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ABSTRACT

Many real-world reinforcement learning (RL) problems remain intractable. A key
issue is that sample-efficient RL algorithms are unstable. Early stopping some-
times works around this. Yet early stopping in RL can be difficult, since the insta-
bility itself can result in few training steps having good policies. Standard early
stopping stops all learning. Fixing the early stopping implicitly used with most
target networks might be more robust. That is, in algorithms like DQN, the target
update rate already early-stops DQN’s target-fitting subproblems. Currently, prac-
titioners must either hope the default target rate performs well, or tune it with an
expensive grid search over online returns. Moreover, within a run, algorithms like
DQN continue to update the target even when the updates increase the training
error. This degrades value estimates, which degrades returns. Newer off-policy
and offline RL algorithms lessen this well-known deadly triad divergence, but of-
ten require excessive pessimism to avoid it, gaining stability but at lower return.
To combat these issues, we propose adding optimization of the training error w.r.t.
the target update rate. Our algorithm, Target Rate Optimization, empirically pre-
vents divergence and increases return by up to ~3× on a handful of discrete- and
continuous-action RL problems.

1 INTRODUCTION

Immensely valuable models like ChatGPT are trained with unsupervised learning, supervised learn-
ing, and RL from human feedback (RLHF) (Knox & Stone, 2008; Christiano et al., 2017; Radford
et al., 2018; Brown et al., 2020; Ouyang et al., 2022). However, almost all real-world RL so far
is bandit learning, which only maximizes the immediate value per decision. Like supervised and
unsupervised learning, bandit learning cannot stitch good decisions together in the way that RL can.
RL’s stitching enables it to learn policies far better than the best data in the dataset (Brandfonbrener
et al., 2022; Kumar et al., 2022; Chebotar et al., 2023).

Although RL is the most promising approach for many problems, it is not often used in practice.
This is partly because sample-efficient RL algorithms require three components that cause insta-
bility when combined. These three components are the deadly triad: (i) function approximation;
(ii) training for an arbitrary target policy from arbitrary actions; and (iii) bootstrapping estimates
from estimates at other states (Sutton & Barto, 2018; Tsitsiklis & Van Roy, 1996). Modern deadly
triad algorithms help, yet do not fully solve instability (van Hasselt et al., 2018; Xiao et al., 2021;
Schuurmans et al., 2021; Kumar et al., 2021a; Agarwal et al., 2019). Regularizing the learned policy
more towards the dataset also helps stability, but often decreases peak returns. A partial workaround
is one-step RL: estimate the behavior policy, then take just one policy improvement step. This pre-
vents stitching value estimates beyond one step, but it surprisingly often beats algorithms that stitch
(Brandfonbrener et al., 2021; Mathieu et al., 2023; Gulcehre et al., 2021; Goo & Niekum, 2022).
A more standard partial workaround is early stopping. However, in the common case where online
evaluations are costly, early stopping is unsettled and difficult (Kumar et al., 2021b). This is partly
because offline hyperparameter tuning is unsettled and difficult (Paine et al., 2020; Zhang & Jiang,
2021). The difficulty of early stopping in offline RL is similarly why, for online RL, the number of
optimization updates per environment step is either naively left at one, or tuned with an expensive
grid search over online returns. Increasing this update-to-data (UTD) ratio often decreases returns,
even though it is necessary for data efficiency (Li et al., 2023). Many algorithms have been pro-
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Figure 1: TD3+BC can diverge, scoring poorly even after tuning its pessimism setting, α. We
show antmaze-medium-diverse-v2 here. With zero changes other than its automatic target
rate tuning, TROT gives TD3+BC stable high return. In the real world, we frequently cannot
evaluate the score of every training run many times during training, which is why the standard in
benchmarking is to compare the final return.

posed to fix these issues with more robust convergence guarantees than, e.g., DQN. However, these
convergent algorithms have not been widely used. Some works claim this is due to their complexity
(Xiao et al., 2021; Patterson et al., 2021).

Brandfonbrener et al. (2021) study issues with iterative off-policy evaluation, a component of stan-
dard off-policy and offline learning. They separate two sources of error: (a) iterative error exploita-
tion and (b) distribution shift. Iterative error exploitation is the accumulation of error due to boot-
strapping. That is, bootstrapping can amplify the errors from finite data and function approximation.
Distribution shift, in off-policy RL, is the difference between the collected state-action distribution
and the target policy’s state-action distribution. Error due to distribution shift is well-studied both in
machine learning, and in RL in particular (Chen & Jiang, 2019; Wang et al., 2020; Zanette, 2020;
Fujimoto et al., 2018a; Wang et al., 2021). In this work, we focus on instability due to iterative error
exploitation.

We take a simplistic and empirical approach to convergence. For further simplicity, we focus on
offline RL, though our approach extends to online RL more naturally than alternatives we discuss.
We propose two algorithms. Both of our algorithms interleave one step of standard, semi-gradient
optimization for the critic with one step of optimization for the target update rate. One of our algo-
rithms, TROT, incorporates full-gradient optimization. Fig. 1 shows how TROT can significantly
increase TD3+BC’s returns.

2 PRELIMINARIES

We use the standard Markov decision process formulation (Sutton & Barto, 2018). D is an offline
dataset (Levine et al., 2020) of transitions (s, a, r, s′), where s is a state, a is the chosen action
in that state, and the environment gives both a reward r = R(s, a) and a next state s′ for that
state-action pair. We aim to learn a policy π from states to actions that maximizes the expected
cumulative rewards once deployed, discounted by γ ∈ [0, 1) at each step for variance reduction:
E
[∑

t γ
tR(st, at)

]
. The expectation is over the stochasticity of the actions our policy takes, and of

the environment’s rewards and next states.

For the discrete-action setting, we aim to learn parameters θ for a state-action value function
Qθ(s, a) to match the optimal state-action value function, Q∗(s, a). The latter gives the ex-
pected cumulative rewards of the optimal policy π∗ if we first take action a in state s. That is,
Q∗(s, a) := E

[∑∞
t=0 γ

tR(st, at)
∣∣ (s0, a0) = (s, a), a1:∞ ∼ π∗]. The expectation is again over

the stochasticity of our policy, the rewards, and the next states. Q∗ is defined this way so that
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if we can learn Qθ = Q∗, the optimal policy is argmaxa Qθ(s, a). Estimating the state-action
value instead of only the state value avoids having to learn a transition model for the environment.
Two ways to estimate Q∗ are Fitted Q-Iteration (FQI) (Ernst et al., 2005; Riedmiller, 2005) and Q-
learning (Watkins & Dayan, 1992). Currently, most deep off-policy RL algorithms are based on the
Deep Q-Network (DQN) (Mnih et al., 2015), which combines FQI and Q-learning (Fu et al., 2019).

Similar to FQI and Q-learning, DQN learns Q∗ using a Bellman optimality equation (Bellman,
1956), Q∗(s, a) = r + γEs′ [maxa′ Q∗(s′, a′)]. r and s′ again come from the environment via
(s, a), and all four are given for every transition in our offline dataset D. Under certain assumptions,
the unique Q that solves that equation must indeed be optimal, i.e., give the maximum cumulative
reward starting from any state-action pair. One way to solve that equation is to minimize the squared
difference between both sides parameterized by θ, giving the mean squared Bellman error (MSBE):

L(θ) := E
(s,a,r,s′)∼D

(Qθ(s, a)− y

)2
 . (1)

where y := r + γmaxa′ Qθ(s
′, a′) is a target toward which Qθ(s, a) is trained. In DQN’s case,

this means putting a stop-gradient on that target. DQN also delays updates to its estimator of this
target, similar to FQI. That is, the target y is instead estimated by a periodically updated copy θ̄ of
the main parameters θ. When the target estimator is lagged in this way, and the value estimators Qθ

and Qθ̄ are neural networks, the networks for target estimation Qθ̄ are called target networks (Mnih
et al., 2015). We give DQN pseudocode in Algorithm 1. Value learning algorithms like DQN that
use stop-gradients are sometimes called semi-gradient algorithms, though treating the successor es-
timate as a fixed target is standard even outside gradient-based algorithms. None of these algorithms
minimize the MSBE, Eq. (1). Rather, when they converge, they minimize the mean squared pro-
jected Bellman error (MSPBE). The MSPBE ignores error due to function approximation. With an
overparameterized value function, there is zero approximation error, but the optimization and result-
ing solutions still differ for algorithms similar to DQN if one removes the stop-gradient (Xiao et al.,
2021; Fujimoto et al., 2022). Indeed, removing the target network and stop-gradient gives a simple
convergent algorithm, the residual gradient (RG) (Baird, 1995). That is, full-gradient descent of
the MSBE, Eq. (1). Since gradient descent converges robustly, RG avoids deadly triad divergence.
Unfortunately, RG estimates value poorly when data is missing (Fujimoto et al., 2022).

For benchmarking, we implement TRO on TD3+BC (Fujimoto & Gu, 2021), perhaps the most
standard offline RL algorithm for continuous actions. To handle continuous actions, TD3+BC starts
from a standard online RL algorithm: TD3 (Fujimoto et al., 2018b). To handle offline learning,
TD3+BC uses the most common approach: add a behavior cloning (BC) term to the loss (Humphreys
et al., 2022; Nakano et al., 2021). TD3+BC also normalizes the weight of the actor’s RL term by
the magnitude of the Q estimates in order to keep the RL weight and BC weight roughly equal.

3 RELATED WORK

Early stopping the projection. As covered in Section 1, the standard, partial workaround for
return degradation is early stopping of all learning, but it has drawbacks. One perspective is that
updating the target too many times might be an important issue, since target updates are often the
only time the training loss increases within a run. Instead of stopping all learning, one could stop
the target updates, i.e., the projection. Fu et al. (2019) study this angle. Large divergence is rare in
their experiments, likely because they study online RL. They early-stop the projection using oracle
approaches. We speculate early-stopping the projection might lead to an even greater benefit in
offline RL, where the risk of overfitting and iterative error exploitation seems greater because one
cannot collect new data. They do not look for a practical algorithm. Additionally, early stopping
cannot increase the target rate, which means it is not a natural fit for a soft target update. This is a
significant drawback because a soft target update often outscores a hard target update. Moreover, the
extension of an early-stopping approach to online RL is perhaps not clear, since it is not obvious how
to handle the first target update step after collecting new data. Further, in our preliminary testing,
our optimization algorithms (TRO) outscored early-stopping equivalents we developed. Those early-
stopping equivalents similarly used only training losses. However, early-stopped projection is likely
worth further study, including approaches with validation losses.
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Convergence. Algorithms that treat their successor estimates as fixed targets, like DQN, Q-
learning, and TD learning, provably follow no gradient in the general case. If they instead were
gradient descent, convergence would be easier to study and ensure. One exception is when the en-
vironment is reversible (Ollivier, 2018; Brandfonbrener & Bruna, 2019; Liu & Olshevsky, 2020).
Another exception is soft Q-learning, i.e., Q-learning with a smooth maximum, which can equal
the entropy-regularized policy gradient (Schulman et al., 2017). Fellows et al. (2023) theorize con-
vergence conditions for periodically updated targets like in DQN. They also include an experiment
with a momentum term for the target updates, but they do not optimize the target update rate. There
are also many other theoretical and empirical works showing target networks help convergence (van
Hasselt et al., 2018; Zhang et al., 2021). To our knowledge, none optimize the target network update
rate. One alternative to a target network is a different form of soft Q-learning (Asadi & Littman,
2017; Kim et al., 2019). The softness hyperparameter could be tuned similar to how our algorithm
tunes the target update rate, but an advantage of target rate optimization is that target networks are
more standard.

Provably convergent algorithms. Many algorithms have been developed for online RL that prov-
ably converge under more general conditions than, e.g., Q-learning. This includes TDC (Sutton
et al., 2009), QRC (Ghiassian et al., 2020; Patterson et al., 2021), emphatic methods (Sutton et al.,
2015; Mathieu et al., 2023), and Retrace (Munos et al., 2016). As we mentioned, existing convergent
algorithms are not widespread, possibly because algorithms like DQN are simpler (Xiao et al., 2021).
We instead take an empirical approach, making a minimal modification applicable to all DQN-like
algorithms. Since DQN-like algorithms are more commonly used thus far, this might make it easier
for practitioners and other researchers to fix divergence in existing code and algorithms.

Return degradation. Return degradation, the common pattern of a drop in rewards over the course
of training, has been studied in both offline and online RL. In online RL, a drop in returns is some-
times called policy collapse, though it is unclear if the causes are the same. Such a drop can
occur even with on-policy algorithms (Dohare et al., 2023). In off-policy RL, van Hasselt et al.
(2015); Chen et al. (2021); Hiraoka et al. (2021) take the minimum of multiple value estimates to
enable a higher UTD. This minimum counteracts overestimation due to maximization bias (Thrun
& Schwartz, 1993). The UTD is also sometimes called the replay ratio. Solving overestimation in
offline RL rather than online RL might be a simpler path to a general solution, since offline RL is
the limit as UTD goes to infinity. Agarwal et al. (2019) show standard off-policy algorithms often
score poorly in offline RL, because their return degrades. Brandfonbrener et al. (2021) demonstrate
that even offline algorithms degrade unless they are strongly regularized towards the offline dataset,
preventing maximum returns. Kumar et al. (2021a) propose the DR3 regularizer, improving returns
and sometimes stability. However, they show DR3 does not completely fix return degradation.

4 TARGET RATE OPTIMIZATION

As alluded to in Section 3, the standard off-policy and offline RL algorithms already incorporate a
form of early stopping: the target update period. The target update period early-stops the projection
after a fixed number of critic steps. Although this early stopping of the projection is different from
early stopping of all learning, the target update rate is similarly a sensitive hyperparameter (Fu
et al., 2019). The standard approach to tuning the target update rate, if it is tuned, is again an
expensive grid search. A more efficient approach to setting the target rate might be to early-stop the
projection with a validation split, as in supervised learning. However, this still has the drawbacks
we discuss in Section 3. Yet early stopping is appealing, since it would automatically adjust the
regularization strength over the course of training. In particular, it seems likely that later targets
require stronger regularization as we approach a good value function. Possibly supporting this, one-
step RL (Brandfonbrener et al., 2021) shows that zero off-policy target updates can greatly improve
returns, and Li et al. (2023) find that adjusting the regularization technique online can improve
performance in online RL. The latter might be due to the optimal regularization strength changing
over the course of training. Moreover, as mentioned, the standard training loss frequently diverges,
but naive minimization of training losses (like the residual gradient) are ineffective.

We combat all of these issues by adding optimization of training losses w.r.t. a soft target update
rate, τ . That is, we optimize the rate of the exponential moving average (EMA) target introduced by
DDPG (Lillicrap et al., 2015). In preliminary experiments, using a separate optimizer for τ worked
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better than a combined optimizer with the main network. We interleave the optimizer steps one-
to-one. We call the general form of our algorithm Target Rate Optimization. Algorithm 1 shows
the pseudocode, added to offline DQN for simplicity. However, we suspect TRO could help any
value estimator in the deadly triad setting with a target update rate. The most common deadly triad
algorithms require such an estimator. We propose two algorithms, corresponding to two losses for
the target rate, L(τ). Our algorithms are Target Rate Optimization for the Target net’s MSBE
(TROT), and Target Rate Optimization for the MSPBE (TROP). TROT optimizes τ using the
MSBE of the target net with itself, whereas TROP optimizes τ using the standard DQN-like loss.
That is, TROP uses the main net for the current state-action, and the target net for the next state-
action. We keep the soft target update rate, τ , positive and near zero by defining τ := eτ̃ and
optimizing τ̃ ∈ R. We omit this from the pseudocode for simplicity.

We write Qθ̄ and ȳ to emphasize the dependence of these two value estimates on the target parame-
ters θ̄, and thus their dependence on τ and τ̃ as well. We update the target parameters θ̄ at the start
of every DQN step, rather than at the end of every DQN step, so that the TRO gradient is defined for
the first iteration. Since the target parameters and main parameters are equal on the first DQN step,
this is still exactly DQN (with a soft target update) if the TRO learning rate is set to zero. That is,
both TROT and TROP recover the base algorithm if the TRO learning rate is set to zero.

Algorithm 1 Target Rate Optimization added to offline DQN. Changes from DQN are blue.
1: Given an offline dataset D of transitions {(s, a, r, s′)}, and an initial soft target update rate, τ
2: Randomly initialize the parameters, θ, of an action-value function, Q
3: Initialize the target parameters θ̄ := θ
4: for each algorithm step do
5: Update the target parameters θ̄ := τθ + (1− τ)θ̄
6: Sample a batch {(s, a, r, s′)} from D
7: Compute the targets ȳ := r +maxa′ Qθ̄(s

′, a′)
8: Take one critic gradient descent step following ∇θ(ȳ −Qθ(s, a))

2

9: Take one TRO gradient descent step following ∇τL(τ), where

L(τ) :=
{
(ȳ −Qθ̄(s, a))

2 for TROT
(ȳ −Qθ(s, a))

2 for TROP
10: end for

TROT has an advantage over TROP in that the MSBE bounds the value error up to a constant
(Williams & Baird, 1993), whereas the MSPBE gives no bound (Bertsekas & Tsitsiklis, 1996). As
we noted, directly minimizing the MSBE (the residual gradient) gives poor value estimates if data is
missing, but we find that minimizing the MSBE indirectly through TD updates fixes this. TROT aims
to optimize the MSBE of the target net, not the main net, but we find the MSBE of the main net tends
to follow the MSBE of the target net. One disadvantage of TROT is that stochastic environments
and policies cause double sampling bias (Baird, 1995). We ignore double sampling bias, following
prior work (Kostrikov et al., 2019; Nachum et al., 2019; Zhang et al., 2019; Cheng et al., 2022).
To extend TROT to highly stochastic settings, there are many approaches to handle the bias (Antos
et al., 2006; Geist et al., 2016; Dai et al., 2017; Zhu & Ying, 2019; Gimelfarb et al., 2021).

Small details in RL often have large effects (Kang et al., 2023; Henderson et al., 2017; Engstrom
et al., 2020). For example, for a single batch, the order of the critic, actor, and α optimization steps
in SAC can be significant (Tarasov et al., 2023b). For these reasons, we tested many such TRO
design decisions in all combinations, for both TROT and TROP. None of those decisions affect plain
TD3+BC or DQN, and we found most of the decisions had small effects. We briefly discuss three
of those decisions in Appendix C.

5 EXPERIMENTS

5.1 DESIGN

We study offline RL for simplicity, but also because it suffers from iterative error exploitation,
return degradation, and loss divergence even more than online RL. We design our experiments to
determine whether TRO avoids these issues. First, as a proof of concept, we apply TRO on top
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Figure 2: On the classic control tasks, offline DQN is known to diverge. Both TROP and TROT im-
prove or eliminate divergence, typically with zero tuning of the TRO learning rate. The only problem
where we attempted tuning the TRO learning rate was Pendulum, where we tuned only TROT.
We use 1e-6 there. Although DQN beats TRO on CartPole, we strongly suspect a TRO learning
rate other than our default would match DQN’s return there while retaining TRO’s convergence. We
average over 20 seeds.

of DQN, and follow Xiao et al. (2021) in using one of the simplest problem sets where standard
deep RL algorithms are known to diverge. TRO improves or eliminates degradation and divergence.
Second, to validate it helps DQN on a nontrivial problem, we also test it on an Atari game, where we
again find it eliminates return degradation. Finally, we test if TROT can fix the return degradation
of an offline RL algorithm used in practice, finding TROT gives up to ~3× higher final return.

5.2 CLASSIC CONTROL

To confirm TRO works at all, we test the classic control tasks (Brockman et al., 2016) using random
offline data, where the simplest deep RL algorithms are known to diverge, and their return is known
to degrade (Schuurmans et al., 2021; Xiao et al., 2021). For additional simplicity, we create a
discrete-action version of the Pendulum setup from Xiao et al. (2021). As expected, DQN’s loss
divergence and return degradation persist despite hyperparameter tuning, detailed in Appendix E. We
exclude their Reacher setup since it seems less discriminative than the other tasks. We follow their
work in collecting one thousand random actions for Pendulum, and ten thousand random actions for
CartPole and Acrobot. Like their work, for simplicity, we do not add any pessimism for any of our
algorithms on these datasets. This might be especially reasonable for these datasets, since they are
random actions.

For all classic control experiments except TROT on Pendulum, we did not tune the TRO learning
rate. That is, we used the default 3e-4. We tuned only the critic learning rate and τ for both DQN
and TRO, running for 500k algorithm steps (not shown). We then ran all the best configurations for
5M steps, and show in Fig. 2 only the single best configuration for each algorithm and dataset by
final return. We again use a soft target update for our DQN baseline. For DQN, we also tuned the
regular hard target updates (not shown) on all environments, which was reliably no better.

5.3 ATARI

In initial experiments, we found that TROT often outscored TROP. As mentioned, TROT may also
have an advantage in that the MSBE bounds the value error. Accordingly, the remainder of our
results are for TROT alone, though we believe TROP is also worth further study. For a more complex
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Figure 3: TROT remains stable on Seaquest for at least 50M algorithm steps, even without tuning the
TRO learning rate. Although TROT performs best here with a high initial τ (shown), a high initial τ
is not necessary for TROT to outscore even DQN’s best hyperparameter configuration out of 20. The
small peak in TROT’s learned τ halfway through training may suggest a more cohesive optimization
would do even better. We discuss that in Section 6. Shaded areas give standard deviations.

proof of concept than the classic control problems, we use offline DQN on 100k random actions from
Seaquest (Bellemare et al., 2013; Machado et al., 2018). Similar to the DQN experiments in Kumar
et al. (2021a); Agarwal et al. (2019), we confirm that DQN by itself degrades. We again did not
tune the TRO learning rate at all, yet Fig. 3 shows TROT eliminates return degradation. We use the
deterministic version of Seaquest to focus on return degradation, i.e., to ignore double sampling bias
again.

5.4 ANTMAZE

For modern algorithms, the benchmark that most commonly causes divergence may be offline
Antmaze (Fu et al., 2020). Since TD3+BC is possibly the most standard offline algorithm for con-
tinuous actions, we implement TROT on TD3+BC. TROT needs the BC component from TD3+BC
because, to our knowledge, TRO is only pessimistic to the extent it avoids iterative error exploitation.
To handle distribution shift, TRO requires additional pessimism, similar to one-step RL’s additional
pessimism. We do not change TD3+BC’s hyperparameters aside from its pessimism, α, which
we tune equally for both TROT and TD3+BC by itself. For TROT, we additionally tune our TRO
learning rate.

Following prior work, we tune those two hyperparameters in combination and show the best score
per dataset (An et al., 2021; Tarasov et al., 2023a). Tuning with limited online returns is common,
since, as mentioned, offline hyperparameter tuning is unsettled and difficult. Moreover, tuning with
limited online returns is often a realistic setup (Brandfonbrener et al., 2021; Kurenkov & Kolesnikov,
2021). To our knowledge, the pessimism hyperparameter for every existing offline algorithm is
sensitive (Tarasov et al., 2022; Kang et al., 2023). TRO only slightly decreases the sensitivity of
TD3+BC’s pessimism, and this is likely to hold for other base offline algorithms. Offline algorithms
without a sensitive pessimism hyperparameter are an active area of research (Hong et al., 2022).
Such algorithms will probably still need mechanisms like TRO to handle iterative error exploitation.

Tuning a second hyperparameter for plain TD3+BC would be a fairer comparison against TD3+BC
with a tuned TRO learning rate. However, in Section 5.2 and Section 5.3, TRO increased stability
and final scores even without tuning the TRO learning rate. Similarly, Tarasov et al. (2023a) show
that TD3+BC requires extensive changes to score highly on Antmaze: a larger discount factor,
deeper neural networks, layer norm (Ba et al., 2016), larger batches, and reward scaling. Further,
these changes do not eliminate return degradation and divergence on other datasets.

Baselines. As mentioned, details in RL often have large effects (Kang et al., 2023; Henderson et al.,
2017; Engstrom et al., 2020). To find which details help, we use only controlled experiments for our
benchmarking. As noted in Section 2, we focus on an instance of the most ubiquitous approach to
offline RL. That is, we compare TD3+BC against itself with one change at a time. Other algorithms
also suffer from the divergence on Antmaze shown in Fig. 1, so we expect our findings to generalize.
IQL is one exception to that divergence (Kang et al., 2023), which could be due to IQL’s learning
rate decay for its actor. TRO’s automatic τ schedule might be a more principled alternative to IQL’s
cosine learning rate decay, which: (i) does not react to changes during training; (ii) does not react
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Table 1: Tarasov et al. (2023a) show their TD3+BC implementation (“ReBRAC’s TD3+BC” in our
table) performs poorly on Antmaze even when the pessimism is tuned per dataset. We similarly find
low scores with a standard implementation. However, by optimizing τ , changing nothing else from
TD3+BC, TROT greatly increases the scores on every dataset where plain TD3+BC degrades. 2M
critic gradient steps, averaged over 10 seeds. The highest score per dataset is highlighted .

Dataset
ReBRAC’s
TD3+BC TD3+BC TROT

antmaze-umaze 66.3 ± 6.2 94.1 ± 7.2 92.3 ± 7.5
antmaze-umaze-diverse 53.8 ± 8.5 50.3 ± 14.8 50.5 ± 15.2
antmaze-medium-play 26.5 ± 18.4 56.0 ± 39.9 78.2 ± 13.9
antmaze-medium-diverse 25.9 ± 15.3 25.9 ± 36.7 71.5 ± 14.0
antmaze-large-play 0.0 ± 0.0 10.1 ± 13.0 18.8 ± 15.6
antmaze-large-diverse 0.0 ± 0.0 21.1 ± 14.2 23.1 ± 15.5

to changes to the environment and dataset; (iii) does not naturally fit online RL; and (iv) does not
imply additional, more adaptive algorithms. Expanding on (iv): a hyperparameter-free (Cutkosky
et al., 2023) algorithm similar to TRO might be worth pursuing. Despite these reasons to prefer
TRO over cosine actor decay, we plan to compare against TD3+BC with that decay in future work.
Underscoring the importance of such controlled experiments, Liu et al. (2023) find their algorithm
built on SAC scores over two times higher on Antmaze than the same algorithm built on TD3.
Similar to SAC, IQL uses learnable noise for its actor. Despite those disadvantages, TROT enables
TD3+BC to beat half of the Antmaze scores for IQL in Tarasov et al. (2023a), who similarly tune
IQL’s two hyperparameters per dataset. However, because we focus on controlled comparisons, we
do not include those IQL scores here. Likewise, we do not include CQL’s scores, which additionally
benefit from deeper nets (Tarasov et al., 2023a) and learning rate tuning. CQL also suffers return
degradation, which led Kumar et al. (2021a) to develop DR3 for improved stability. We plan to test
DR3 with TD3+BC for a controlled comparison against TRO.

Results. Within 2M algorithm steps, the Antmaze datasets TD3+BC degrades on are
antmaze-medium-play, antmaze-medium-diverse, and antmaze-large-play.
Table 1 shows TROT prevents that return degradation in every case. To check whether more
training may cause additional degradation, we also trained TD3+BC for 5M algorithm steps on
antmaze-umaze. As shown in Table 2, this causes TD3+BC to degrade there as well. In contrast,
TROT again retains its peak returns. We speculate more training would cause degradation on other
datasets, too.

5.5 DISCUSSION

TRO requires extra gradient computations. In our experiments, we used one TRO training step
per main training step, doubling the length per training run. On some problems, TRO’s increased
stability and decreased initial target rate sensitivity is likely worth this cost. We also speculate less
frequent TRO steps would retain TRO’s benefits while greatly reducing its costs.

TRO often improves over the base algorithm in a wide range of TRO learning rates. Tuning over
{1e-3, 1e-4, 1e-5, 1e-6} is usually enough. For example, we required only 1e-3 and 1e-4 for our
Antmaze results, and in many other cases we did not attempt anything other than the default 3e-4.

When TROT does not improve over the base algorithm, it often appears to be due to short-sighted
or otherwise ineffective optimization. That is, TROT does not seem to encounter the failure of the
residual gradient on certain problems, where the residual gradient’s return is always bad even if the
MSBE is low (Fujimoto et al., 2022; Schuurmans et al., 2021). On runs where TROT succeeds at
minimizing the MSBE of the target net more than the base algorithm would have, TROT typically
outscores the base algorithm. Conversely, when TROT’s MSBE is higher than the MSBE the base
algorithm gets, the base algorithm typically outscores TROT. In Appendix B, we elaborate on this
and discuss datasets that TRO does not help for. TRO can also cause a cyclical tau, as in Fig. 3,
which we speculate is suboptimal.
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Table 2: We trained TD3+BC for more steps on antmaze-umaze. This causes returns to degrade
there, too. TROT again avoids degradation. 5M critic gradient steps, averaged over 5 seeds.

Dataset TD3+BC TROT
antmaze-umaze 66.2 ± 36.9 96.4 ± 6.0

6 CONCLUSION

TRO tends to stabilize the base algorithm as long as its added optimization succeeds, as discussed
in Section 5.5. Consequently, the most promising follow-up might be similar algorithms with more
cohesive optimization. Residual algorithms, weighted averages of the residual gradient and semi-
gradient (Baird, 1995), might be a worthwhile baseline for that. However, their residual weight
hyperparameter is sensitive (Zhang et al., 2019). Another approach that might optimize more cohe-
sively is early stopping of the projection, though we list downsides in Section 3.

It is perhaps unclear whether uncertainty-based pessimism (Buckman et al., 2020) like SAC-N
(An et al., 2021) ought to handle iterative error exploitation on its own, without algorithms like
TROT. Yet, residual algorithms can decrease the number of critics SAC-N requires by more than an
order of magnitude (Snyder & Zhu, 2022), which suggests such approaches may be important for
uncertainty-based pessimism as well.

Given TROT’s simplicity and effectiveness, it might be worth testing on additional problems. For in-
stance, AlphaStar Unplugged (Mathieu et al., 2023) finds that degradation of their win-rate prevents
iterative methods from outscoring one-step RL on a difficult real-time strategy game.
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A RESIDUAL GRADIENT EXPERIMENTS

On our new, discrete-action version of the offline Pendulum problem from random actions (Xiao
et al., 2021), we find RG still scores significantly lower than the semi-gradient (SG), even when
RG is given a deterministic start state. RG’s underperformance persisted despite tuning the learning
rate and batch size. This provides initial evidence against the boundary conjecture in Appendix D
of Jiang (2019), i.e., that RG fails due to stochastic start states. That said, Jiang (2022) instead
conjectures that SG might outperform RG by implicitly handling difficult details as stochasticity.
This may connect with the claim that RG is not invariant (Dabney & Thomas, 2014). K-FAC, which
may (Martens & Grosse, 2015) or may not (Benzing, 2022) be closer to the natural gradient than
Adam is, did not help much in our experiments.

Larger batch and dataset sizes did improve RG a bit, at least with a deterministic start state. This
aligns with Fujimoto et al. (2022)’s arguments against residual minimization with finite data. This
might also relate to SBEED’s (Dai et al., 2017) and Trust-PCL’s (Nachum et al., 2017) use of large
batches.

We also find that RG works somewhat better on this offline Pendulum problem after adding an initial-
value minimizing term like in Eq. 50 of Nachum & Dai (2020). We tried this value minimizer term
with (semi-gradient) DQN too, and it did not fix DQN’s divergence. That minimization term is
different from CQL’s minimization term, which minimizes the state-marginal of the dataset. CQL
additionally includes a maximization term.

Moreover, we find RG works better here with a smaller value initialization or discount factor, though
neither is a general solution.

B WHERE TRO DOES NOT HELP MUCH

Gym Locomotion (Hopper, Walker, Half Cheetah). For TD3+BC on the gym locomotion tasks,
we find TRO helps only somewhat. This might be due to a relative lack of return degradation for
TD3+BC on these datasets, regardless of α. That is, on the locomotion datasets, we find excessive
optimism (low α) does not tend to cause returns to peak and then drop. Rather, on the locomotion
datasets, returns do not go up at all. That said, TRO can enable a more optimistic α setting and thus
slightly higher returns on some environments, most prominently on walker2d-random where it
almost doubles TD3+BC’s score (not shown). Further, returns and the MSBE of the target net again
anticorrelate, suggesting a route for improvement.

Brandfonbrener et al. (2021) show more frequent return degradation than we see on these tasks,
though they use slightly different algorithms. For example, they use a single critic instead of clipped
double Q-learning, and they use behavior cloning pre-training.

Adroit, Maze2D, and Kitchen. On these datasets (Fu et al., 2020; Rajeswaran et al., 2017; Gupta
et al., 2019), we again do not find much benefit from TRO (not shown). Though, this might again
be due to the limited return degradation for TD3+BC here, regardless of α. Further, we again see
anticorrelation between returns and MSBE, which points toward the future work we mention in
Section 6.

C OTHER ALGORITHMIC DECISIONS

The three simplest binary algorithm design decisions we tested are below. Our main pseudocode,
Algorithm 1, leaves out these design branches, showing only the algorithm we used for our main
results. We name these Booleans such that all three are false in our main pseudocode.

• immediate target update: Within an algorithm step, update the target network im-
mediately after the first of the two optimization steps, instead of delaying the target update
until after both optimization steps.

• critic after target: On each algorithm step, run the critic gradient descent step
after the TRO gradient descent step instead of before.
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• independent batches: On each algorithm step, sample two, independent batches,
one for the TRO gradient descent step and one for the critic gradient descent step. This
is as opposed to sampling one batch per algorithm step, using it for both gradient descent
steps.

We show them in pseudocode in Algorithm 2. Typically, any combination of the decisions scored
about equally well. We tested every combination on many environments, e.g., Seaquest, Antmaze,
all of classic control, and pen-human. All results in this work delay the target update until after
both optimization steps. All results in this work also run the critic step before the TRO step. Only
the classic control tasks sample a new batch for the TRO step, but that decision had little to no effect
in preliminary testing on many environments and datasets.

Algorithm 2 Other algorithmic decisions for Target Rate Optimization, again added to offline DQN.
Changes from DQN are blue.

1: Given an offline dataset D of transitions {(s, a, r, s′)}, and an initial soft target update rate, τ
2: Randomly initialize the parameters, θ, of an action-value function, Q
3: Initialize the target parameters θ̄ := θ
4: for each algorithm step do
5: Update the target parameters θ̄ := τθ + (1− τ)θ̄
6: Sample a batch {(s, a, r, s′)} from D
7: Compute the targets ȳ := r +maxa′ Qθ̄(s

′, a′)
8: if not critic after target then
9: Take one critic gradient descent step following ∇θ(ȳ −Qθ(s, a))

2

10: if independent batches then
11: Sample a second batch {(s, a, r, s′)} from D
12: end if
13: end if
14: if immediate target update then
15: Update the target parameters θ̄ := τθ + (1− τ)θ̄
16: end if
17: Take one TRO gradient descent step following ∇τL(τ), where

L(τ) :=
{
(ȳ −Qθ̄(s, a))

2 for TROT
(ȳ −Qθ(s, a))

2 for TROP
18: if critic after target then
19: if independent batches then
20: Sample a second batch {(s, a, r, s′)} from D
21: end if
22: Take one critic gradient descent step following ∇θ(ȳ −Qθ(s, a))

2

23: end if
24: end for

Other modifications that did not help in preliminary experiments include: a single, combined opti-
mizer for the main net and τ ; RAdam (Liu et al., 2019) for the critic or for TRO; and a larger ϵ for
Adam.

D ALTERNATIVE HANDLING FOR DOUBLE Q

We also briefly tested using two different τ optimizers, one for each critic separately. Using two
τ optimizers prevented divergence at higher α values (more optimism) than a single τ optimizer
allowed. This does not introduce any additional hyperparameter tuning, since both optimizers use
the same TRO learning rate. The learned τs typically went in opposite directions. That is, typically,
one τ increased while the other τ decreased. However, despite the added stability at higher α values,
at no α value did using two optimizers score significantly higher than using one optimizer. We also
tried using only a single critic (like DDPG), which similarly did not improve scores. We think it’s
possible that further work with two different τ optimizers might outscore a single τ optimizer.
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E MORE EXPERIMENT DETAILS

We leave states unmodified. That is, we do not normalize states, which the TD3+BC paper did for
the gym locomotion tasks. Like that work, we found leaving states unmodified works better for
Antmaze anyway. We did not bother testing Maze2D with normalized states.

Other than the pessimism, α, we leave all TD3+BC hyperparameters at their defaults, which is also
the same as the TD3 defaults (Fujimoto & Gu, 2021).

We tuned TD3+BC’s pessimism, α, in {1, 2, 2.5, 3, 4, 5, 10, 20, 30, 50, 100, 200, 500}, showing the
best score per dataset. The original TD3+BC tuned over {1, 2, 2.5, 3, 4}, which does not suffice
for the antmaze-medium-* and antmaze-large-* datasets. We discuss this sensitivity in
Section 5.5. Our irregular hyperparameter search grid risks overfitting. Although such irregular
searches are common in prior work, in future work we recommend, e.g., α ∈ {2−1, 20, . . . , 29}
(Patterson et al., 2023).

We smooth all plots in all figures with rolling averages for readability. We average all scores over
the final 10 evaluation steps.

Antmaze. On Antmaze, we used only a TRO learning rate in {1e-3, 1e-4}.

Following IQL (Kostrikov et al., 2021), CORL (Tarasov et al., 2022), and the original authors of the
Antmaze dataset (Fu et al., 2020), we subtract one from the Antmaze rewards. Following CORL
and the original TD3+BC paper, we normalize rewards on the gym locomotion tasks. We use the
v2 versions of Antmaze. Some works report v0 scores, but the v0 Antmaze datasets have errors
(Tarasov et al., 2023a).

Classic control. On the classic control tasks, we did not attempt to tune our TRO learning rate
on any task except for Pendulum, where we show 1e-6. That is, we used only our default 3e-4 on
CartPole and Acrobot.

For all algorithms, we searched over critic learning rates in {1e0, 1e-1, . . . , 1e-6} and (initial) target
update rates also in {1e0, 1e-1, . . . , 1e-6}.

Atari. On Atari, we again did not attempt to tune our TRO learning rate at all.

We first ran 3M steps using critic learning rates in {1e-3, 1e-4, 1e-5, 1e-6}, and (initial) target
update rates in {1e-3, 1e-4, . . . , 1e-7}. We ran up to 10 seeds per configuration, concentrated on the
best configurations. Then we ran 3 seeds for 50M steps for each of the best DQN configurations,
which were critic learning rates in {1e-4, 1e-5, 1e-6}, and target update rates in {1e-5, 1e-6, 1e-7}.
For TROT-DQN, we similarly ran 3 seeds for 50M steps for each of the best configurations, which
were critic learning rates in {1e-4, 1e-5}, and initial target update rates in {1e-3, 1e-4, 1e-5, 1e-6}.
Finally, we ran another 2 seeds for the best configuration for each algorithm. For DQN, that was
a critic learning rate of 1e-5, and a target update rate of 1e-6. For TROT-DQN, that was a critic
learning rate of 1e-5, and an initial target update rate of 1e-3, though TROT-DQN worked about
equally well with all of those initial target update rates.
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