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ABSTRACT

The self-attention mechanism is the key to the success of transformers in recent
Large Language Models (LLMs). However, the quadratic computational cost O(n2)
in the input sequence length n is a notorious obstacle for further improvement
and scalability in longer contexts. In this work, we leverage the convolution-like
structure of attention matrices to develop an efficient approximation method for
attention computation using convolution matrices. We propose a conv basis system,
analogous to the rank basis, and show that any lower triangular matrix can always
be decomposed as a sum of structured convolution matrices in this basis. We
then design a fast algorithm to approximate the attention matrix via a sum of
such k convolution matrices. This allows us to compute the attention inference
via Fast Fourier Transforms (FFT) in O(knd log n) time, where d is the hidden
dimension, and thus achieve almost linear time n1+o(1) in the practical scenario
where kd = no(1). Furthermore, the attention training forward and backward
gradient can be computed in n1+o(1) as well. We provide theoretical guarantees
on the run time and approximation error and conduct preliminary experiments to
evaluate its effectiveness. We hope our new paradigm for accelerating attention
computation in transformer models can help their application to longer contexts.

1 INTRODUCTION

Numerous notable large language models (LLMs) in natural language processing (NLP) have emerged
in these two years, such as Mistral (Jiang et al., 2023), Gemini (Team et al., 2023), Claude3 (Anthropic,
2024), GPT-4 (Achiam et al., 2023), Llama3 (AI, 2024) and so on. These models have profoundly
changed the world and have been widely used in human activities, such as education (Kasneci
et al., 2023), law (Sun, 2023), finance (Li et al., 2023a), bio-informatics (Thirunavukarasu et al.,
2023), coding (Hou et al., 2024), and even creative writing (Achiam et al., 2023) such as top AI
conference reviews (Liang et al., 2024a). The key component of the generative LLMs success is
the decoder-only transformer architecture introduced by Vaswani et al. (2017). The transformer
uses the self-attention mechanism, allowing the model to capture long-range dependencies in the
input sequence. Self-attention computes a weighted sum of the input tokens, where the weights
are determined by the similarity between each pair of tokens. This enables the model to attend to
relevant information from different parts of the sequence when generating the output. However, the
computational complexity of the self-attention in transformers grows quadratically O(n2) with the
input length n, limiting their applicability to long context, e.g., 128k, 200k, 1000k input tokens for
GPT4 (Achiam et al., 2023), Claude3 (Anthropic, 2024), Gemma (Team et al., 2024) respectively.

The complexity O(n2) comes from computing the similarity between each pair of tokens, which will
introduce an n×n size matrix. More specifically, let d be the hidden dimension and let Q,K ∈ Rn×d

be the query and key matrices of input. Then attention needs to compute Softmax on QK⊤ ∈ Rn×n.
Although QK⊤ is at most rank-d, Softmax(QK⊤) ∈ Rn×n may be full rank in Softmax attention.

To overcome the computational obstacle of Softmax(QK⊤), many studies propose more efficient
attention computation methods that can scale gracely with the sequence length while maintaining
the model’s performance. Alman & Song (2023) show that if all entry of QK⊤ is bounded and
d = O(log n), Softmax(QK⊤) will be “close” to a low-rank matrix. Then, they present an algorithm
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Figure 1: (a) In the left two figures, we compare the complexity of conv(a) ·w between the Naive way
and FFT way, where random vector a,w ∈ Rn and conv(a) ∈ Rn×n (Definition 2.5). The x-axis is
the input token number n. The y-axis is the average CPU time/Float Operations (FLOPs) over n, in
the first/second figure. The number reported is an average of 100 runs with Numpy implementation.
It is clear to see the Naive way takes O(n2) while the FFT way takes O(n log n). (b) In the right
figure, we plot one QK⊤ ∈ Rn×n in Llama3 (AI, 2024), where input is from the SST-2 (Wang et al.,
2018) with n = 47 tokens. It is clear to see the conv-like structure in the attention matrix.

that can approximate attention computation in almost linear time. Similarly, by uniform Softmax
column norms assumption and sparse assumption, Han et al. (2024) solve attention computation in
almost linear time, where they identify large entries in the attention matrix and only focus on them.

Another line of work (Olsson et al., 2022; Song & Zhong, 2023; Nichani et al., 2024; Reddy, 2024)
find that the attention pattern has convolutional-like (or “diagonalized”) structure (see Figure 1 (b)),
mathematically, Ai,j ≈ Ai′,j′ when i− j = i′ − j′, where we can see i− j as the position distance
between two tokens. It is relevant to the bag-of-words or n-gram concept, i.e., n adjacent symbols
or words in NLP. Furthermore, the convolutional-like structure can be connected to convolution
recurrent models (Bai et al., 2018), Hyena Hierarchy models (Poli et al., 2023; Massaroli et al., 2023),
and structured state space models (SSMs) such as Mamba (Gu & Dao, 2023). More specifically,
we can use multiple convolution matrices to approximate an attention matrix, whose intuition is
similar to the low-rank approximation in the sense of computation acceleration. Note that the matrix
product of a convolution matrix and a vector can be computed by Fast Fourier Transform (FFT) with
time complexity O(n log(n)), while the naive way takes O(n2) time (see details in Figure 1 (a)).
Therefore, it is natural to ask:

Can we exploit the convolutional structure to accelerate the attention computation?

In this paper, we use multiple convolution matrices to approximately solve the attention computation
efficiently. Informally speaking, we have the following results, which can apply to any Q,K ∈ Rn×d.
Theorem 1.1 (Main result, informal version of Theorem 3.4). Let ϵ > 0, k ∈ [n] and Q,K ∈ Rn×d.
If QK⊤ is ϵ-close in ℓ∞ norm to a matrix with k-conv basis (Definition 3.1), then we can solve the
Exact Attention Computation (Definition 2.3) in O(knd log(n)) time via FFT with error up to O(ϵ).

When kd = no(1), our method gets almost linear time n1+o(1). Similarly to the low-rank approxima-
tion, in our work, we build up a conv basis system, analogous to the rank basis, and show that any
lower triangular matrix H ∈ Rn×n can always be decomposed into k-conv basis for some k ∈ [n],
where [n] = {1, 2, . . . , n} (Lemma 2.12 and Theorem 3.3). Then, our Algorithm 2 can quickly
decompose QK⊤ into k convolution matrix when QK⊤ satisfying some non-degenerate properties
(see properties in Definition 3.1). Finally, via FFT, we only need time complexity O(knd log(n)) to
solve the task (Algorithm 1 and Theorem 3.4), while the naive methods require O(n2d).

Thus, our algorithm can achieve attention inference in O(knd log(n)), without any parameter updates,
e.g., re-train or finetune. Our theorems can also applied to accelerate attention training, taking
O(knd log n+ nd2) time for forward computation and O(knd2 log n) time for backward gradient
computation (Theorem 4.6). Furthermore, we conduct preliminary experiments to evaluate its
effectiveness (Section 6). Additionally, our technique can also be applied to extend the low-rank

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

approximation of attention matrices (Alman & Song, 2023) to more general settings (Theorem 5.5).
In detail, Alman & Song (2023) only works on attention approximation without an attention mask,
while ours can be applied to different kinds of attention masks, including the most popular causal
attention mask (Definition 2.2). This shows the broad applicability of our analysis.

Our contributions are summarized as follows.

• We propose a conv basis system, and show that any lower triangular matrix H ∈ Rn×n can
always be decomposed into k-conv basis for some k ∈ [n] (Lemma 2.12 and Theorem 3.3).

• We propose an algorithm (Algorithm 2) that can quickly decompose any lower triangular
matrix into its k convolution basis. So via FFT, we can solve Exact Attention Computation
task in O(knd log(n)) (Algorithm 1 and Corollary 3.5). When kd = no(1), our method
takes almost linear time n1+o(1). Our results are beyond or comparable to previous works
(see comparison below).

• During attention inference, our algorithm takes O(knd log(n)), without any parameter
updates, e.g., re-train or fine-tune (Theorem 3.4). Due to convolution property and Fourier
analysis, our new method has a better theoretical guarantee than existing approaches.

• During attention training, our methods take O(knd log n+ nd2) time for forward computa-
tion and O(knd2 log n) time for backward gradient computation (Theorem 4.6).

• Our broadly applicable technique can be applied to the low-rank approximation of attention
matrices and extend existing results to more general settings (Theorem 5.5).

Detailed comparison with previous works. Our results are beyond or comparable to the two brilliant
previous works. (1) To guarantee a small approximation error, for the attention matrix, Alman & Song
(2023) needs bounded entries assumption and d = O(log n) assumption, while Han et al. (2024)
needs uniform Softmax column norms assumption and sparse assumption. However, without all
these assumptions, our algorithm can still guarantee a small approximation error (Corollary 3.5),
i.e., our algorithm can apply to any Q,K including unbounded matrices, dense matrices, and any
hidden dimension d. (2) To guarantee a truly subquadratic running time, Alman & Song (2023)
needs to assume d = O(log n) to get n1+o(1) time complexity. However, for our algorithm, as long
as d = no(1) and k = no(1), we achieve running time n1+o(1). This has much less restriction on
d. Moreover, our time complexity covers from n1+o(1) to n2−Ω(1) with different d, while Alman
& Song (2023) can only handle d = O(log n). (3) To guarantee a truly subquadratic running time,
Han et al. (2024) needs to assume dm = n2−Ω(1), as they get O(dn1+o(1) + dm) time complexity
where m is the number of large entries in attention matrices. Our work gets O(knd log(n)) time
complexity and we need kd = n1−Ω(1) to get truly subquadratic running time. For the situation
m = n1+o(1), d = no(1) and k = no(1), both our algorithm and Han et al. (2024) run in n1+o(1) time.
For the situation m = n1+Ω(1), d = no(1) and k = no(1), running time in Han et al. (2024) will be
truly super-linear n1+Ω(1) while our algorithm remains almost n1+o(1) linear time1.

1.1 RELATED WORK

Attention matrix conv-like structure. Very recent works study the conv-like attention matrix.
Elhage et al. (2021); Olsson et al. (2022) find that in-context learning is driven by the formation
of “induction heads”–attention heads that copy patterns from earlier in the input sequence. This
is reflected in the attention matrix becoming more diagonal, with tokens attending primarily to
preceding tokens that match the current token. In Song & Zhong (2023) Figure 6, they show a similar
conv-like attention pattern for other important attention circuits. Figure 3 of Reddy (2024) shows
that in a minimal classification task, the abrupt emergence of in-context learning coincides with the
formation of an induction head, characterized by a diagonal attention pattern. Nichani et al. (2024)
proves that for a simplified task, gradient descent causes a transformer to encode the causal graph
structure of the task in the attention matrix. This results in tokens attending primarily to their causal
parents reflected in a sparse diagonal structure (Figure 2). In Li et al. (2024a), the conv-like attention
matrix can also be observed when learning math tasks. Moreover, Cai et al. (2024) uses convolutional
kernels to compress the KV-cache size for fast LLM generation.

1Considering the case where attention matrix is all 1 lower triangular matrix, we have k = 1 and m =
n(n+ 1)/2.
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2 PRELIMINARY

In Section 2.1, we introduce the basic definitions and mathematical properties. In Section 2.2, we
give the formal definition of the sub-convolution matrix and present it basic properties.

Notations. We use ◦ to denote element-wise multiplication. We denote [n] = {1, 2, . . . , n} and
[0] as an empty set. We denote 0n and 1n as the n-dimensional vector whose entries are all
0 and 1 respectively. We denote exp(·) as the element-wise exponential function. We denote
[xa, xa+1, . . . , xb]

⊤ ∈ Rb−a+1 as xa:b, where 1 ≤ a ≤ b ≤ n, similarly for matrix. Let diag :
Rn → Rn×n be defined as diag(x)i,i = xi and diag(x)i,j = 0, for all i ̸= j. For a matrix
A ∈ Rm×n, we define its ℓ1 norm as ∥A∥1 =

∑m
i=1

∑n
j=1 |Aij |, ℓ∞ norm as ∥A∥∞ = maxi,j |Aij |,

and Frobenius norm as ∥A∥F :=
√∑

i,j A
2
i,j , where Aij is an entry at the i-th row and j-th column.

2.1 BASIC DEFINITIONS AND FACTS ABOUT ATTENTION AND conv

Now, we present basic definitions. We start by introducing the input and weight matrix.
Definition 2.1 (Input and weight matrix). We define the input sequence as X ∈ Rn×d and the key,
query, and value weight matrix as WK ,WQ,WV ∈ Rd×d. Then, we define the key, query, and value
matrix as K := XWK ∈ Rn×d, Q := XWQ ∈ Rn×d, V := XWV ∈ Rn×d.

It is straightforward to see QK⊤ = XWQW
⊤
KX⊤. In generative LLMs, there is a causal attention

mask M to guarantee the later tokens cannot see the previous tokens during generation.
Definition 2.2 (Causal attention mask). We define the causal attention mask as M ∈ {0, 1}n×n,
where Mi,j = 1 if i ≥ j and Mi,j = 0 otherwise. We define Mj be the j-th column of M .

Now, we introduce the mathematical definition of the exact attention computation with a mask.
Definition 2.3 (Exact attention computation). Let Q,K, V ∈ Rn×d be the query, key, and value
matrices respectively defined in Definition 2.1. Let M ∈ {0, 1}n×n be the attention mask defined in
Definition 2.2. The goal of the Exact Attention Computation is to find the matrix Att(M,Q,K, V ) ∈
Rn×d, which is defined as

Att(M,Q,K, V ) := D−1AV

where A ∈ Rn×n is a lower triangular matrix and D ∈ Rn×n is a diagonal matrix, i.e., A :=
M ◦ exp(QK⊤) and D := diag(A1n).

Remark 2.4. In Definition 2.3, we divide the Softmax operation into an element-wise exp operation
and a diagonal normalization matrix D to obtain a clear formulation.

Efficiently computing the attention needs to exploit structured matrices that enable fast multiplication
algorithms. Here, we define the convolution matrix, which is a structured matrix where each row
vector is rotated one element to the right relative to the preceding row vector.
Definition 2.5 (Convolution matrix). Let a ∈ Rn. We define conv : Rn → Rn×n as,

conv(a) :=


a1 0 0 · · · 0
a2 a1 0 · · · 0
a3 a2 a1 · · · 0
...

...
...

. . .
...

an an−1 an−2 · · · a1

 .

By the following fact, we know that the rank of a convolution matrix can be an arbitrary number.
Thus, our conv-basis is totally different from the rank basis. See proof in Appendix B.1.
Claim 2.6. We have conv(ej) ∈ Rn×n is a j-rank matrix, where the j-th entry of ej ∈ Rn is 1 and
all other entries are 0.

Efficient computation of the convolution operation is crucial for many applications. The convolution
theorem states that the circular convolution of two vectors can be computed efficiently using the Fast
Fourier Transform (FFT). This leads to the following claim (see proof in Appendix B.1):
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Claim 2.7. Let conv be defined in Definition 2.5. For any a, x ∈ Rn, conv(a)x can be computed in
O(n log n) via FFT.

One property of convolution matrices is that they are additive with respect to the input vectors. In
other words, the convolution of the sum of two vectors is equal to the sum of the convolutions of the
individual vectors. This is stated formally in the following claim (see proof in Appendix B.1):
Claim 2.8. conv is additive, i.e., for any a, b, x ∈ Rn we have conv(a)x+conv(b)x = conv(a+b)x.

Many other interesting facts and properties about the convolution matrix are used in our main theorem
proof. Due to space limitations, we leave them in Appendix B.1 for reader interests.

2.2 SUB-CONVOLUTION MATRIX: DEFINITIONS AND PROPERTIES

= + +

Figure 2: A matrix with 3-conv basis. We present an example of the matrix defined in Definition 2.11
when k = 3. The matrix with 3-conv basis is on the left-hand side of the equation in this figure. The
red entries in this matrix come from the first matrix on the right-hand side. The purple entries in this
matrix are the sum of the red entries from the first matrix on the right-hand side and the blue entries
from the second matrix on the right-hand side. The dark green entries are equal to the sum of red,
green, and blue entries from the matrices on the right-hand side.

If we would like to use conv as a basis system, we need to introduce some new concepts. Recall
that, in general, the sum of two rank-1 matrices is a rank-2 two matrix. Due to conv being additive,
the sum of two convolution matrices is another convolution matrix, which does not hold the above
property. Thus, we need to introduce sub-convolution matrices to be the basis.
Definition 2.9 (Sub-convolution matrix). Let m ∈ [n]. For any a ∈ Rn. We define the sub-
convolution matrix conv(a,m) as

conv(a,m) =

[
0(n−m)×(n−m) 0(n−m)×m

0m×(n−m) conv(a1:m)

]
.

Given two vectors a, x ∈ Rn, let a ∗m x ∈ Rn denote the sub-convolution operator between a and x,
i.e., conv(a,m)x = a ∗m x.

Similarly, sub-convolution can be computed in O(n log n) time via FFT (see proof in Appendix B.1).
Claim 2.10. Let m ∈ [n]. For any a, x ∈ Rn, conv(a,m)x, (defined in Definition 2.9) can be
computed in O(n log n) via FFT.

Here, we present the definition of the matrix with k-conv basis which is non-reducible.
Definition 2.11 (Matrix with k-conv basis). Let k ∈ [n]. We say a lower triangular matrix H ̸=
0n×n ∈ Rn×n has k-conv basis if

• There exists b1, . . . , bk ∈ Rn and k integers m1,m2, . . . ,mk satisfying n ≥ m1 > m2 >
· · · > mk ≥ 1 such that H =

∑
i∈[k] conv(bi,mi), (defined in Definition 2.9).

• For any b1, . . . , bk−1 ∈ Rn and k − 1 integers m1,m2, . . . ,mk−1 satisfying n ≥ m1 >
m2 > · · · > mk−1 ≥ 1 we have H ̸=

∑
i∈[k−1] conv(bi,mi).

The following lemma establishes that any non-zero lower triangular matrix can be represented as a
matrix with a k-conv basis for some unique k between 1 and n. The proof is in Appendix E.1.
Lemma 2.12. For any lower triangular matrix H ̸= 0n×n ∈ Rn×n, there exists a unique k ∈ [n]
such that H is a matrix with k-conv basis.

5
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3 conv APPROXIMATION DURING INFERENCE

In Section 3.1, we introduce the basic definitions to support our algorithmic analysis in this section. In
Section 3.2, we present the binary search and recover k-conv algorithms and present their theoretical
guarantees. In Section 3.3, we provide the formal version of our main result.

3.1 KEY CONCEPTS

Any non-zero lower triangular matrix can be represented as a matrix with a k-conv basis for some
unique k between 1 and n (Lemma 2.12). However, exactly getting k is hard and the definition is too
strict for the algorithm design. Thus, for more flexibility, we introduce a more general definition of
non-degenerate k-conv basis as below, which is a proxy notion to relax the conditions required.

Definition 3.1 (Non-degenerate k-conv basis). Let T ∈ [n], δ ≥ 0, and k ∈ [n + 1 − T ]. Let
b1, . . . , bk ∈ Rn and k integers m1,m2, . . . ,mk satisfying n ≥ m1 > m2 > · · · > mk ≥ T . Let
H =

∑
i∈[k] conv(bi,mi). If for each basis i ∈ [k], for all j ∈ [i], we have ∥

∑i
l=j(bl)1:T ∥1 ≥ δ,

then we define H ∈ Rn×n to be a matrix with (T, δ)-non-degenerate k-conv basis.

Here (T, δ)-non-degenerate k-conv basis means that each conv basis cannot be “covered” by the
other basis easily.

Definition 3.2. We define G as a ϵ-close (T, δ)-non-degenerate k-conv basis matrix when G = H+R,
where H is a (T, δ)-non-degenerate k-conv basis matrix defined in Definition 3.1 and the noise
matrix R ∈ Rn×n satisfies ∥R∥∞ ≤ ϵ ≤ δ

5T .

The following theorem establishes that any non-zero lower triangular matrix can be represented as an
ϵ-close (T, δ)-non-degenerate k-conv basis matrix (see proof in Section B.2). There may be many
different choices of (k, T, δ, ϵ), which provide flexibility for our Algorithm 1.

Theorem 3.3. For any lower triangular matrix G ̸= 0n×n ∈ Rn×n, there exists k, T ∈ [n] and
δ, ϵ ≥ 0 such that G is a ϵ-close (T, δ)-non-degenerate k-conv basis matrix.

3.2 ALGORITHMS AND THEIR PROPERTIES

Now, we present our main Algorithm 1. We present Algorithm 2 and Algorithm 3 as well.

Algorithm 1 Main k-conv forward

1: procedure convFORWARD(Q,K, V ∈ Rn×d, k, T ∈ [n], δ, ϵ ∈ R≥0) ▷ Theorem 3.4
2: b̃1, . . . , b̃k,m1, . . . ,mk ← RECOVER(Q,K, k, T, δ, ϵ) ▷ Algorithm 2, recover k-conv
3: D̃ ← diag(

∑
r∈[k] conv(̃br,mr)1n) by FFT in Claim 2.10

4: Ỹ ← D̃−1
∑

r∈[k] conv(̃br,mr)V by FFT in Claim 2.10

5: return Ỹ
6: end procedure

In Algorithm 1, we first using Algorithm 2 to get k conv basis. Then, we can get the approximated
normalization matrix D̃ and the final output Ỹ by FFT in Claim 2.7.

In Algorithm 2, we iteratively use binary search (Algorithm 3) to find the conv basis position and
calculate their values. Note that, in the end, we need to change b′i to b̃i by incorporating exp function
used in the Softmax. We will provide proof of correctness and complexity in the following section.

In Algorithm 3, we use binary search to efficiently locate the convolution basis position by leveraging
the non-degenerate property (see Definitions 3.1 and 3.2) of the attention matrix. This allows us
to find k-conv-basis in our main Algorithm 1, enabling better control over the running time while
bounding the error. The choice of k thus balances the trade-off between accuracy and efficiency.
Technically, Algorithm 3 identifies positions in the attention matrix where the ℓ1 norm of remaining
attention values exceeds the threshold δ − 2Tϵ. The non-degenerate property enables the binary
search algorithm to find the next convolution basis position in O(log n) steps.

6
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Algorithm 2 Recover k-conv

1: procedure RECOVER(Q,K ∈ Rn×d, k, T ∈ [n], δ, ϵ ∈ R≥0)
2: v ← 0T , u← 0n, s← 0, t← n− T + 1 ▷ Initialize the state for binary search
3: for i = 1→ k do
4: s← s+ 1
5: s← SEARCH(Q,K, k, T, δ, ϵ, v, s, t) ▷ Algorithm 3 in Appendix B.2, binary search the

next conv basis position
6: mi ← n− s+ 1
7: H̃s ←Ms ◦ (Q(K⊤)s)

8: (b′i)1:mi ← H̃s,s:s+mi−1 − u1:mi , (b
′
i)mi+1:n ← 0n−mi ▷ Get the conv basis value

9: v ← v + (b′i)1:T
10: u← u+ b′i
11: end for
12: Get b̃1, . . . , b̃k by Lemma B.16 from b′1, . . . , b

′
k and m1, . . . ,mk

13: return b̃1, . . . , b̃k,m1, . . . ,mk

14: end procedure

Algorithm 3 Binary search

1: procedure SEARCH(Q,K ∈ Rn×d, k, T ∈ [n], δ, ϵ ∈ R≥0, v ∈ RT , s, t ∈ [n])
2: if s ≥ t then
3: return s
4: end if
5: j ← ⌊(s+ t)/2⌋
6: H̃j ←Mj ◦ (Q(K⊤)j) ▷ j ∈ [n],M is attention mask defined in Definition 2.2
7: α← ∥(H̃j)j:j+T−1 − v∥1
8: if α ≥ δ − 2Tϵ then
9: return SEARCH(Q,K, k, T, δ, ϵ, v, s, j)

10: else
11: return SEARCH(Q,K, k, T, δ, ϵ, v, j + 1, t)
12: end if
13: end procedure

3.3 MAIN THEORETICAL RESULT

In this section, we present our main result.

Theorem 3.4 (Main conv results for inference). Let Q,K, V ∈ Rn×d. Recall A = M◦exp(QK⊤) ∈
Rn×n, D = diag(A1n) ∈ Rn×n defined in Definition 2.3. We denote Y := D−1AV ∈ Rn×d. Let
M ◦ (QK⊤) be a ϵ-close (T, δ)-non-degenerate k-conv basis matrix as defined in Definition 3.2,
where δ, ϵ ≥ 0 and k, T ∈ [n]. By Algorithm 1, we can get Ỹ such that

∥Y − Ỹ ∥∞ ≤ 2(exp(2ϵ)− 1)∥V ∥∞,

whose time complexity is O(knd log(n)) given M,Q,K, V .

Proof sketch of Theorem 3.4. See complete proof in Appendix B.4. The proof idea is that using
binary search to recover all non-degenerate conv basis (Lemma B.19), which takes O(knd log(n))
time and has upto 2(exp(2ϵ)− 1)∥V ∥∞ error (Lemma B.20). Then, via FFT (Claim 2.10), we finish
the proof.

Note that our algorithm can handle any Q,K ∈ Rd×d. Furthermore, we can exactly recover Y if we
do not care about the time complexity. We formally describe the above intuition in the following.

Corollary 3.5 (Exact conv inference). Let Q,K, V ∈ Rn×d. Recall A = M ◦ exp(QK⊤) ∈ Rn×n,
D = diag(A1n) ∈ Rn×n defined in Definition 2.3. We denote Y := D−1AV ∈ Rn×d. For any
ϵ ≥ 0 and any Q,K, V , there exists hyper-parameter k, T ∈ [n] and δ ≥ 0 such that Algorithm 1

7
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can output Ỹ satisfying ∥Y − Ỹ ∥∞ ≤ 2(exp(2ϵ)− 1)∥V ∥∞. Furthermore, we can exactly get Y ,
i.e., ϵ = 0, through Algorithm 1 with time complexity O(n2d log(n)) in the worst case.

See proof of the above corollary in Appendix B.4. By Theorem 3.4, when ϵ = O(1), we directly
get the attention inference time complexity is O(knd log(n)) with error up to O(ϵ) as claimed in
Section 1. It may enable further improvement and scalability of LLMs in the longer context.

Moreover, in Appendix A, we provide a detailed discussion about two case studies, LongLora (Chen
et al., 2023b) and RoPE (Su et al., 2024), where our algorithm can apply to these two long-context
LLMs as well. We also provide further discussion on limitations and extensions there.

4 conv APPROXIMATION FOR TRAINING

We can apply our algorithm to accelerate attention training including forward and back propagation.
We first define the attention training task, which is also used in Alman & Song (2024a).
Definition 4.1 (Attention optimization). Given A1, A2, A3, E ∈ Rn×d and Y ∈ Rd×d. we let
M ∈ Rn×n be a casual attention mask defined in Definition 2.2. We define the optimization as

min
X∈Rd×d

L(X) := 0.5∥D(X)−1M ◦ exp(A1XA⊤
2 )A3Y − E∥2F .

Here D(X) ∈ Rn×n is D(X) := diag(M ◦ exp(A1XA⊤
2 )1n).

Remark 4.2. Our Attention Optimization task in Definition 4.1 covers both the cross-attention
and self-attention setting. Let weight matrices WK ,WQ,WV ∈ Rd×d be defined in Definition 2.1.
For the self-attention setting, we can see A1, A2, A3 ∈ Rn×d as X ∈ Rn×d in Definition 2.1, see
X ∈ Rd×d in Definition 4.1 as WQW

⊤
K ∈ Rd×d and see Y ∈ Rd×d as WV ∈ Rd×d. To overcome

the quadratic complexity obstacle, we only need to handle the gradient computation of WQW
⊤
K .

Let x, y ∈ Rd2

denote the vectorization of X,Y ∈ Rd×d. Then, we define some basic notions used.
Definition 4.3. Tmat(n, d, k) represents the time of an n× d matrix times a d× k matrix.
Definition 4.4 (⊗ Kronecker product). Given two matrices A1 ∈ Rn1×d1 , A2 ∈ Rn2×d2 , we define
A := A1 ⊗A2 ∈ Rn1n2×d1d2 as follows

Ai1+(i2−1)n1,j1+(j2−1)d1
= (A1)i1,j1 · (A2)i2,j2 , ∀i1 ∈ [n1], i2 ∈ [n2], j1 ∈ [d1], j2 ∈ [d2].

Recall that during inference, we have the n× n size matrix QK⊤. Similarly, in gradient calculation,
we have an n× n size matrix, and we denote it as u(x).
Definition 4.5. Let M ∈ Rn×n be a casual attention mask defined in Definition 2.2. Let A1, A2 ∈
Rn×d. Suppose that A = A1 ⊗ A2 ∈ Rn2×d2

. For all j0 ∈ [n], let Aj0 ∈ Rn×d2

be the j0-th block
of A and u(x)j0 := Mj0,∗ ◦ exp(Aj0 x). Define u(x) ∈ Rn×n as the matrix where the j0-th row
corresponds to (u(x)j0)

⊤.

Then, we are ready to present our main results for attention training.
Theorem 4.6 (Main conv result for training forward and backward gradient). If u(x) is a
1/ poly(n)-close (T, δ)-non-degenerate k-conv basis matrix as defined in Definition 3.2, where
δ ≥ 0 and k, T ∈ [n]. Then there are algorithms that run to compute training forward in time
O(knd log n+ Tmat(n, d, d)) and backward gradient in time O(d2kn log n) of attention loss (Defi-
nition 4.1) approximately up to 1/poly(n) error under ℓ∞ norm.

Proof sketch of Theorem 4.6. See complete proof in Appendix C.4. During backward computation,
we can convey the properties of low-rank and convolution at the same time (Lemma C.13 and
Lemma C.15). Then, by tensor trick, we can compute the attention gradient based on attention
inference (Lemma C.9). We finish the proof by Theorem 3.4.

Remark 4.7. Note that Alman & Song (2024a) only needs to convey the low-rank property, while we
need to convey the properties of low-rank and convolution simultaneously, a more general analysis.

Our Theorem 4.6 shows that our algorithm can accelerate Transformer training as well. It may save
time, resources, and energy for nowadays LLMs training.

8
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5 LOW RANK APPROXIMATION

Figure 3: A 16 × 16 matrix with, left - row change by amortized constant mask (Definition 5.1);
middle - continuous row mask (Definition 5.2); right - distinct 3 rows mask (Definition 5.4). Green
means 1 and yellow means 0.

We can apply our analysis technique to a low-rank approximation setting in Alman & Song (2023),
which only works on attention approximation without an attention mask. Equipped with our mask
analysis trick, we can generalize their results with different kinds of attention masks including the
most popular causal attention mask. We first introduce some practical attention masks.

Definition 5.1. Let Bj ∈ Z≥0. We define the row change by amortized constant mask as W ∈
{0, 1}n×n, where let (W⊤)0 = 0n and ∥(W⊤)j − (W⊤)j−1∥1 ≤ Bj for any j ∈ [n] and (W⊤)j
is the j-th row of W .

Definition 5.2. We define the continuous row mask as W ∈ {0, 1}n×n, where for each i ∈ [n], we
are given si, ti ∈ [n] such that Wi,j = 1 if si ≤ j ≤ ti and Wi,j = 0 otherwise.

Definition 5.3. We define W ∈ {0, 1}n×n as the distinct r columns mask satisfying the following
condition. Let S1, · · · , Sr ⊆ [n] denote r disjoint subsets and ∪j∈[r]Sj = [n]. For any two i, i′ ∈ Sj ,
we have W∗,i = W∗,i′ ∈ Rn, where W∗,i ∈ Rn denote the i-th column of W ∈ Rn×n.

Definition 5.4. We define W ∈ {0, 1}n×n as the distinct r rows mask satisfying the following
condition. Let S1, · · · , Sr ⊆ [n] denote r disjoint subsets and ∪j∈[r]Sj = [n]. For any two i, i′ ∈ Sj ,
we have Wi,∗ = Wi′,∗ ∈ Rn, where Wi,∗ ∈ Rn denotes the i-th row of W ∈ Rn×n.

Then, we have the following main results for the low-rank setting. The proof is in Appendix D.2.

Theorem 5.5 (Main low-rank result). Assume the same condition as Lemma D.2. Let ϵ ∈ (0, 0.1).
Let Q,K, V ∈ Rn×d. Let U1, U2 ∈ Rn×k be defined in Lemma D.2. Let W ∈ {0, 1}n×n denote a
mask matrix. Let H = exp(QK⊤/d) ∈ Rn×n, A = W ◦H ∈ Rn×n and D = diag(A1n) ∈ Rn×n.
We denote Y := D−1AV ∈ Rn×d. Let Ã := W ◦ U1U

⊤
2 and D̃ := diag(Ã1n). We denote

Ỹ := D̃−1ÃV ∈ Rn×d. Then, we have ∥Y − Ỹ ∥∞ ≤ 4ϵ∥V ∥∞. The time complexity to get Ỹ is

• O(knd) when W is a causal mask defined in Definition 2.2.

• O(kd
∑n

j=1 Bj) when W is a row change mask defined in Definition 5.1.

• O(knd log(n)) when W is a continuous row mask defined in Definition 5.2.

• O(rnd) when W is a distinct r columns / rows mask defined in Definition 5.3 / Definition 5.4.

Our Theorem 5.5 has the same error guarantee as Alman & Song (2023). For the normal mask, e.g.,
casual attention mask (Definition 2.2), Theorem 5.5 shares the same time complexity as theirs.

6 EXPERIMENTS

In this section, we provide our experimental results for convolution attention computing in language
models, offering empirical backing to our theoretical claims.

9
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Figure 4: The comparison between the Llama3 8B Instruct with or without using our Algorithm 1 on
the IMDB dataset. The input sequence length n = 2048. The x-axis is the number of conv basis. The

y axis is relative difference ∥Y−Ỹ ∥2
F

∥Y ∥2
F

for the left figure and classification accuracy for the right figure.
Note that k = 2048 represents the baseline of the original model, as this is the input sequence length.

Setup. We utilized the latest Llama3 8B Instruct model2 (AI, 2024) as our foundation, modifying
its attention mechanism with our convolution-based approach using varying numbers of convolution
bases (k). We used the IMDB dataset (Maas et al., 2011) of labeled movie reviews. Our assessments
employ two key metrics: (1) the relative difference for our final layer output Ỹ and the original
model’s output Y , i.e., ∥Y − Ỹ ∥2F /∥Y ∥2F ; (2) the classification accuracy. This dual approach
allowed us to evaluate both the internal representations and the overall predictive performance of our
convolution-based attention compared to the standard mechanism.

Implementation details. To ensure a fair comparison and prevent memory issues, we set the
model’s context length to 2048 tokens and incrementally increased the number of conv basis k.
Note that when k = 2048, our convolution attention produces an identical output to the original
attention mechanism. We employed an instruction-based approach to evaluate generation accuracy,
formatting our input as Review: <REVIEW> Question: Is this review positive or negative? Answer:.
This methodology allowed us to systematically assess the performance of our convolution-based
attention across various complexity levels while maintaining comparability with the original model.
We randomly sample 5 sample groups, with 200 samples per group, and report the results average
across each group.

Results. The left plot in Figure 4 shows that as the base number k increases, the relative MSE
decreases rapidly, even with a relatively small number of bases such as k = 256 or 512. This
indicates that our convolution-based approach converges towards the performance of the original
attention mechanism as k grows. The right plot demonstrates that the accuracy of our model improves
significantly as k increases, and can achieve comparable accuracy to the original with k = 512,
suggesting that our method can maintain high performance while reducing computational complexity.
The results imply that our proposed method may effectively approximate the original attention
mechanism, offering a promising trade-off between accuracy and efficiency, especially for scenarios
where resource constraints are a concern.

7 CONCLUSION

We presented a novel approach for efficient attention computation in transformers using convolution
matrices. Our algorithm achieves nearly linear time complexity for attention inference and gradient
computation, providing better theoretical guarantees than existing methods. This work opens up a
new paradigm for accelerating attention computation, enabling the application of transformers to
longer contexts and potentially leading to further improvements in large language models.

2https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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Roadmap. In Section A, we discuss two case studies: Longlora and RoPE, and provide further
discussions. In Section B, we present additional details and proofs related to the convolution
approximation approach. In Section C, we introduce the conv approximation in gradient. In Section D,
we include supplementary material for the low-rank approximation. In Section E, we present a
collection of useful tools and lemmas that are referenced throughout the main text and the appendix.

A FURTHER DISCUSSION

LongLora. Our conv and low-rank approximation can be applied to LongLora Chen et al. (2023b),
whose mask is shown in the left of Figure 3. They use this kind of sparse mask to extend the context
sizes of pre-trained large language models, with limited computation cost, e.g., extending Llama2
70B from 4k context to 32k on a single 8× A100 machine. As the “diagonalized” mask structure,
we can directly apply our Algorithm 1 by replacing the causal attention mask (Definition 2.2) with
their sparse mask for the conv approximation with time complexity O(knd log(n)). Similarly, for
the low-rank approximation, we directly use the second statement in Theorem 5.5 by considering row
change by amortized constant mask defined in Definition 5.1 with time complexity O(knd), where
Bj = O(1) for any j ∈ [n].

RoPE. The Rotary Position Embedding (RoPE) Su et al. (2024) designs a rotation matrix R(m) ∈
Rd×d, for all m ∈ [n], which can effectively encode the positional information into embedding
Q,K ∈ Rn×d. In detail, let qi, kj ∈ Rd, where q⊤i and k⊤j be the i-th and j-th row of Q,K
respectively, for any i, j ∈ [n]. By the property of rotation matrix, we have

(R(i)qi)
⊤(R(j)kj) = q⊤i R

(j−i)kj

We define Q′,K ′ ∈ Rn×d, and let q′i, k
′
j ∈ Rd, where q′

⊤
i and k′

⊤
j be the i-th and j-th row of

Q′,K ′ respectively, for any i, j ∈ [n]. Let q′i = R(i)qi and k′j = R(j)kj . By Equation (34) in Su
et al. (2024), we know that we can get Q′,K ′ in O(nd) time. Thus, we can apply Q′,K ′ in our
Theorem 3.4 and Theorem 5.5 to get the same approximation error guarantee and the same time
complexity.

Extend to full self-attention. We can easily extend our method to full self-attention. Our proposed
approach can be extended to accelerate full self-attention as well, not just the causal attention
mechanism. Note that the full self-attention matrix can be split into a lower triangular matrix L and
an upper triangular matrix U . Then, our conv-basis approximation method can be applied separately
to L and the transpose of U . This allows the algorithm to handle both the lower and upper triangular
components of the full attention matrix. The diagonal normalization step D−1 would need to be
adjusted to account for the full matrix rather than just the lower triangular portion. Finally, we
combine the approximations of L and U⊤ to reconstruct the full self-attention output.
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Memory consumption. Our method does not increase the memory consumption because each
convolution matrix can be stored as a n-dimention vector (see Definition 2.5). Therefore, our
method requires O(kn) memory for k convolution matrices, O(nd) memory for the value matrix
V ∈ Rn×d, and O(n) memory for the diagonal matrix D ∈ Rn×n. In total, our memory consumption
is O(kn+ nd). For the standard attention computation of D−1AV , it requires O(n2) memory for
the attention matrix A, O(nd) memory for the value matrix V ∈ Rn×d, and O(n) memory for the
diagonal matrix D ∈ Rn×n. In total, the memory consumption is O(n2 + nd).

Limitation. Although in this paper, we provide a comprehensive theoretical analysis aiming to
reduce the quadratic computational cost O(n2), we do not have full empirical results or experiments
conducted to validate the proposed algorithms on real-world benchmarks. With the rapid development
of large language models, the size of input tokens is increasing. Therefore, it is urgent to develop
more efficient algorithms to overcome the quadratic complexity and enable more efficient training of
LLMs. Neither theoretical work nor experiments can be done trivially, and it will take more effort to
successfully implement our novel theoretical results in practice even with more experimental results.

B TECHNICAL DETAILS ABOUT conv APPROXIMATION

In Section B.1, we present the background of Toeplitz, circulant, and convolution matrices. In
Section B.2, we develop more mathematical tools for studying the conv approximation. In Section B.3,
we give the key lemmas we used. In Section B.4, we use these tools and lemmas to prove our main
theorem for the conv approximation. In Section B.5, we analyze our case study.

B.1 PROPERTIES OF TOEPLITZ, CIRCULANT, AND CONVOLUTION MATRICES

Remark B.1. The integer i may have different ranges. We will specify these ranges in later text,
corresponding to different contexts.

The Toeplitz matrix is one such structured matrix that has constant values along its diagonals. We
define it as follows:
Definition B.2 (Toeplitz matrix). Given a length-(2n−1) vector a ∈ R2n−1 (for convenience, we use
ai ∈ R to denote the entry of vector where i ∈ {−(n− 1),−(n− 2), · · · , 0, · · · , (n− 2), (n− 1)}),
we can formulate a function Toep : R2n−1 → Rn×n as follows

Toep(a) =


a0 a−1 a−2 · · · a−(n−1)

a1 a0 a−1 · · · a−(n−2)

a2 a1 a0 · · · a−(n−3)

...
...

...
. . .

...
an−1 an−2 an−3 · · · a0

 .

Furthermore, we define the circulant matrix, which is a structured matrix where each row vector is
rotated one element to the right relative to the preceding row vector, which is defined as follows:
Definition B.3 (Circulant matrix). Let a ∈ Rn denote a length-n vector. We define Circ : Rn →
Rn×n as,

Circ(a) :=


a1 an an−1 · · · a2
a2 a1 an · · · a3
a3 a2 a1 · · · a4
...

...
...

. . .
...

an an−1 an−2 · · · a1

 .

Now, we define a binary operation ∗ defined on Rd:
Definition B.4. Let conv be defined in Definition 2.5. Given two vectors a and x ∈ Rn, let a∗x ∈ Rn

denote the convolution operator between a and x, i.e., a ∗ x := conv(a)x.

Finally, we present a basic fact about the Hadamard product.
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Fact B.5. For all a, b ∈ Rn, we have a ◦ b = b ◦ a = diag(a) · b = diag(b) · a.

Below, we explore the properties of conv, Toep, Resi, and Circ.
Claim B.6. Given a length-(2n− 1) vector a′ ∈ R2n−1 (for convenience, we use a′i ∈ R to denote
the entry of vector where i ∈ {−(n− 1),−(n− 2), · · · , 0, · · · , (n− 2), (n− 1)}). Let a ∈ Rn, such
that a = [a′0, a

′
1, . . . , a

′
n−1]

⊤. Let M be defined in Definition 2.2, Toep be defined in Definition B.2,
and conv be defined in Definition 2.5. We have

conv(a) = Toep(

[
0n−1

a

]
) = M ◦ Toep(a′).

Proof. The proof directly follows the Definition 2.2, Definition B.2, and Definition 2.5.

Fact B.7 (Folklore). Let Toep be defined in Definition B.2, and Circ be defined in Definition B.3.
Given a length-(2n − 1) vector a ∈ R2n−1 (for convenience, we use ai ∈ R to denote the entry
of vector where i ∈ {−(n− 1),−(n− 2), · · · , 0, · · · , (n− 2), (n− 1)}). Let a′ ∈ R2n, such that
a′ = [a0, a1, . . . , an−1, 0, a−(n−1), . . . , a−1]

⊤. For any x ∈ Rn, we have

Circ(a′)

[
x
0n

]
=

[
Toep(a) Resi(a)
Resi(a) Toep(a)

]
·
[
x
0n

]
=

[
Toep(a)x
Resi(a)x

]
,

where the residual matrix is defined as

Resi(a) :=



0 an−1 an−2 · · · a2 a1
a−(n−1) 0 an−1 · · · a3 a2
a−(n−2) a−(n−1) 0 · · · a4 a3

...
...

...
. . .

...
...

a−2 a−3 a−4 · · · 0 an−1

a−1 a−2 a−3 · · · a−(n−1) 0

 .

Circ(a) can be expressed in the form of F−1diag(Fa)F , which is as follows:
Fact B.8 (Folklore). Let a ∈ Rn denote a length-n vector. Let Circ be defined in Definition B.3. Let
F ∈ Cn×n denote the discrete Fourier transform matrix. Using the property of discrete Fourier
transform, we have

Circ(a) = F−1diag(Fa)F.

Claim B.9 (Restatement of Claim 2.6). We have conv(ej) ∈ Rn×n is a j-rank matrix, where the
j-th entry of ej ∈ Rn is 1 and all other entries are 0.

Proof. This follows from Definition 2.5.

Claim B.10 (Restatement of Claim 2.7). Let conv be defined in Definition 2.5. For any a, x ∈ Rn,
conv(a)x can be computed in O(n log n) via FFT.

Proof of Claim 2.7. For any a ∈ Rn, we denote a′ =

[
0n−1

a

]
∈ R2n−1 and a′′ =

[
a
0n

]
∈ R2n. We

have [
conv(a)x
Resi(a′)x

]
=

[
Toep(a′)x
Resi(a′)x

]
= Circ(a′′)

[
x
0n

]
= F−1diag(Fa′′)F

[
x
0n

]
,

where the first step follows Claim B.6, i.e., conv(a) = Toep(

[
0n−1

a

]
), the second step follows

Fact B.7 and the last step follows Fact B.8. We finish the proof by O(n log n) for FFT.

Claim B.11 (Restatement of Claim 2.8). conv is additive, i.e., for any a, b, x ∈ Rn we have

conv(a)x+ conv(b)x = conv(a+ b)x.

Proof. This follows from Definition 2.5 and the fact that the matrix product operation is additive.
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Claim B.12 (Restatement of Claim 2.10). Let m ∈ [n]. For any a, x ∈ Rn, conv(a,m)x, (defined in
Definition 2.9) can be computed in O(n log n) via FFT.

Proof. This follows from considering the calculation between the truncated matrix of conv(a,m)
and the truncated vector of x with Claim 2.7.

B.2 MATHEMATICAL TOOLS DEVELOPMENT FOR k-conv BASIS

Definition B.13. Let M ∈ Rn×n be defined in Definition 2.2 and Q,K ∈ Rn×d be defined in
Definition 2.1. We define H̃ := M ◦ (QK⊤) ∈ Rn×n.

When a lower triangular matrix H is expressed as the sum of k convolution matrices, it is useful to
understand the structure of the entries in H . The following claim provides an explicit formula for the
entries of H in terms of the basis vectors of the convolution matrices.

Claim B.14. Given b1, . . . , bk ∈ Rn and k integers m1,m2, . . . ,mk satisfying n ≥ m1 > m2 >
· · · > mk ≥ 1, let H =

∑
i∈[k] conv(bi,mi). Then, for any i ≥ j ∈ [n], let ℓ satisfy mℓ ≥ n− j+1

and mℓ+1 < n− j + 1, and we have

Hi,j =
∑
l∈[ℓ]

(bl)i−j+1.

For any i < j ∈ [n], we have Hi,j = 0.

Proof. This is trivial by following H =
∑

i∈[k] conv(bi,mi), the Definition 2.5 and Definition 2.9.

We present the property of H̃ = M ◦ (QK⊤) as follows:

Lemma B.15. Given M ∈ Rn×n, Q,K ∈ Rn×d, and H̃ = M ◦ (QK⊤), we have for any j ∈ [n],
there exists H̃j ∈ Rn, i.e., the j-th column of H̃ , such that

H̃j = Mj ◦ (Q(K⊤)j)

with time complexity O(nd), where (K⊤)j denotes the j-th row of K.

Proof. We can check the correctness as follows:

(H̃)j = (M ◦ (QK⊤))j

=Mj ◦ (QK⊤)j

=Mj ◦ (Q(K⊤)j),

where the first step follows from the definition of H̃ (see Definition B.13), the second step follows
from simple algebra, the third step follows from the fact that the j-th column of K⊤ is equal to the
j-th row of K.

Now, we can check the running time.

• As Q ∈ Rn×d and (K⊤)j ∈ Rd, we need O(nd) time to get Q(K⊤)j .

• For any vector v, we need O(n) time to get Mj ◦ v.

Thus, in total, the time complexity is O(nd).

The key idea behind our approach is to express the matrix exponential of a matrix with k-conv basis
as the sum of k sub-convolution matrices involving the basis vectors. This allows us to efficiently
approximate the exponential of the attention matrix. We show how to compute the new basis vectors
of the convolution matrices from the original basis vectors below.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Lemma B.16. Let M be a mask defined in Definition 2.2. Given b1, . . . , bk ∈ Rn and k integers
m1,m2, . . . ,mk satisfying n ≥ m1 > m2 > · · · > mk ≥ 1, we let H =

∑
r∈[k] conv(br,mr). We

denote b̃1 = exp(b1). Then, we can get b̃2, b̃3, . . . b̃k ∈ Rn such that for any r ∈ {2, 3, · · · , k}

b̃r = exp(
∑
l∈[r]

bl)− exp(
∑

l∈[r−1]

bl)

and M ◦ exp(H) =
∑

r∈[k] conv(̃br,mr) with time complexity O(nk).

Proof. Correctness.

By Claim B.14, for any i ≥ j ∈ [n], let ℓ satisfy mℓ ≥ n− j + 1 and mℓ+1 < n− j + 1, and we
have

Hi,j =
∑
l∈[ℓ]

(bl)i−j+1. (1)

As exp is an element-wise function, when i ≥ j we have (M ◦ exp(H))i,j = exp(H)i,j and

exp(H)i,j = exp(
∑
l∈[ℓ]

(bl)i−j+1)

=

ℓ∑
r=1

exp(
∑
l∈[r]

(bl)i−j+1)− exp(
∑

l∈[r−1]

(bl)i−j+1)

=

ℓ∑
r=1

(̃br)i−j+1

=

ℓ∑
r=1

conv(̃br,mr)i,j

=

k∑
r=1

conv(̃br,mr)i,j ,

where the first step follows from Eq. (1), the second step follows from simple algebra, the third step
follows from the lemma statement, the fourth step follows from Definition 2.9, and the last step
follows from Definition 2.9 (when k < r ≤ ℓ, conv(̃br,mr)i,j = 0).

When i < j we have (M ◦ exp(H))i,j = 0 =
∑k

r=1 conv(̃br,mr)i,j .

Thus, we have M ◦ exp(H) =
∑

r∈[k] conv(̃br,mr).

Running time.

We need O(nk) time to get
∑

l∈[r] bl for any r ∈ [k]. Then, we need O(1) time for element-wise
exp and minus operation for O(nk) terms. Thus, in total, we need O(nk) time complexity.

Lemma B.17. Let G ∈ Rn×n. Let M ∈ {0, 1}n×n. Let H = M ◦G and A = M ◦ exp(G). Then,
we have

A = M ◦ exp(H).

Proof. We have

A = M ◦ exp(G)

= M ◦ exp(M ◦G)

= M ◦ exp(H),

where the first step follows the lemma statement, the second step follows the property of Hadamard
product and the last step follows the lemma statement.
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Theorem B.18 (Restatement of Theorem 3.3). For any lower triangular matrix G ̸= 0n×n ∈ Rn×n,
there exists k, T ∈ [n] and δ, ϵ ≥ 0 such that G is a ϵ-close (T, δ)-non-degenerate k-conv basis
matrix.

Proof. By Lemma 2.12, we have G is a matrix with k-conv basis for some k ∈ [n]. We finish the
proof by setting T = 1 and δ = ϵ = 0.

B.3 LEMMA USED IN MAIN THEOREM PROOF

In this section, we present the formal proof for our conv approximation main result. In Algorithm 2,
we recover the k-conv basis vectors b′1, . . . , b

′
k ∈ Rn through an iterative process. We show that

after each iteration i, the algorithm maintains certain invariants related to the recovered basis vectors
b′1, . . . , b

′
i ∈ Rn, the index s, and the error compared to the true basis vectors b1, . . . , bi ∈ Rn. These

properties allow us to prove the correctness of the overall algorithm. The following lemma formalizes
these invariants:
Lemma B.19. Let H̃ be a ϵ-close (T, δ)-non-degenerate k-conv basis matrix as defined in Def-
inition 3.2, where δ, ϵ ≥ 0 and k, T ∈ [n]. Let Q,K, V ∈ Rn×d. In Algorithm 2, we can get
b′1, . . . , b

′
k ∈ Rn. Then, for any i ∈ [k], after the i-th loop, we have

• Part 1: v =
∑

r∈[i](b
′
r)1:T and u =

∑
r∈[i] b

′
r

• Part 2: s = n−mi + 1

• Part 3: ∥
∑

r∈[i](b
′
r)1:T −

∑
r∈[i](br)1:T ∥1 ≤ Tϵ

• Part 4: |
∑

r∈[i](b
′
r)l −

∑
r∈[i](br)l| ≤ ϵ for any l ∈ [n].

Proof. We use the math induction to prove the correctness.

Let b′1, . . . , b
′
k ∈ Rn and v ∈ RT defined in Algorithm 2. Let i ∈ {0, . . . , k − 1} be fixed. Suppose

after the i-th loop, we have

• Part 1: v =
∑

r∈[i](b
′
r)1:T and u =

∑
r∈[i] b

′
r

• Part 2: s = n−mi + 1 (Denote s = 0, after the 0-th loop.)

• Part 3: ∥
∑

r∈[i](b
′
r)1:T −

∑
r∈[i](br)1:T ∥1 ≤ Tϵ

• Part 4: |
∑

r∈[i](b
′
r)l −

∑
r∈[i](br)l| ≤ ϵ for any l ∈ [n]

Now we consider after the i+ 1-th loop.

Proof of Part 1.

We have v =
∑

r∈[i+1](b
′
r)1:T and u =

∑
r∈[i+1] b

′
r by the line 9 and line 10 in Algorithm 2.

Proof of Part 2.

We denote the output of SEARCH(Q,K, k, T, δ, ϵ,
∑

r∈[i](b
′
r)1:T ,mi, n − T + 1) as y. Now, we

prove y = n−mi+1 + 1.

It is clear that n−mi + 1 ≤ y ≤ n− T + 1. For any j ∈ {n−mi + 1, . . . , n− T + 1}, we have
line 7 in Algorithm 3 as

α = ∥(H̃j)j:j+T−1 − v∥1
= ∥(Hj)j:j+T−1 +Rj,j:j+T−1 − v∥1
= ∥(Hj)j:j+T−1 +Rj,j:j+T−1 −

∑
r∈[i]

(b′r)1:T ∥1

= ∥(
∑
r∈[k]

conv(br,mr))j,j:j+T−1 +Rj,j:j+T−1 −
∑
r∈[i]

(b′r)1:T ∥1, (2)
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where the first step follows from Definition B.13 (H̃ = H +R), the second step follows from Part 1,
and the last step follows from Definition 3.2 (H =

∑
r∈[k] conv(br,mr)).

When j < n−mi+1 + 1, we have Eq. (2) as

∥(
∑
r∈[k]

conv(br,mr))j,j:j+T−1 +Rj,j:j+T−1 −
∑
r∈[i]

(b′r)1:T ∥1

≤ ∥(
∑
r∈[k]

conv(br,mr))j,j:j+T−1 −
∑
r∈[i]

(b′r)1:T ∥1 + ∥Rj,j:j+T−1∥1

≤ ∥(
∑
r∈[k]

conv(br,mr))j,j:j+T−1 −
∑
r∈[i]

(b′r)1:T ∥1 + Tϵ

= ∥(
∑
r∈[i]

conv(br,mr))j,j:j+T−1 −
∑
r∈[i]

(b′r)1:T ∥1 + Tϵ

= ∥
∑
r∈[i]

(br)1:T −
∑
r∈[i]

(b′r)1:T ∥1 + Tϵ

≤ 2Tϵ

< δ − 2Tϵ,

where the first step follows from the triangle inequality, the second step follows from Definition 3.2
(∥R∥∞ ≤ ϵ), the third step follows from j < n−mi+1+1, the fourth step follows from Definition 2.9,
the fifth step follows from Part 3, and the last step follows from Definition 3.2 (ϵ ≤ δ

5T < δ
4T ).

Similarly, when j ≥ n−mi+1 + 1, we have Eq. (2) as

∥(
∑
r∈[k]

conv(br,mr))j,j:j+T−1 +Rj,j:j+T−1 −
∑
r∈[i]

(b′r)1:T ∥1

≥ ∥(
∑
r∈[k]

conv(br,mr))j,j:j+T−1 −
∑
r∈[i]

(b′r)1:T ∥1 − ∥Rj,j:j+T−1∥1

≥ ∥(
∑
r∈[k]

conv(br,mr))j,j:j+T−1 −
∑
r∈[i]

(b′r)1:T ∥1 − Tϵ

= ∥(
∑
r∈[k]

conv(br,mr))j,j:j+T−1 −
∑
r∈[i]

(br)1:T +
∑
r∈[i]

(br)1:T −
∑
r∈[i]

(b′r)1:T ∥1 − Tϵ

≥ ∥(
∑
r∈[k]

conv(br,mr))j,j:j+T−1 −
∑
r∈[i]

(br)1:T ∥1 − ∥
∑
r∈[i]

(br)1:T −
∑
r∈[i]

(b′r)1:T ∥1 − Tϵ

≥ ∥(
∑
r∈[k]

conv(br,mr))j,j:j+T−1 −
∑
r∈[i]

(br)1:T ∥1 − 2Tϵ

≥ δ − 2Tϵ

where the first step follows from the triangle inequality, the second step follows from Definition 3.2
(∥R∥∞ ≤ ϵ), the third step follows from simple algebra, the fourth step follows from the triangle
inequality, the fifth step follows from Part 3, and the last step follows from Definition 3.1.

Thus, we can claim, when α < δ− 2Tϵ, we have j < n−mi+1 +1, and we have j ≥ n−mi+1 +1
otherwise. Therefore, by binary search, we can get s = y = n−mi+1 + 1.

Proof of Part 3.

We have s = n−mi+1 + 1 and u =
∑

r∈[i] b
′
r at line 8 in Algorithm 2. Thus, we have

∥
∑

r∈[i+1]

(b′r)1:T −
∑

r∈[i+1]

(br)1:T ∥1

= ∥(b′i+1)1:T +
∑
r∈[i]

(b′r)1:T −
∑

r∈[i+1]

(br)1:T ∥1

= ∥H̃s,s:s+T−1 − u1:T +
∑
r∈[i]

(b′r)1:T −
∑

r∈[i+1]

(br)1:T ∥1
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= ∥H̃s,s:s+T−1 −
∑

r∈[i+1]

(br)1:T ∥1

= ∥Hs,s:s+T−1 +Rs,s:s+T−1 −
∑

r∈[i+1]

(br)1:T ∥1

= ∥
∑
r∈[k]

conv(br,mr)s,s:s+T−1 +Rs,s:s+T−1 −
∑

r∈[i+1]

(br)1:T ∥1

= ∥
∑

r∈[i+1]

conv(br,mr)s,s:s+T−1 +Rs,s:s+T−1 −
∑

r∈[i+1]

(br)1:T ∥1

= ∥
∑

r∈[i+1]

(br)1:T +Rs,s:s+T−1 −
∑

r∈[i+1]

(br)1:T ∥1

= ∥Rs,s:s+T−1∥1
≤ Tϵ,

where the first step follows from simple algebra, the second step follows from Algorithm 2 (line 8),
the third step follows from u =

∑
r∈[i] b

′
r, the fourth step follows from Definition B.13 (H̃ = H+R),

the fifth step follows from Definition 3.2 (H =
∑

r∈[k] conv(br,mr)), the sixth step follows from
s = n−mi+1 + 1, the seventh step follows from Definition 2.9, the eighth step follows from simple
algebra, and the last step follows from Definition 3.2 (∥R∥∞ ≤ ϵ).

Proof of Part 4.

We can get |
∑

r∈[i+1](b
′
r)l −

∑
r∈[i](br)l| ≤ ϵ for any l ∈ [n] similarly as Proof of Part 3.

We can check the initial conditions hold. Thus, we finish the whole proof by math induction.

Building upon Lemma B.19, we now analyze the overall error of our approach for approximating the
attention computation. Recall that our goal is to efficiently approximate the matrix Y = D−1AV ,
where A = M ◦ exp(QK⊤) and D = diag(A1n). We will show that by using the approximate basis
vectors recovered by Algorithm 2, we can construct matrices Ã and D̃ such that the approximation
error ∥Y − D̃−1ÃV ∥∞ is bounded. The following lemma provides this error analysis:

Lemma B.20 (Error analysis). Let H̃ be a ϵ-close (T, δ)-non-degenerate k-conv basis matrix as
defined in Definition 3.2, where δ, ϵ ≥ 0 and k, T ∈ [n]. Let Q,K, V ∈ Rn×d. Recall A =
M ◦ exp(QK⊤) and D = diag(A1n) defined in Definition 2.3. By Algorithm 2, we can get k-conv
basis b̃1, . . . , b̃k ∈ Rn and k integers m1,m2, . . . ,mk satisfying n ≥ m1 > m2 > · · · > mk ≥ T ,
such that Ã :=

∑
r∈[k] conv(̃br,mr) and D̃ := diag(Ã1n) satisfy

∥D−1AV − D̃−1ÃV ∥∞ ≤ 2(exp(2ϵ)− 1)∥V ∥∞,

with time complexity O(knd log(n)).

Proof. Correctness.

By Lemma B.19 Part 4, we can get b′1, . . . , b
′
k ∈ Rn, such that, for any i ∈ [k] and l ∈ [n], we have

|
∑
r∈[i]

(b′r)l −
∑
r∈[i]

(br)l| ≤ ϵ. (3)

Furthermore, we denote

H ′ =
∑
r∈[k]

conv(b′r,mr)

Recall H̃ = H +R ∈ Rn×n,

H =
∑
r∈[k]

conv(br,mr),
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and ∥R∥∞ ≤ ϵ.

Thus, we have

∥H ′ − H̃∥∞ ≤ ∥H ′ −H∥∞ + ∥H − H̃∥∞
≤ ∥H ′ −H∥∞ + ∥R∥∞
≤ 2ϵ, (4)

where the first step follows from triangle inequality, the second step follows from H̃ = H +R and
the last step follows from ∥R∥∞ ≤ ϵ and Eq. (3).

By Lemma B.17, we have

A = M ◦ exp(QK⊤)

= M ◦ exp(M ◦QK⊤)

= M ◦ exp(H̃).

We also have

Ã =
∑
r∈[k]

conv(̃br,mr) = M ◦ exp(H ′)

by Lemma B.16 and line 12 in Algorithm 2.

Then, by Lemma E.4, we have

∥D−1AV − D̃−1ÃV ∥∞ ≤ 2(exp(2ϵ)− 1)∥V ∥∞.

Running time.

We have k loops in Algorithm 2.

In each loop, we call O(log(n)) times of binary search function. In each binary search function, we
take O(nd) time for line 6 in Algorithm 3 by Lemma B.15. Thus, we take O(nd log(n)) in total for
the search (Algorithm 3) in each loop.

In each loop, we take O(nd) time for line 7 in Algorithm 2 by Lemma B.15.

Thus, we take total O(k(nd+ nd log(n))) = O(knd log(n)) for the whole loop.

We take O(nk) time for the line 12 in Algorithm 2 by Lemma B.16.

In total, we take O(nk + knd log(n)) = O(knd log(n)) time.

We are now ready to prove our main result for the conv approximation approach. Theorem B.21 brings
together the key components we have developed: the existence of a k-conv basis for the attention
matrix (Definition 3.2), the ability to efficiently recover an approximate k-conv basis (Algorithm 2 and
Lemma B.19), and the bounded approximation error when using this approximate basis (Lemma B.20).
The theorem statement is a formal version of our main conv result, Theorem 3.4 and Algorithm 1,
which was presented in the main text. It specifies the input properties, the approximation guarantees,
and the time complexity of our approach.

B.4 PROOF OF MAIN THEOREM

Theorem B.21 (Main conv results for inference (Restatement of Theorem 3.4)). Let Q,K, V ∈ Rn×d.
Recall A = M ◦ exp(QK⊤) ∈ Rn×n, D = diag(A1n) ∈ Rn×n defined in Definition 2.3. We
denote Y := D−1AV ∈ Rn×d. Let M ◦ (QK⊤) be a ϵ-close (T, δ)-non-degenerate k-conv basis
matrix as defined in Definition 3.2, where δ, ϵ ≥ 0 and k, T ∈ [n]. By Algorithm 1, we can get Ỹ
such that

∥Y − Ỹ ∥∞ ≤ 2(exp(2ϵ)− 1)∥V ∥∞,

whose time complexity is O(knd log(n)) given M,Q,K, V .
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Proof of Theorem 3.4. Correctness.

Correctness follows Lemma B.20.

Running time.

By Lemma B.20, we need time O(knd log(n)) time to get k-conv basis b̃1, . . . , b̃k ∈ Rn and k
integers m1,m2, . . . ,mk satisfying n ≥ m1 > m2 > · · · > mk ≥ T .

Denote Ã :=
∑

r∈[k] conv(̃br,mr). By Claim 2.10, we take O(knd log(n)) time to get ÃV via
FFT as k-conv basis and d columns in V . Similarly, by Claim 2.10, we take O(kn log(n)) time for
D̃ = diag(Ã1n) via FFT as k-conv basis. Finally, we take O(nd) time to get D̃−1ÃV as D̃−1 is a
diagonal matrix.

Thus, in total, we take O(knd log(n) + knd log(n) + kn log(n) + nd) = O(knd log(n)) time
complexity.

Corollary B.22 (Exact conv inference, restatement of Corollary 3.5). Let Q,K, V ∈ Rn×d. Recall
A = M ◦ exp(QK⊤) ∈ Rn×n, D = diag(A1n) ∈ Rn×n defined in Definition 2.3. We denote
Y := D−1AV ∈ Rn×d. For any ϵ ≥ 0 and any Q,K, V , there exists hyper-parameter k, T ∈ [n]

and δ ≥ 0 such that Algorithm 1 can output Ỹ satisfying

∥Y − Ỹ ∥∞ ≤ 2(exp(2ϵ)− 1)∥V ∥∞.

Furthermore, we can exactly get Y , i.e., ϵ = 0, through Algorithm 1 with time complexity
O(n2d log(n)) in the worst case.

Proof. We set k = n, T = 1, δ = 0 and ϵ = 0 as the input of Algorithm 1. Then, the proof follows
Theorem 3.3 and Theorem 3.4 .

B.5 CONSTRUCTION FOR CASE STUDY

In this section, we present the case study. We use i to denote the
√
−1. For a complex number

z = a+ bi ∈ C, where a, b ∈ R, we use |z| to denote its norm, i.e., |z| =
√
a2 + b2.

Lemma B.23 (Complex vector construction). If the vectors x1, · · · , xn ∈ Cd satisfy the following
properties,

• ∥xi∥2 = 1 for all i ∈ [n]

• For each i ∈ [n], let xi,1 = eiiθ and ei,l = 0 for all l ̸= 1

Then we have for all i ∈ [n], for all j ∈ [n], ∥xi − xj∥22 = f(i− j) for some function f .

Proof. We can show that

∥xi − xj∥22 = |eiiθ − eijθ|2

= |eijθ|2 · |ei(i−j)θ − 1|2

= |ei(i−j)θ − 1|2

=: f(i− j),

where the first step follows from the assumption that for each i ∈ [n] and l ̸= 1, xi,1 = eiiθ and
ei,l = 0, the second step follows from simple algebra, the third step follows from the |eijθ| = 1, and
the last step follows from the definition of the function f .

Thus, we complete the proof.

Lemma B.24 (Real vector construction). If the vectors x1, · · · , xn ∈ Rd satisfy the following
properties,

• ∥xi∥2 = 1 for all i ∈ [n]
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• xi,1 = cos(iθ) and xi,2 = sin(iθ). For all l /∈ {1, 2}, we have xi,l = 0.

Then we have for all i ∈ [n], for all j ∈ [n], ∥xi − xj∥22 = f(i− j) for some function f .

Proof. We can show that

∥xi − xj∥22 = (cos(iθ)− cos(jθ))2 + (sin(iθ)− sin(jθ))2

= 2− 2 cos(iθ) cos(jθ)− 2 sin(iθ) sin(jθ)

= 2− 2 cos((i− j)θ),

where the first step follows from construction condition, the second step follows from simple algebra,
and the last step follows from the trigonometric properties.

Thus, we complete the proof.

Lemma B.25 (A general real vector construction). If the vectors x1, · · · , xn ∈ Rd satisfy the
following properties,

• ∥xi∥2 = 1 for all i ∈ [n].

• Let H ∈ Rd×d be any orthonormal matrix.

• Let (s1, s2, . . . , sd) be a permutation of (1, 2, . . . , d).

• Let l = ⌊(d+ 1)/2⌋, where l is an integer. Let a1, . . . , al ∈ R.

• Let u1, · · · , un ∈ Rd and xi = Hui for any i ∈ [n].

• When d is even, ui,sk = ak cos(iθk) and ui,sk+l
= ak sin(iθk), for all k ∈ [l] and i ∈ [n],

where θ1, . . . , θl ∈ R.

• When d is odd, ui,sk = ak cos(iθk) and ui,sk+l
= ak sin(iθk), for all k ∈ [l−1] and i ∈ [n],

where θ1, . . . , θl−1 ∈ R, and ui,sl = al.

Then we have for all i ∈ [n], for all j ∈ [n], ∥xi − xj∥22 = f(i− j) for some function f .

Proof. When d is even, we can show that

∥xi − xj∥22 = ∥ui − uj∥22
=

∑
k∈[l]

(ak cos(iθk)− ak cos(jθk))
2 + (ak sin(iθk)− ak sin(jθk))

2

=
∑
k∈[l]

a2k cos
2(iθk) + a2k cos

2(jθk)− 2a2k cos(iθk) cos(jθk)

+ a2k sin
2(iθk) + a2k sin

2(jθk)− 2a2k sin(iθk) sin(jθk)

=
∑
k∈[l]

2a2k − 2a2k cos(iθk) cos(jθk)− 2a2k sin(iθk) sin(jθk)

=
∑
k∈[l]

2a2k(1− cos(iθk) cos(jθk)− sin(iθk) sin(jθk))

=
∑
k∈[l]

2a2k(1− cos((i− j)θk)),

where the first step follows H being orthonormal, which preserves the Euclidean distance between
two vectors, i.e., ∥Hu1 −Hu2∥2 = ∥u1 − u2∥2 for any u1, u2 ∈ Rd, the second step follows from
the construction condition, the third step follows from (a− b)2 = a2 + b2 − 2ab for all a, b ∈ C, the
fourth step follows from sin2(x) + cos2(x) = 1, the fifth step follows from simple algebra, and the
last step follows from the trigonometric properties.

When d is odd, we can show similar results by the same way. Thus, we complete the proof.
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Lemma B.26. If the following conditions hold

• Let b ∈ Rn denote a vector

• Q ∈ Rn×d and K ∈ Rn×d

• For each i, j ∈ [n],

– (QK⊤)i,j = bi−j+1 if i ≥ j

– (QK⊤)i,j = bi−j+n+1 if i < j

Then, there is a vector a = exp(b) such that

exp(QK⊤) = Circ(a)

Proof. Since a = exp(b), we have

Circ(a) = Circ(exp(b))

= exp(Circ(b)), (5)

where the second step follows from the fact that exp(·) is applied entry-wisely to a vector.

By the assumption from the Lemma statement that (QK⊤)i,j = bi−j+1 if i ≥ j and (QK⊤)i,j =
bi−j+n+1 if i < j, we get

QK⊤ =


b1 bn bn−1 · · · b2
b2 b1 bn · · · b3
b3 b2 b1 · · · b4
...

...
...

. . .
...

bn bn−1 bn−2 · · · b1

 ,

which is exactly equal to Circ(b) (see Definition B.3).

Therefore, combining with Eq. (5), we have

exp(QK⊤) = Circ(a),

which completes the proof.

Lemma B.27. If the following conditions hold

• Let b ∈ R2n−1 denote a vector

• Q ∈ Rn×d and K ∈ Rn×d

• For each i, j ∈ [n], (QK⊤)i,j = bi−j .

Then, there is a vector a = exp(b) such that

exp(QK⊤) = Toep(a).

Proof. We can prove similarly as Lemma B.26.

Assumption B.28. We assume that WQW
⊤
K is a p.s.d. matrix, so that WQW

⊤
K = AA⊤ where

A ∈ Rd×d.

Definition B.29. Assume Assumption B.28. We define Z := XA ∈ Rn×d, where Z =

z
⊤
1
...
z⊤n

. Then

we have QK⊤ = ZZ⊤.

Lemma B.30. If the following conditions hold,

• Assume Assumption B.28.
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• Let b ∈ R2n−1 denote a vector

• Let z1, . . . , zn defined in Definition B.29 satisfy the properties in Lemma B.25.

Then, there is a vector a = exp(b) such that

exp(QK⊤) = Toep(a).

Proof. By Lemma B.25, we have for all i ∈ [n], for all j ∈ [n],

∥zi − zj∥22 = f(i− j)

for some function f .

We also have

⟨zi, zj⟩ = 1− f(i− j)/2 =: g(i− j)

as ∥zi∥2 = ∥zj∥2 = 1.

Then, we have ∀i, j ∈ [n],

(QK⊤)i,j = (ZZ⊤)i,j

= ⟨zi, zj⟩
= g(i− j),

where the first two steps from Definition B.29, and the last step from Lemma B.25. We finish the
proof by denote bi−j as g(i− j) in Lemma B.27.

C conv APPROXIMATION IN GRADIENT

In Section C.1, we present the basic definitions. In Section C.2, we combine all these definitions to
form the loss function. In Section C.3, we analyze the running time. In Section C.4, we present the
proof of the main theorem of conv approximation in gradient.

C.1 DEFINITIONS

In this section, we let x, y ∈ Rd2

denote the vectorization of X,Y ∈ Rd×d. To concisely express the
loss function, we define more functions below.

Definition C.1. Let u(x)j0 ∈ R (see Definition 4.5). For each j0 ∈ [n], we define α(x)j0 : Rd2 → R

α(x)j0 := ⟨u(x)j0︸ ︷︷ ︸
n×1

, 1n︸︷︷︸
n×1

⟩.

Consider α(x) ∈ Rn as a vector whose j0-th entry equals α(x)j0 .

Definition C.2. Let α(x)j0 ∈ R (see Definition C.1). Let u(x)j0 ∈ Rn (see Definition 4.5). For a
fixed j0 ∈ [n], we define f(x)j0 : Rd2 → Rn

f(x)j0 := α(x)−1
j0︸ ︷︷ ︸

scalar

u(x)j0︸ ︷︷ ︸
n×1

.

Consider f(x) ∈ Rn×n as a matrix whose j0-th row equals (f(x)j0)
⊤.

Definition C.3. For a fixed i0 ∈ [d], define h(x)i0 : Rd2 → Rn:

h(y)i0 := A3︸︷︷︸
n×d

Y∗,i0︸︷︷︸
d×1

,

where Y ∈ Rd×d is the matrix representation of y ∈ Rd2

. Let h(y) ∈ Rn×d be a matrix where i0
column is h(y)i0 .
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C.2 LOSS FUNCTIONS

Now, we start the construction of the loss function.
Definition C.4. For each j0 ∈ [n], we denote the normalized vector defined by Definition C.2 as
f(x)j0 ∈ Rn. Similarly, for each i0 ∈ [d], we define h(y)i0 as specified in Definition C.3.

Consider every j0 ∈ [n], every i0 ∈ [d]. Let us consider c(x)j0,i0 : Rd2 × Rd2 → R as follows:

c(x)j0,i0 := ⟨f(x)j0 , h(y)i0⟩ − Ej0,i0 .

Here Ej0,i0 is the (j0, i0)-th entry of E ∈ Rn×d with j0 ∈ [n], i0 ∈ [d], similar for c(x)︸︷︷︸
n×d

=

f(x)︸︷︷︸
n×n

h(y)︸︷︷︸
n×d

− E︸︷︷︸
n×d

.

Definition C.5. For every j0 ∈ [n], for every i0 ∈ [d], we define L(x)j0,i0 to be := 0.5c(x)2j0,i0 .

Definition C.6. Consider c(x) ∈ Rn×d which is described in Definition C.4, and h(y) ∈ Rn×d

which is defined in Definition C.3. We now define q(x) ∈ Rn×n

q(x) := c(x)︸︷︷︸
n×d

h(y)⊤︸ ︷︷ ︸
d×n

Subsequently, we denote the j0-th row of q(x) ∈ Rn×n as q(x)⊤j0 .

Definition C.7. Let j0 ∈ [n]. We define p(x)j0 : Rd2 → Rn

p(x)j0 := (diag(f(x)j0)− f(x)j0f(x)
⊤
j0)q(x)j0

= p1(x)j0 + p2(x)j0 ,

where

p1(x)j0 := diag(f(x)j0)q(x)j0

p2(x)j0 := f(x)j0f(x)
⊤
j0q(x)j0 .

We establish p(x) ∈ Rn×n such that p(x)⊤j0 represents the j0-th row of p(x). Note that p1(x) =
f(x) ◦ q(x).
Lemma C.8. Let M ∈ Rn×n be a casual attention mask defined in Definition 2.2. Let X ∈ Rn×n,
we have

d(M ◦X)

dXi,j
= M ◦ dX

dXi,j
.

Proof. The proof is trivial by element-wise multiplication.

Lemma C.9 (Gradient computation). We have f(x) ∈ Rn×n, c(x) ∈ Rn×d, h(y) ∈ Rn×d, q(x) ∈
Rn×n, and p(x) ∈ Rn×n respectively be defined in Definitions C.2, C.4, C.3, C.6, and C.7. Consider
A1, A2 ∈ Rn×d as given and A = A1 ⊗ A2. We have L(x) be specified in Definition 4.1, and
L(x)j0,i0 is as in Definition C.5.

Then, we can show that dL(x)
dx = vec(A⊤

1 p(x)A2).

Proof. From the Lemma statement, by Lemma C.8, we have

dL(x, y)j0,i0
dxi

= c(x, y)j0,i0 · (⟨Mj0,∗ ◦ f(x)j0 ◦ Aj0,i, h(y)i0⟩ − ⟨f(x)j0 , h(y)i0⟩ · ⟨Mj0,∗ ◦ f(x)j0 ,Aj0,i⟩)

= c(x, y)j0,i0 · (⟨f(x)j0 ◦ Aj0,i, h(y)i0⟩ − ⟨f(x)j0 , h(y)i0⟩ · ⟨f(x)j0 ,Aj0,i⟩), (6)

where the first step is from the chain rule and the second step follows from Mj0,∗ ◦ f(x)j0 = f(x)j0 .

Note that by Fact B.5, it holds that

⟨f(x)j0 ◦ Aj0,i, h(y)i0⟩ = A⊤
j0,i diag(f(x)j0)h(y)i0
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and

⟨f(x)j0 , v⟩ · ⟨f(x)j0 ,Aj0,i⟩ = A⊤
j0,i f(x)j0f(x)

⊤
j0h(y)i0

Therefore, Eq. (6) becomes

dL(x)j0,i0
dxi

= c(x, y)j0,i0 · (A
⊤
j0,i diag(f(x)j0)h(y)i0 − A⊤

j0,i f(x)j0f(x)
⊤
j0h(y)i0)

= c(x, y)j0,i0 · A
⊤
j0,i(diag(f(x)j0)− f(x)j0f(x)

⊤
j0)h(y)i0 , (7)

where the last step is by simple algebra.

Let q(x)j0 be defined as in Definition C.6:

q(x)j0 :=

d∑
i0=1

c(x)j0,i0h(y)i0 . (8)

Let p(x)j0 be define as in Definition C.7:

p(x)j0 := (diag(f(x)j0)− f(x)j0f(x)
⊤
j0)q(x)j0 . (9)

It holds that
dL(x)

dx

=

n∑
j0=1

d∑
i0=1

dL(x)j0,i0
dx

=

n∑
j0=1

d∑
i0=1

c(x)j0,i0︸ ︷︷ ︸
scalar

· A⊤
j0︸︷︷︸

d2×n

(diag(f(x)j0)− f(x)j0f(x)
⊤
j0)︸ ︷︷ ︸

n×n

h(y)i0︸ ︷︷ ︸
n×1

=

n∑
j0=1

A⊤
j0(diag(f(x)j0)− f(x)j0f(x)

⊤
j0)q(x)j0

=

n∑
j0=1

A⊤
j0 p(x)j0

= vec(A⊤
1︸︷︷︸

d×n

p(x)︸︷︷︸
n×n

A2︸︷︷︸
n×d

)

where the 1st step is because of Definition 4.1, the second step follows from Eq. (7), the third step
follows from Eq. (8), the fourth step follows from Eq. (9), and the fifth step follows from Fact E.9.

C.3 RUNNING TIME

In this section, we analyze the running time of the conv approximation approach for computing the
training forward pass and backward gradient. We build upon the key definitions and loss functions
introduced in the previous sections to derive the running time of the algorithm.
Lemma C.10. If we have

• Define u(x) ∈ Rn×n as outlined in Definition 4.5.

• Define f(x) ∈ Rn×n as specified in Definition C.2.

• Define h(y) ∈ Rn×d according to Definition C.3.

• Suppose u(x) is a k-conv matrix defined in Definition 2.11 with known basis.

Then, we have
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• For any w ∈ Rn, we have f(x) · w ∈ Rn can be done in O(kn log n) time.

• h(y) can be expiciltiy computed in Tmat(n, d, d) time.

Proof. For the first part, by definition of u(x) ∈ Rn×n, we know that for any vector w ∈ Rn, we can
compute u(x)w in O(kn log n) time (Claim 2.10). Thus,

f(x) · w = diag(α(x))−1u(x)w

= diag(u(x)1n)
−1u(x)w,

which can be done in O(kn log n) time by Fact B.5.

The second part is trivial by Definition C.3.

Lemma C.11. If we have

• Define f(x) ∈ Rn×n as specified in Definition C.2.

• Define h(y) ∈ Rn×d according to Definition C.3 and h(y) is known.

• Define c(x) ∈ Rn×d as outlined in Definition C.4.

• Suppose f(x)w takes O(kn log n) time.

Then, we can show that

• c(x) can be expiciltiy computed in O(knd log n) time.

Proof. Firstly we can compute f(x)h(y), this can be done in O(knd log n), since we run f(x) times
a vector oracle (Lemma C.10) for d times.

Then do minus E ∈ Rn×d matrix. This takes O(nd) time. Thus we complete the proof.

Lemma C.12. If the following conditions hold

• Let c(x) ∈ Rn×d be defined in Definition C.4 and c(x) is known.

• Let h(y) ∈ Rn×d be defined in Definition C.3 and h(y) is known.

• Let q(x) ∈ Rn×n be defined in Definition C.6.

Then, we can show that

• q(x)’s rank-d factorization can be explilcitly computed in O(nd) time.

Proof. Note that q(x) = c(x)h(y)⊤. Since both c(x) and h(y) are known. Thus, the result is
trivial.

Lemma C.13 (Fast computation p1(x) multiply with a vector ). If the following conditions hold

• Let f(x) ∈ Rn×n be defined in Definition C.2.

• Suppose f(x)w can be done in O(kn log n) time for any w ∈ Rn.

• Let q(x) denote a rank-τ matrix with known low-rank factorizations.

• Let p1(x) = f(x) ◦ q(x).

Then, we can show

• For any vector w ∈ Rn, p1(x) · w can be computed in O(τkn log n) time
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Proof. Since q(x) ∈ Rn×n has rank-τ , we assume that the low-rank factors are a1, a2, · · · , aτ ∈ Rn

and b1, b2, · · · , bτ ∈ Rn. In particular, q(x) can be written as

q(x) =

τ∑
i=1

aib
⊤
i

Using a standard linear algebra trick, we can show that

f(x) ◦ q(x) = (f(x)) ◦ (
τ∑

i=1

aib
⊤
i )

=

τ∑
i=1

(f(x)) ◦ (aib⊤i )

=

τ∑
i=1

diag(ai)f(x) diag(bi)

Note that for each i ∈ [τ ], we can show that diag(ai)f(x) diag(bi)w can be computed in O(kn log n)
time by Lemma statement. Thus, for any vector w ∈ Rn, (f(x) ◦ q(x)) · w can be computed in
O(τkn log n) time. Therefore, we complete the proof.

Lemma C.14 (Fast computation for r(x)). If the following conditions hold

• Let r(x)j0 := ⟨f(x)j0 , q(x)j0⟩.

• Let f(x) ∈ Rn×n be defined in Definition C.2.

• Suppose f(x)w can be done in O(kn log n) time for any w ∈ Rn.

• Let q(x) denote a rank-τ matrix with known low-rank factorizations.

Then, we can show

• r(x) ∈ Rn can be in O(τkn log n) time.

Proof. Since q(x) ∈ Rn×n has rank-τ , we assume that the low-rank factors are a1, a2, · · · , aτ ∈ Rn

and b1, b2, · · · , bτ ∈ Rn, in particular, q(x) can be written as

q(x) =

τ∑
i=1

aib
⊤
i

Let q(x) = UaU
⊤
b . It is easy to see that f(x)q(x)⊤ can be written as f(x)UbU

⊤
a .

We firstly compute f(x)Ub, since Ub has τ columns, each column will take O(kn log n) time, so in
total it takes O(τkn log n) time.

Then, we know that r(x)j0 = ⟨(f(x)Ub)j0,∗, (Ua)j0,∗⟩ which takes O(τ) time per j0. There are n
different j0, so it takes O(nτ) time.

Overall it takes O(τkn log n) time.

Lemma C.15 (Fat computation for p2(x)). If the following conditions hold

• Assume that r(x) ∈ Rn is given.

• Let f(x) ∈ Rn×n be defined in Definition C.2.

• Suppose f(x)w can be done in O(kn log n) time for any w ∈ Rn.
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• Let p2(x) = diag(r(x))f(x) (This is obvious from definition of r(x))

Then, we can show that

• For any w ∈ Rn, p2(x) · w can be computed O(kn log n) time.

Proof. For any vector w, we firstly compute f(x)w, then we compute diag(r(x))(f(x)w).

Lemma C.16. If the following conditions hold

• Let A1, A2 ∈ Rn×d are two given matrices.

• Let p1(x), p2(x) ∈ Rn×n are defined in Definition C.7.

• Suppose p1(x)w takes Tp1
time for any w ∈ Rn.

• Suppose p2(x)w takes Tp2 time for any w ∈ Rn.

Then, we have

• vec(A⊤
1 p(x)A2) can be computed in O(Tmat(n, d, d) + d(Tp1

+ Tp2
)) time.

Proof. Firstly, we can compute p1(x)A2, this takes dTp1 time.

Second, we can compute p2(x)A2, this takes dTp2
time.

Then, we can compute A⊤
1 (p(x)A2), this takes Tmat(d, n, d) = O(Tmat(n, d, d)).

Putting it all together we complete the proof.

C.4 PROOF OF MAIN THEOREM

In this section, we present the formal proof of our main theorem regarding the conv approximation
approach for efficiently computing the training forward pass and backward gradient of the attention
mechanism.

Theorem C.17. Suppose u(x) is a k-conv matrix defined in Definition 2.11 with known basis. Then
there is an algorithm that runs in time O(d2kn log n) time to compute the gradient of attention loss
defined in Definition 4.1.

Proof. We need to choose τ = d, thus total running time is

Tmat(n, d, d) +O(dτkn log n) = O(nd2k log n),

by putting everything together from Lemma C.9, Lemma C.10, Lemma C.11, Lemma C.12,
Lemma C.13, Lemma C.14, Lemma C.15, Lemma C.16.

Theorem C.18 (Main conv result for training forward and backward gradient (Restatement of
Theorem 4.6)). If u(x) is a 1/ poly(n)-close (T, δ)-non-degenerate k-conv basis matrix as defined
in Definition 3.2, where δ ≥ 0 and k, T ∈ [n]. Then there are algorithms that run to compute training
forward in time O(knd log n + Tmat(n, d, d)) and backward gradient in time O(d2kn log n) of
attention loss (Definition 4.1) approximately up to 1/ poly(n) error under ℓ∞ norm.

Proof of Theorem 4.6. Correctness.

For the forward, we directly get the correctness by Theorem 3.4. For the backward, we directly run
error propagation analysis which is similar to Alman & Song (2024a) and proof of Lemma B.20.

Running time.

For the forward, by Theorem 3.4, we directly get the running time for D(X)−1M ◦exp(A1XA⊤
2 )A3

being O(knd log n). Then, we need Tmat(n, d, d) time to involve Y and E.
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For the backward, by Lemma B.20, we can use Algorithm 2 to get k-conv basis b̃1, . . . , b̃k ∈ Rn

and k integers m1,m2, . . . ,mk satisfying n ≥ m1 > m2 > · · · > mk ≥ T in time O(knd log(n)).
Thus, we finish the proof by Theorem C.17.

D INCORPORATING WEIGHTED LOW RANK APPROXIMATION

In Section D.1, we introduce the preliminary for this section. In Section D.2, we present the proof
of our main result for the low-rank approximation. In Section D.3, we present the algorithm and its
mathematical properties for causal attention mask. In Section D.4, we analyze the algorithm and its
mathematical properties for row change by amortized constant mask. In Section D.5, we study the
algorithm and its mathematical properties for continuous row mask. In Section D.6, we analyze the
property of the mask matrix with r distinct columns or r distinct rows.

D.1 PRELIMINARY

In this section, we introduce the background of the weighted low rank approximation.
Definition D.1 (Definition 3.1 in Alman & Song (2023)). Consider a positive integer k ≥ 1. We
use ϵ ∈ (0, 0.1) to represent an accuracy parameter. For H ∈ Rn×n

≥0 , define H̃ ∈ Rn×n
≥0 to be an

(ϵ, k)-approximation of H if

• H̃ can be expressed as the product U1 · U⊤
2 with some U1, U2 ∈ Rn×k, indicating that H̃

has a rank of at most k, and

• |H̃i,j −Hi,j | ≤ ϵ ·Hi,j with any arbitrary (i, j) ∈ [n]× [n].

Now, we present a lemma from Alman & Song (2023).
Lemma D.2 (Lemma 3.4 in Alman & Song (2023)). Let Q,K ∈ Rn×d satisfy ∥Q∥∞ ≤ B and
∥K∥∞ ≤ B respectively for some B > 0 and H ∈ Rn×n be defined as H := exp(QK⊤/d). We
use ϵ ∈ (0, 0.1) to represent an accuracy parameter.

Then, there exist g > 0 with

g = O(max{ log(1/ϵ)

log(log(1/ϵ)/B2)
, B2})

and k > 0 with

k ≤
(
2(g + d)

2g

)
such that: There exists an (ϵ, k)-approximation (see Definition D.1) of H ∈ Rn×n, namely H̃ ∈
Rn×n. Moreover, U1 and U2 defining H̃ is computed in O(nk) time.

In the following lemma, we prove the validity of the statement that if there exists an algorithm
whose output is Y ′ = (W ◦ (U1U

⊤
2 ))v in O(t) time, then there exists an algorithm outputs Y =

D−1(W ◦ (U1U
⊤
2 ))v in O(t+n) time. We will combine everything together and show the soundness

of this statement later in the proof of Theorem D.4.
Lemma D.3. Let W ∈ {0, 1}n×n denote any mask matrix. Let U1, U2 ∈ Rn×k. Let v ∈ Rn. If there
exists an algorithm whose output promises that

Y ′ = (W ◦ (U1U
⊤
2 ))v,

which takes O(t) time, then, there exists an algorithm promise that

Y = D−1(W ◦ (U1U
⊤
2 ))v

where D := diag((W ◦ (U1U
⊤
2 ))1n) ∈ Rn×n, which takes O(t+ n) time.

Proof. Correctness.
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Suppose there exists an algorithm whose output is Y ′ satisfying Y ′ = (W ◦ (U1U
⊤
2 ))v and takes

O(t) time. We denote this algorithm as ALG.

Let Y ′ = ALG(U1, U2, v). Let Ỹ = ALG(U1, U2,1n). Then, Y = diag(Ỹ )−1Y ′.

Running time.

Computing Y ′ and Ỹ takes O(t) time. Computing Y = diag(Ỹ )−1Y ′ takes O(n) time. Therefore,
it takes O(t+ n) time in total.

D.2 PROOF OF MAIN RESULTS

Now, we present our main theorem.
Theorem D.4 (Main low-rank result (Restatement of Theorem 5.5)). Assume the same condition as
Lemma D.2. Let ϵ ∈ (0, 0.1). Let Q,K, V ∈ Rn×d. Let U1, U2 ∈ Rn×k be defined in Lemma D.2.
Let W ∈ {0, 1}n×n denote a mask matrix. Let H = exp(QK⊤/d) ∈ Rn×n, A = W ◦H ∈ Rn×n

and D = diag(A1n) ∈ Rn×n. We denote Y := D−1AV ∈ Rn×d. Let Ã := W ◦ U1U
⊤
2 and

D̃ := diag(Ã1n). We denote Ỹ := D̃−1ÃV ∈ Rn×d. Then, we have

∥Y − Ỹ ∥∞ ≤ 4ϵ∥V ∥∞.

The time complexity to get Ỹ is

• O(knd) when W is a causal mask defined in Definition 2.2.

• O(kd
∑n

j=1 Bj) when W is a row change mask defined in Definition 5.1.

• O(knd log(n)) when W is a continuous row mask defined in Definition 5.2.

• O(rnd) when W is a distinct r columns / rows mask defined in Definition 5.3 / Definition 5.4.

Proof of Theorem 5.5. Correctness.

By Lemma D.2, U1U
⊤
2 ∈ Rn×n is an (ϵ, k)-approximation (Definition D.1) of H ∈ Rn×n. Thus,

we have

|Ãi,j −Ai,j | = |(W ◦ U1U
⊤
2 )i,j − (W ◦H)i,j |

= Wi,j |(U1U
⊤
2 )i,j −Hi,j |

≤Wi,j · ϵ ·Hi,j

= ϵAi,j ,

where the first step follows Ã = W ◦ U1U
⊤
2 and A = W ◦ H , the second step follows mask is

element-wise operation, the third step follows Definition D.1, and the last step follows A = W ◦H .

Thus, by Lemma E.6, we get

∥Y − Ỹ ∥∞ ≤ 4ϵ∥V ∥∞.

Running time.

By Lemma D.2, the matrices U1 and U2 defining H̃ can be computed in O(nk) time.

By Lemma D.3, if we can compute Y ′ = (W ◦ (U1U
⊤
2 ))V in O(td) time, we can compute Ỹ in

O(td+ nd) time.

Finally, we finish the proof by following Lemma D.6 for the causal mask, Lemma D.8 for row change
by amortized constant mask, Lemma D.9 for continuous row mask, and Lemma D.12 for distinct r
columns mask or distinct r rows mask.

D.3 CAUSAL ATTENTION MASK

In this section, we present the causal attention mask.
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Algorithm 4 Computing (W ◦ (U1U
⊤
2 ))v, where W ∈ {0, 1}n×n is a causal attention mask, as

defined in Definition 2.2
1: procedure CAUSALMASK(U1 ∈ Rn×k, U2 ∈ Rn×k, v ∈ Rn) ▷ Lemma D.6
2: c0 ← 0k

3: for j = 1→ n do
4: bj ← (U⊤

2 )j︸ ︷︷ ︸
k×1

vj︸︷︷︸
scalar

▷ Let (U⊤
2 )j denote the j-th row of U2 ∈ Rn×k

5: cj ← cj−1︸︷︷︸
k×1

+ bj︸︷︷︸
k×1

6: end for
7: for j = 1→ n do
8: Yj ← ⟨(U⊤

1 )j︸ ︷︷ ︸
k×1

, cj︸︷︷︸
k×1

⟩

9: end for
10: return Y ▷ Y ∈ Rn

11: end procedure

Lemma D.5. Let W ∈ {0, 1}n×n be a mask. Let Sj denote the support set of each row of W , for
each j ∈ [n], i.e., Sj = {k|Wj,k = 1}. Let U1, U2 ∈ Rn×k. Let v ∈ Rn. Let Y = (W ◦ (U1U

⊤
2 ))v.

Then, we have

Yj = ⟨(U⊤
1 )j ,

∑
l∈Sj

(U⊤
2 )lvl⟩.

Proof. By simple algebra, we have

Yj = ((W ◦ (U1U
⊤
2 ))v)j

= ⟨(U⊤
1 )j ,

∑
l∈Sj

(U⊤
2 )lvl⟩.

Lemma D.6. Let W ∈ {0, 1}n×n be a causal attention mask defined in Definition 2.2. Let U1, U2 ∈
Rn×k. Let v ∈ Rn. Then, there exists an algorithm (see Algorithm 4) whose output promises that

Y = (W ◦ (U1U
⊤
2 ))v,

which takes O(nk) time.

Proof. Let (U⊤
2 )j denote the j-th row of U2.

Correctness.

Let Sj be the support set defined in Lemma D.5. Note that for the causal attention mask, we have
Sj = [j] for any j ∈ [n]. Thus, by Lemma D.5, we have

Yj = ⟨(U⊤
1 )j ,

∑
l∈[j]

(U⊤
2 )lvl⟩

= ⟨(U⊤
1 )j , cj⟩.

Running time.

Computing (U⊤
2 )jvj , for all j ∈ [n] takes O(nk) time.

Note that by the definition of inner product

⟨(U⊤
1 )j , cj⟩ = (U⊤

1 )⊤j cj .

Therefore, it also takes O(nk) to compute (U⊤
1 )⊤j cj for all j ∈ [n].

Therefore, it takes O(nk) times in total.
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D.4 ROW CHANGE BY AMORTIZED CONSTANT MASK

In this section, we analyze the row change by amortized constant mask.
Claim D.7. Let W ∈ {0, 1}n×n be the causal attention mask defined in Definition 2.2. Then we have
W is a row change by amortized constant mask defined in Definition 5.1, where Bj = 1, ∀j ∈ [n].

Proof. The proof directly follows the two Definitions.

Algorithm 5 Computing (W ◦ (U1U
⊤
2 ))v, where W ∈ {0, 1}n×n is a row change by amortized

constant mask, as defined in Definition 5.1

1: procedure CONSTANTMASK(U1 ∈ Rn×k, U2 ∈ Rn×k, v ∈ Rn) ▷ Lemma D.8
2: c0 ← 0k, S0 ← ∅
3: for j = 1→ n do
4: Precompute indices set Q+

j ← Sj\Sj−1 ▷ Let Sj denote the support set of the j-th row
5: Precompute indices set Q−

j ← Sj−1\Sj

6: cj ← cj−1

7: for i ∈ Q+
j ∪Q−

j do ▷ |Q+
j ∪Q−

j | = Bj

8: bi ← (U⊤
2 )i︸ ︷︷ ︸

k×1

vi︸︷︷︸
scalar

▷ Let (U⊤
2 )i denote the i-th row of U2 ∈ Rn×k

9: if i ∈ Q+
j then

10: cj ← cj + bi
11: else if i ∈ Q−

j then
12: cj ← cj − bi
13: end if
14: end for
15: end for
16: for j = 1→ n do
17: Yj ← ⟨(U⊤

1 )j︸ ︷︷ ︸
k×1

, cj︸︷︷︸
k×1

⟩

18: end for
19: return Y ▷ Y ∈ Rn

20: end procedure

Lemma D.8. Let B ∈ Z≥0 and let W ∈ {0, 1}n×n be a row change by amortized constant mask
defined in Definition 5.1. Let S0 = ∅. Let Sj be the support set of each row of W , for each j ∈ [n],
i.e., Sj = {k|Wj,k = 1}. We define Bj := |(Sj\Sj−1) ∪ (Sj−1\Sj)|. Let U1, U2 ∈ Rn×k. Let
v ∈ Rn. Then, there exists an algorithm (see Algorithm 5) whose output promises that

Y = (W ◦ (U1U
⊤
2 ))v,

which takes O(k
∑n

j=1 Bj) time.

Proof. Correctness.

By Lemma D.5, we have

Yj = ⟨(U⊤
1 )j ,

∑
l∈Sj

(U⊤
2 )lvl⟩.

We will prove it by induction. It is obvious that base case Y1 is correct, because S0 = ∅.
For a fixed j, we suppose Yj has the correct answer. This means cj is correct for that j, i.e.,
cj =

∑
l∈Sj

bl =
∑

l∈Sj
(U⊤

2 )lvl.

Now we use Q+
j+1 and Q−

j+1 to generate cj+1 by adding terms in Q+
j+1 and deleting terms in Q−

j+1,

cj+1 =
∑
l∈Sj

bl −
∑

l∈Sj\Sj+1

bl +
∑

l∈Sj+1\Sj

bl
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=
∑

l∈Sj∩Sj+1

bl +
∑

l∈Sj\Sj+1

bl −
∑

l∈Sj\Sj+1

bl +
∑

l∈Sj+1\Sj

bl

=
∑

l∈Sj∩Sj+1

bl +
∑

l∈Sj+1\Sj

bl

=
∑

l∈Sj+1

bl,

where the first step follows Algorithm 5 line 10 and line 12, the second step follows Sj = (Sj ∩
Sj+1)∪ (Sj \ Sj+1), (Sj ∩ Sj+1) and (Sj \ Sj+1) are disjoint, the third step follows simple algebra,
and the last step follows the as the second step.

Therefore, we have cj+1 is correct, i.e., cj+1 =
∑

l∈Sj+1
bl =

∑
l∈Sj+1

(U⊤
2 )lvl. Thus, Yj+1 is also

correct by Lemma D.5. Finally, we finish proving the correctness by math induction.

Running time.

Note that there are two for-loops in this algorithm. Inside the inner for-loops, it takes O(k) time to
compute

bi = (U⊤
2 )i︸ ︷︷ ︸

k×1

vi︸︷︷︸
scalar

.

The inner for-loop has |Q+
j ∪Q−

j | = Bj iterations, and the outer for-loop has n iterations.

Therefore, it takes O(k
∑n

j=1 Bj) time in total.

D.5 CONTINUOUS ROW MASK

In this section, we study the continuous row mask.

Algorithm 6 Computing (W ◦ (U1U
⊤
2 ))v, where W ∈ {0, 1}n×n is a continuous row mask, as

defined in Definition 5.2
1: procedure CONTINUOUSMASK(U1 ∈ Rn×k, U2 ∈ Rn×k, v ∈ Rn) ▷ Lemma D.9
2: c0 ← 0k

3: Build segment tree T based on {(U⊤
2 )ivi}i∈[n]

4: for j = 1→ n do
5: Get at most O(log n) vectors from T (each one is a continuous summation of 2t entries)
6: Compute cj based on the above vectors
7: end for
8: for j = 1→ n do
9: Yj ← ⟨(U⊤

1 )j︸ ︷︷ ︸
k×1

, cj︸︷︷︸
k×1

⟩

10: end for
11: return Y ▷ Y ∈ Rn

12: end procedure

Lemma D.9. Let W ∈ {0, 1}n×n denote a continuous row mask defined in Definition 5.2. Let
U1, U2 ∈ Rn×k. Let v ∈ Rn. Then, there exists an algorithm (see Algorithm 6) whose output
promises that

Y = (W ◦ (U1U
⊤
2 ))v,

which takes O(nk log n) time.

Proof. The correctness is trivially from the construction of the segment tree.

The running time is dominated by O(nk log n). This time comes from two parts, where the first is
from building the segment tree by O(nk), and the second part is from for-loop by O(nk log n).
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D.6 DISTINCT r COLUMNS OR ROWS

Now, we analyze the mask matrix with r distinct columns.
Lemma D.10. Let W be the distinct r columns mask defined in Definition 5.3. Let S1, · · · , Sr ⊆ [n]
denote r disjoint subsets and ∪j∈[r]Sj = [n] be defined in Definition 5.3. Let h : [r]→ [n] denote
that h(j) ∈ Sj and h(j) is the smallest index in Sj .

Then we can show

( W︸︷︷︸
n×n

◦( U1︸︷︷︸
n×k

U⊤
2︸︷︷︸

k×n

)) v︸︷︷︸
n×1

=

r∑
j=1

diag(W∗,h(j))︸ ︷︷ ︸
n×n

U1︸︷︷︸
n×k

(U⊤
2 )∗,Sj︸ ︷︷ ︸

k×|Sj |

vSj︸︷︷︸
|Sj |×1

Proof. We can show that

LHS =

n∑
i=1

(W ◦ (U1U
⊤
2 ))∗,i · vi

=
n∑

i=1

(W∗,i ◦ (U1U
⊤
2 )∗,i)vi

=

n∑
i=1

diag(W∗,i)(U1U
⊤
2 )∗,ivi

=

n∑
i=1

diag(W∗,i)U1(U
⊤
2 )∗,ivi

=

r∑
j=1

diag(W∗,h(j))U1(U
⊤
2 )∗,SjvSj ,

where the first step follows from the left hand side of the equation in the lemma statement, the second
step follows from the definition of the Hadamard product, the third step follows from Fact B.5, the
fourth step follows from simple algebra, and the last step follows from the fact that for any two
i, i′ ∈ Sj , we have W∗,i = W∗,i′ ∈ Rn (see from the lemma statement).

Now, we analyze the mask matrix with r distinct rows.
Lemma D.11. Let W be the distinct r rows mask defined in Definition 5.4. Let S1, · · · , Sr ⊆ [n]
denote r disjoint subsets and ∪j∈[r]Sj = [n] be defined in Definition 5.4. Let h : [r]→ [n] denote
that h(j) ∈ Sj and h(j) is the smallest index in Sj .

Then, we can show that

( W︸︷︷︸
n×n

◦( U1︸︷︷︸
n×k

U⊤
2︸︷︷︸

k×n

)) v︸︷︷︸
n×1

=

r∑
j=1

diag(eSj
)︸ ︷︷ ︸

n×n

U1︸︷︷︸
n×k

U⊤
2︸︷︷︸

k×n

diag(Wh(j),∗)︸ ︷︷ ︸
n×n

v︸︷︷︸
n×1

Proof. It suffices to show

( W︸︷︷︸
n×n

◦( U1︸︷︷︸
n×k

U⊤
2︸︷︷︸

k×n

)) =

r∑
j=1

diag(eSj
)︸ ︷︷ ︸

n×n

U1︸︷︷︸
n×k

U⊤
2︸︷︷︸

k×n

diag(Wh(j),∗)︸ ︷︷ ︸
n×n

. (10)

We have

(W ◦ (U1U
⊤
2 )) = ((U1U

⊤
2 ) ◦W )

=

n∑
i=1

(diag(ei)(U1U
⊤
2 ) ◦W )i,∗

=

n∑
i=1

(diag(ei)(U1U
⊤
2 ) ◦Wi,∗)
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=

n∑
i=1

(diag(ei)(U1U
⊤
2 ) diag(Wi,∗))

=

n∑
j=1

diag(eSj
)U1U

⊤
2 diag(Wh(j),∗),

where the first step follows from the definition of the Hadamard product, the second step follows from
the property of diag(ei) that for any matrix A, diag(ei)A preserves the i-th row of A and set other
rows to 0, the third step follows from simple algebra, the fourth step follows from Fact B.5, and the
last step follows from the lemma statement that for any two i, i′ ∈ Sj , we have Wi,∗ = Wi′,∗ ∈ Rn.

Therefore, we have shown Eq. (10), which completes the proof.

Lemma D.12. Let W ∈ {0, 1}n×n be a distinct r columns mask defined in Definition 5.3 or a
distinct r rows mask defined in Definition 5.4. Let U1, U2 ∈ Rn×k. Let v ∈ Rn. Then, there exists an
algorithm whose output promises that

Y = (W ◦ (U1U
⊤
2 ))v,

which takes O(nkr) time.

Proof. The correctness and running time is directly follows Lemma D.10 for the column case and
Lemma D.11 for the row case.

E SUPPORTING LEMMAS AND TECHNICAL RESULTS

In Section E.1, we present the matrix and vector properties. In Section E.2, we analyze and develop
the tools for error analysis. In Section E.3, we provide some tools for tensor calculation.

E.1 MATRIX AND VECTOR PROPERTIES

Lemma E.1 (Restatement of Lemma 2.12). For any lower triangular matrix H ̸= 0n×n ∈ Rn×n,
there exists a unique k ∈ [n] such that H is a matrix with k-conv basis.

Proof of Lemma 2.12. It suffices to show that any arbitrary H ∈ Rn×n \ {0n×n} has at least 1 conv
basis and at most n conv basis.

As H ̸= 0n×n, it must have at least 1 conv basis, and we proved the first part.

Now, we prove the second part by math induction.

Let i ∈ {0, . . . , n− 1}. For any lower triangular matrix G ∈ Rn×n, we have

G =

[
0i×i 0i×(n−i)

0(n−i)×i G(i+1):n,(i+1):n

]
.

Let Gi+1 be the i+ 1-th column of G ∈ Rn×n. Let G̃i+1 ∈ Rn satisfy, for any j ∈ [n], (G̃i+1)j =

(Gi+1)i+j when i + j ≤ n and (G̃i+1)j = (Gi+1)i+j−n otherwise. Then, there exists lower
triangular matrix G′ ∈ R(n−i−1)×(n−i−1) such that

G− conv(G̃i+1, n− i)

=

 0i×i 0i×1 0i×(n−i−1)

01×i Gi+1,i+1 01×(n−i−1)

0(n−i−1)×i G(i+2):n,(i+1) G(i+2):n,(i+2):n

−
 0i×i 0i×1 0i×(n−i−1)

01×i Gi+1,i+1 01×(n−i−1)

0(n−i−1)×i G(i+2):n,(i+1) G′


=

 0i×i 0i×1 0i×(n−i−1)

01×i 01×1 01×(n−i−1)

0(n−i−1)×i 0(n−i−1)×1 G(i+2):n,(i+2):n −G′


=

[
0(i+1)×(i+1) 0(i+1)×(n−i−1)

0(n−i−1)×(i+1) G(i+2):n,(i+2):n −G′

]
,
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where the first step follows from the fact that G is a lower triangular matrix and Definition 2.9, the
second step follows from simple algebra, and the last step follows from simple algebra.

As G and G′ are lower triangular matrices, we have that G− conv(G̃i+1, n− i) is a lower triangular
matrix. Thus, we proved the following statement.

For any lower triangular matrix G ∈ Rn×n whose first i columns all are zeros, there exists a basis
conv(b,m) such that G− conv(b,m) ∈ Rn×n is a lower triangular matrix whose first i+ 1 columns
all are zeros.

As H ∈ Rn×n is a lower triangular matrix whose first 0 columns all are zeros, we finish the proof by
math induction, i.e., repeat the above process at most n times.

Lemma E.2. For any matrix G ∈ Rn×n and vector v ∈ Rn, we have

∥Gv∥1 ≤ ∥G∥1 · ∥v∥∞.

Proof. We have

∥Gv∥1 =
∑
i∈[n]

|
∑
j∈[n]

Gi,jvj |

≤
∑
i∈[n]

∑
j∈[n]

|Gi,jvj |

≤
∑
i∈[n]

∑
j∈[n]

|Gi,j |∥v∥∞

= ∥G∥1 · ∥v∥∞,

where the first step follows the Definition of vector ℓ1 norm, the second steps follow |a+b| ≤ |a|+ |b|,
the third steps follow simple algebra, and the last step follow the Definition of matrix ℓ1 norm.

E.2 TOOLS FOR ERROR ANALYSIS

Lemma E.3. Let ϵ ≥ 0. Let x1, x2 ∈ R. We have

| exp(x1)− exp(x2)| ≤ exp(min{x1, x2})(exp(|x1 − x2|)− 1).

Proof. It is trivial by exp(a+ b) = exp(a) exp(b).

Lemma E.4. Let V ∈ Rn×d. Let H, H̃ ∈ Rn×n, and satisfy ∥H − H̃∥∞ ≤ ϵ, where ϵ ≥ 0. Let
A = exp(H), Ã = exp(H̃) and D = diag(A1n), D̃ = diag(Ã1n). Then, we have

∥D−1AV − D̃−1ÃV ∥∞ ≤ 2(exp(ϵ)− 1)∥V ∥∞.

Proof. By triangle inequality, we have

∥D−1AV − D̃−1ÃV ∥∞ = ∥D−1AV − D̃−1AV ∥∞ + ∥D̃−1AV − D̃−1ÃV ∥∞,

where the first step follows simple algebra, and the last step follows triangle inequality.

For the first part, for any i ∈ [n], j ∈ [n], we have

|(D−1AV − D̃−1AV )i,j | = |
n∑

l=1

(D−1
i,i − D̃−1

i,i )Ai,lVl,j |

≤
n∑

l=1

|(D−1
i,i − D̃−1

i,i )Ai,l| · ∥V ∥∞

=

n∑
l=1

|Di,i − D̃i,i

Di,iD̃i,i

| ·Ai,l · ∥V ∥∞

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

=

n∑
l=1

|
n∑

k=1

exp(Hi,k)−
n∑

k=1

exp(H̃i,k)| ·
Ai,l

Di,iD̃i,i

· ∥V ∥∞

≤
n∑

l=1

n∑
k=1

| exp(Hi,k)− exp(H̃i,k)| ·
Ai,l

Di,iD̃i,i

· ∥V ∥∞

≤ (exp(ϵ)− 1)

n∑
l=1

n∑
k=1

exp(H̃i,k) ·
Ai,l

Di,iD̃i,i

· ∥V ∥∞

= (exp(ϵ)− 1)∥V ∥∞,

where the first step follows simple algebra, the second step follows triangle inequality, the third step
follows simple algebra, the fourth step follows D = diag(A1n), D̃ = diag(Ã1n), A = exp(H),
Ã = exp(H̃), the fifth steps follows triangle inequality, the sixth step follows Lemma E.3 and the
last step follows D̃i,i =

∑n
k=1 exp(H̃i,k) and Di,i =

∑n
l=1 Ai,l.

For the second part, for any i ∈ [n], j ∈ [n], we have

|(D̃−1AV − D̃−1ÃV )i,j | = |
n∑

l=1

D̃−1
i,i (Ai,l − Ãi,l)Vl,j |

≤
n∑

l=1

D̃−1
i,i |Ai,l − Ãi,l| · ∥V ∥∞

=

n∑
l=1

D̃−1
i,i | exp(Hi,l)− exp(H̃i,l)| · ∥V ∥∞

≤ (exp(ϵ)− 1)

n∑
l=1

D̃−1
i,i exp(H̃i,l) · ∥V ∥∞

= (exp(ϵ)− 1)∥V ∥∞,

where the first step follows simple algebra, the second step follows triangle inequality, the third step
follows A = exp(H), Ã = exp(H̃), the fourth step follows Lemma E.3, and the last step follows
D̃i,i =

∑n
l=1 exp(H̃i,l).

Thus, we combine two terms,

∥D−1AV − D̃−1ÃV ∥∞ ≤ 2(exp(ϵ)− 1)∥V ∥∞.

Lemma E.5. Let a, b ≥ 0 and ϵ ∈ (0, 0.1). If |a− b| ≤ ϵa, then |a− b| ≤ 2ϵmin{a, b}.

Proof. It is trivial by considering two cases when b ≥ a and b < a.

Lemma E.6. Let A, Ã ∈ Rn×n
≥0 , and satisfy |Ãi,j − Ai,j | ≤ ϵ · Ai,j for all (i, j) ∈ [n]2, where

ϵ ∈ (0, 0.1). Let D = diag(A1n) and D̃ = diag(Ã1n). Then, we have

∥D−1AV − D̃−1ÃV ∥∞ ≤ 4ϵ∥V ∥∞.

Proof. By triangle inequality, we have

∥D−1AV − D̃−1ÃV ∥∞ ≤ ∥D−1AV − D̃−1AV ∥∞ + ∥D̃−1AV − D̃−1ÃV ∥∞,

where the first step follows simple algebra, and the last step follows triangle inequality.

For the first part, for any i ∈ [n], j ∈ [n], we have

|(D−1AV − D̃−1AV )i,j | = |
n∑

l=1

(D−1
i,i − D̃−1

i,i )Ai,lVl,j |
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≤
n∑

l=1

|(D−1
i,i − D̃−1

i,i )Ai,l| · ∥V ∥∞

=

n∑
l=1

|Di,i − D̃i,i

Di,iD̃i,i

| ·Ai,l · ∥V ∥∞

=

n∑
l=1

|
n∑

k=1

Ai,k −
n∑

k=1

Ãi,k| ·
Ai,l

Di,iD̃i,i

· ∥V ∥∞

≤
n∑

l=1

n∑
k=1

|Ai,k − Ãi,k| ·
Ai,l

Di,iD̃i,i

· ∥V ∥∞

≤ 2ϵ

n∑
l=1

n∑
k=1

Ãi,k ·
Ai,l

Di,iD̃i,i

· ∥V ∥∞

= 2ϵ∥V ∥∞,

where the first step follows simple algebra, the second step follows triangle inequality, the third
step follows simple algebra, the fourth step follows D = diag(A1n), D̃ = diag(Ã1n), the fifth
step follows triangle inequality, the sixth step follows Lemma E.5 and the last step follows D̃i,i =∑n

k=1 Ãi,k and Di,i =
∑n

l=1 Ai,l.

For the second part, for any i ∈ [n], j ∈ [n], we have

|(D̃−1AV − D̃−1ÃV )i,j | = |
n∑

l=1

D̃−1
i,i (Ai,l − Ãi,l)Vl,j |

≤
n∑

l=1

D̃−1
i,i |Ai,l − Ãi,l| · ∥V ∥∞

≤ 2ϵ

n∑
l=1

D̃−1
i,i Ãi,l · ∥V ∥∞

= 2ϵ∥V ∥∞,

where the first step follows simple algebra, the second step follows triangle inequality, the third step
follows Lemma E.5, and the last step follows D̃i,i =

∑n
l=1 Ãi,l.

Thus, we combine two terms,

∥D−1AV − D̃−1ÃV ∥∞ ≤ 4ϵ∥V ∥∞.

E.3 TENSOR TOOLS FOR GRADIENT COMPUTATION

Fact E.7 (Fact A.3 on page 15 of Li et al. (2024c), also see Bürgisser et al. (2013); Bläser (2013) for
more detail). We can show that

Tmat(a, b, c) = O(Tmat(a, c, b)) = O(Tmat(b, a, c)) = O(Tmat(b, c, a)) = O(Tmat(c, a, b)) = O(Tmat(c, b, a)).

Fact E.8. Let a ∈ Rn, b ∈ Rd. We have

vec(ab⊤) = a⊗ b

Proof. We can show

vec(ab⊤) = vec(

a1b
⊤

a2b
⊤

. . .
anb

⊤

)
= [a1b

⊤, a2b
⊤, . . . , anb

⊤]⊤
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= a⊗ b

where the first step follows from the definition of outer product, the second step follows from the
definition of vectorization operator vec(·) which stacks rows of a matrix into a column vector, and
the last step follows from Definition 4.4.

Fact E.9 (Tensor-trick on page 3 of Gao et al. (2023a), also see Diao et al. (2018) for more detail).
Given matrices A1 ∈ Rn1×d1 , A2 ∈ Rn2×d2 and X ∈ Rd1×d2 , the well-known tensor-trick suggests
that vec(A1XA⊤

2 ) = (A1 ⊗A2) vec(X) ∈ Rn1n2 .

Proof. We can show

vec(A1XA⊤
2 ) =

d1∑
i=1

d2∑
j=1

Xi,j vec(A1,∗,i(A2,∗,j)
⊤)

=

d1∑
i=1

d2∑
j=1

Xi,j(A1,∗,i︸ ︷︷ ︸
n1×1

⊗A2,∗,j︸ ︷︷ ︸
n2×1

)

=

d1∑
i=1

(A1,∗,i︸ ︷︷ ︸
n1×1

⊗ A2︸︷︷︸
n2×d2

)Xi,∗︸︷︷︸
d2×1

= (A1 ⊗A2) vec(X)

where the first step follows from that matrix can be written as a summation of vectors, the second
step follows from Fact E.8, the third step follows from that matrix can be written as a summation of
vectors, and the last step follows from the definition of vectorization operator vec(·).

F MORE RELATED WORK

Fast attention computation and long context LLM. The development of efficient attention com-
putation has been an active area of research in recent years. The standard self-attention mechanism,
introduced in the transformer architecture (Vaswani et al., 2017), has a quadratic complexity with
respect to the sequence length, which limits its applicability to long sequences. To address this
limitation, various approaches have been proposed to improve the efficiency of attention computation.
One line of research focuses on patterns of sparse attention that reduce the number of computations
(Child et al., 2019; Beltagy et al., 2020; Zaheer et al., 2020; Shi et al., 2023a; Han et al., 2024).
Another approach is to use low-rank approximations or random features for the attention matrix
(Razenshteyn et al., 2016; Li et al., 2016; Wang et al., 2020; Choromanski et al., 2020; Zheng et al.,
2022; Alman & Song, 2023; Ahn et al., 2024), which reduces the computational complexity to linear
in the sequence length. In addition, using linear attention as a proxy of Softmax attention is a rich
line of work (Tsai et al., 2019; Katharopoulos et al., 2020; Schlag et al., 2021; Zhang et al., 2023;
Sun et al., 2023; Ahn et al., 2024; Shi et al., 2023b; Xu et al., 2024b; Zhang et al., 2024; Deng et al.,
2023). These developments in efficient attention computation have enabled transformer-based models
to process longer sequences and have opened up new possibilities for their application in various
domains (Chen et al., 2023b; Su et al., 2024; Peng et al., 2024; Ding et al., 2024; Ma et al., 2024; Xu
et al., 2024c; An et al., 2024; Bertsch et al., 2024; Chen et al., 2024; Liang et al., 2024d; Jin et al.,
2024; Shi et al., 2024).

Convolution in language model and FFT. There are many subquadratic-time architectures are
proposed to address Transformers’ computational inefficiency on long sequences, gated convolution
recurrent models (Bai et al., 2018; Fu et al., 2023; Peng et al., 2023; Qin et al., 2023), and structured
state space models (SSMs) (Gu et al., 2021; Gu & Dao, 2023). They can use global or local convolu-
tion (Krizhevsky et al., 2012) operations to replace attention while keeping a comparable performance.
The convolution operation can be computed by fast Fourier transform (FFT) efficiently (Pratt et al.,
2017; Chi et al., 2020). Moreover, the development of efficient convolution algorithms like Winograd
(Lavin & Gray, 2016) and FFT-based convolutions (Mathieu et al., 2013) has further optimized the
computation, reducing the memory footprint and improving the overall speed. There are many other
works studying Fourier transform (Price & Song, 2015; Moitra, 2015; Chen et al., 2016; Song, 2019;
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Lee et al., 2019; Chen et al., 2020; Song et al., 2022; Gao et al., 2022; Song et al., 2023a; Chen et al.,
2023a; Song et al., 2023d; Jin et al., 2023).

(Weighted) low rank approximation. Low-rank approximation has become an important tool
in machine learning and numerical linear algebra, providing a way to extract the core structure of
high-dimensional data while minimizing computational costs. Mathematically, we want to find
matrices X,Y ∈ Rn×k such that ∥M −XY ⊤∥F is minimized. It has been applied to various fields,
such as training multi-layer neural network Song et al. (2021), attention approximation Alman &
Song (2023; 2024a), dynamic Kronecker product maintenance Song et al. (2023c), and tensor product
regression Reddy et al. (2022). In practice, certain entries of M tend to be more important than
others, leading to the study of the weighted low-rank approximation: finding matrices X,Y ∈ Rn×k

such that ∥W ◦ (M −XY ⊤)∥F is minimized, where W ∈ Rn×n
≥0 Li et al. (2016); Razenshteyn et al.

(2016); Song et al. (2023e); Gu et al. (2024). As data continues to grow in size and complexity,
(weighted) low rank approximation remains an active area of research, with ongoing efforts to develop
more efficient, scalable, and robust methods for a wide range of applications.

Attention optimization. There are several other techniques optimizing the approximation of the
attention computation to alleviate the quadratic complexity O(n2), such as optimizing the attention-
related regression problems Song et al. (2023f); Gao et al. (2023b;c;d); Li et al. (2024b); Liang et al.
(2024b), multi-layer attention optimization Song et al. (2023b); Li et al. (2023b); Liang et al. (2024c),
cross attention Liang et al. (2024f), Hopfield Models (Hu et al., 2023; Wu et al., 2024b; Hu et al.,
2024c; Xu et al., 2024a; Wu et al., 2024a; Hu et al., 2024a;b;d), and optimizing the tensor version of
the attention approximation Liang et al. (2024e); Alman & Song (2024b).
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