diyi Yang. Can large language
models transform computational social science? Computational Linguistics, 50(1):237–291, 2024.

12

	Introduction
	Related Works
	EvoMAC: Self-Evolving Multi-Agent Collaboration Network
	A general self-evolving paradigm via textual backpropagation
	Self-evolution for software development

	RSD-Bench: Requirement-Oriented Software Development Benchmark
	Benchmark construction
	Automatic Evaluation
	Features

	Experiments
	Experimental setup
	Effectiveness of RSD-Bench's evaluation and EvoMAC
	Effectiveness of evolving
	Ablation study
	Case study

	Conclusion

