
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONV-BASIS: A NEW PARADIGM FOR EFFICIENT AT-
TENTION INFERENCE AND GRADIENT COMPUTATION
IN TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

The self-attention mechanism is the key to the success of transformers in recent
Large Language Models (LLMs). However, the quadratic computational cost O(n2)
in the input sequence length n is a notorious obstacle for further improvement
and scalability in longer contexts. In this work, we leverage the convolution-like
structure of attention matrices to develop an efficient approximation method for
attention computation using convolution matrices. We propose a conv basis system,
analogous to the rank basis, and show that any lower triangular matrix can always
be decomposed as a sum of structured convolution matrices in this basis. We
then design a fast algorithm to approximate the attention matrix via a sum of
such k convolution matrices. This allows us to compute the attention inference
via Fast Fourier Transforms (FFT) in O(knd log n) time, where d is the hidden
dimension, and thus achieve almost linear time n1+o(1) in the practical scenario
where kd = no(1). Furthermore, the attention training forward and backward
gradient can be computed in n1+o(1) as well. We provide theoretical guarantees
on the run time and approximation error and conduct preliminary experiments to
evaluate its effectiveness. We hope our new paradigm for accelerating attention
computation in transformer models can help their application to longer contexts.

1 INTRODUCTION

Numerous notable large language models (LLMs) in natural language processing (NLP) have emerged
in these two years, such as Mistral (Jiang et al., 2023), Gemini (Team et al., 2023), Claude3 (Anthropic,
2024), GPT-4 (Achiam et al., 2023), Llama3 (AI, 2024) and so on. These models have profoundly
changed the world and have been widely used in human activities, such as education (Kasneci
et al., 2023), law (Sun, 2023), finance (Li et al., 2023a), bio-informatics (Thirunavukarasu et al.,
2023), coding (Hou et al., 2024), and even creative writing (Achiam et al., 2023) such as top AI
conference reviews (Liang et al., 2024a). The key component of the generative LLMs success is
the decoder-only transformer architecture introduced by Vaswani et al. (2017). The transformer
uses the self-attention mechanism, allowing the model to capture long-range dependencies in the
input sequence. Self-attention computes a weighted sum of the input tokens, where the weights
are determined by the similarity between each pair of tokens. This enables the model to attend to
relevant information from different parts of the sequence when generating the output. However, the
computational complexity of the self-attention in transformers grows quadratically O(n2) with the
input length n, limiting their applicability to long context, e.g., 128k, 200k, 1000k input tokens for
GPT4 (Achiam et al., 2023), Claude3 (Anthropic, 2024), Gemma (Team et al., 2024) respectively.

The complexity O(n2) comes from computing the similarity between each pair of tokens, which will
introduce an n×n size matrix. More specifically, let d be the hidden dimension and let Q,K ∈ Rn×d

be the query and key matrices of input. Then attention needs to compute Softmax on QK⊤ ∈ Rn×n.
Although QK⊤ is at most rank-d, Softmax(QK⊤) ∈ Rn×n may be full rank in Softmax attention.

To overcome the computational obstacle of Softmax(QK⊤), many studies propose more efficient
attention computation methods that can scale gracely with the sequence length while maintaining
the model’s performance. Alman & Song (2023) show that if all entry of QK⊤ is bounded and
d = O(log n), Softmax(QK⊤) will be “close” to a low-rank matrix. Then, they present an algorithm

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

103 104
Vector length n

0.0

0.5

1.0

1.5
av

g
Ti

m
e

(s
)

/ t
ok

en
 n

um

1e 4Time Comparison
Naive Time
FFT Time

103 104
Vector length n

0

1

2

3

4

av
g

FL
O

Ps
 /

to
ke

n
nu

m

1e3 FLOPs Comparison
Naive FLOPs
FFT FLOPs

0 20 40
Target Position

0

10

20

30

40

So
ur

ce
 P

os
it

io
n

Heatmap of Layer 25 Head 20

0.4

0.2

0.0

0.2

0.4

Figure 1: (a) In the left two figures, we compare the complexity of conv(a) ·w between the Naive way
and FFT way, where random vector a,w ∈ Rn and conv(a) ∈ Rn×n (Definition 2.5). The x-axis is
the input token number n. The y-axis is the average CPU time/Float Operations (FLOPs) over n, in
the first/second figure. The number reported is an average of 100 runs with Numpy implementation.
It is clear to see the Naive way takes O(n2) while the FFT way takes O(n log n). (b) In the right
figure, we plot one QK⊤ ∈ Rn×n in Llama3 (AI, 2024), where input is from the SST-2 (Wang et al.,
2018) with n = 47 tokens. It is clear to see the conv-like structure in the attention matrix.

that can approximate attention computation in almost linear time. Similarly, by uniform Softmax
column norms assumption and sparse assumption, Han et al. (2024) solve attention computation in
almost linear time, where they identify large entries in the attention matrix and only focus on them.

Another line of work (Olsson et al., 2022; Song & Zhong, 2023; Nichani et al., 2024; Reddy, 2024)
find that the attention pattern has convolutional-like (or “diagonalized”) structure (see Figure 1 (b)),
mathematically, Ai,j ≈ Ai′,j′ when i− j = i′ − j′, where we can see i− j as the position distance
between two tokens. It is relevant to the bag-of-words or n-gram concept, i.e., n adjacent symbols
or words in NLP. Furthermore, the convolutional-like structure can be connected to convolution
recurrent models (Bai et al., 2018), Hyena Hierarchy models (Poli et al., 2023; Massaroli et al., 2023),
and structured state space models (SSMs) such as Mamba (Gu & Dao, 2023). More specifically,
we can use multiple convolution matrices to approximate an attention matrix, whose intuition is
similar to the low-rank approximation in the sense of computation acceleration. Note that the matrix
product of a convolution matrix and a vector can be computed by Fast Fourier Transform (FFT) with
time complexity O(n log(n)), while the naive way takes O(n2) time (see details in Figure 1 (a)).
Therefore, it is natural to ask:

Can we exploit the convolutional structure to accelerate the attention computation?

In this paper, we use multiple convolution matrices to approximately solve the attention computation
efficiently. Informally speaking, we have the following results, which can apply to any Q,K ∈ Rn×d.
Theorem 1.1 (Main result, informal version of Theorem 3.4). Let ϵ > 0, k ∈ [n] and Q,K ∈ Rn×d.
If QK⊤ is ϵ-close in ℓ∞ norm to a matrix with k-conv basis (Definition 3.1), then we can solve the
Exact Attention Computation (Definition 2.3) in O(knd log(n)) time via FFT with error up to O(ϵ).

When kd = no(1), our method gets almost linear time n1+o(1). Similarly to the low-rank approxima-
tion, in our work, we build up a conv basis system, analogous to the rank basis, and show that any
lower triangular matrix H ∈ Rn×n can always be decomposed into k-conv basis for some k ∈ [n],
where [n] = {1, 2, . . . , n} (Lemma 2.12 and Theorem 3.3). Then, our Algorithm 2 can quickly
decompose QK⊤ into k convolution matrix when QK⊤ satisfying some non-degenerate properties
(see properties in Definition 3.1). Finally, via FFT, we only need time complexity O(knd log(n)) to
solve the task (Algorithm 1 and Theorem 3.4), while the naive methods require O(n2d).

Thus, our algorithm can achieve attention inference in O(knd log(n)), without any parameter updates,
e.g., re-train or finetune. Our theorems can also applied to accelerate attention training, taking
O(knd log n+ nd2) time for forward computation and O(knd2 log n) time for backward gradient
computation (Theorem 4.6). Furthermore, we conduct preliminary experiments to evaluate its
effectiveness (Section 6). Additionally, our technique can also be applied to extend the low-rank

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

approximation of attention matrices (Alman & Song, 2023) to more general settings (Theorem 5.5).
In detail, Alman & Song (2023) only works on attention approximation without an attention mask,
while ours can be applied to different kinds of attention masks, including the most popular causal
attention mask (Definition 2.2). This shows the broad applicability of our analysis.

Our contributions are summarized as follows.

• We propose a conv basis system, and show that any lower triangular matrix H ∈ Rn×n can
always be decomposed into k-conv basis for some k ∈ [n] (Lemma 2.12 and Theorem 3.3).

• We propose an algorithm (Algorithm 2) that can quickly decompose any lower triangular
matrix into its k convolution basis. So via FFT, we can solve Exact Attention Computation
task in O(knd log(n)) (Algorithm 1 and Corollary 3.5). When kd = no(1), our method
takes almost linear time n1+o(1). Our results are beyond or comparable to previous works
(see comparison below).

• During attention inference, our algorithm takes O(knd log(n)), without any parameter
updates, e.g., re-train or fine-tune (Theorem 3.4). Due to convolution property and Fourier
analysis, our new method has a better theoretical guarantee than existing approaches.

• During attention training, our methods take O(knd log n+ nd2) time for forward computa-
tion and O(knd2 log n) time for backward gradient computation (Theorem 4.6).

• Our broadly applicable technique can be applied to the low-rank approximation of attention
matrices and extend existing results to more general settings (Theorem 5.5).

Detailed comparison with previous works. Our results are beyond or comparable to the two brilliant
previous works. (1) To guarantee a small approximation error, for the attention matrix, Alman & Song
(2023) needs bounded entries assumption and d = O(log n) assumption, while Han et al. (2024)
needs uniform Softmax column norms assumption and sparse assumption. However, without all
these assumptions, our algorithm can still guarantee a small approximation error (Corollary 3.5),
i.e., our algorithm can apply to any Q,K including unbounded matrices, dense matrices, and any
hidden dimension d. (2) To guarantee a truly subquadratic running time, Alman & Song (2023)
needs to assume d = O(log n) to get n1+o(1) time complexity. However, for our algorithm, as long
as d = no(1) and k = no(1), we achieve running time n1+o(1). This has much less restriction on
d. Moreover, our time complexity covers from n1+o(1) to n2−Ω(1) with different d, while Alman
& Song (2023) can only handle d = O(log n). (3) To guarantee a truly subquadratic running time,
Han et al. (2024) needs to assume dm = n2−Ω(1), as they get O(dn1+o(1) + dm) time complexity
where m is the number of large entries in attention matrices. Our work gets O(knd log(n)) time
complexity and we need kd = n1−Ω(1) to get truly subquadratic running time. For the situation
m = n1+o(1), d = no(1) and k = no(1), both our algorithm and Han et al. (2024) run in n1+o(1) time.
For the situation m = n1+Ω(1), d = no(1) and k = no(1), running time in Han et al. (2024) will be
truly super-linear n1+Ω(1) while our algorithm remains almost n1+o(1) linear time1.

1.1 RELATED WORK

Attention matrix conv-like structure. Very recent works study the conv-like attention matrix.
Elhage et al. (2021); Olsson et al. (2022) find that in-context learning is driven by the formation
of “induction heads”–attention heads that copy patterns from earlier in the input sequence. This
is reflected in the attention matrix becoming more diagonal, with tokens attending primarily to
preceding tokens that match the current token. In Song & Zhong (2023) Figure 6, they show a similar
conv-like attention pattern for other important attention circuits. Figure 3 of Reddy (2024) shows
that in a minimal classification task, the abrupt emergence of in-context learning coincides with the
formation of an induction head, characterized by a diagonal attention pattern. Nichani et al. (2024)
proves that for a simplified task, gradient descent causes a transformer to encode the causal graph
structure of the task in the attention matrix. This results in tokens attending primarily to their causal
parents reflected in a sparse diagonal structure (Figure 2). In Li et al. (2024a), the conv-like attention
matrix can also be observed when learning math tasks. Moreover, Cai et al. (2024) uses convolutional
kernels to compress the KV-cache size for fast LLM generation.

1Considering the case where attention matrix is all 1 lower triangular matrix, we have k = 1 and m =
n(n+ 1)/2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2 PRELIMINARY

In Section 2.1, we introduce the basic definitions and mathematical properties. In Section 2.2, we
give the formal definition of the sub-convolution matrix and present it basic properties.

Notations. We use ◦ to denote element-wise multiplication. We denote [n] = {1, 2, . . . , n} and
[0] as an empty set. We denote 0n and 1n as the n-dimensional vector whose entries are all
0 and 1 respectively. We denote exp(·) as the element-wise exponential function. We denote
[xa, xa+1, . . . , xb]

⊤ ∈ Rb−a+1 as xa:b, where 1 ≤ a ≤ b ≤ n, similarly for matrix. Let diag :
Rn → Rn×n be defined as diag(x)i,i = xi and diag(x)i,j = 0, for all i ̸= j. For a matrix
A ∈ Rm×n, we define its ℓ1 norm as ∥A∥1 =

∑m
i=1

∑n
j=1 |Aij |, ℓ∞ norm as ∥A∥∞ = maxi,j |Aij |,

and Frobenius norm as ∥A∥F :=
√∑

i,j A
2
i,j , where Aij is an entry at the i-th row and j-th column.

2.1 BASIC DEFINITIONS AND FACTS ABOUT ATTENTION AND conv

Now, we present basic definitions. We start by introducing the input and weight matrix.
Definition 2.1 (Input and weight matrix). We define the input sequence as X ∈ Rn×d and the key,
query, and value weight matrix as WK ,WQ,WV ∈ Rd×d. Then, we define the key, query, and value
matrix as K := XWK ∈ Rn×d, Q := XWQ ∈ Rn×d, V := XWV ∈ Rn×d.

It is straightforward to see QK⊤ = XWQW
⊤
KX⊤. In generative LLMs, there is a causal attention

mask M to guarantee the later tokens cannot see the previous tokens during generation.
Definition 2.2 (Causal attention mask). We define the causal attention mask as M ∈ {0, 1}n×n,
where Mi,j = 1 if i ≥ j and Mi,j = 0 otherwise. We define Mj be the j-th column of M .

Now, we introduce the mathematical definition of the exact attention computation with a mask.
Definition 2.3 (Exact attention computation). Let Q,K, V ∈ Rn×d be the query, key, and value
matrices respectively defined in Definition 2.1. Let M ∈ {0, 1}n×n be the attention mask defined in
Definition 2.2. The goal of the Exact Attention Computation is to find the matrix Att(M,Q,K, V) ∈
Rn×d, which is defined as

Att(M,Q,K, V) := D−1AV

where A ∈ Rn×n is a lower triangular matrix and D ∈ Rn×n is a diagonal matrix, i.e., A :=
M ◦ exp(QK⊤) and D := diag(A1n).

Remark 2.4. In Definition 2.3, we divide the Softmax operation into an element-wise exp operation
and a diagonal normalization matrix D to obtain a clear formulation.

Efficiently computing the attention needs to exploit structured matrices that enable fast multiplication
algorithms. Here, we define the convolution matrix, which is a structured matrix where each row
vector is rotated one element to the right relative to the preceding row vector.
Definition 2.5 (Convolution matrix). Let a ∈ Rn. We define conv : Rn → Rn×n as,

conv(a) :=


a1 0 0 · · · 0
a2 a1 0 · · · 0
a3 a2 a1 · · · 0
...

...
...

. . .
...

an an−1 an−2 · · · a1

 .

By the following fact, we know that the rank of a convolution matrix can be an arbitrary number.
Thus, our conv-basis is totally different from the rank basis. See proof in Appendix B.1.
Claim 2.6. We have conv(ej) ∈ Rn×n is a j-rank matrix, where the j-th entry of ej ∈ Rn is 1 and
all other entries are 0.

Efficient computation of the convolution operation is crucial for many applications. The convolution
theorem states that the circular convolution of two vectors can be computed efficiently using the Fast
Fourier Transform (FFT). This leads to the following claim (see proof in Appendix B.1):

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Claim 2.7. Let conv be defined in Definition 2.5. For any a, x ∈ Rn, conv(a)x can be computed in
O(n log n) via FFT.

One property of convolution matrices is that they are additive with respect to the input vectors. In
other words, the convolution of the sum of two vectors is equal to the sum of the convolutions of the
individual vectors. This is stated formally in the following claim (see proof in Appendix B.1):
Claim 2.8. conv is additive, i.e., for any a, b, x ∈ Rn we have conv(a)x+conv(b)x = conv(a+b)x.

Many other interesting facts and properties about the convolution matrix are used in our main theorem
proof. Due to space limitations, we leave them in Appendix B.1 for reader interests.

2.2 SUB-CONVOLUTION MATRIX: DEFINITIONS AND PROPERTIES

= + +

Figure 2: A matrix with 3-conv basis. We present an example of the matrix defined in Definition 2.11
when k = 3. The matrix with 3-conv basis is on the left-hand side of the equation in this figure. The
red entries in this matrix come from the first matrix on the right-hand side. The purple entries in this
matrix are the sum of the red entries from the first matrix on the right-hand side and the blue entries
from the second matrix on the right-hand side. The dark green entries are equal to the sum of red,
green, and blue entries from the matrices on the right-hand side.

If we would like to use conv as a basis system, we need to introduce some new concepts. Recall
that, in general, the sum of two rank-1 matrices is a rank-2 two matrix. Due to conv being additive,
the sum of two convolution matrices is another convolution matrix, which does not hold the above
property. Thus, we need to introduce sub-convolution matrices to be the basis.
Definition 2.9 (Sub-convolution matrix). Let m ∈ [n]. For any a ∈ Rn. We define the sub-
convolution matrix conv(a,m) as

conv(a,m) =

[
0(n−m)×(n−m) 0(n−m)×m

0m×(n−m) conv(a1:m)

]
.

Given two vectors a, x ∈ Rn, let a ∗m x ∈ Rn denote the sub-convolution operator between a and x,
i.e., conv(a,m)x = a ∗m x.

Similarly, sub-convolution can be computed in O(n log n) time via FFT (see proof in Appendix B.1).
Claim 2.10. Let m ∈ [n]. For any a, x ∈ Rn, conv(a,m)x, (defined in Definition 2.9) can be
computed in O(n log n) via FFT.

Here, we present the definition of the matrix with k-conv basis which is non-reducible.
Definition 2.11 (Matrix with k-conv basis). Let k ∈ [n]. We say a lower triangular matrix H ̸=
0n×n ∈ Rn×n has k-conv basis if

• There exists b1, . . . , bk ∈ Rn and k integers m1,m2, . . . ,mk satisfying n ≥ m1 > m2 >
· · · > mk ≥ 1 such that H =

∑
i∈[k] conv(bi,mi), (defined in Definition 2.9).

• For any b1, . . . , bk−1 ∈ Rn and k − 1 integers m1,m2, . . . ,mk−1 satisfying n ≥ m1 >
m2 > · · · > mk−1 ≥ 1 we have H ̸=

∑
i∈[k−1] conv(bi,mi).

The following lemma establishes that any non-zero lower triangular matrix can be represented as a
matrix with a k-conv basis for some unique k between 1 and n. The proof is in Appendix E.1.
Lemma 2.12. For any lower triangular matrix H ̸= 0n×n ∈ Rn×n, there exists a unique k ∈ [n]
such that H is a matrix with k-conv basis.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3 conv APPROXIMATION DURING INFERENCE

In Section 3.1, we introduce the basic definitions to support our algorithmic analysis in this section. In
Section 3.2, we present the binary search and recover k-conv algorithms and present their theoretical
guarantees. In Section 3.3, we provide the formal version of our main result.

3.1 KEY CONCEPTS

Any non-zero lower triangular matrix can be represented as a matrix with a k-conv basis for some
unique k between 1 and n (Lemma 2.12). However, exactly getting k is hard and the definition is too
strict for the algorithm design. Thus, for more flexibility, we introduce a more general definition of
non-degenerate k-conv basis as below, which is a proxy notion to relax the conditions required.

Definition 3.1 (Non-degenerate k-conv basis). Let T ∈ [n], δ ≥ 0, and k ∈ [n + 1 − T]. Let
b1, . . . , bk ∈ Rn and k integers m1,m2, . . . ,mk satisfying n ≥ m1 > m2 > · · · > mk ≥ T . Let
H =

∑
i∈[k] conv(bi,mi). If for each basis i ∈ [k], for all j ∈ [i], we have ∥

∑i
l=j(bl)1:T ∥1 ≥ δ,

then we define H ∈ Rn×n to be a matrix with (T, δ)-non-degenerate k-conv basis.

Here (T, δ)-non-degenerate k-conv basis means that each conv basis cannot be “covered” by the
other basis easily.

Definition 3.2. We define G as a ϵ-close (T, δ)-non-degenerate k-conv basis matrix when G = H+R,
where H is a (T, δ)-non-degenerate k-conv basis matrix defined in Definition 3.1 and the noise
matrix R ∈ Rn×n satisfies ∥R∥∞ ≤ ϵ ≤ δ

5T .

The following theorem establishes that any non-zero lower triangular matrix can be represented as an
ϵ-close (T, δ)-non-degenerate k-conv basis matrix (see proof in Section B.2). There may be many
different choices of (k, T, δ, ϵ), which provide flexibility for our Algorithm 1.

Theorem 3.3. For any lower triangular matrix G ̸= 0n×n ∈ Rn×n, there exists k, T ∈ [n] and
δ, ϵ ≥ 0 such that G is a ϵ-close (T, δ)-non-degenerate k-conv basis matrix.

3.2 ALGORITHMS AND THEIR PROPERTIES

Now, we present our main Algorithm 1. We present Algorithm 2 and Algorithm 3 as well.

Algorithm 1 Main k-conv forward

1: procedure convFORWARD(Q,K, V ∈ Rn×d, k, T ∈ [n], δ, ϵ ∈ R≥0) ▷ Theorem 3.4
2: b̃1, . . . , b̃k,m1, . . . ,mk ← RECOVER(Q,K, k, T, δ, ϵ) ▷ Algorithm 2, recover k-conv
3: D̃ ← diag(

∑
r∈[k] conv(̃br,mr)1n) by FFT in Claim 2.10

4: Ỹ ← D̃−1
∑

r∈[k] conv(̃br,mr)V by FFT in Claim 2.10

5: return Ỹ
6: end procedure

In Algorithm 1, we first using Algorithm 2 to get k conv basis. Then, we can get the approximated
normalization matrix D̃ and the final output Ỹ by FFT in Claim 2.7.

In Algorithm 2, we iteratively use binary search (Algorithm 3) to find the conv basis position and
calculate their values. Note that, in the end, we need to change b′i to b̃i by incorporating exp function
used in the Softmax. We will provide proof of correctness and complexity in the following section.

In Algorithm 3, we use binary search to efficiently locate the convolution basis position by leveraging
the non-degenerate property (see Definitions 3.1 and 3.2) of the attention matrix. This allows us
to find k-conv-basis in our main Algorithm 1, enabling better control over the running time while
bounding the error. The choice of k thus balances the trade-off between accuracy and efficiency.
Technically, Algorithm 3 identifies positions in the attention matrix where the ℓ1 norm of remaining
attention values exceeds the threshold δ − 2Tϵ. The non-degenerate property enables the binary
search algorithm to find the next convolution basis position in O(log n) steps.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 Recover k-conv

1: procedure RECOVER(Q,K ∈ Rn×d, k, T ∈ [n], δ, ϵ ∈ R≥0)
2: v ← 0T , u← 0n, s← 0, t← n− T + 1 ▷ Initialize the state for binary search
3: for i = 1→ k do
4: s← s+ 1
5: s← SEARCH(Q,K, k, T, δ, ϵ, v, s, t) ▷ Algorithm 3 in Appendix B.2, binary search the

next conv basis position
6: mi ← n− s+ 1
7: H̃s ←Ms ◦ (Q(K⊤)s)

8: (b′i)1:mi ← H̃s,s:s+mi−1 − u1:mi , (b
′
i)mi+1:n ← 0n−mi ▷ Get the conv basis value

9: v ← v + (b′i)1:T
10: u← u+ b′i
11: end for
12: Get b̃1, . . . , b̃k by Lemma B.16 from b′1, . . . , b

′
k and m1, . . . ,mk

13: return b̃1, . . . , b̃k,m1, . . . ,mk

14: end procedure

Algorithm 3 Binary search

1: procedure SEARCH(Q,K ∈ Rn×d, k, T ∈ [n], δ, ϵ ∈ R≥0, v ∈ RT , s, t ∈ [n])
2: if s ≥ t then
3: return s
4: end if
5: j ← ⌊(s+ t)/2⌋
6: H̃j ←Mj ◦ (Q(K⊤)j) ▷ j ∈ [n],M is attention mask defined in Definition 2.2
7: α← ∥(H̃j)j:j+T−1 − v∥1
8: if α ≥ δ − 2Tϵ then
9: return SEARCH(Q,K, k, T, δ, ϵ, v, s, j)

10: else
11: return SEARCH(Q,K, k, T, δ, ϵ, v, j + 1, t)
12: end if
13: end procedure

3.3 MAIN THEORETICAL RESULT

In this section, we present our main result.

Theorem 3.4 (Main conv results for inference). Let Q,K, V ∈ Rn×d. Recall A = M◦exp(QK⊤) ∈
Rn×n, D = diag(A1n) ∈ Rn×n defined in Definition 2.3. We denote Y := D−1AV ∈ Rn×d. Let
M ◦ (QK⊤) be a ϵ-close (T, δ)-non-degenerate k-conv basis matrix as defined in Definition 3.2,
where δ, ϵ ≥ 0 and k, T ∈ [n]. By Algorithm 1, we can get Ỹ such that

∥Y − Ỹ ∥∞ ≤ 2(exp(2ϵ)− 1)∥V ∥∞,

whose time complexity is O(knd log(n)) given M,Q,K, V .

Proof sketch of Theorem 3.4. See complete proof in Appendix B.4. The proof idea is that using
binary search to recover all non-degenerate conv basis (Lemma B.19), which takes O(knd log(n))
time and has upto 2(exp(2ϵ)− 1)∥V ∥∞ error (Lemma B.20). Then, via FFT (Claim 2.10), we finish
the proof.

Note that our algorithm can handle any Q,K ∈ Rd×d. Furthermore, we can exactly recover Y if we
do not care about the time complexity. We formally describe the above intuition in the following.

Corollary 3.5 (Exact conv inference). Let Q,K, V ∈ Rn×d. Recall A = M ◦ exp(QK⊤) ∈ Rn×n,
D = diag(A1n) ∈ Rn×n defined in Definition 2.3. We denote Y := D−1AV ∈ Rn×d. For any
ϵ ≥ 0 and any Q,K, V , there exists hyper-parameter k, T ∈ [n] and δ ≥ 0 such that Algorithm 1

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

can output Ỹ satisfying ∥Y − Ỹ ∥∞ ≤ 2(exp(2ϵ)− 1)∥V ∥∞. Furthermore, we can exactly get Y ,
i.e., ϵ = 0, through Algorithm 1 with time complexity O(n2d log(n)) in the worst case.

See proof of the above corollary in Appendix B.4. By Theorem 3.4, when ϵ = O(1), we directly
get the attention inference time complexity is O(knd log(n)) with error up to O(ϵ) as claimed in
Section 1. It may enable further improvement and scalability of LLMs in the longer context.

Moreover, in Appendix A, we provide a detailed discussion about two case studies, LongLora (Chen
et al., 2023b) and RoPE (Su et al., 2024), where our algorithm can apply to these two long-context
LLMs as well. We also provide further discussion on limitations and extensions there.

4 conv APPROXIMATION FOR TRAINING

We can apply our algorithm to accelerate attention training including forward and back propagation.
We first define the attention training task, which is also used in Alman & Song (2024a).
Definition 4.1 (Attention optimization). Given A1, A2, A3, E ∈ Rn×d and Y ∈ Rd×d. we let
M ∈ Rn×n be a casual attention mask defined in Definition 2.2. We define the optimization as

min
X∈Rd×d

L(X) := 0.5∥D(X)−1M ◦ exp(A1XA⊤
2)A3Y − E∥2F .

Here D(X) ∈ Rn×n is D(X) := diag(M ◦ exp(A1XA⊤
2)1n).

Remark 4.2. Our Attention Optimization task in Definition 4.1 covers both the cross-attention
and self-attention setting. Let weight matrices WK ,WQ,WV ∈ Rd×d be defined in Definition 2.1.
For the self-attention setting, we can see A1, A2, A3 ∈ Rn×d as X ∈ Rn×d in Definition 2.1, see
X ∈ Rd×d in Definition 4.1 as WQW

⊤
K ∈ Rd×d and see Y ∈ Rd×d as WV ∈ Rd×d. To overcome

the quadratic complexity obstacle, we only need to handle the gradient computation of WQW
⊤
K .

Let x, y ∈ Rd2

denote the vectorization of X,Y ∈ Rd×d. Then, we define some basic notions used.
Definition 4.3. Tmat(n, d, k) represents the time of an n× d matrix times a d× k matrix.
Definition 4.4 (⊗ Kronecker product). Given two matrices A1 ∈ Rn1×d1 , A2 ∈ Rn2×d2 , we define
A := A1 ⊗A2 ∈ Rn1n2×d1d2 as follows

Ai1+(i2−1)n1,j1+(j2−1)d1
= (A1)i1,j1 · (A2)i2,j2 , ∀i1 ∈ [n1], i2 ∈ [n2], j1 ∈ [d1], j2 ∈ [d2].

Recall that during inference, we have the n× n size matrix QK⊤. Similarly, in gradient calculation,
we have an n× n size matrix, and we denote it as u(x).
Definition 4.5. Let M ∈ Rn×n be a casual attention mask defined in Definition 2.2. Let A1, A2 ∈
Rn×d. Suppose that A = A1 ⊗ A2 ∈ Rn2×d2

. For all j0 ∈ [n], let Aj0 ∈ Rn×d2

be the j0-th block
of A and u(x)j0 := Mj0,∗ ◦ exp(Aj0 x). Define u(x) ∈ Rn×n as the matrix where the j0-th row
corresponds to (u(x)j0)

⊤.

Then, we are ready to present our main results for attention training.
Theorem 4.6 (Main conv result for training forward and backward gradient). If u(x) is a
1/ poly(n)-close (T, δ)-non-degenerate k-conv basis matrix as defined in Definition 3.2, where
δ ≥ 0 and k, T ∈ [n]. Then there are algorithms that run to compute training forward in time
O(knd log n+ Tmat(n, d, d)) and backward gradient in time O(d2kn log n) of attention loss (Defi-
nition 4.1) approximately up to 1/poly(n) error under ℓ∞ norm.

Proof sketch of Theorem 4.6. See complete proof in Appendix C.4. During backward computation,
we can convey the properties of low-rank and convolution at the same time (Lemma C.13 and
Lemma C.15). Then, by tensor trick, we can compute the attention gradient based on attention
inference (Lemma C.9). We finish the proof by Theorem 3.4.

Remark 4.7. Note that Alman & Song (2024a) only needs to convey the low-rank property, while we
need to convey the properties of low-rank and convolution simultaneously, a more general analysis.

Our Theorem 4.6 shows that our algorithm can accelerate Transformer training as well. It may save
time, resources, and energy for nowadays LLMs training.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5 LOW RANK APPROXIMATION

Figure 3: A 16 × 16 matrix with, left - row change by amortized constant mask (Definition 5.1);
middle - continuous row mask (Definition 5.2); right - distinct 3 rows mask (Definition 5.4). Green
means 1 and yellow means 0.

We can apply our analysis technique to a low-rank approximation setting in Alman & Song (2023),
which only works on attention approximation without an attention mask. Equipped with our mask
analysis trick, we can generalize their results with different kinds of attention masks including the
most popular causal attention mask. We first introduce some practical attention masks.

Definition 5.1. Let Bj ∈ Z≥0. We define the row change by amortized constant mask as W ∈
{0, 1}n×n, where let (W⊤)0 = 0n and ∥(W⊤)j − (W⊤)j−1∥1 ≤ Bj for any j ∈ [n] and (W⊤)j
is the j-th row of W .

Definition 5.2. We define the continuous row mask as W ∈ {0, 1}n×n, where for each i ∈ [n], we
are given si, ti ∈ [n] such that Wi,j = 1 if si ≤ j ≤ ti and Wi,j = 0 otherwise.

Definition 5.3. We define W ∈ {0, 1}n×n as the distinct r columns mask satisfying the following
condition. Let S1, · · · , Sr ⊆ [n] denote r disjoint subsets and ∪j∈[r]Sj = [n]. For any two i, i′ ∈ Sj ,
we have W∗,i = W∗,i′ ∈ Rn, where W∗,i ∈ Rn denote the i-th column of W ∈ Rn×n.

Definition 5.4. We define W ∈ {0, 1}n×n as the distinct r rows mask satisfying the following
condition. Let S1, · · · , Sr ⊆ [n] denote r disjoint subsets and ∪j∈[r]Sj = [n]. For any two i, i′ ∈ Sj ,
we have Wi,∗ = Wi′,∗ ∈ Rn, where Wi,∗ ∈ Rn denotes the i-th row of W ∈ Rn×n.

Then, we have the following main results for the low-rank setting. The proof is in Appendix D.2.

Theorem 5.5 (Main low-rank result). Assume the same condition as Lemma D.2. Let ϵ ∈ (0, 0.1).
Let Q,K, V ∈ Rn×d. Let U1, U2 ∈ Rn×k be defined in Lemma D.2. Let W ∈ {0, 1}n×n denote a
mask matrix. Let H = exp(QK⊤/d) ∈ Rn×n, A = W ◦H ∈ Rn×n and D = diag(A1n) ∈ Rn×n.
We denote Y := D−1AV ∈ Rn×d. Let Ã := W ◦ U1U

⊤
2 and D̃ := diag(Ã1n). We denote

Ỹ := D̃−1ÃV ∈ Rn×d. Then, we have ∥Y − Ỹ ∥∞ ≤ 4ϵ∥V ∥∞. The time complexity to get Ỹ is

• O(knd) when W is a causal mask defined in Definition 2.2.

• O(kd
∑n

j=1 Bj) when W is a row change mask defined in Definition 5.1.

• O(knd log(n)) when W is a continuous row mask defined in Definition 5.2.

• O(rnd) when W is a distinct r columns / rows mask defined in Definition 5.3 / Definition 5.4.

Our Theorem 5.5 has the same error guarantee as Alman & Song (2023). For the normal mask, e.g.,
casual attention mask (Definition 2.2), Theorem 5.5 shares the same time complexity as theirs.

6 EXPERIMENTS

In this section, we provide our experimental results for convolution attention computing in language
models, offering empirical backing to our theoretical claims.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4 64 12
8

25
6

51
2

10
24

20
00

k

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

tiv
e

Di
ff

Relative Diff for Different k Values

20
4864 12
8

25
6

51
2

76
8

10
24

k

0.5

0.6

0.7

0.8

0.9

Ac
c

naive attention implementation
Acc for Different k Values

Figure 4: The comparison between the Llama3 8B Instruct with or without using our Algorithm 1 on
the IMDB dataset. The input sequence length n = 2048. The x-axis is the number of conv basis. The

y axis is relative difference ∥Y−Ỹ ∥2
F

∥Y ∥2
F

for the left figure and classification accuracy for the right figure.
Note that k = 2048 represents the baseline of the original model, as this is the input sequence length.

Setup. We utilized the latest Llama3 8B Instruct model2 (AI, 2024) as our foundation, modifying
its attention mechanism with our convolution-based approach using varying numbers of convolution
bases (k). We used the IMDB dataset (Maas et al., 2011) of labeled movie reviews. Our assessments
employ two key metrics: (1) the relative difference for our final layer output Ỹ and the original
model’s output Y , i.e., ∥Y − Ỹ ∥2F /∥Y ∥2F ; (2) the classification accuracy. This dual approach
allowed us to evaluate both the internal representations and the overall predictive performance of our
convolution-based attention compared to the standard mechanism.

Implementation details. To ensure a fair comparison and prevent memory issues, we set the
model’s context length to 2048 tokens and incrementally increased the number of conv basis k.
Note that when k = 2048, our convolution attention produces an identical output to the original
attention mechanism. We employed an instruction-based approach to evaluate generation accuracy,
formatting our input as Review: <REVIEW> Question: Is this review positive or negative? Answer:.
This methodology allowed us to systematically assess the performance of our convolution-based
attention across various complexity levels while maintaining comparability with the original model.
We randomly sample 5 sample groups, with 200 samples per group, and report the results average
across each group.

Results. The left plot in Figure 4 shows that as the base number k increases, the relative MSE
decreases rapidly, even with a relatively small number of bases such as k = 256 or 512. This
indicates that our convolution-based approach converges towards the performance of the original
attention mechanism as k grows. The right plot demonstrates that the accuracy of our model improves
significantly as k increases, and can achieve comparable accuracy to the original with k = 512,
suggesting that our method can maintain high performance while reducing computational complexity.
The results imply that our proposed method may effectively approximate the original attention
mechanism, offering a promising trade-off between accuracy and efficiency, especially for scenarios
where resource constraints are a concern.

7 CONCLUSION

We presented a novel approach for efficient attention computation in transformers using convolution
matrices. Our algorithm achieves nearly linear time complexity for attention inference and gradient
computation, providing better theoretical guarantees than existing methods. This work opens up a
new paradigm for accelerating attention computation, enabling the application of transformers to
longer contexts and potentially leading to further improvements in large language models.

2https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

10

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee Yun, Ali Jadbabaie, and Suvrit Sra. Linear
attention is (maybe) all you need (to understand transformer optimization). In The Twelfth
International Conference on Learning Representations, 2024.

Meta AI. Introducing meta llama 3: The most capable openly available llm to date, 2024. https:
//ai.meta.com/blog/meta-llama-3/.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36, 2023.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. arXiv preprint arXiv:2402.04497, 2024a.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024b. URL https://openreview.net/forum?id=v0zNCwwkaV.

Chenxin An, Fei Huang, Jun Zhang, Shansan Gong, Xipeng Qiu, Chang Zhou, and Lingpeng Kong.
Training-free long-context scaling of large language models. arXiv preprint arXiv:2402.17463,
2024.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Amanda Bertsch, Uri Alon, Graham Neubig, and Matthew Gormley. Unlimiformer: Long-range
transformers with unlimited length input. Advances in Neural Information Processing Systems, 36,
2024.

Markus Bläser. Fast matrix multiplication. Theory of Computing, pp. 1–60, 2013.

Peter Bürgisser, Michael Clausen, and Mohammad A Shokrollahi. Algebraic complexity theory,
volume 315. Springer Science & Business Media, 2013.

Ruisi Cai, Yuandong Tian, Zhangyang Wang, and Beidi Chen. Lococo: Dropping in convolutions for
long context compression. arXiv preprint arXiv:2406.05317, 2024.

Bo Chen, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Hsr-enhanced sparse attention
acceleration. arXiv preprint arXiv:2410.10165, 2024.

Sitan Chen, Jerry Li, and Zhao Song. Learning mixtures of linear regressions in subexponential time
via fourier moments. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pp. 587–600, 2020.

Xiang Chen, Zhao Song, Baocheng Sun, Junze Yin, and Danyang Zhuo. Query complexity of active
learning for function family with nearly orthogonal basis. arXiv preprint arXiv:2306.03356, 2023a.

Xue Chen, Daniel M Kane, Eric Price, and Zhao Song. Fourier-sparse interpolation without a
frequency gap. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 741–750. IEEE, 2016.

11

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://openreview.net/forum?id=v0zNCwwkaV
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. arXiv preprint arXiv:2309.12307,
2023b.

Lu Chi, Borui Jiang, and Yadong Mu. Fast fourier convolution. Advances in Neural Information
Processing Systems, 33:4479–4488, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Yichuan Deng, Zhao Song, and Tianyi Zhou. Superiority of softmax: Unveiling the performance
edge over linear attention. arXiv preprint arXiv:2310.11685, 2023.

Huaian Diao, Zhao Song, Wen Sun, and David Woodruff. Sketching for kronecker product regression
and p-splines. In International Conference on Artificial Intelligence and Statistics, pp. 1299–1308.
PMLR, 2018.

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang,
and Mao Yang. Longrope: Extending llm context window beyond 2 million tokens. arXiv preprint
arXiv:2402.13753, 2024.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for transformer
circuits. Transformer Circuits Thread, 1:1, 2021.

Daniel Y Fu, Elliot L Epstein, Eric Nguyen, Armin W Thomas, Michael Zhang, Tri Dao, Atri Rudra,
and Christopher Ré. Simple hardware-efficient long convolutions for sequence modeling. In
International Conference on Machine Learning, pp. 10373–10391. PMLR, 2023.

Yeqi Gao, Zhao Song, and Baocheng Sun. An O(k log n) time fourier set query algorithm. arXiv
preprint arXiv:2208.09634, 2022.

Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformulating single
layer attention in llm based on tensor and svm trick, and solving it in matrix multiplication time.
arXiv preprint arXiv:2309.07418, 2023a.

Yeqi Gao, Zhao Song, and Shenghao Xie. In-context learning for attention scheme: from single soft-
max regression to multiple softmax regression via a tensor trick. arXiv preprint arXiv:2307.02419,
2023b.

Yeqi Gao, Zhao Song, and Junze Yin. An iterative algorithm for rescaled hyperbolic functions
regression. arXiv preprint arXiv:2305.00660, 2023c.

Yeqi Gao, Zhao Song, and Junze Yin. Gradientcoin: A peer-to-peer decentralized large language
models. arXiv preprint arXiv:2308.10502, 2023d.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Yuzhou Gu, Zhao Song, Junze Yin, and Lichen Zhang. Low rank matrix completion via robust
alternating minimization in nearly linear time. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=N0gT4A0jNV.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
Eh0Od2BJIM.

12

https://openreview.net/forum?id=N0gT4A0jNV
https://openreview.net/forum?id=Eh0Od2BJIM
https://openreview.net/forum?id=Eh0Od2BJIM

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
Grundy, and Haoyu Wang. Large language models for software engineering: A systematic literature
review, 2024.

Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han Liu. On sparse
modern hopfield model. In Thirty-seventh Conference on Neural Information Processing Systems
(NeurIPS), 2023.

Jerry Yao-Chieh Hu, Pei-Hsuan Chang, Haozheng Luo, Hong-Yu Chen, Weijian Li, Wei-Po Wang,
and Han Liu. Outlier-efficient hopfield layers for large transformer-based models. In Forty-first
International Conference on Machine Learning (ICML), 2024a.

Jerry Yao-Chieh Hu, Bo-Yu Chen, Dennis Wu, Feng Ruan, and Han Liu. Nonparametric modern
hopfield models. arXiv preprint arXiv:2404.03900, 2024b.

Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu. On computational limits of modern
hopfield models: A fine-grained complexity analysis. In Forty-first International Conference on
Machine Learning (ICML), 2024c.

Jerry Yao-Chieh Hu, Dennis Wu, and Han Liu. Provably optimal memory capacity for modern
hopfield models: Tight analysis for transformer-compatible dense associative memories. In
Advances in Neural Information Processing Systems (NeurIPS), volume 37, 2024d.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan
Chen, and Xia Hu. Llm maybe longlm: Self-extend llm context window without tuning. arXiv
preprint arXiv:2401.01325, 2024.

Yaonan Jin, Daogao Liu, and Zhao Song. Super-resolution and robust sparse continuous fourier
transform in any constant dimension: Nearly linear time and sample complexity. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2023.

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for good?
on opportunities and challenges of large language models for education. Learning and individual
differences, 103:102274, 2023.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 4013–4021, 2016.

Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current matrix
multiplication time. In COLT, 2019.

Chenyang Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Tianyi Zhou. Fourier circuits in neural
networks and transformers: A case study of modular arithmetic with multiple inputs. arXiv preprint
arXiv:2402.09469, 2024a.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. A tighter complexity analysis of sparsegpt.
arXiv preprint arXiv:2408.12151, 2024b.

Yinheng Li, Shaofei Wang, Han Ding, and Hang Chen. Large language models in finance: A survey.
In Proceedings of the Fourth ACM International Conference on AI in Finance, pp. 374–382, 2023a.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yuanzhi Li, Yingyu Liang, and Andrej Risteski. Recovery guarantee of weighted low-rank approx-
imation via alternating minimization. In International Conference on Machine Learning, pp.
2358–2367. PMLR, 2016.

Zhihang Li, Zhao Song, Zifan Wang, and Junze Yin. Local convergence of approximate newton
method for two layer nonlinear regression. arXiv preprint arXiv:2311.15390, 2023b.

Zhihang Li, Zhao Song, Weixin Wang, Junze Yin, and Zheng Yu. How to inverting the leverage score
distribution? arXiv preprint arXiv:2404.13785, 2024c.

Weixin Liang, Zachary Izzo, Yaohui Zhang, Haley Lepp, Hancheng Cao, Xuandong Zhao, Lingjiao
Chen, Haotian Ye, Sheng Liu, Zhi Huang, et al. Monitoring ai-modified content at scale: A case
study on the impact of chatgpt on ai conference peer reviews. arXiv preprint arXiv:2403.07183,
2024a.

Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Yufa Zhou. Beyond linear approx-
imations: A novel pruning approach for attention matrix. arXiv preprint arXiv:2410.11261,
2024b.

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer transformers
gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233, 2024c.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Toward infinite-long prefix in transformer.
arXiv preprint arXiv:2406.14036, 2024d.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably efficient
learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024e.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Differential privacy of cross-attention with
provable guarantee. arXiv preprint arXiv:2407.14717, 2024f.

Xuezhe Ma, Xiaomeng Yang, Wenhan Xiong, Beidi Chen, Lili Yu, Hao Zhang, Jonathan May, Luke
Zettlemoyer, Omer Levy, and Chunting Zhou. Megalodon: Efficient llm pretraining and inference
with unlimited context length. arXiv preprint arXiv:2404.08801, 2024.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P11-1015.

Stefano Massaroli, Michael Poli, Dan Fu, Hermann Kumbong, Rom Parnichkun, David Romero,
Aman Timalsina, Quinn McIntyre, Beidi Chen, Atri Rudra, et al. Laughing hyena distillery:
Extracting compact recurrences from convolutions. Advances in Neural Information Processing
Systems, 36, 2023.

Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolutional networks through
ffts. arXiv preprint arXiv:1312.5851, 2013.

Ankur Moitra. Super-resolution, extremal functions and the condition number of vandermonde
matrices. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing, pp.
821–830, 2015.

Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. arXiv preprint arXiv:2402.14735, 2024.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

Bo Peng, Eric Alcaide, Quentin Gregory Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Nguyen Chung, Leon Derczynski, et al. Rwkv: Reinventing
rnns for the transformer era. In The 2023 Conference on Empirical Methods in Natural Language
Processing, 2023.

14

http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context win-
dow extension of large language models. In The Twelfth International Conference on Learning
Representations, 2024.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. In International Conference on Machine Learning, pp. 28043–28078. PMLR,
2023.

Harry Pratt, Bryan Williams, Frans Coenen, and Yalin Zheng. Fcnn: Fourier convolutional neural
networks. In Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2017, Skopje, Macedonia, September 18–22, 2017, Proceedings, Part I 17, pp.
786–798. Springer, 2017.

Eric Price and Zhao Song. A robust sparse Fourier transform in the continuous setting. In 2015 IEEE
56th Annual Symposium on Foundations of Computer Science, pp. 583–600. IEEE, 2015.

Zhen Qin, Xiaodong Han, Weixuan Sun, Bowen He, Dong Li, Dongxu Li, Yuchao Dai, Ling-
peng Kong, and Yiran Zhong. Toeplitz neural network for sequence modeling. arXiv preprint
arXiv:2305.04749, 2023.

Ilya Razenshteyn, Zhao Song, and David P Woodruff. Weighted low rank approximations with
provable guarantees. In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pp. 250–263, 2016.

Aravind Reddy, Zhao Song, and Lichen Zhang. Dynamic tensor product regression. Advances in
Neural Information Processing Systems, 35:4791–4804, 2022.

Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task. In The Twelfth International Conference on Learning Representations, 2024.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning. PMLR, 2021.

Zhenmei Shi, Jiefeng Chen, Kunyang Li, Jayaram Raghuram, Xi Wu, Yingyu Liang, and Somesh
Jha. The trade-off between universality and label efficiency of representations from contrastive
learning. In The Eleventh International Conference on Learning Representations, 2023a. URL
https://openreview.net/forum?id=rvsbw2YthH_.

Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do in-context
learning differently? In R0-FoMo:Robustness of Few-shot and Zero-shot Learning in Large
Foundation Models, 2023b. URL https://openreview.net/forum?id=2J8xnFLMgF.

Zhenmei Shi, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, and Shafiq Joty. Discovering the gems
in early layers: Accelerating long-context llms with 1000x input token reduction. arXiv preprint
arXiv:2409.17422, 2024.

Jiajun Song and Yiqiao Zhong. Uncovering hidden geometry in transformers via disentangling
position and context. arXiv preprint arXiv:2310.04861, 2023.

Zhao Song. Matrix Theory: Optimization, Concentration and Algorithms. PhD thesis, The University
of Texas at Austin, 2019.

Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized neural network
in subquadratic time. arXiv preprint arXiv:2112.07628, 2021.

Zhao Song, Baocheng Sun, Omri Weinstein, and Ruizhe Zhang. Sparse fourier transform over lattices:
A unified approach to signal reconstruction. arXiv preprint arXiv:2205.00658, 2022.

Zhao Song, Baocheng Sun, Omri Weinstein, and Ruizhe Zhang. Quartic samples suffice for fourier
interpolation. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 1414–1425. IEEE, 2023a.

15

https://openreview.net/forum?id=rvsbw2YthH_
https://openreview.net/forum?id=2J8xnFLMgF

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Zhao Song, Weixin Wang, and Junze Yin. A unified scheme of resnet and softmax. arXiv preprint
arXiv:2309.13482, 2023b.

Zhao Song, Xin Yang, Yuanyuan Yang, and Lichen Zhang. Sketching meets differential privacy: fast
algorithm for dynamic kronecker projection maintenance. In International Conference on Machine
Learning, pp. 32418–32462. PMLR, 2023c.

Zhao Song, Mingquan Ye, Junze Yin, and Lichen Zhang. A nearly-optimal bound for fast regression
with ℓ∞, guarantee. In ICML, volume 202 of Proceedings of Machine Learning Research, pp.
32463–32482. PMLR, 2023d.

Zhao Song, Mingquan Ye, Junze Yin, and Lichen Zhang. Efficient alternating minimization with
applications to weighted low rank approximation. arXiv preprint arXiv:2306.04169, 2023e.

Zhao Song, Junze Yin, and Lichen Zhang. Solving attention kernel regression problem via pre-
conditioner. arXiv preprint arXiv:2308.14304, 2023f.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

Zhongxiang Sun. A short survey of viewing large language models in legal aspect. arXiv preprint
arXiv:2303.09136, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez, Ting Fang
Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine, 29(8):
1930–1940, 2023.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan Salakhut-
dinov. Transformer dissection: a unified understanding of transformer’s attention via the lens of
kernel. arXiv preprint arXiv:1908.11775, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint
arXiv:1804.07461, 2018.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Dennis Wu, Jerry Yao-Chieh Hu, Teng-Yun Hsiao, and Han Liu. Uniform memory retrieval with
larger capacity for modern hopfield models. In Forty-first International Conference on Machine
Learning (ICML), 2024a.

Dennis Wu, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen, and Han Liu. STanhop: Sparse tan-
dem hopfield model for memory-enhanced time series prediction. In The Twelfth International
Conference on Learning Representations (ICLR), 2024b.

Chenwei Xu, Yu-Chao Huang, Jerry Yao-Chieh Hu, Weijian Li, Ammar Gilani, Hsi-Sheng Goan, and
Han Liu. Bishop: Bi-directional cellular learning for tabular data with generalized sparse modern
hopfield model. In Forty-first International Conference on Machine Learning (ICML), 2024a.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional ability?
an investigation into limitations and scalability. In ICLR 2024 Workshop on Mathematical and
Empirical Understanding of Foundation Models, 2024b. URL https://openreview.net/
forum?id=4XPeF0SbJs.

Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Fangzhou Mu, Yin Li, and Yingyu Liang. Towards few-shot
adaptation of foundation models via multitask finetuning. In The Twelfth International Conference
on Learning Representations, 2024c.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Re. The hedgehog & the
porcupine: Expressive linear attentions with softmax mimicry. In The Twelfth International
Conference on Learning Representations, 2024.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927, 2023.

Lin Zheng, Chong Wang, and Lingpeng Kong. Linear complexity randomized self-attention mecha-
nism. In International conference on machine learning, pp. 27011–27041. PMLR, 2022.

17

https://openreview.net/forum?id=4XPeF0SbJs
https://openreview.net/forum?id=4XPeF0SbJs

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Appendix

CONTENTS

1 Introduction 1

1.1 Related Work . 3

2 Preliminary 4

2.1 Basic Definitions and Facts about Attention and conv 4

2.2 Sub-convolution Matrix: Definitions and Properties 5

3 conv Approximation during Inference 6

3.1 Key Concepts . 6

3.2 Algorithms and Their Properties . 6

3.3 Main Theoretical Result . 7

4 conv Approximation for Training 8

5 Low Rank Approximation 9

6 Experiments 9

7 Conclusion 10

A Further Discussion 19

B Technical Details About conv Approximation 20

B.1 Properties of Toeplitz, Circulant, and Convolution Matrices 20

B.2 Mathematical Tools Development for k-conv Basis 22

B.3 Lemma Used in Main Theorem Proof . 24

B.4 Proof of Main Theorem . 27

B.5 Construction for Case Study . 28

C conv Approximation in Gradient 31

C.1 Definitions . 31

C.2 Loss Functions . 32

C.3 Running Time . 33

C.4 Proof of Main Theorem . 36

D Incorporating Weighted Low Rank Approximation 37

D.1 Preliminary . 37

D.2 Proof of Main Results . 38

D.3 Causal Attention Mask . 38

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D.4 Row Change by Amortized Constant Mask . 40

D.5 Continuous Row Mask . 41

D.6 Distinct r Columns or Rows . 42

E Supporting Lemmas and Technical Results 43

E.1 Matrix and Vector Properties . 43

E.2 Tools for Error Analysis . 44

E.3 Tensor Tools for Gradient Computation . 46

F More Related Work 47

Roadmap. In Section A, we discuss two case studies: Longlora and RoPE, and provide further
discussions. In Section B, we present additional details and proofs related to the convolution
approximation approach. In Section C, we introduce the conv approximation in gradient. In Section D,
we include supplementary material for the low-rank approximation. In Section E, we present a
collection of useful tools and lemmas that are referenced throughout the main text and the appendix.

A FURTHER DISCUSSION

LongLora. Our conv and low-rank approximation can be applied to LongLora Chen et al. (2023b),
whose mask is shown in the left of Figure 3. They use this kind of sparse mask to extend the context
sizes of pre-trained large language models, with limited computation cost, e.g., extending Llama2
70B from 4k context to 32k on a single 8× A100 machine. As the “diagonalized” mask structure,
we can directly apply our Algorithm 1 by replacing the causal attention mask (Definition 2.2) with
their sparse mask for the conv approximation with time complexity O(knd log(n)). Similarly, for
the low-rank approximation, we directly use the second statement in Theorem 5.5 by considering row
change by amortized constant mask defined in Definition 5.1 with time complexity O(knd), where
Bj = O(1) for any j ∈ [n].

RoPE. The Rotary Position Embedding (RoPE) Su et al. (2024) designs a rotation matrix R(m) ∈
Rd×d, for all m ∈ [n], which can effectively encode the positional information into embedding
Q,K ∈ Rn×d. In detail, let qi, kj ∈ Rd, where q⊤i and k⊤j be the i-th and j-th row of Q,K
respectively, for any i, j ∈ [n]. By the property of rotation matrix, we have

(R(i)qi)
⊤(R(j)kj) = q⊤i R

(j−i)kj

We define Q′,K ′ ∈ Rn×d, and let q′i, k
′
j ∈ Rd, where q′

⊤
i and k′

⊤
j be the i-th and j-th row of

Q′,K ′ respectively, for any i, j ∈ [n]. Let q′i = R(i)qi and k′j = R(j)kj . By Equation (34) in Su
et al. (2024), we know that we can get Q′,K ′ in O(nd) time. Thus, we can apply Q′,K ′ in our
Theorem 3.4 and Theorem 5.5 to get the same approximation error guarantee and the same time
complexity.

Extend to full self-attention. We can easily extend our method to full self-attention. Our proposed
approach can be extended to accelerate full self-attention as well, not just the causal attention
mechanism. Note that the full self-attention matrix can be split into a lower triangular matrix L and
an upper triangular matrix U . Then, our conv-basis approximation method can be applied separately
to L and the transpose of U . This allows the algorithm to handle both the lower and upper triangular
components of the full attention matrix. The diagonal normalization step D−1 would need to be
adjusted to account for the full matrix rather than just the lower triangular portion. Finally, we
combine the approximations of L and U⊤ to reconstruct the full self-attention output.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Memory consumption. Our method does not increase the memory consumption because each
convolution matrix can be stored as a n-dimention vector (see Definition 2.5). Therefore, our
method requires O(kn) memory for k convolution matrices, O(nd) memory for the value matrix
V ∈ Rn×d, and O(n) memory for the diagonal matrix D ∈ Rn×n. In total, our memory consumption
is O(kn+ nd). For the standard attention computation of D−1AV , it requires O(n2) memory for
the attention matrix A, O(nd) memory for the value matrix V ∈ Rn×d, and O(n) memory for the
diagonal matrix D ∈ Rn×n. In total, the memory consumption is O(n2 + nd).

Limitation. Although in this paper, we provide a comprehensive theoretical analysis aiming to
reduce the quadratic computational cost O(n2), we do not have full empirical results or experiments
conducted to validate the proposed algorithms on real-world benchmarks. With the rapid development
of large language models, the size of input tokens is increasing. Therefore, it is urgent to develop
more efficient algorithms to overcome the quadratic complexity and enable more efficient training of
LLMs. Neither theoretical work nor experiments can be done trivially, and it will take more effort to
successfully implement our novel theoretical results in practice even with more experimental results.

B TECHNICAL DETAILS ABOUT conv APPROXIMATION

In Section B.1, we present the background of Toeplitz, circulant, and convolution matrices. In
Section B.2, we develop more mathematical tools for studying the conv approximation. In Section B.3,
we give the key lemmas we used. In Section B.4, we use these tools and lemmas to prove our main
theorem for the conv approximation. In Section B.5, we analyze our case study.

B.1 PROPERTIES OF TOEPLITZ, CIRCULANT, AND CONVOLUTION MATRICES

Remark B.1. The integer i may have different ranges. We will specify these ranges in later text,
corresponding to different contexts.

The Toeplitz matrix is one such structured matrix that has constant values along its diagonals. We
define it as follows:
Definition B.2 (Toeplitz matrix). Given a length-(2n−1) vector a ∈ R2n−1 (for convenience, we use
ai ∈ R to denote the entry of vector where i ∈ {−(n− 1),−(n− 2), · · · , 0, · · · , (n− 2), (n− 1)}),
we can formulate a function Toep : R2n−1 → Rn×n as follows

Toep(a) =


a0 a−1 a−2 · · · a−(n−1)

a1 a0 a−1 · · · a−(n−2)

a2 a1 a0 · · · a−(n−3)

...
...

...
. . .

...
an−1 an−2 an−3 · · · a0

 .

Furthermore, we define the circulant matrix, which is a structured matrix where each row vector is
rotated one element to the right relative to the preceding row vector, which is defined as follows:
Definition B.3 (Circulant matrix). Let a ∈ Rn denote a length-n vector. We define Circ : Rn →
Rn×n as,

Circ(a) :=


a1 an an−1 · · · a2
a2 a1 an · · · a3
a3 a2 a1 · · · a4
...

...
...

. . .
...

an an−1 an−2 · · · a1

 .

Now, we define a binary operation ∗ defined on Rd:
Definition B.4. Let conv be defined in Definition 2.5. Given two vectors a and x ∈ Rn, let a∗x ∈ Rn

denote the convolution operator between a and x, i.e., a ∗ x := conv(a)x.

Finally, we present a basic fact about the Hadamard product.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Fact B.5. For all a, b ∈ Rn, we have a ◦ b = b ◦ a = diag(a) · b = diag(b) · a.

Below, we explore the properties of conv, Toep, Resi, and Circ.
Claim B.6. Given a length-(2n− 1) vector a′ ∈ R2n−1 (for convenience, we use a′i ∈ R to denote
the entry of vector where i ∈ {−(n− 1),−(n− 2), · · · , 0, · · · , (n− 2), (n− 1)}). Let a ∈ Rn, such
that a = [a′0, a

′
1, . . . , a

′
n−1]

⊤. Let M be defined in Definition 2.2, Toep be defined in Definition B.2,
and conv be defined in Definition 2.5. We have

conv(a) = Toep(

[
0n−1

a

]
) = M ◦ Toep(a′).

Proof. The proof directly follows the Definition 2.2, Definition B.2, and Definition 2.5.

Fact B.7 (Folklore). Let Toep be defined in Definition B.2, and Circ be defined in Definition B.3.
Given a length-(2n − 1) vector a ∈ R2n−1 (for convenience, we use ai ∈ R to denote the entry
of vector where i ∈ {−(n− 1),−(n− 2), · · · , 0, · · · , (n− 2), (n− 1)}). Let a′ ∈ R2n, such that
a′ = [a0, a1, . . . , an−1, 0, a−(n−1), . . . , a−1]

⊤. For any x ∈ Rn, we have

Circ(a′)

[
x
0n

]
=

[
Toep(a) Resi(a)
Resi(a) Toep(a)

]
·
[
x
0n

]
=

[
Toep(a)x
Resi(a)x

]
,

where the residual matrix is defined as

Resi(a) :=



0 an−1 an−2 · · · a2 a1
a−(n−1) 0 an−1 · · · a3 a2
a−(n−2) a−(n−1) 0 · · · a4 a3

...
...

...
. . .

...
...

a−2 a−3 a−4 · · · 0 an−1

a−1 a−2 a−3 · · · a−(n−1) 0

 .

Circ(a) can be expressed in the form of F−1diag(Fa)F , which is as follows:
Fact B.8 (Folklore). Let a ∈ Rn denote a length-n vector. Let Circ be defined in Definition B.3. Let
F ∈ Cn×n denote the discrete Fourier transform matrix. Using the property of discrete Fourier
transform, we have

Circ(a) = F−1diag(Fa)F.

Claim B.9 (Restatement of Claim 2.6). We have conv(ej) ∈ Rn×n is a j-rank matrix, where the
j-th entry of ej ∈ Rn is 1 and all other entries are 0.

Proof. This follows from Definition 2.5.

Claim B.10 (Restatement of Claim 2.7). Let conv be defined in Definition 2.5. For any a, x ∈ Rn,
conv(a)x can be computed in O(n log n) via FFT.

Proof of Claim 2.7. For any a ∈ Rn, we denote a′ =

[
0n−1

a

]
∈ R2n−1 and a′′ =

[
a
0n

]
∈ R2n. We

have [
conv(a)x
Resi(a′)x

]
=

[
Toep(a′)x
Resi(a′)x

]
= Circ(a′′)

[
x
0n

]
= F−1diag(Fa′′)F

[
x
0n

]
,

where the first step follows Claim B.6, i.e., conv(a) = Toep(

[
0n−1

a

]
), the second step follows

Fact B.7 and the last step follows Fact B.8. We finish the proof by O(n log n) for FFT.

Claim B.11 (Restatement of Claim 2.8). conv is additive, i.e., for any a, b, x ∈ Rn we have

conv(a)x+ conv(b)x = conv(a+ b)x.

Proof. This follows from Definition 2.5 and the fact that the matrix product operation is additive.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Claim B.12 (Restatement of Claim 2.10). Let m ∈ [n]. For any a, x ∈ Rn, conv(a,m)x, (defined in
Definition 2.9) can be computed in O(n log n) via FFT.

Proof. This follows from considering the calculation between the truncated matrix of conv(a,m)
and the truncated vector of x with Claim 2.7.

B.2 MATHEMATICAL TOOLS DEVELOPMENT FOR k-conv BASIS

Definition B.13. Let M ∈ Rn×n be defined in Definition 2.2 and Q,K ∈ Rn×d be defined in
Definition 2.1. We define H̃ := M ◦ (QK⊤) ∈ Rn×n.

When a lower triangular matrix H is expressed as the sum of k convolution matrices, it is useful to
understand the structure of the entries in H . The following claim provides an explicit formula for the
entries of H in terms of the basis vectors of the convolution matrices.

Claim B.14. Given b1, . . . , bk ∈ Rn and k integers m1,m2, . . . ,mk satisfying n ≥ m1 > m2 >
· · · > mk ≥ 1, let H =

∑
i∈[k] conv(bi,mi). Then, for any i ≥ j ∈ [n], let ℓ satisfy mℓ ≥ n− j+1

and mℓ+1 < n− j + 1, and we have

Hi,j =
∑
l∈[ℓ]

(bl)i−j+1.

For any i < j ∈ [n], we have Hi,j = 0.

Proof. This is trivial by following H =
∑

i∈[k] conv(bi,mi), the Definition 2.5 and Definition 2.9.

We present the property of H̃ = M ◦ (QK⊤) as follows:

Lemma B.15. Given M ∈ Rn×n, Q,K ∈ Rn×d, and H̃ = M ◦ (QK⊤), we have for any j ∈ [n],
there exists H̃j ∈ Rn, i.e., the j-th column of H̃ , such that

H̃j = Mj ◦ (Q(K⊤)j)

with time complexity O(nd), where (K⊤)j denotes the j-th row of K.

Proof. We can check the correctness as follows:

(H̃)j = (M ◦ (QK⊤))j

=Mj ◦ (QK⊤)j

=Mj ◦ (Q(K⊤)j),

where the first step follows from the definition of H̃ (see Definition B.13), the second step follows
from simple algebra, the third step follows from the fact that the j-th column of K⊤ is equal to the
j-th row of K.

Now, we can check the running time.

• As Q ∈ Rn×d and (K⊤)j ∈ Rd, we need O(nd) time to get Q(K⊤)j .

• For any vector v, we need O(n) time to get Mj ◦ v.

Thus, in total, the time complexity is O(nd).

The key idea behind our approach is to express the matrix exponential of a matrix with k-conv basis
as the sum of k sub-convolution matrices involving the basis vectors. This allows us to efficiently
approximate the exponential of the attention matrix. We show how to compute the new basis vectors
of the convolution matrices from the original basis vectors below.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Lemma B.16. Let M be a mask defined in Definition 2.2. Given b1, . . . , bk ∈ Rn and k integers
m1,m2, . . . ,mk satisfying n ≥ m1 > m2 > · · · > mk ≥ 1, we let H =

∑
r∈[k] conv(br,mr). We

denote b̃1 = exp(b1). Then, we can get b̃2, b̃3, . . . b̃k ∈ Rn such that for any r ∈ {2, 3, · · · , k}

b̃r = exp(
∑
l∈[r]

bl)− exp(
∑

l∈[r−1]

bl)

and M ◦ exp(H) =
∑

r∈[k] conv(̃br,mr) with time complexity O(nk).

Proof. Correctness.

By Claim B.14, for any i ≥ j ∈ [n], let ℓ satisfy mℓ ≥ n− j + 1 and mℓ+1 < n− j + 1, and we
have

Hi,j =
∑
l∈[ℓ]

(bl)i−j+1. (1)

As exp is an element-wise function, when i ≥ j we have (M ◦ exp(H))i,j = exp(H)i,j and

exp(H)i,j = exp(
∑
l∈[ℓ]

(bl)i−j+1)

=

ℓ∑
r=1

exp(
∑
l∈[r]

(bl)i−j+1)− exp(
∑

l∈[r−1]

(bl)i−j+1)

=

ℓ∑
r=1

(̃br)i−j+1

=

ℓ∑
r=1

conv(̃br,mr)i,j

=

k∑
r=1

conv(̃br,mr)i,j ,

where the first step follows from Eq. (1), the second step follows from simple algebra, the third step
follows from the lemma statement, the fourth step follows from Definition 2.9, and the last step
follows from Definition 2.9 (when k < r ≤ ℓ, conv(̃br,mr)i,j = 0).

When i < j we have (M ◦ exp(H))i,j = 0 =
∑k

r=1 conv(̃br,mr)i,j .

Thus, we have M ◦ exp(H) =
∑

r∈[k] conv(̃br,mr).

Running time.

We need O(nk) time to get
∑

l∈[r] bl for any r ∈ [k]. Then, we need O(1) time for element-wise
exp and minus operation for O(nk) terms. Thus, in total, we need O(nk) time complexity.

Lemma B.17. Let G ∈ Rn×n. Let M ∈ {0, 1}n×n. Let H = M ◦G and A = M ◦ exp(G). Then,
we have

A = M ◦ exp(H).

Proof. We have

A = M ◦ exp(G)

= M ◦ exp(M ◦G)

= M ◦ exp(H),

where the first step follows the lemma statement, the second step follows the property of Hadamard
product and the last step follows the lemma statement.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Theorem B.18 (Restatement of Theorem 3.3). For any lower triangular matrix G ̸= 0n×n ∈ Rn×n,
there exists k, T ∈ [n] and δ, ϵ ≥ 0 such that G is a ϵ-close (T, δ)-non-degenerate k-conv basis
matrix.

Proof. By Lemma 2.12, we have G is a matrix with k-conv basis for some k ∈ [n]. We finish the
proof by setting T = 1 and δ = ϵ = 0.

B.3 LEMMA USED IN MAIN THEOREM PROOF

In this section, we present the formal proof for our conv approximation main result. In Algorithm 2,
we recover the k-conv basis vectors b′1, . . . , b

′
k ∈ Rn through an iterative process. We show that

after each iteration i, the algorithm maintains certain invariants related to the recovered basis vectors
b′1, . . . , b

′
i ∈ Rn, the index s, and the error compared to the true basis vectors b1, . . . , bi ∈ Rn. These

properties allow us to prove the correctness of the overall algorithm. The following lemma formalizes
these invariants:
Lemma B.19. Let H̃ be a ϵ-close (T, δ)-non-degenerate k-conv basis matrix as defined in Def-
inition 3.2, where δ, ϵ ≥ 0 and k, T ∈ [n]. Let Q,K, V ∈ Rn×d. In Algorithm 2, we can get
b′1, . . . , b

′
k ∈ Rn. Then, for any i ∈ [k], after the i-th loop, we have

• Part 1: v =
∑

r∈[i](b
′
r)1:T and u =

∑
r∈[i] b

′
r

• Part 2: s = n−mi + 1

• Part 3: ∥
∑

r∈[i](b
′
r)1:T −

∑
r∈[i](br)1:T ∥1 ≤ Tϵ

• Part 4: |
∑

r∈[i](b
′
r)l −

∑
r∈[i](br)l| ≤ ϵ for any l ∈ [n].

Proof. We use the math induction to prove the correctness.

Let b′1, . . . , b
′
k ∈ Rn and v ∈ RT defined in Algorithm 2. Let i ∈ {0, . . . , k − 1} be fixed. Suppose

after the i-th loop, we have

• Part 1: v =
∑

r∈[i](b
′
r)1:T and u =

∑
r∈[i] b

′
r

• Part 2: s = n−mi + 1 (Denote s = 0, after the 0-th loop.)

• Part 3: ∥
∑

r∈[i](b
′
r)1:T −

∑
r∈[i](br)1:T ∥1 ≤ Tϵ

• Part 4: |
∑

r∈[i](b
′
r)l −

∑
r∈[i](br)l| ≤ ϵ for any l ∈ [n]

Now we consider after the i+ 1-th loop.

Proof of Part 1.

We have v =
∑

r∈[i+1](b
′
r)1:T and u =

∑
r∈[i+1] b

′
r by the line 9 and line 10 in Algorithm 2.

Proof of Part 2.

We denote the output of SEARCH(Q,K, k, T, δ, ϵ,
∑

r∈[i](b
′
r)1:T ,mi, n − T + 1) as y. Now, we

prove y = n−mi+1 + 1.

It is clear that n−mi + 1 ≤ y ≤ n− T + 1. For any j ∈ {n−mi + 1, . . . , n− T + 1}, we have
line 7 in Algorithm 3 as

α = ∥(H̃j)j:j+T−1 − v∥1
= ∥(Hj)j:j+T−1 +Rj,j:j+T−1 − v∥1
= ∥(Hj)j:j+T−1 +Rj,j:j+T−1 −

∑
r∈[i]

(b′r)1:T ∥1

= ∥(
∑
r∈[k]

conv(br,mr))j,j:j+T−1 +Rj,j:j+T−1 −
∑
r∈[i]

(b′r)1:T ∥1, (2)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

where the first step follows from Definition B.13 (H̃ = H +R), the second step follows from Part 1,
and the last step follows from Definition 3.2 (H =

∑
r∈[k] conv(br,mr)).

When j < n−mi+1 + 1, we have Eq. (2) as

∥(
∑
r∈[k]

conv(br,mr))j,j:j+T−1 +Rj,j:j+T−1 −
∑
r∈[i]

(b′r)1:T ∥1

≤ ∥(
∑
r∈[k]

conv(br,mr))j,j:j+T−1 −
∑
r∈[i]

(b′r)1:T ∥1 + ∥Rj,j:j+T−1∥1

≤ ∥(
∑
r∈[k]

conv(br,mr))j,j:j+T−1 −
∑
r∈[i]

(b′r)1:T ∥1 + Tϵ

= ∥(
∑
r∈[i]

conv(br,mr))j,j:j+T−1 −
∑
r∈[i]

(b′r)1:T ∥1 + Tϵ

= ∥
∑
r∈[i]

(br)1:T −
∑
r∈[i]

(b′r)1:T ∥1 + Tϵ

≤ 2Tϵ

< δ − 2Tϵ,

where the first step follows from the triangle inequality, the second step follows from Definition 3.2
(∥R∥∞ ≤ ϵ), the third step follows from j < n−mi+1+1, the fourth step follows from Definition 2.9,
the fifth step follows from Part 3, and the last step follows from Definition 3.2 (ϵ ≤ δ

5T < δ
4T).

Similarly, when j ≥ n−mi+1 + 1, we have Eq. (2) as

∥(
∑
r∈[k]

conv(br,mr))j,j:j+T−1 +Rj,j:j+T−1 −
∑
r∈[i]

(b′r)1:T ∥1

≥ ∥(
∑
r∈[k]

conv(br,mr))j,j:j+T−1 −
∑
r∈[i]

(b′r)1:T ∥1 − ∥Rj,j:j+T−1∥1

≥ ∥(
∑
r∈[k]

conv(br,mr))j,j:j+T−1 −
∑
r∈[i]

(b′r)1:T ∥1 − Tϵ

= ∥(
∑
r∈[k]

conv(br,mr))j,j:j+T−1 −
∑
r∈[i]

(br)1:T +
∑
r∈[i]

(br)1:T −
∑
r∈[i]

(b′r)1:T ∥1 − Tϵ

≥ ∥(
∑
r∈[k]

conv(br,mr))j,j:j+T−1 −
∑
r∈[i]

(br)1:T ∥1 − ∥
∑
r∈[i]

(br)1:T −
∑
r∈[i]

(b′r)1:T ∥1 − Tϵ

≥ ∥(
∑
r∈[k]

conv(br,mr))j,j:j+T−1 −
∑
r∈[i]

(br)1:T ∥1 − 2Tϵ

≥ δ − 2Tϵ

where the first step follows from the triangle inequality, the second step follows from Definition 3.2
(∥R∥∞ ≤ ϵ), the third step follows from simple algebra, the fourth step follows from the triangle
inequality, the fifth step follows from Part 3, and the last step follows from Definition 3.1.

Thus, we can claim, when α < δ− 2Tϵ, we have j < n−mi+1 +1, and we have j ≥ n−mi+1 +1
otherwise. Therefore, by binary search, we can get s = y = n−mi+1 + 1.

Proof of Part 3.

We have s = n−mi+1 + 1 and u =
∑

r∈[i] b
′
r at line 8 in Algorithm 2. Thus, we have

∥
∑

r∈[i+1]

(b′r)1:T −
∑

r∈[i+1]

(br)1:T ∥1

= ∥(b′i+1)1:T +
∑
r∈[i]

(b′r)1:T −
∑

r∈[i+1]

(br)1:T ∥1

= ∥H̃s,s:s+T−1 − u1:T +
∑
r∈[i]

(b′r)1:T −
∑

r∈[i+1]

(br)1:T ∥1

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

= ∥H̃s,s:s+T−1 −
∑

r∈[i+1]

(br)1:T ∥1

= ∥Hs,s:s+T−1 +Rs,s:s+T−1 −
∑

r∈[i+1]

(br)1:T ∥1

= ∥
∑
r∈[k]

conv(br,mr)s,s:s+T−1 +Rs,s:s+T−1 −
∑

r∈[i+1]

(br)1:T ∥1

= ∥
∑

r∈[i+1]

conv(br,mr)s,s:s+T−1 +Rs,s:s+T−1 −
∑

r∈[i+1]

(br)1:T ∥1

= ∥
∑

r∈[i+1]

(br)1:T +Rs,s:s+T−1 −
∑

r∈[i+1]

(br)1:T ∥1

= ∥Rs,s:s+T−1∥1
≤ Tϵ,

where the first step follows from simple algebra, the second step follows from Algorithm 2 (line 8),
the third step follows from u =

∑
r∈[i] b

′
r, the fourth step follows from Definition B.13 (H̃ = H+R),

the fifth step follows from Definition 3.2 (H =
∑

r∈[k] conv(br,mr)), the sixth step follows from
s = n−mi+1 + 1, the seventh step follows from Definition 2.9, the eighth step follows from simple
algebra, and the last step follows from Definition 3.2 (∥R∥∞ ≤ ϵ).

Proof of Part 4.

We can get |
∑

r∈[i+1](b
′
r)l −

∑
r∈[i](br)l| ≤ ϵ for any l ∈ [n] similarly as Proof of Part 3.

We can check the initial conditions hold. Thus, we finish the whole proof by math induction.

Building upon Lemma B.19, we now analyze the overall error of our approach for approximating the
attention computation. Recall that our goal is to efficiently approximate the matrix Y = D−1AV ,
where A = M ◦ exp(QK⊤) and D = diag(A1n). We will show that by using the approximate basis
vectors recovered by Algorithm 2, we can construct matrices Ã and D̃ such that the approximation
error ∥Y − D̃−1ÃV ∥∞ is bounded. The following lemma provides this error analysis:

Lemma B.20 (Error analysis). Let H̃ be a ϵ-close (T, δ)-non-degenerate k-conv basis matrix as
defined in Definition 3.2, where δ, ϵ ≥ 0 and k, T ∈ [n]. Let Q,K, V ∈ Rn×d. Recall A =
M ◦ exp(QK⊤) and D = diag(A1n) defined in Definition 2.3. By Algorithm 2, we can get k-conv
basis b̃1, . . . , b̃k ∈ Rn and k integers m1,m2, . . . ,mk satisfying n ≥ m1 > m2 > · · · > mk ≥ T ,
such that Ã :=

∑
r∈[k] conv(̃br,mr) and D̃ := diag(Ã1n) satisfy

∥D−1AV − D̃−1ÃV ∥∞ ≤ 2(exp(2ϵ)− 1)∥V ∥∞,

with time complexity O(knd log(n)).

Proof. Correctness.

By Lemma B.19 Part 4, we can get b′1, . . . , b
′
k ∈ Rn, such that, for any i ∈ [k] and l ∈ [n], we have

|
∑
r∈[i]

(b′r)l −
∑
r∈[i]

(br)l| ≤ ϵ. (3)

Furthermore, we denote

H ′ =
∑
r∈[k]

conv(b′r,mr)

Recall H̃ = H +R ∈ Rn×n,

H =
∑
r∈[k]

conv(br,mr),

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

and ∥R∥∞ ≤ ϵ.

Thus, we have

∥H ′ − H̃∥∞ ≤ ∥H ′ −H∥∞ + ∥H − H̃∥∞
≤ ∥H ′ −H∥∞ + ∥R∥∞
≤ 2ϵ, (4)

where the first step follows from triangle inequality, the second step follows from H̃ = H +R and
the last step follows from ∥R∥∞ ≤ ϵ and Eq. (3).

By Lemma B.17, we have

A = M ◦ exp(QK⊤)

= M ◦ exp(M ◦QK⊤)

= M ◦ exp(H̃).

We also have

Ã =
∑
r∈[k]

conv(̃br,mr) = M ◦ exp(H ′)

by Lemma B.16 and line 12 in Algorithm 2.

Then, by Lemma E.4, we have

∥D−1AV − D̃−1ÃV ∥∞ ≤ 2(exp(2ϵ)− 1)∥V ∥∞.

Running time.

We have k loops in Algorithm 2.

In each loop, we call O(log(n)) times of binary search function. In each binary search function, we
take O(nd) time for line 6 in Algorithm 3 by Lemma B.15. Thus, we take O(nd log(n)) in total for
the search (Algorithm 3) in each loop.

In each loop, we take O(nd) time for line 7 in Algorithm 2 by Lemma B.15.

Thus, we take total O(k(nd+ nd log(n))) = O(knd log(n)) for the whole loop.

We take O(nk) time for the line 12 in Algorithm 2 by Lemma B.16.

In total, we take O(nk + knd log(n)) = O(knd log(n)) time.

We are now ready to prove our main result for the conv approximation approach. Theorem B.21 brings
together the key components we have developed: the existence of a k-conv basis for the attention
matrix (Definition 3.2), the ability to efficiently recover an approximate k-conv basis (Algorithm 2 and
Lemma B.19), and the bounded approximation error when using this approximate basis (Lemma B.20).
The theorem statement is a formal version of our main conv result, Theorem 3.4 and Algorithm 1,
which was presented in the main text. It specifies the input properties, the approximation guarantees,
and the time complexity of our approach.

B.4 PROOF OF MAIN THEOREM

Theorem B.21 (Main conv results for inference (Restatement of Theorem 3.4)). Let Q,K, V ∈ Rn×d.
Recall A = M ◦ exp(QK⊤) ∈ Rn×n, D = diag(A1n) ∈ Rn×n defined in Definition 2.3. We
denote Y := D−1AV ∈ Rn×d. Let M ◦ (QK⊤) be a ϵ-close (T, δ)-non-degenerate k-conv basis
matrix as defined in Definition 3.2, where δ, ϵ ≥ 0 and k, T ∈ [n]. By Algorithm 1, we can get Ỹ
such that

∥Y − Ỹ ∥∞ ≤ 2(exp(2ϵ)− 1)∥V ∥∞,

whose time complexity is O(knd log(n)) given M,Q,K, V .

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Proof of Theorem 3.4. Correctness.

Correctness follows Lemma B.20.

Running time.

By Lemma B.20, we need time O(knd log(n)) time to get k-conv basis b̃1, . . . , b̃k ∈ Rn and k
integers m1,m2, . . . ,mk satisfying n ≥ m1 > m2 > · · · > mk ≥ T .

Denote Ã :=
∑

r∈[k] conv(̃br,mr). By Claim 2.10, we take O(knd log(n)) time to get ÃV via
FFT as k-conv basis and d columns in V . Similarly, by Claim 2.10, we take O(kn log(n)) time for
D̃ = diag(Ã1n) via FFT as k-conv basis. Finally, we take O(nd) time to get D̃−1ÃV as D̃−1 is a
diagonal matrix.

Thus, in total, we take O(knd log(n) + knd log(n) + kn log(n) + nd) = O(knd log(n)) time
complexity.

Corollary B.22 (Exact conv inference, restatement of Corollary 3.5). Let Q,K, V ∈ Rn×d. Recall
A = M ◦ exp(QK⊤) ∈ Rn×n, D = diag(A1n) ∈ Rn×n defined in Definition 2.3. We denote
Y := D−1AV ∈ Rn×d. For any ϵ ≥ 0 and any Q,K, V , there exists hyper-parameter k, T ∈ [n]

and δ ≥ 0 such that Algorithm 1 can output Ỹ satisfying

∥Y − Ỹ ∥∞ ≤ 2(exp(2ϵ)− 1)∥V ∥∞.

Furthermore, we can exactly get Y , i.e., ϵ = 0, through Algorithm 1 with time complexity
O(n2d log(n)) in the worst case.

Proof. We set k = n, T = 1, δ = 0 and ϵ = 0 as the input of Algorithm 1. Then, the proof follows
Theorem 3.3 and Theorem 3.4 .

B.5 CONSTRUCTION FOR CASE STUDY

In this section, we present the case study. We use i to denote the
√
−1. For a complex number

z = a+ bi ∈ C, where a, b ∈ R, we use |z| to denote its norm, i.e., |z| =
√
a2 + b2.

Lemma B.23 (Complex vector construction). If the vectors x1, · · · , xn ∈ Cd satisfy the following
properties,

• ∥xi∥2 = 1 for all i ∈ [n]

• For each i ∈ [n], let xi,1 = eiiθ and ei,l = 0 for all l ̸= 1

Then we have for all i ∈ [n], for all j ∈ [n], ∥xi − xj∥22 = f(i− j) for some function f .

Proof. We can show that

∥xi − xj∥22 = |eiiθ − eijθ|2

= |eijθ|2 · |ei(i−j)θ − 1|2

= |ei(i−j)θ − 1|2

=: f(i− j),

where the first step follows from the assumption that for each i ∈ [n] and l ̸= 1, xi,1 = eiiθ and
ei,l = 0, the second step follows from simple algebra, the third step follows from the |eijθ| = 1, and
the last step follows from the definition of the function f .

Thus, we complete the proof.

Lemma B.24 (Real vector construction). If the vectors x1, · · · , xn ∈ Rd satisfy the following
properties,

• ∥xi∥2 = 1 for all i ∈ [n]

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

• xi,1 = cos(iθ) and xi,2 = sin(iθ). For all l /∈ {1, 2}, we have xi,l = 0.

Then we have for all i ∈ [n], for all j ∈ [n], ∥xi − xj∥22 = f(i− j) for some function f .

Proof. We can show that

∥xi − xj∥22 = (cos(iθ)− cos(jθ))2 + (sin(iθ)− sin(jθ))2

= 2− 2 cos(iθ) cos(jθ)− 2 sin(iθ) sin(jθ)

= 2− 2 cos((i− j)θ),

where the first step follows from construction condition, the second step follows from simple algebra,
and the last step follows from the trigonometric properties.

Thus, we complete the proof.

Lemma B.25 (A general real vector construction). If the vectors x1, · · · , xn ∈ Rd satisfy the
following properties,

• ∥xi∥2 = 1 for all i ∈ [n].

• Let H ∈ Rd×d be any orthonormal matrix.

• Let (s1, s2, . . . , sd) be a permutation of (1, 2, . . . , d).

• Let l = ⌊(d+ 1)/2⌋, where l is an integer. Let a1, . . . , al ∈ R.

• Let u1, · · · , un ∈ Rd and xi = Hui for any i ∈ [n].

• When d is even, ui,sk = ak cos(iθk) and ui,sk+l
= ak sin(iθk), for all k ∈ [l] and i ∈ [n],

where θ1, . . . , θl ∈ R.

• When d is odd, ui,sk = ak cos(iθk) and ui,sk+l
= ak sin(iθk), for all k ∈ [l−1] and i ∈ [n],

where θ1, . . . , θl−1 ∈ R, and ui,sl = al.

Then we have for all i ∈ [n], for all j ∈ [n], ∥xi − xj∥22 = f(i− j) for some function f .

Proof. When d is even, we can show that

∥xi − xj∥22 = ∥ui − uj∥22
=

∑
k∈[l]

(ak cos(iθk)− ak cos(jθk))
2 + (ak sin(iθk)− ak sin(jθk))

2

=
∑
k∈[l]

a2k cos
2(iθk) + a2k cos

2(jθk)− 2a2k cos(iθk) cos(jθk)

+ a2k sin
2(iθk) + a2k sin

2(jθk)− 2a2k sin(iθk) sin(jθk)

=
∑
k∈[l]

2a2k − 2a2k cos(iθk) cos(jθk)− 2a2k sin(iθk) sin(jθk)

=
∑
k∈[l]

2a2k(1− cos(iθk) cos(jθk)− sin(iθk) sin(jθk))

=
∑
k∈[l]

2a2k(1− cos((i− j)θk)),

where the first step follows H being orthonormal, which preserves the Euclidean distance between
two vectors, i.e., ∥Hu1 −Hu2∥2 = ∥u1 − u2∥2 for any u1, u2 ∈ Rd, the second step follows from
the construction condition, the third step follows from (a− b)2 = a2 + b2 − 2ab for all a, b ∈ C, the
fourth step follows from sin2(x) + cos2(x) = 1, the fifth step follows from simple algebra, and the
last step follows from the trigonometric properties.

When d is odd, we can show similar results by the same way. Thus, we complete the proof.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Lemma B.26. If the following conditions hold

• Let b ∈ Rn denote a vector

• Q ∈ Rn×d and K ∈ Rn×d

• For each i, j ∈ [n],

– (QK⊤)i,j = bi−j+1 if i ≥ j

– (QK⊤)i,j = bi−j+n+1 if i < j

Then, there is a vector a = exp(b) such that

exp(QK⊤) = Circ(a)

Proof. Since a = exp(b), we have

Circ(a) = Circ(exp(b))

= exp(Circ(b)), (5)

where the second step follows from the fact that exp(·) is applied entry-wisely to a vector.

By the assumption from the Lemma statement that (QK⊤)i,j = bi−j+1 if i ≥ j and (QK⊤)i,j =
bi−j+n+1 if i < j, we get

QK⊤ =


b1 bn bn−1 · · · b2
b2 b1 bn · · · b3
b3 b2 b1 · · · b4
...

...
...

. . .
...

bn bn−1 bn−2 · · · b1

 ,

which is exactly equal to Circ(b) (see Definition B.3).

Therefore, combining with Eq. (5), we have

exp(QK⊤) = Circ(a),

which completes the proof.

Lemma B.27. If the following conditions hold

• Let b ∈ R2n−1 denote a vector

• Q ∈ Rn×d and K ∈ Rn×d

• For each i, j ∈ [n], (QK⊤)i,j = bi−j .

Then, there is a vector a = exp(b) such that

exp(QK⊤) = Toep(a).

Proof. We can prove similarly as Lemma B.26.

Assumption B.28. We assume that WQW
⊤
K is a p.s.d. matrix, so that WQW

⊤
K = AA⊤ where

A ∈ Rd×d.

Definition B.29. Assume Assumption B.28. We define Z := XA ∈ Rn×d, where Z =

z
⊤
1
...
z⊤n

. Then

we have QK⊤ = ZZ⊤.

Lemma B.30. If the following conditions hold,

• Assume Assumption B.28.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

• Let b ∈ R2n−1 denote a vector

• Let z1, . . . , zn defined in Definition B.29 satisfy the properties in Lemma B.25.

Then, there is a vector a = exp(b) such that

exp(QK⊤) = Toep(a).

Proof. By Lemma B.25, we have for all i ∈ [n], for all j ∈ [n],

∥zi − zj∥22 = f(i− j)

for some function f .

We also have

⟨zi, zj⟩ = 1− f(i− j)/2 =: g(i− j)

as ∥zi∥2 = ∥zj∥2 = 1.

Then, we have ∀i, j ∈ [n],

(QK⊤)i,j = (ZZ⊤)i,j

= ⟨zi, zj⟩
= g(i− j),

where the first two steps from Definition B.29, and the last step from Lemma B.25. We finish the
proof by denote bi−j as g(i− j) in Lemma B.27.

C conv APPROXIMATION IN GRADIENT

In Section C.1, we present the basic definitions. In Section C.2, we combine all these definitions to
form the loss function. In Section C.3, we analyze the running time. In Section C.4, we present the
proof of the main theorem of conv approximation in gradient.

C.1 DEFINITIONS

In this section, we let x, y ∈ Rd2

denote the vectorization of X,Y ∈ Rd×d. To concisely express the
loss function, we define more functions below.

Definition C.1. Let u(x)j0 ∈ R (see Definition 4.5). For each j0 ∈ [n], we define α(x)j0 : Rd2 → R

α(x)j0 := ⟨u(x)j0︸ ︷︷ ︸
n×1

, 1n︸︷︷︸
n×1

⟩.

Consider α(x) ∈ Rn as a vector whose j0-th entry equals α(x)j0 .

Definition C.2. Let α(x)j0 ∈ R (see Definition C.1). Let u(x)j0 ∈ Rn (see Definition 4.5). For a
fixed j0 ∈ [n], we define f(x)j0 : Rd2 → Rn

f(x)j0 := α(x)−1
j0︸ ︷︷ ︸

scalar

u(x)j0︸ ︷︷ ︸
n×1

.

Consider f(x) ∈ Rn×n as a matrix whose j0-th row equals (f(x)j0)
⊤.

Definition C.3. For a fixed i0 ∈ [d], define h(x)i0 : Rd2 → Rn:

h(y)i0 := A3︸︷︷︸
n×d

Y∗,i0︸︷︷︸
d×1

,

where Y ∈ Rd×d is the matrix representation of y ∈ Rd2

. Let h(y) ∈ Rn×d be a matrix where i0
column is h(y)i0 .

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

C.2 LOSS FUNCTIONS

Now, we start the construction of the loss function.
Definition C.4. For each j0 ∈ [n], we denote the normalized vector defined by Definition C.2 as
f(x)j0 ∈ Rn. Similarly, for each i0 ∈ [d], we define h(y)i0 as specified in Definition C.3.

Consider every j0 ∈ [n], every i0 ∈ [d]. Let us consider c(x)j0,i0 : Rd2 × Rd2 → R as follows:

c(x)j0,i0 := ⟨f(x)j0 , h(y)i0⟩ − Ej0,i0 .

Here Ej0,i0 is the (j0, i0)-th entry of E ∈ Rn×d with j0 ∈ [n], i0 ∈ [d], similar for c(x)︸︷︷︸
n×d

=

f(x)︸︷︷︸
n×n

h(y)︸︷︷︸
n×d

− E︸︷︷︸
n×d

.

Definition C.5. For every j0 ∈ [n], for every i0 ∈ [d], we define L(x)j0,i0 to be := 0.5c(x)2j0,i0 .

Definition C.6. Consider c(x) ∈ Rn×d which is described in Definition C.4, and h(y) ∈ Rn×d

which is defined in Definition C.3. We now define q(x) ∈ Rn×n

q(x) := c(x)︸︷︷︸
n×d

h(y)⊤︸ ︷︷ ︸
d×n

Subsequently, we denote the j0-th row of q(x) ∈ Rn×n as q(x)⊤j0 .

Definition C.7. Let j0 ∈ [n]. We define p(x)j0 : Rd2 → Rn

p(x)j0 := (diag(f(x)j0)− f(x)j0f(x)
⊤
j0)q(x)j0

= p1(x)j0 + p2(x)j0 ,

where

p1(x)j0 := diag(f(x)j0)q(x)j0

p2(x)j0 := f(x)j0f(x)
⊤
j0q(x)j0 .

We establish p(x) ∈ Rn×n such that p(x)⊤j0 represents the j0-th row of p(x). Note that p1(x) =
f(x) ◦ q(x).
Lemma C.8. Let M ∈ Rn×n be a casual attention mask defined in Definition 2.2. Let X ∈ Rn×n,
we have

d(M ◦X)

dXi,j
= M ◦ dX

dXi,j
.

Proof. The proof is trivial by element-wise multiplication.

Lemma C.9 (Gradient computation). We have f(x) ∈ Rn×n, c(x) ∈ Rn×d, h(y) ∈ Rn×d, q(x) ∈
Rn×n, and p(x) ∈ Rn×n respectively be defined in Definitions C.2, C.4, C.3, C.6, and C.7. Consider
A1, A2 ∈ Rn×d as given and A = A1 ⊗ A2. We have L(x) be specified in Definition 4.1, and
L(x)j0,i0 is as in Definition C.5.

Then, we can show that dL(x)
dx = vec(A⊤

1 p(x)A2).

Proof. From the Lemma statement, by Lemma C.8, we have

dL(x, y)j0,i0
dxi

= c(x, y)j0,i0 · (⟨Mj0,∗ ◦ f(x)j0 ◦ Aj0,i, h(y)i0⟩ − ⟨f(x)j0 , h(y)i0⟩ · ⟨Mj0,∗ ◦ f(x)j0 ,Aj0,i⟩)

= c(x, y)j0,i0 · (⟨f(x)j0 ◦ Aj0,i, h(y)i0⟩ − ⟨f(x)j0 , h(y)i0⟩ · ⟨f(x)j0 ,Aj0,i⟩), (6)

where the first step is from the chain rule and the second step follows from Mj0,∗ ◦ f(x)j0 = f(x)j0 .

Note that by Fact B.5, it holds that

⟨f(x)j0 ◦ Aj0,i, h(y)i0⟩ = A⊤
j0,i diag(f(x)j0)h(y)i0

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

and

⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,i⟩ = A⊤
j0,i f(x)j0f(x)

⊤
j0h(y)i0

Therefore, Eq. (6) becomes

dL(x)j0,i0
dxi

= c(x, y)j0,i0 · (A
⊤
j0,i diag(f(x)j0)h(y)i0 − A⊤

j0,i f(x)j0f(x)
⊤
j0h(y)i0)

= c(x, y)j0,i0 · A
⊤
j0,i(diag(f(x)j0)− f(x)j0f(x)

⊤
j0)h(y)i0 , (7)

where the last step is by simple algebra.

Let q(x)j0 be defined as in Definition C.6:

q(x)j0 :=

d∑
i0=1

c(x)j0,i0h(y)i0 . (8)

Let p(x)j0 be define as in Definition C.7:

p(x)j0 := (diag(f(x)j0)− f(x)j0f(x)
⊤
j0)q(x)j0 . (9)

It holds that
dL(x)

dx

=

n∑
j0=1

d∑
i0=1

dL(x)j0,i0
dx

=

n∑
j0=1

d∑
i0=1

c(x)j0,i0︸ ︷︷ ︸
scalar

· A⊤
j0︸︷︷︸

d2×n

(diag(f(x)j0)− f(x)j0f(x)
⊤
j0)︸ ︷︷ ︸

n×n

h(y)i0︸ ︷︷ ︸
n×1

=

n∑
j0=1

A⊤
j0(diag(f(x)j0)− f(x)j0f(x)

⊤
j0)q(x)j0

=

n∑
j0=1

A⊤
j0 p(x)j0

= vec(A⊤
1︸︷︷︸

d×n

p(x)︸︷︷︸
n×n

A2︸︷︷︸
n×d

)

where the 1st step is because of Definition 4.1, the second step follows from Eq. (7), the third step
follows from Eq. (8), the fourth step follows from Eq. (9), and the fifth step follows from Fact E.9.

C.3 RUNNING TIME

In this section, we analyze the running time of the conv approximation approach for computing the
training forward pass and backward gradient. We build upon the key definitions and loss functions
introduced in the previous sections to derive the running time of the algorithm.
Lemma C.10. If we have

• Define u(x) ∈ Rn×n as outlined in Definition 4.5.

• Define f(x) ∈ Rn×n as specified in Definition C.2.

• Define h(y) ∈ Rn×d according to Definition C.3.

• Suppose u(x) is a k-conv matrix defined in Definition 2.11 with known basis.

Then, we have

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

• For any w ∈ Rn, we have f(x) · w ∈ Rn can be done in O(kn log n) time.

• h(y) can be expiciltiy computed in Tmat(n, d, d) time.

Proof. For the first part, by definition of u(x) ∈ Rn×n, we know that for any vector w ∈ Rn, we can
compute u(x)w in O(kn log n) time (Claim 2.10). Thus,

f(x) · w = diag(α(x))−1u(x)w

= diag(u(x)1n)
−1u(x)w,

which can be done in O(kn log n) time by Fact B.5.

The second part is trivial by Definition C.3.

Lemma C.11. If we have

• Define f(x) ∈ Rn×n as specified in Definition C.2.

• Define h(y) ∈ Rn×d according to Definition C.3 and h(y) is known.

• Define c(x) ∈ Rn×d as outlined in Definition C.4.

• Suppose f(x)w takes O(kn log n) time.

Then, we can show that

• c(x) can be expiciltiy computed in O(knd log n) time.

Proof. Firstly we can compute f(x)h(y), this can be done in O(knd log n), since we run f(x) times
a vector oracle (Lemma C.10) for d times.

Then do minus E ∈ Rn×d matrix. This takes O(nd) time. Thus we complete the proof.

Lemma C.12. If the following conditions hold

• Let c(x) ∈ Rn×d be defined in Definition C.4 and c(x) is known.

• Let h(y) ∈ Rn×d be defined in Definition C.3 and h(y) is known.

• Let q(x) ∈ Rn×n be defined in Definition C.6.

Then, we can show that

• q(x)’s rank-d factorization can be explilcitly computed in O(nd) time.

Proof. Note that q(x) = c(x)h(y)⊤. Since both c(x) and h(y) are known. Thus, the result is
trivial.

Lemma C.13 (Fast computation p1(x) multiply with a vector). If the following conditions hold

• Let f(x) ∈ Rn×n be defined in Definition C.2.

• Suppose f(x)w can be done in O(kn log n) time for any w ∈ Rn.

• Let q(x) denote a rank-τ matrix with known low-rank factorizations.

• Let p1(x) = f(x) ◦ q(x).

Then, we can show

• For any vector w ∈ Rn, p1(x) · w can be computed in O(τkn log n) time

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Proof. Since q(x) ∈ Rn×n has rank-τ , we assume that the low-rank factors are a1, a2, · · · , aτ ∈ Rn

and b1, b2, · · · , bτ ∈ Rn. In particular, q(x) can be written as

q(x) =

τ∑
i=1

aib
⊤
i

Using a standard linear algebra trick, we can show that

f(x) ◦ q(x) = (f(x)) ◦ (
τ∑

i=1

aib
⊤
i)

=

τ∑
i=1

(f(x)) ◦ (aib⊤i)

=

τ∑
i=1

diag(ai)f(x) diag(bi)

Note that for each i ∈ [τ], we can show that diag(ai)f(x) diag(bi)w can be computed in O(kn log n)
time by Lemma statement. Thus, for any vector w ∈ Rn, (f(x) ◦ q(x)) · w can be computed in
O(τkn log n) time. Therefore, we complete the proof.

Lemma C.14 (Fast computation for r(x)). If the following conditions hold

• Let r(x)j0 := ⟨f(x)j0 , q(x)j0⟩.

• Let f(x) ∈ Rn×n be defined in Definition C.2.

• Suppose f(x)w can be done in O(kn log n) time for any w ∈ Rn.

• Let q(x) denote a rank-τ matrix with known low-rank factorizations.

Then, we can show

• r(x) ∈ Rn can be in O(τkn log n) time.

Proof. Since q(x) ∈ Rn×n has rank-τ , we assume that the low-rank factors are a1, a2, · · · , aτ ∈ Rn

and b1, b2, · · · , bτ ∈ Rn, in particular, q(x) can be written as

q(x) =

τ∑
i=1

aib
⊤
i

Let q(x) = UaU
⊤
b . It is easy to see that f(x)q(x)⊤ can be written as f(x)UbU

⊤
a .

We firstly compute f(x)Ub, since Ub has τ columns, each column will take O(kn log n) time, so in
total it takes O(τkn log n) time.

Then, we know that r(x)j0 = ⟨(f(x)Ub)j0,∗, (Ua)j0,∗⟩ which takes O(τ) time per j0. There are n
different j0, so it takes O(nτ) time.

Overall it takes O(τkn log n) time.

Lemma C.15 (Fat computation for p2(x)). If the following conditions hold

• Assume that r(x) ∈ Rn is given.

• Let f(x) ∈ Rn×n be defined in Definition C.2.

• Suppose f(x)w can be done in O(kn log n) time for any w ∈ Rn.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

• Let p2(x) = diag(r(x))f(x) (This is obvious from definition of r(x))

Then, we can show that

• For any w ∈ Rn, p2(x) · w can be computed O(kn log n) time.

Proof. For any vector w, we firstly compute f(x)w, then we compute diag(r(x))(f(x)w).

Lemma C.16. If the following conditions hold

• Let A1, A2 ∈ Rn×d are two given matrices.

• Let p1(x), p2(x) ∈ Rn×n are defined in Definition C.7.

• Suppose p1(x)w takes Tp1
time for any w ∈ Rn.

• Suppose p2(x)w takes Tp2 time for any w ∈ Rn.

Then, we have

• vec(A⊤
1 p(x)A2) can be computed in O(Tmat(n, d, d) + d(Tp1

+ Tp2
)) time.

Proof. Firstly, we can compute p1(x)A2, this takes dTp1 time.

Second, we can compute p2(x)A2, this takes dTp2
time.

Then, we can compute A⊤
1 (p(x)A2), this takes Tmat(d, n, d) = O(Tmat(n, d, d)).

Putting it all together we complete the proof.

C.4 PROOF OF MAIN THEOREM

In this section, we present the formal proof of our main theorem regarding the conv approximation
approach for efficiently computing the training forward pass and backward gradient of the attention
mechanism.

Theorem C.17. Suppose u(x) is a k-conv matrix defined in Definition 2.11 with known basis. Then
there is an algorithm that runs in time O(d2kn log n) time to compute the gradient of attention loss
defined in Definition 4.1.

Proof. We need to choose τ = d, thus total running time is

Tmat(n, d, d) +O(dτkn log n) = O(nd2k log n),

by putting everything together from Lemma C.9, Lemma C.10, Lemma C.11, Lemma C.12,
Lemma C.13, Lemma C.14, Lemma C.15, Lemma C.16.

Theorem C.18 (Main conv result for training forward and backward gradient (Restatement of
Theorem 4.6)). If u(x) is a 1/ poly(n)-close (T, δ)-non-degenerate k-conv basis matrix as defined
in Definition 3.2, where δ ≥ 0 and k, T ∈ [n]. Then there are algorithms that run to compute training
forward in time O(knd log n + Tmat(n, d, d)) and backward gradient in time O(d2kn log n) of
attention loss (Definition 4.1) approximately up to 1/ poly(n) error under ℓ∞ norm.

Proof of Theorem 4.6. Correctness.

For the forward, we directly get the correctness by Theorem 3.4. For the backward, we directly run
error propagation analysis which is similar to Alman & Song (2024a) and proof of Lemma B.20.

Running time.

For the forward, by Theorem 3.4, we directly get the running time for D(X)−1M ◦exp(A1XA⊤
2)A3

being O(knd log n). Then, we need Tmat(n, d, d) time to involve Y and E.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

For the backward, by Lemma B.20, we can use Algorithm 2 to get k-conv basis b̃1, . . . , b̃k ∈ Rn

and k integers m1,m2, . . . ,mk satisfying n ≥ m1 > m2 > · · · > mk ≥ T in time O(knd log(n)).
Thus, we finish the proof by Theorem C.17.

D INCORPORATING WEIGHTED LOW RANK APPROXIMATION

In Section D.1, we introduce the preliminary for this section. In Section D.2, we present the proof
of our main result for the low-rank approximation. In Section D.3, we present the algorithm and its
mathematical properties for causal attention mask. In Section D.4, we analyze the algorithm and its
mathematical properties for row change by amortized constant mask. In Section D.5, we study the
algorithm and its mathematical properties for continuous row mask. In Section D.6, we analyze the
property of the mask matrix with r distinct columns or r distinct rows.

D.1 PRELIMINARY

In this section, we introduce the background of the weighted low rank approximation.
Definition D.1 (Definition 3.1 in Alman & Song (2023)). Consider a positive integer k ≥ 1. We
use ϵ ∈ (0, 0.1) to represent an accuracy parameter. For H ∈ Rn×n

≥0 , define H̃ ∈ Rn×n
≥0 to be an

(ϵ, k)-approximation of H if

• H̃ can be expressed as the product U1 · U⊤
2 with some U1, U2 ∈ Rn×k, indicating that H̃

has a rank of at most k, and

• |H̃i,j −Hi,j | ≤ ϵ ·Hi,j with any arbitrary (i, j) ∈ [n]× [n].

Now, we present a lemma from Alman & Song (2023).
Lemma D.2 (Lemma 3.4 in Alman & Song (2023)). Let Q,K ∈ Rn×d satisfy ∥Q∥∞ ≤ B and
∥K∥∞ ≤ B respectively for some B > 0 and H ∈ Rn×n be defined as H := exp(QK⊤/d). We
use ϵ ∈ (0, 0.1) to represent an accuracy parameter.

Then, there exist g > 0 with

g = O(max{ log(1/ϵ)

log(log(1/ϵ)/B2)
, B2})

and k > 0 with

k ≤
(
2(g + d)

2g

)
such that: There exists an (ϵ, k)-approximation (see Definition D.1) of H ∈ Rn×n, namely H̃ ∈
Rn×n. Moreover, U1 and U2 defining H̃ is computed in O(nk) time.

In the following lemma, we prove the validity of the statement that if there exists an algorithm
whose output is Y ′ = (W ◦ (U1U

⊤
2))v in O(t) time, then there exists an algorithm outputs Y =

D−1(W ◦ (U1U
⊤
2))v in O(t+n) time. We will combine everything together and show the soundness

of this statement later in the proof of Theorem D.4.
Lemma D.3. Let W ∈ {0, 1}n×n denote any mask matrix. Let U1, U2 ∈ Rn×k. Let v ∈ Rn. If there
exists an algorithm whose output promises that

Y ′ = (W ◦ (U1U
⊤
2))v,

which takes O(t) time, then, there exists an algorithm promise that

Y = D−1(W ◦ (U1U
⊤
2))v

where D := diag((W ◦ (U1U
⊤
2))1n) ∈ Rn×n, which takes O(t+ n) time.

Proof. Correctness.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Suppose there exists an algorithm whose output is Y ′ satisfying Y ′ = (W ◦ (U1U
⊤
2))v and takes

O(t) time. We denote this algorithm as ALG.

Let Y ′ = ALG(U1, U2, v). Let Ỹ = ALG(U1, U2,1n). Then, Y = diag(Ỹ)−1Y ′.

Running time.

Computing Y ′ and Ỹ takes O(t) time. Computing Y = diag(Ỹ)−1Y ′ takes O(n) time. Therefore,
it takes O(t+ n) time in total.

D.2 PROOF OF MAIN RESULTS

Now, we present our main theorem.
Theorem D.4 (Main low-rank result (Restatement of Theorem 5.5)). Assume the same condition as
Lemma D.2. Let ϵ ∈ (0, 0.1). Let Q,K, V ∈ Rn×d. Let U1, U2 ∈ Rn×k be defined in Lemma D.2.
Let W ∈ {0, 1}n×n denote a mask matrix. Let H = exp(QK⊤/d) ∈ Rn×n, A = W ◦H ∈ Rn×n

and D = diag(A1n) ∈ Rn×n. We denote Y := D−1AV ∈ Rn×d. Let Ã := W ◦ U1U
⊤
2 and

D̃ := diag(Ã1n). We denote Ỹ := D̃−1ÃV ∈ Rn×d. Then, we have

∥Y − Ỹ ∥∞ ≤ 4ϵ∥V ∥∞.

The time complexity to get Ỹ is

• O(knd) when W is a causal mask defined in Definition 2.2.

• O(kd
∑n

j=1 Bj) when W is a row change mask defined in Definition 5.1.

• O(knd log(n)) when W is a continuous row mask defined in Definition 5.2.

• O(rnd) when W is a distinct r columns / rows mask defined in Definition 5.3 / Definition 5.4.

Proof of Theorem 5.5. Correctness.

By Lemma D.2, U1U
⊤
2 ∈ Rn×n is an (ϵ, k)-approximation (Definition D.1) of H ∈ Rn×n. Thus,

we have

|Ãi,j −Ai,j | = |(W ◦ U1U
⊤
2)i,j − (W ◦H)i,j |

= Wi,j |(U1U
⊤
2)i,j −Hi,j |

≤Wi,j · ϵ ·Hi,j

= ϵAi,j ,

where the first step follows Ã = W ◦ U1U
⊤
2 and A = W ◦ H , the second step follows mask is

element-wise operation, the third step follows Definition D.1, and the last step follows A = W ◦H .

Thus, by Lemma E.6, we get

∥Y − Ỹ ∥∞ ≤ 4ϵ∥V ∥∞.

Running time.

By Lemma D.2, the matrices U1 and U2 defining H̃ can be computed in O(nk) time.

By Lemma D.3, if we can compute Y ′ = (W ◦ (U1U
⊤
2))V in O(td) time, we can compute Ỹ in

O(td+ nd) time.

Finally, we finish the proof by following Lemma D.6 for the causal mask, Lemma D.8 for row change
by amortized constant mask, Lemma D.9 for continuous row mask, and Lemma D.12 for distinct r
columns mask or distinct r rows mask.

D.3 CAUSAL ATTENTION MASK

In this section, we present the causal attention mask.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Algorithm 4 Computing (W ◦ (U1U
⊤
2))v, where W ∈ {0, 1}n×n is a causal attention mask, as

defined in Definition 2.2
1: procedure CAUSALMASK(U1 ∈ Rn×k, U2 ∈ Rn×k, v ∈ Rn) ▷ Lemma D.6
2: c0 ← 0k

3: for j = 1→ n do
4: bj ← (U⊤

2)j︸ ︷︷ ︸
k×1

vj︸︷︷︸
scalar

▷ Let (U⊤
2)j denote the j-th row of U2 ∈ Rn×k

5: cj ← cj−1︸︷︷︸
k×1

+ bj︸︷︷︸
k×1

6: end for
7: for j = 1→ n do
8: Yj ← ⟨(U⊤

1)j︸ ︷︷ ︸
k×1

, cj︸︷︷︸
k×1

⟩

9: end for
10: return Y ▷ Y ∈ Rn

11: end procedure

Lemma D.5. Let W ∈ {0, 1}n×n be a mask. Let Sj denote the support set of each row of W , for
each j ∈ [n], i.e., Sj = {k|Wj,k = 1}. Let U1, U2 ∈ Rn×k. Let v ∈ Rn. Let Y = (W ◦ (U1U

⊤
2))v.

Then, we have

Yj = ⟨(U⊤
1)j ,

∑
l∈Sj

(U⊤
2)lvl⟩.

Proof. By simple algebra, we have

Yj = ((W ◦ (U1U
⊤
2))v)j

= ⟨(U⊤
1)j ,

∑
l∈Sj

(U⊤
2)lvl⟩.

Lemma D.6. Let W ∈ {0, 1}n×n be a causal attention mask defined in Definition 2.2. Let U1, U2 ∈
Rn×k. Let v ∈ Rn. Then, there exists an algorithm (see Algorithm 4) whose output promises that

Y = (W ◦ (U1U
⊤
2))v,

which takes O(nk) time.

Proof. Let (U⊤
2)j denote the j-th row of U2.

Correctness.

Let Sj be the support set defined in Lemma D.5. Note that for the causal attention mask, we have
Sj = [j] for any j ∈ [n]. Thus, by Lemma D.5, we have

Yj = ⟨(U⊤
1)j ,

∑
l∈[j]

(U⊤
2)lvl⟩

= ⟨(U⊤
1)j , cj⟩.

Running time.

Computing (U⊤
2)jvj , for all j ∈ [n] takes O(nk) time.

Note that by the definition of inner product

⟨(U⊤
1)j , cj⟩ = (U⊤

1)⊤j cj .

Therefore, it also takes O(nk) to compute (U⊤
1)⊤j cj for all j ∈ [n].

Therefore, it takes O(nk) times in total.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

D.4 ROW CHANGE BY AMORTIZED CONSTANT MASK

In this section, we analyze the row change by amortized constant mask.
Claim D.7. Let W ∈ {0, 1}n×n be the causal attention mask defined in Definition 2.2. Then we have
W is a row change by amortized constant mask defined in Definition 5.1, where Bj = 1, ∀j ∈ [n].

Proof. The proof directly follows the two Definitions.

Algorithm 5 Computing (W ◦ (U1U
⊤
2))v, where W ∈ {0, 1}n×n is a row change by amortized

constant mask, as defined in Definition 5.1

1: procedure CONSTANTMASK(U1 ∈ Rn×k, U2 ∈ Rn×k, v ∈ Rn) ▷ Lemma D.8
2: c0 ← 0k, S0 ← ∅
3: for j = 1→ n do
4: Precompute indices set Q+

j ← Sj\Sj−1 ▷ Let Sj denote the support set of the j-th row
5: Precompute indices set Q−

j ← Sj−1\Sj

6: cj ← cj−1

7: for i ∈ Q+
j ∪Q−

j do ▷ |Q+
j ∪Q−

j | = Bj

8: bi ← (U⊤
2)i︸ ︷︷ ︸

k×1

vi︸︷︷︸
scalar

▷ Let (U⊤
2)i denote the i-th row of U2 ∈ Rn×k

9: if i ∈ Q+
j then

10: cj ← cj + bi
11: else if i ∈ Q−

j then
12: cj ← cj − bi
13: end if
14: end for
15: end for
16: for j = 1→ n do
17: Yj ← ⟨(U⊤

1)j︸ ︷︷ ︸
k×1

, cj︸︷︷︸
k×1

⟩

18: end for
19: return Y ▷ Y ∈ Rn

20: end procedure

Lemma D.8. Let B ∈ Z≥0 and let W ∈ {0, 1}n×n be a row change by amortized constant mask
defined in Definition 5.1. Let S0 = ∅. Let Sj be the support set of each row of W , for each j ∈ [n],
i.e., Sj = {k|Wj,k = 1}. We define Bj := |(Sj\Sj−1) ∪ (Sj−1\Sj)|. Let U1, U2 ∈ Rn×k. Let
v ∈ Rn. Then, there exists an algorithm (see Algorithm 5) whose output promises that

Y = (W ◦ (U1U
⊤
2))v,

which takes O(k
∑n

j=1 Bj) time.

Proof. Correctness.

By Lemma D.5, we have

Yj = ⟨(U⊤
1)j ,

∑
l∈Sj

(U⊤
2)lvl⟩.

We will prove it by induction. It is obvious that base case Y1 is correct, because S0 = ∅.
For a fixed j, we suppose Yj has the correct answer. This means cj is correct for that j, i.e.,
cj =

∑
l∈Sj

bl =
∑

l∈Sj
(U⊤

2)lvl.

Now we use Q+
j+1 and Q−

j+1 to generate cj+1 by adding terms in Q+
j+1 and deleting terms in Q−

j+1,

cj+1 =
∑
l∈Sj

bl −
∑

l∈Sj\Sj+1

bl +
∑

l∈Sj+1\Sj

bl

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

=
∑

l∈Sj∩Sj+1

bl +
∑

l∈Sj\Sj+1

bl −
∑

l∈Sj\Sj+1

bl +
∑

l∈Sj+1\Sj

bl

=
∑

l∈Sj∩Sj+1

bl +
∑

l∈Sj+1\Sj

bl

=
∑

l∈Sj+1

bl,

where the first step follows Algorithm 5 line 10 and line 12, the second step follows Sj = (Sj ∩
Sj+1)∪ (Sj \ Sj+1), (Sj ∩ Sj+1) and (Sj \ Sj+1) are disjoint, the third step follows simple algebra,
and the last step follows the as the second step.

Therefore, we have cj+1 is correct, i.e., cj+1 =
∑

l∈Sj+1
bl =

∑
l∈Sj+1

(U⊤
2)lvl. Thus, Yj+1 is also

correct by Lemma D.5. Finally, we finish proving the correctness by math induction.

Running time.

Note that there are two for-loops in this algorithm. Inside the inner for-loops, it takes O(k) time to
compute

bi = (U⊤
2)i︸ ︷︷ ︸

k×1

vi︸︷︷︸
scalar

.

The inner for-loop has |Q+
j ∪Q−

j | = Bj iterations, and the outer for-loop has n iterations.

Therefore, it takes O(k
∑n

j=1 Bj) time in total.

D.5 CONTINUOUS ROW MASK

In this section, we study the continuous row mask.

Algorithm 6 Computing (W ◦ (U1U
⊤
2))v, where W ∈ {0, 1}n×n is a continuous row mask, as

defined in Definition 5.2
1: procedure CONTINUOUSMASK(U1 ∈ Rn×k, U2 ∈ Rn×k, v ∈ Rn) ▷ Lemma D.9
2: c0 ← 0k

3: Build segment tree T based on {(U⊤
2)ivi}i∈[n]

4: for j = 1→ n do
5: Get at most O(log n) vectors from T (each one is a continuous summation of 2t entries)
6: Compute cj based on the above vectors
7: end for
8: for j = 1→ n do
9: Yj ← ⟨(U⊤

1)j︸ ︷︷ ︸
k×1

, cj︸︷︷︸
k×1

⟩

10: end for
11: return Y ▷ Y ∈ Rn

12: end procedure

Lemma D.9. Let W ∈ {0, 1}n×n denote a continuous row mask defined in Definition 5.2. Let
U1, U2 ∈ Rn×k. Let v ∈ Rn. Then, there exists an algorithm (see Algorithm 6) whose output
promises that

Y = (W ◦ (U1U
⊤
2))v,

which takes O(nk log n) time.

Proof. The correctness is trivially from the construction of the segment tree.

The running time is dominated by O(nk log n). This time comes from two parts, where the first is
from building the segment tree by O(nk), and the second part is from for-loop by O(nk log n).

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

D.6 DISTINCT r COLUMNS OR ROWS

Now, we analyze the mask matrix with r distinct columns.
Lemma D.10. Let W be the distinct r columns mask defined in Definition 5.3. Let S1, · · · , Sr ⊆ [n]
denote r disjoint subsets and ∪j∈[r]Sj = [n] be defined in Definition 5.3. Let h : [r]→ [n] denote
that h(j) ∈ Sj and h(j) is the smallest index in Sj .

Then we can show

(W︸︷︷︸
n×n

◦(U1︸︷︷︸
n×k

U⊤
2︸︷︷︸

k×n

)) v︸︷︷︸
n×1

=

r∑
j=1

diag(W∗,h(j))︸ ︷︷ ︸
n×n

U1︸︷︷︸
n×k

(U⊤
2)∗,Sj︸ ︷︷ ︸

k×|Sj |

vSj︸︷︷︸
|Sj |×1

Proof. We can show that

LHS =

n∑
i=1

(W ◦ (U1U
⊤
2))∗,i · vi

=
n∑

i=1

(W∗,i ◦ (U1U
⊤
2)∗,i)vi

=

n∑
i=1

diag(W∗,i)(U1U
⊤
2)∗,ivi

=

n∑
i=1

diag(W∗,i)U1(U
⊤
2)∗,ivi

=

r∑
j=1

diag(W∗,h(j))U1(U
⊤
2)∗,SjvSj ,

where the first step follows from the left hand side of the equation in the lemma statement, the second
step follows from the definition of the Hadamard product, the third step follows from Fact B.5, the
fourth step follows from simple algebra, and the last step follows from the fact that for any two
i, i′ ∈ Sj , we have W∗,i = W∗,i′ ∈ Rn (see from the lemma statement).

Now, we analyze the mask matrix with r distinct rows.
Lemma D.11. Let W be the distinct r rows mask defined in Definition 5.4. Let S1, · · · , Sr ⊆ [n]
denote r disjoint subsets and ∪j∈[r]Sj = [n] be defined in Definition 5.4. Let h : [r]→ [n] denote
that h(j) ∈ Sj and h(j) is the smallest index in Sj .

Then, we can show that

(W︸︷︷︸
n×n

◦(U1︸︷︷︸
n×k

U⊤
2︸︷︷︸

k×n

)) v︸︷︷︸
n×1

=

r∑
j=1

diag(eSj
)︸ ︷︷ ︸

n×n

U1︸︷︷︸
n×k

U⊤
2︸︷︷︸

k×n

diag(Wh(j),∗)︸ ︷︷ ︸
n×n

v︸︷︷︸
n×1

Proof. It suffices to show

(W︸︷︷︸
n×n

◦(U1︸︷︷︸
n×k

U⊤
2︸︷︷︸

k×n

)) =

r∑
j=1

diag(eSj
)︸ ︷︷ ︸

n×n

U1︸︷︷︸
n×k

U⊤
2︸︷︷︸

k×n

diag(Wh(j),∗)︸ ︷︷ ︸
n×n

. (10)

We have

(W ◦ (U1U
⊤
2)) = ((U1U

⊤
2) ◦W)

=

n∑
i=1

(diag(ei)(U1U
⊤
2) ◦W)i,∗

=

n∑
i=1

(diag(ei)(U1U
⊤
2) ◦Wi,∗)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

=

n∑
i=1

(diag(ei)(U1U
⊤
2) diag(Wi,∗))

=

n∑
j=1

diag(eSj
)U1U

⊤
2 diag(Wh(j),∗),

where the first step follows from the definition of the Hadamard product, the second step follows from
the property of diag(ei) that for any matrix A, diag(ei)A preserves the i-th row of A and set other
rows to 0, the third step follows from simple algebra, the fourth step follows from Fact B.5, and the
last step follows from the lemma statement that for any two i, i′ ∈ Sj , we have Wi,∗ = Wi′,∗ ∈ Rn.

Therefore, we have shown Eq. (10), which completes the proof.

Lemma D.12. Let W ∈ {0, 1}n×n be a distinct r columns mask defined in Definition 5.3 or a
distinct r rows mask defined in Definition 5.4. Let U1, U2 ∈ Rn×k. Let v ∈ Rn. Then, there exists an
algorithm whose output promises that

Y = (W ◦ (U1U
⊤
2))v,

which takes O(nkr) time.

Proof. The correctness and running time is directly follows Lemma D.10 for the column case and
Lemma D.11 for the row case.

E SUPPORTING LEMMAS AND TECHNICAL RESULTS

In Section E.1, we present the matrix and vector properties. In Section E.2, we analyze and develop
the tools for error analysis. In Section E.3, we provide some tools for tensor calculation.

E.1 MATRIX AND VECTOR PROPERTIES

Lemma E.1 (Restatement of Lemma 2.12). For any lower triangular matrix H ̸= 0n×n ∈ Rn×n,
there exists a unique k ∈ [n] such that H is a matrix with k-conv basis.

Proof of Lemma 2.12. It suffices to show that any arbitrary H ∈ Rn×n \ {0n×n} has at least 1 conv
basis and at most n conv basis.

As H ̸= 0n×n, it must have at least 1 conv basis, and we proved the first part.

Now, we prove the second part by math induction.

Let i ∈ {0, . . . , n− 1}. For any lower triangular matrix G ∈ Rn×n, we have

G =

[
0i×i 0i×(n−i)

0(n−i)×i G(i+1):n,(i+1):n

]
.

Let Gi+1 be the i+ 1-th column of G ∈ Rn×n. Let G̃i+1 ∈ Rn satisfy, for any j ∈ [n], (G̃i+1)j =

(Gi+1)i+j when i + j ≤ n and (G̃i+1)j = (Gi+1)i+j−n otherwise. Then, there exists lower
triangular matrix G′ ∈ R(n−i−1)×(n−i−1) such that

G− conv(G̃i+1, n− i)

=

 0i×i 0i×1 0i×(n−i−1)

01×i Gi+1,i+1 01×(n−i−1)

0(n−i−1)×i G(i+2):n,(i+1) G(i+2):n,(i+2):n

−
 0i×i 0i×1 0i×(n−i−1)

01×i Gi+1,i+1 01×(n−i−1)

0(n−i−1)×i G(i+2):n,(i+1) G′


=

 0i×i 0i×1 0i×(n−i−1)

01×i 01×1 01×(n−i−1)

0(n−i−1)×i 0(n−i−1)×1 G(i+2):n,(i+2):n −G′


=

[
0(i+1)×(i+1) 0(i+1)×(n−i−1)

0(n−i−1)×(i+1) G(i+2):n,(i+2):n −G′

]
,

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

where the first step follows from the fact that G is a lower triangular matrix and Definition 2.9, the
second step follows from simple algebra, and the last step follows from simple algebra.

As G and G′ are lower triangular matrices, we have that G− conv(G̃i+1, n− i) is a lower triangular
matrix. Thus, we proved the following statement.

For any lower triangular matrix G ∈ Rn×n whose first i columns all are zeros, there exists a basis
conv(b,m) such that G− conv(b,m) ∈ Rn×n is a lower triangular matrix whose first i+ 1 columns
all are zeros.

As H ∈ Rn×n is a lower triangular matrix whose first 0 columns all are zeros, we finish the proof by
math induction, i.e., repeat the above process at most n times.

Lemma E.2. For any matrix G ∈ Rn×n and vector v ∈ Rn, we have

∥Gv∥1 ≤ ∥G∥1 · ∥v∥∞.

Proof. We have

∥Gv∥1 =
∑
i∈[n]

|
∑
j∈[n]

Gi,jvj |

≤
∑
i∈[n]

∑
j∈[n]

|Gi,jvj |

≤
∑
i∈[n]

∑
j∈[n]

|Gi,j |∥v∥∞

= ∥G∥1 · ∥v∥∞,

where the first step follows the Definition of vector ℓ1 norm, the second steps follow |a+b| ≤ |a|+ |b|,
the third steps follow simple algebra, and the last step follow the Definition of matrix ℓ1 norm.

E.2 TOOLS FOR ERROR ANALYSIS

Lemma E.3. Let ϵ ≥ 0. Let x1, x2 ∈ R. We have

| exp(x1)− exp(x2)| ≤ exp(min{x1, x2})(exp(|x1 − x2|)− 1).

Proof. It is trivial by exp(a+ b) = exp(a) exp(b).

Lemma E.4. Let V ∈ Rn×d. Let H, H̃ ∈ Rn×n, and satisfy ∥H − H̃∥∞ ≤ ϵ, where ϵ ≥ 0. Let
A = exp(H), Ã = exp(H̃) and D = diag(A1n), D̃ = diag(Ã1n). Then, we have

∥D−1AV − D̃−1ÃV ∥∞ ≤ 2(exp(ϵ)− 1)∥V ∥∞.

Proof. By triangle inequality, we have

∥D−1AV − D̃−1ÃV ∥∞ = ∥D−1AV − D̃−1AV ∥∞ + ∥D̃−1AV − D̃−1ÃV ∥∞,

where the first step follows simple algebra, and the last step follows triangle inequality.

For the first part, for any i ∈ [n], j ∈ [n], we have

|(D−1AV − D̃−1AV)i,j | = |
n∑

l=1

(D−1
i,i − D̃−1

i,i)Ai,lVl,j |

≤
n∑

l=1

|(D−1
i,i − D̃−1

i,i)Ai,l| · ∥V ∥∞

=

n∑
l=1

|Di,i − D̃i,i

Di,iD̃i,i

| ·Ai,l · ∥V ∥∞

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

=

n∑
l=1

|
n∑

k=1

exp(Hi,k)−
n∑

k=1

exp(H̃i,k)| ·
Ai,l

Di,iD̃i,i

· ∥V ∥∞

≤
n∑

l=1

n∑
k=1

| exp(Hi,k)− exp(H̃i,k)| ·
Ai,l

Di,iD̃i,i

· ∥V ∥∞

≤ (exp(ϵ)− 1)

n∑
l=1

n∑
k=1

exp(H̃i,k) ·
Ai,l

Di,iD̃i,i

· ∥V ∥∞

= (exp(ϵ)− 1)∥V ∥∞,

where the first step follows simple algebra, the second step follows triangle inequality, the third step
follows simple algebra, the fourth step follows D = diag(A1n), D̃ = diag(Ã1n), A = exp(H),
Ã = exp(H̃), the fifth steps follows triangle inequality, the sixth step follows Lemma E.3 and the
last step follows D̃i,i =

∑n
k=1 exp(H̃i,k) and Di,i =

∑n
l=1 Ai,l.

For the second part, for any i ∈ [n], j ∈ [n], we have

|(D̃−1AV − D̃−1ÃV)i,j | = |
n∑

l=1

D̃−1
i,i (Ai,l − Ãi,l)Vl,j |

≤
n∑

l=1

D̃−1
i,i |Ai,l − Ãi,l| · ∥V ∥∞

=

n∑
l=1

D̃−1
i,i | exp(Hi,l)− exp(H̃i,l)| · ∥V ∥∞

≤ (exp(ϵ)− 1)

n∑
l=1

D̃−1
i,i exp(H̃i,l) · ∥V ∥∞

= (exp(ϵ)− 1)∥V ∥∞,

where the first step follows simple algebra, the second step follows triangle inequality, the third step
follows A = exp(H), Ã = exp(H̃), the fourth step follows Lemma E.3, and the last step follows
D̃i,i =

∑n
l=1 exp(H̃i,l).

Thus, we combine two terms,

∥D−1AV − D̃−1ÃV ∥∞ ≤ 2(exp(ϵ)− 1)∥V ∥∞.

Lemma E.5. Let a, b ≥ 0 and ϵ ∈ (0, 0.1). If |a− b| ≤ ϵa, then |a− b| ≤ 2ϵmin{a, b}.

Proof. It is trivial by considering two cases when b ≥ a and b < a.

Lemma E.6. Let A, Ã ∈ Rn×n
≥0 , and satisfy |Ãi,j − Ai,j | ≤ ϵ · Ai,j for all (i, j) ∈ [n]2, where

ϵ ∈ (0, 0.1). Let D = diag(A1n) and D̃ = diag(Ã1n). Then, we have

∥D−1AV − D̃−1ÃV ∥∞ ≤ 4ϵ∥V ∥∞.

Proof. By triangle inequality, we have

∥D−1AV − D̃−1ÃV ∥∞ ≤ ∥D−1AV − D̃−1AV ∥∞ + ∥D̃−1AV − D̃−1ÃV ∥∞,

where the first step follows simple algebra, and the last step follows triangle inequality.

For the first part, for any i ∈ [n], j ∈ [n], we have

|(D−1AV − D̃−1AV)i,j | = |
n∑

l=1

(D−1
i,i − D̃−1

i,i)Ai,lVl,j |

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

≤
n∑

l=1

|(D−1
i,i − D̃−1

i,i)Ai,l| · ∥V ∥∞

=

n∑
l=1

|Di,i − D̃i,i

Di,iD̃i,i

| ·Ai,l · ∥V ∥∞

=

n∑
l=1

|
n∑

k=1

Ai,k −
n∑

k=1

Ãi,k| ·
Ai,l

Di,iD̃i,i

· ∥V ∥∞

≤
n∑

l=1

n∑
k=1

|Ai,k − Ãi,k| ·
Ai,l

Di,iD̃i,i

· ∥V ∥∞

≤ 2ϵ

n∑
l=1

n∑
k=1

Ãi,k ·
Ai,l

Di,iD̃i,i

· ∥V ∥∞

= 2ϵ∥V ∥∞,

where the first step follows simple algebra, the second step follows triangle inequality, the third
step follows simple algebra, the fourth step follows D = diag(A1n), D̃ = diag(Ã1n), the fifth
step follows triangle inequality, the sixth step follows Lemma E.5 and the last step follows D̃i,i =∑n

k=1 Ãi,k and Di,i =
∑n

l=1 Ai,l.

For the second part, for any i ∈ [n], j ∈ [n], we have

|(D̃−1AV − D̃−1ÃV)i,j | = |
n∑

l=1

D̃−1
i,i (Ai,l − Ãi,l)Vl,j |

≤
n∑

l=1

D̃−1
i,i |Ai,l − Ãi,l| · ∥V ∥∞

≤ 2ϵ

n∑
l=1

D̃−1
i,i Ãi,l · ∥V ∥∞

= 2ϵ∥V ∥∞,

where the first step follows simple algebra, the second step follows triangle inequality, the third step
follows Lemma E.5, and the last step follows D̃i,i =

∑n
l=1 Ãi,l.

Thus, we combine two terms,

∥D−1AV − D̃−1ÃV ∥∞ ≤ 4ϵ∥V ∥∞.

E.3 TENSOR TOOLS FOR GRADIENT COMPUTATION

Fact E.7 (Fact A.3 on page 15 of Li et al. (2024c), also see Bürgisser et al. (2013); Bläser (2013) for
more detail). We can show that

Tmat(a, b, c) = O(Tmat(a, c, b)) = O(Tmat(b, a, c)) = O(Tmat(b, c, a)) = O(Tmat(c, a, b)) = O(Tmat(c, b, a)).

Fact E.8. Let a ∈ Rn, b ∈ Rd. We have

vec(ab⊤) = a⊗ b

Proof. We can show

vec(ab⊤) = vec(

a1b
⊤

a2b
⊤

. . .
anb

⊤

)
= [a1b

⊤, a2b
⊤, . . . , anb

⊤]⊤

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

= a⊗ b

where the first step follows from the definition of outer product, the second step follows from the
definition of vectorization operator vec(·) which stacks rows of a matrix into a column vector, and
the last step follows from Definition 4.4.

Fact E.9 (Tensor-trick on page 3 of Gao et al. (2023a), also see Diao et al. (2018) for more detail).
Given matrices A1 ∈ Rn1×d1 , A2 ∈ Rn2×d2 and X ∈ Rd1×d2 , the well-known tensor-trick suggests
that vec(A1XA⊤

2) = (A1 ⊗A2) vec(X) ∈ Rn1n2 .

Proof. We can show

vec(A1XA⊤
2) =

d1∑
i=1

d2∑
j=1

Xi,j vec(A1,∗,i(A2,∗,j)
⊤)

=

d1∑
i=1

d2∑
j=1

Xi,j(A1,∗,i︸ ︷︷ ︸
n1×1

⊗A2,∗,j︸ ︷︷ ︸
n2×1

)

=

d1∑
i=1

(A1,∗,i︸ ︷︷ ︸
n1×1

⊗ A2︸︷︷︸
n2×d2

)Xi,∗︸︷︷︸
d2×1

= (A1 ⊗A2) vec(X)

where the first step follows from that matrix can be written as a summation of vectors, the second
step follows from Fact E.8, the third step follows from that matrix can be written as a summation of
vectors, and the last step follows from the definition of vectorization operator vec(·).

F MORE RELATED WORK

Fast attention computation and long context LLM. The development of efficient attention com-
putation has been an active area of research in recent years. The standard self-attention mechanism,
introduced in the transformer architecture (Vaswani et al., 2017), has a quadratic complexity with
respect to the sequence length, which limits its applicability to long sequences. To address this
limitation, various approaches have been proposed to improve the efficiency of attention computation.
One line of research focuses on patterns of sparse attention that reduce the number of computations
(Child et al., 2019; Beltagy et al., 2020; Zaheer et al., 2020; Shi et al., 2023a; Han et al., 2024).
Another approach is to use low-rank approximations or random features for the attention matrix
(Razenshteyn et al., 2016; Li et al., 2016; Wang et al., 2020; Choromanski et al., 2020; Zheng et al.,
2022; Alman & Song, 2023; Ahn et al., 2024), which reduces the computational complexity to linear
in the sequence length. In addition, using linear attention as a proxy of Softmax attention is a rich
line of work (Tsai et al., 2019; Katharopoulos et al., 2020; Schlag et al., 2021; Zhang et al., 2023;
Sun et al., 2023; Ahn et al., 2024; Shi et al., 2023b; Xu et al., 2024b; Zhang et al., 2024; Deng et al.,
2023). These developments in efficient attention computation have enabled transformer-based models
to process longer sequences and have opened up new possibilities for their application in various
domains (Chen et al., 2023b; Su et al., 2024; Peng et al., 2024; Ding et al., 2024; Ma et al., 2024; Xu
et al., 2024c; An et al., 2024; Bertsch et al., 2024; Chen et al., 2024; Liang et al., 2024d; Jin et al.,
2024; Shi et al., 2024).

Convolution in language model and FFT. There are many subquadratic-time architectures are
proposed to address Transformers’ computational inefficiency on long sequences, gated convolution
recurrent models (Bai et al., 2018; Fu et al., 2023; Peng et al., 2023; Qin et al., 2023), and structured
state space models (SSMs) (Gu et al., 2021; Gu & Dao, 2023). They can use global or local convolu-
tion (Krizhevsky et al., 2012) operations to replace attention while keeping a comparable performance.
The convolution operation can be computed by fast Fourier transform (FFT) efficiently (Pratt et al.,
2017; Chi et al., 2020). Moreover, the development of efficient convolution algorithms like Winograd
(Lavin & Gray, 2016) and FFT-based convolutions (Mathieu et al., 2013) has further optimized the
computation, reducing the memory footprint and improving the overall speed. There are many other
works studying Fourier transform (Price & Song, 2015; Moitra, 2015; Chen et al., 2016; Song, 2019;

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Lee et al., 2019; Chen et al., 2020; Song et al., 2022; Gao et al., 2022; Song et al., 2023a; Chen et al.,
2023a; Song et al., 2023d; Jin et al., 2023).

(Weighted) low rank approximation. Low-rank approximation has become an important tool
in machine learning and numerical linear algebra, providing a way to extract the core structure of
high-dimensional data while minimizing computational costs. Mathematically, we want to find
matrices X,Y ∈ Rn×k such that ∥M −XY ⊤∥F is minimized. It has been applied to various fields,
such as training multi-layer neural network Song et al. (2021), attention approximation Alman &
Song (2023; 2024a), dynamic Kronecker product maintenance Song et al. (2023c), and tensor product
regression Reddy et al. (2022). In practice, certain entries of M tend to be more important than
others, leading to the study of the weighted low-rank approximation: finding matrices X,Y ∈ Rn×k

such that ∥W ◦ (M −XY ⊤)∥F is minimized, where W ∈ Rn×n
≥0 Li et al. (2016); Razenshteyn et al.

(2016); Song et al. (2023e); Gu et al. (2024). As data continues to grow in size and complexity,
(weighted) low rank approximation remains an active area of research, with ongoing efforts to develop
more efficient, scalable, and robust methods for a wide range of applications.

Attention optimization. There are several other techniques optimizing the approximation of the
attention computation to alleviate the quadratic complexity O(n2), such as optimizing the attention-
related regression problems Song et al. (2023f); Gao et al. (2023b;c;d); Li et al. (2024b); Liang et al.
(2024b), multi-layer attention optimization Song et al. (2023b); Li et al. (2023b); Liang et al. (2024c),
cross attention Liang et al. (2024f), Hopfield Models (Hu et al., 2023; Wu et al., 2024b; Hu et al.,
2024c; Xu et al., 2024a; Wu et al., 2024a; Hu et al., 2024a;b;d), and optimizing the tensor version of
the attention approximation Liang et al. (2024e); Alman & Song (2024b).

48

	Introduction
	Related Work

	Preliminary
	Basic Definitions and Facts about Attention and
	Sub-convolution Matrix: Definitions and Properties

	 Approximation during Inference
	Key Concepts
	Algorithms and Their Properties
	Main Theoretical Result

	 Approximation for Training
	Low Rank Approximation
	Experiments
	Conclusion
	Further Discussion
	Technical Details About Approximation
	Properties of Toeplitz, Circulant, and Convolution Matrices
	Mathematical Tools Development for Basis
	Lemma Used in Main Theorem Proof
	Proof of Main Theorem
	Construction for Case Study

	 Approximation in Gradient
	Definitions
	Loss Functions
	Running Time
	Proof of Main Theorem

	Incorporating Weighted Low Rank Approximation
	Preliminary
	Proof of Main Results
	Causal Attention Mask
	Row Change by Amortized Constant Mask
	Continuous Row Mask
	Distinct Columns or Rows

	Supporting Lemmas and Technical Results
	Matrix and Vector Properties
	Tools for Error Analysis
	Tensor Tools for Gradient Computation

	More Related Work

